xfs_buf.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include <linux/stddef.h>
  20. #include <linux/errno.h>
  21. #include <linux/slab.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/init.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/bio.h>
  26. #include <linux/sysctl.h>
  27. #include <linux/proc_fs.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/percpu.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/hash.h>
  32. #include <linux/kthread.h>
  33. #include <linux/migrate.h>
  34. #include <linux/backing-dev.h>
  35. #include <linux/freezer.h>
  36. #include "xfs_sb.h"
  37. #include "xfs_inum.h"
  38. #include "xfs_ag.h"
  39. #include "xfs_dmapi.h"
  40. #include "xfs_mount.h"
  41. static kmem_zone_t *xfs_buf_zone;
  42. STATIC int xfsbufd(void *);
  43. STATIC int xfsbufd_wakeup(int, gfp_t);
  44. STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
  45. static struct shrinker xfs_buf_shake = {
  46. .shrink = xfsbufd_wakeup,
  47. .seeks = DEFAULT_SEEKS,
  48. };
  49. static struct workqueue_struct *xfslogd_workqueue;
  50. struct workqueue_struct *xfsdatad_workqueue;
  51. #ifdef XFS_BUF_TRACE
  52. void
  53. xfs_buf_trace(
  54. xfs_buf_t *bp,
  55. char *id,
  56. void *data,
  57. void *ra)
  58. {
  59. ktrace_enter(xfs_buf_trace_buf,
  60. bp, id,
  61. (void *)(unsigned long)bp->b_flags,
  62. (void *)(unsigned long)bp->b_hold.counter,
  63. (void *)(unsigned long)bp->b_sema.count,
  64. (void *)current,
  65. data, ra,
  66. (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
  67. (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
  68. (void *)(unsigned long)bp->b_buffer_length,
  69. NULL, NULL, NULL, NULL, NULL);
  70. }
  71. ktrace_t *xfs_buf_trace_buf;
  72. #define XFS_BUF_TRACE_SIZE 4096
  73. #define XB_TRACE(bp, id, data) \
  74. xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
  75. #else
  76. #define XB_TRACE(bp, id, data) do { } while (0)
  77. #endif
  78. #ifdef XFS_BUF_LOCK_TRACKING
  79. # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
  80. # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
  81. # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
  82. #else
  83. # define XB_SET_OWNER(bp) do { } while (0)
  84. # define XB_CLEAR_OWNER(bp) do { } while (0)
  85. # define XB_GET_OWNER(bp) do { } while (0)
  86. #endif
  87. #define xb_to_gfp(flags) \
  88. ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
  89. ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
  90. #define xb_to_km(flags) \
  91. (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
  92. #define xfs_buf_allocate(flags) \
  93. kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
  94. #define xfs_buf_deallocate(bp) \
  95. kmem_zone_free(xfs_buf_zone, (bp));
  96. /*
  97. * Page Region interfaces.
  98. *
  99. * For pages in filesystems where the blocksize is smaller than the
  100. * pagesize, we use the page->private field (long) to hold a bitmap
  101. * of uptodate regions within the page.
  102. *
  103. * Each such region is "bytes per page / bits per long" bytes long.
  104. *
  105. * NBPPR == number-of-bytes-per-page-region
  106. * BTOPR == bytes-to-page-region (rounded up)
  107. * BTOPRT == bytes-to-page-region-truncated (rounded down)
  108. */
  109. #if (BITS_PER_LONG == 32)
  110. #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
  111. #elif (BITS_PER_LONG == 64)
  112. #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
  113. #else
  114. #error BITS_PER_LONG must be 32 or 64
  115. #endif
  116. #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
  117. #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
  118. #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
  119. STATIC unsigned long
  120. page_region_mask(
  121. size_t offset,
  122. size_t length)
  123. {
  124. unsigned long mask;
  125. int first, final;
  126. first = BTOPR(offset);
  127. final = BTOPRT(offset + length - 1);
  128. first = min(first, final);
  129. mask = ~0UL;
  130. mask <<= BITS_PER_LONG - (final - first);
  131. mask >>= BITS_PER_LONG - (final);
  132. ASSERT(offset + length <= PAGE_CACHE_SIZE);
  133. ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
  134. return mask;
  135. }
  136. STATIC_INLINE void
  137. set_page_region(
  138. struct page *page,
  139. size_t offset,
  140. size_t length)
  141. {
  142. set_page_private(page,
  143. page_private(page) | page_region_mask(offset, length));
  144. if (page_private(page) == ~0UL)
  145. SetPageUptodate(page);
  146. }
  147. STATIC_INLINE int
  148. test_page_region(
  149. struct page *page,
  150. size_t offset,
  151. size_t length)
  152. {
  153. unsigned long mask = page_region_mask(offset, length);
  154. return (mask && (page_private(page) & mask) == mask);
  155. }
  156. /*
  157. * Mapping of multi-page buffers into contiguous virtual space
  158. */
  159. typedef struct a_list {
  160. void *vm_addr;
  161. struct a_list *next;
  162. } a_list_t;
  163. static a_list_t *as_free_head;
  164. static int as_list_len;
  165. static DEFINE_SPINLOCK(as_lock);
  166. /*
  167. * Try to batch vunmaps because they are costly.
  168. */
  169. STATIC void
  170. free_address(
  171. void *addr)
  172. {
  173. a_list_t *aentry;
  174. #ifdef CONFIG_XEN
  175. /*
  176. * Xen needs to be able to make sure it can get an exclusive
  177. * RO mapping of pages it wants to turn into a pagetable. If
  178. * a newly allocated page is also still being vmap()ed by xfs,
  179. * it will cause pagetable construction to fail. This is a
  180. * quick workaround to always eagerly unmap pages so that Xen
  181. * is happy.
  182. */
  183. vunmap(addr);
  184. return;
  185. #endif
  186. aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
  187. if (likely(aentry)) {
  188. spin_lock(&as_lock);
  189. aentry->next = as_free_head;
  190. aentry->vm_addr = addr;
  191. as_free_head = aentry;
  192. as_list_len++;
  193. spin_unlock(&as_lock);
  194. } else {
  195. vunmap(addr);
  196. }
  197. }
  198. STATIC void
  199. purge_addresses(void)
  200. {
  201. a_list_t *aentry, *old;
  202. if (as_free_head == NULL)
  203. return;
  204. spin_lock(&as_lock);
  205. aentry = as_free_head;
  206. as_free_head = NULL;
  207. as_list_len = 0;
  208. spin_unlock(&as_lock);
  209. while ((old = aentry) != NULL) {
  210. vunmap(aentry->vm_addr);
  211. aentry = aentry->next;
  212. kfree(old);
  213. }
  214. }
  215. /*
  216. * Internal xfs_buf_t object manipulation
  217. */
  218. STATIC void
  219. _xfs_buf_initialize(
  220. xfs_buf_t *bp,
  221. xfs_buftarg_t *target,
  222. xfs_off_t range_base,
  223. size_t range_length,
  224. xfs_buf_flags_t flags)
  225. {
  226. /*
  227. * We don't want certain flags to appear in b_flags.
  228. */
  229. flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
  230. memset(bp, 0, sizeof(xfs_buf_t));
  231. atomic_set(&bp->b_hold, 1);
  232. init_completion(&bp->b_iowait);
  233. INIT_LIST_HEAD(&bp->b_list);
  234. INIT_LIST_HEAD(&bp->b_hash_list);
  235. init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
  236. XB_SET_OWNER(bp);
  237. bp->b_target = target;
  238. bp->b_file_offset = range_base;
  239. /*
  240. * Set buffer_length and count_desired to the same value initially.
  241. * I/O routines should use count_desired, which will be the same in
  242. * most cases but may be reset (e.g. XFS recovery).
  243. */
  244. bp->b_buffer_length = bp->b_count_desired = range_length;
  245. bp->b_flags = flags;
  246. bp->b_bn = XFS_BUF_DADDR_NULL;
  247. atomic_set(&bp->b_pin_count, 0);
  248. init_waitqueue_head(&bp->b_waiters);
  249. XFS_STATS_INC(xb_create);
  250. XB_TRACE(bp, "initialize", target);
  251. }
  252. /*
  253. * Allocate a page array capable of holding a specified number
  254. * of pages, and point the page buf at it.
  255. */
  256. STATIC int
  257. _xfs_buf_get_pages(
  258. xfs_buf_t *bp,
  259. int page_count,
  260. xfs_buf_flags_t flags)
  261. {
  262. /* Make sure that we have a page list */
  263. if (bp->b_pages == NULL) {
  264. bp->b_offset = xfs_buf_poff(bp->b_file_offset);
  265. bp->b_page_count = page_count;
  266. if (page_count <= XB_PAGES) {
  267. bp->b_pages = bp->b_page_array;
  268. } else {
  269. bp->b_pages = kmem_alloc(sizeof(struct page *) *
  270. page_count, xb_to_km(flags));
  271. if (bp->b_pages == NULL)
  272. return -ENOMEM;
  273. }
  274. memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
  275. }
  276. return 0;
  277. }
  278. /*
  279. * Frees b_pages if it was allocated.
  280. */
  281. STATIC void
  282. _xfs_buf_free_pages(
  283. xfs_buf_t *bp)
  284. {
  285. if (bp->b_pages != bp->b_page_array) {
  286. kmem_free(bp->b_pages);
  287. }
  288. }
  289. /*
  290. * Releases the specified buffer.
  291. *
  292. * The modification state of any associated pages is left unchanged.
  293. * The buffer most not be on any hash - use xfs_buf_rele instead for
  294. * hashed and refcounted buffers
  295. */
  296. void
  297. xfs_buf_free(
  298. xfs_buf_t *bp)
  299. {
  300. XB_TRACE(bp, "free", 0);
  301. ASSERT(list_empty(&bp->b_hash_list));
  302. if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
  303. uint i;
  304. if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
  305. free_address(bp->b_addr - bp->b_offset);
  306. for (i = 0; i < bp->b_page_count; i++) {
  307. struct page *page = bp->b_pages[i];
  308. if (bp->b_flags & _XBF_PAGE_CACHE)
  309. ASSERT(!PagePrivate(page));
  310. page_cache_release(page);
  311. }
  312. _xfs_buf_free_pages(bp);
  313. }
  314. xfs_buf_deallocate(bp);
  315. }
  316. /*
  317. * Finds all pages for buffer in question and builds it's page list.
  318. */
  319. STATIC int
  320. _xfs_buf_lookup_pages(
  321. xfs_buf_t *bp,
  322. uint flags)
  323. {
  324. struct address_space *mapping = bp->b_target->bt_mapping;
  325. size_t blocksize = bp->b_target->bt_bsize;
  326. size_t size = bp->b_count_desired;
  327. size_t nbytes, offset;
  328. gfp_t gfp_mask = xb_to_gfp(flags);
  329. unsigned short page_count, i;
  330. pgoff_t first;
  331. xfs_off_t end;
  332. int error;
  333. end = bp->b_file_offset + bp->b_buffer_length;
  334. page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
  335. error = _xfs_buf_get_pages(bp, page_count, flags);
  336. if (unlikely(error))
  337. return error;
  338. bp->b_flags |= _XBF_PAGE_CACHE;
  339. offset = bp->b_offset;
  340. first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
  341. for (i = 0; i < bp->b_page_count; i++) {
  342. struct page *page;
  343. uint retries = 0;
  344. retry:
  345. page = find_or_create_page(mapping, first + i, gfp_mask);
  346. if (unlikely(page == NULL)) {
  347. if (flags & XBF_READ_AHEAD) {
  348. bp->b_page_count = i;
  349. for (i = 0; i < bp->b_page_count; i++)
  350. unlock_page(bp->b_pages[i]);
  351. return -ENOMEM;
  352. }
  353. /*
  354. * This could deadlock.
  355. *
  356. * But until all the XFS lowlevel code is revamped to
  357. * handle buffer allocation failures we can't do much.
  358. */
  359. if (!(++retries % 100))
  360. printk(KERN_ERR
  361. "XFS: possible memory allocation "
  362. "deadlock in %s (mode:0x%x)\n",
  363. __func__, gfp_mask);
  364. XFS_STATS_INC(xb_page_retries);
  365. xfsbufd_wakeup(0, gfp_mask);
  366. congestion_wait(WRITE, HZ/50);
  367. goto retry;
  368. }
  369. XFS_STATS_INC(xb_page_found);
  370. nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
  371. size -= nbytes;
  372. ASSERT(!PagePrivate(page));
  373. if (!PageUptodate(page)) {
  374. page_count--;
  375. if (blocksize >= PAGE_CACHE_SIZE) {
  376. if (flags & XBF_READ)
  377. bp->b_flags |= _XBF_PAGE_LOCKED;
  378. } else if (!PagePrivate(page)) {
  379. if (test_page_region(page, offset, nbytes))
  380. page_count++;
  381. }
  382. }
  383. bp->b_pages[i] = page;
  384. offset = 0;
  385. }
  386. if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
  387. for (i = 0; i < bp->b_page_count; i++)
  388. unlock_page(bp->b_pages[i]);
  389. }
  390. if (page_count == bp->b_page_count)
  391. bp->b_flags |= XBF_DONE;
  392. XB_TRACE(bp, "lookup_pages", (long)page_count);
  393. return error;
  394. }
  395. /*
  396. * Map buffer into kernel address-space if nessecary.
  397. */
  398. STATIC int
  399. _xfs_buf_map_pages(
  400. xfs_buf_t *bp,
  401. uint flags)
  402. {
  403. /* A single page buffer is always mappable */
  404. if (bp->b_page_count == 1) {
  405. bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
  406. bp->b_flags |= XBF_MAPPED;
  407. } else if (flags & XBF_MAPPED) {
  408. if (as_list_len > 64)
  409. purge_addresses();
  410. bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
  411. VM_MAP, PAGE_KERNEL);
  412. if (unlikely(bp->b_addr == NULL))
  413. return -ENOMEM;
  414. bp->b_addr += bp->b_offset;
  415. bp->b_flags |= XBF_MAPPED;
  416. }
  417. return 0;
  418. }
  419. /*
  420. * Finding and Reading Buffers
  421. */
  422. /*
  423. * Look up, and creates if absent, a lockable buffer for
  424. * a given range of an inode. The buffer is returned
  425. * locked. If other overlapping buffers exist, they are
  426. * released before the new buffer is created and locked,
  427. * which may imply that this call will block until those buffers
  428. * are unlocked. No I/O is implied by this call.
  429. */
  430. xfs_buf_t *
  431. _xfs_buf_find(
  432. xfs_buftarg_t *btp, /* block device target */
  433. xfs_off_t ioff, /* starting offset of range */
  434. size_t isize, /* length of range */
  435. xfs_buf_flags_t flags,
  436. xfs_buf_t *new_bp)
  437. {
  438. xfs_off_t range_base;
  439. size_t range_length;
  440. xfs_bufhash_t *hash;
  441. xfs_buf_t *bp, *n;
  442. range_base = (ioff << BBSHIFT);
  443. range_length = (isize << BBSHIFT);
  444. /* Check for IOs smaller than the sector size / not sector aligned */
  445. ASSERT(!(range_length < (1 << btp->bt_sshift)));
  446. ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
  447. hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
  448. spin_lock(&hash->bh_lock);
  449. list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
  450. ASSERT(btp == bp->b_target);
  451. if (bp->b_file_offset == range_base &&
  452. bp->b_buffer_length == range_length) {
  453. /*
  454. * If we look at something, bring it to the
  455. * front of the list for next time.
  456. */
  457. atomic_inc(&bp->b_hold);
  458. list_move(&bp->b_hash_list, &hash->bh_list);
  459. goto found;
  460. }
  461. }
  462. /* No match found */
  463. if (new_bp) {
  464. _xfs_buf_initialize(new_bp, btp, range_base,
  465. range_length, flags);
  466. new_bp->b_hash = hash;
  467. list_add(&new_bp->b_hash_list, &hash->bh_list);
  468. } else {
  469. XFS_STATS_INC(xb_miss_locked);
  470. }
  471. spin_unlock(&hash->bh_lock);
  472. return new_bp;
  473. found:
  474. spin_unlock(&hash->bh_lock);
  475. /* Attempt to get the semaphore without sleeping,
  476. * if this does not work then we need to drop the
  477. * spinlock and do a hard attempt on the semaphore.
  478. */
  479. if (down_trylock(&bp->b_sema)) {
  480. if (!(flags & XBF_TRYLOCK)) {
  481. /* wait for buffer ownership */
  482. XB_TRACE(bp, "get_lock", 0);
  483. xfs_buf_lock(bp);
  484. XFS_STATS_INC(xb_get_locked_waited);
  485. } else {
  486. /* We asked for a trylock and failed, no need
  487. * to look at file offset and length here, we
  488. * know that this buffer at least overlaps our
  489. * buffer and is locked, therefore our buffer
  490. * either does not exist, or is this buffer.
  491. */
  492. xfs_buf_rele(bp);
  493. XFS_STATS_INC(xb_busy_locked);
  494. return NULL;
  495. }
  496. } else {
  497. /* trylock worked */
  498. XB_SET_OWNER(bp);
  499. }
  500. if (bp->b_flags & XBF_STALE) {
  501. ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
  502. bp->b_flags &= XBF_MAPPED;
  503. }
  504. XB_TRACE(bp, "got_lock", 0);
  505. XFS_STATS_INC(xb_get_locked);
  506. return bp;
  507. }
  508. /*
  509. * Assembles a buffer covering the specified range.
  510. * Storage in memory for all portions of the buffer will be allocated,
  511. * although backing storage may not be.
  512. */
  513. xfs_buf_t *
  514. xfs_buf_get_flags(
  515. xfs_buftarg_t *target,/* target for buffer */
  516. xfs_off_t ioff, /* starting offset of range */
  517. size_t isize, /* length of range */
  518. xfs_buf_flags_t flags)
  519. {
  520. xfs_buf_t *bp, *new_bp;
  521. int error = 0, i;
  522. new_bp = xfs_buf_allocate(flags);
  523. if (unlikely(!new_bp))
  524. return NULL;
  525. bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
  526. if (bp == new_bp) {
  527. error = _xfs_buf_lookup_pages(bp, flags);
  528. if (error)
  529. goto no_buffer;
  530. } else {
  531. xfs_buf_deallocate(new_bp);
  532. if (unlikely(bp == NULL))
  533. return NULL;
  534. }
  535. for (i = 0; i < bp->b_page_count; i++)
  536. mark_page_accessed(bp->b_pages[i]);
  537. if (!(bp->b_flags & XBF_MAPPED)) {
  538. error = _xfs_buf_map_pages(bp, flags);
  539. if (unlikely(error)) {
  540. printk(KERN_WARNING "%s: failed to map pages\n",
  541. __func__);
  542. goto no_buffer;
  543. }
  544. }
  545. XFS_STATS_INC(xb_get);
  546. /*
  547. * Always fill in the block number now, the mapped cases can do
  548. * their own overlay of this later.
  549. */
  550. bp->b_bn = ioff;
  551. bp->b_count_desired = bp->b_buffer_length;
  552. XB_TRACE(bp, "get", (unsigned long)flags);
  553. return bp;
  554. no_buffer:
  555. if (flags & (XBF_LOCK | XBF_TRYLOCK))
  556. xfs_buf_unlock(bp);
  557. xfs_buf_rele(bp);
  558. return NULL;
  559. }
  560. STATIC int
  561. _xfs_buf_read(
  562. xfs_buf_t *bp,
  563. xfs_buf_flags_t flags)
  564. {
  565. int status;
  566. XB_TRACE(bp, "_xfs_buf_read", (unsigned long)flags);
  567. ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
  568. ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
  569. bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
  570. XBF_READ_AHEAD | _XBF_RUN_QUEUES);
  571. bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
  572. XBF_READ_AHEAD | _XBF_RUN_QUEUES);
  573. status = xfs_buf_iorequest(bp);
  574. if (!status && !(flags & XBF_ASYNC))
  575. status = xfs_buf_iowait(bp);
  576. return status;
  577. }
  578. xfs_buf_t *
  579. xfs_buf_read_flags(
  580. xfs_buftarg_t *target,
  581. xfs_off_t ioff,
  582. size_t isize,
  583. xfs_buf_flags_t flags)
  584. {
  585. xfs_buf_t *bp;
  586. flags |= XBF_READ;
  587. bp = xfs_buf_get_flags(target, ioff, isize, flags);
  588. if (bp) {
  589. if (!XFS_BUF_ISDONE(bp)) {
  590. XB_TRACE(bp, "read", (unsigned long)flags);
  591. XFS_STATS_INC(xb_get_read);
  592. _xfs_buf_read(bp, flags);
  593. } else if (flags & XBF_ASYNC) {
  594. XB_TRACE(bp, "read_async", (unsigned long)flags);
  595. /*
  596. * Read ahead call which is already satisfied,
  597. * drop the buffer
  598. */
  599. goto no_buffer;
  600. } else {
  601. XB_TRACE(bp, "read_done", (unsigned long)flags);
  602. /* We do not want read in the flags */
  603. bp->b_flags &= ~XBF_READ;
  604. }
  605. }
  606. return bp;
  607. no_buffer:
  608. if (flags & (XBF_LOCK | XBF_TRYLOCK))
  609. xfs_buf_unlock(bp);
  610. xfs_buf_rele(bp);
  611. return NULL;
  612. }
  613. /*
  614. * If we are not low on memory then do the readahead in a deadlock
  615. * safe manner.
  616. */
  617. void
  618. xfs_buf_readahead(
  619. xfs_buftarg_t *target,
  620. xfs_off_t ioff,
  621. size_t isize,
  622. xfs_buf_flags_t flags)
  623. {
  624. struct backing_dev_info *bdi;
  625. bdi = target->bt_mapping->backing_dev_info;
  626. if (bdi_read_congested(bdi))
  627. return;
  628. flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
  629. xfs_buf_read_flags(target, ioff, isize, flags);
  630. }
  631. xfs_buf_t *
  632. xfs_buf_get_empty(
  633. size_t len,
  634. xfs_buftarg_t *target)
  635. {
  636. xfs_buf_t *bp;
  637. bp = xfs_buf_allocate(0);
  638. if (bp)
  639. _xfs_buf_initialize(bp, target, 0, len, 0);
  640. return bp;
  641. }
  642. static inline struct page *
  643. mem_to_page(
  644. void *addr)
  645. {
  646. if ((!is_vmalloc_addr(addr))) {
  647. return virt_to_page(addr);
  648. } else {
  649. return vmalloc_to_page(addr);
  650. }
  651. }
  652. int
  653. xfs_buf_associate_memory(
  654. xfs_buf_t *bp,
  655. void *mem,
  656. size_t len)
  657. {
  658. int rval;
  659. int i = 0;
  660. unsigned long pageaddr;
  661. unsigned long offset;
  662. size_t buflen;
  663. int page_count;
  664. pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
  665. offset = (unsigned long)mem - pageaddr;
  666. buflen = PAGE_CACHE_ALIGN(len + offset);
  667. page_count = buflen >> PAGE_CACHE_SHIFT;
  668. /* Free any previous set of page pointers */
  669. if (bp->b_pages)
  670. _xfs_buf_free_pages(bp);
  671. bp->b_pages = NULL;
  672. bp->b_addr = mem;
  673. rval = _xfs_buf_get_pages(bp, page_count, 0);
  674. if (rval)
  675. return rval;
  676. bp->b_offset = offset;
  677. for (i = 0; i < bp->b_page_count; i++) {
  678. bp->b_pages[i] = mem_to_page((void *)pageaddr);
  679. pageaddr += PAGE_CACHE_SIZE;
  680. }
  681. bp->b_count_desired = len;
  682. bp->b_buffer_length = buflen;
  683. bp->b_flags |= XBF_MAPPED;
  684. bp->b_flags &= ~_XBF_PAGE_LOCKED;
  685. return 0;
  686. }
  687. xfs_buf_t *
  688. xfs_buf_get_noaddr(
  689. size_t len,
  690. xfs_buftarg_t *target)
  691. {
  692. unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
  693. int error, i;
  694. xfs_buf_t *bp;
  695. bp = xfs_buf_allocate(0);
  696. if (unlikely(bp == NULL))
  697. goto fail;
  698. _xfs_buf_initialize(bp, target, 0, len, 0);
  699. error = _xfs_buf_get_pages(bp, page_count, 0);
  700. if (error)
  701. goto fail_free_buf;
  702. for (i = 0; i < page_count; i++) {
  703. bp->b_pages[i] = alloc_page(GFP_KERNEL);
  704. if (!bp->b_pages[i])
  705. goto fail_free_mem;
  706. }
  707. bp->b_flags |= _XBF_PAGES;
  708. error = _xfs_buf_map_pages(bp, XBF_MAPPED);
  709. if (unlikely(error)) {
  710. printk(KERN_WARNING "%s: failed to map pages\n",
  711. __func__);
  712. goto fail_free_mem;
  713. }
  714. xfs_buf_unlock(bp);
  715. XB_TRACE(bp, "no_daddr", len);
  716. return bp;
  717. fail_free_mem:
  718. while (--i >= 0)
  719. __free_page(bp->b_pages[i]);
  720. _xfs_buf_free_pages(bp);
  721. fail_free_buf:
  722. xfs_buf_deallocate(bp);
  723. fail:
  724. return NULL;
  725. }
  726. /*
  727. * Increment reference count on buffer, to hold the buffer concurrently
  728. * with another thread which may release (free) the buffer asynchronously.
  729. * Must hold the buffer already to call this function.
  730. */
  731. void
  732. xfs_buf_hold(
  733. xfs_buf_t *bp)
  734. {
  735. atomic_inc(&bp->b_hold);
  736. XB_TRACE(bp, "hold", 0);
  737. }
  738. /*
  739. * Releases a hold on the specified buffer. If the
  740. * the hold count is 1, calls xfs_buf_free.
  741. */
  742. void
  743. xfs_buf_rele(
  744. xfs_buf_t *bp)
  745. {
  746. xfs_bufhash_t *hash = bp->b_hash;
  747. XB_TRACE(bp, "rele", bp->b_relse);
  748. if (unlikely(!hash)) {
  749. ASSERT(!bp->b_relse);
  750. if (atomic_dec_and_test(&bp->b_hold))
  751. xfs_buf_free(bp);
  752. return;
  753. }
  754. ASSERT(atomic_read(&bp->b_hold) > 0);
  755. if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
  756. if (bp->b_relse) {
  757. atomic_inc(&bp->b_hold);
  758. spin_unlock(&hash->bh_lock);
  759. (*(bp->b_relse)) (bp);
  760. } else if (bp->b_flags & XBF_FS_MANAGED) {
  761. spin_unlock(&hash->bh_lock);
  762. } else {
  763. ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
  764. list_del_init(&bp->b_hash_list);
  765. spin_unlock(&hash->bh_lock);
  766. xfs_buf_free(bp);
  767. }
  768. }
  769. }
  770. /*
  771. * Mutual exclusion on buffers. Locking model:
  772. *
  773. * Buffers associated with inodes for which buffer locking
  774. * is not enabled are not protected by semaphores, and are
  775. * assumed to be exclusively owned by the caller. There is a
  776. * spinlock in the buffer, used by the caller when concurrent
  777. * access is possible.
  778. */
  779. /*
  780. * Locks a buffer object, if it is not already locked.
  781. * Note that this in no way locks the underlying pages, so it is only
  782. * useful for synchronizing concurrent use of buffer objects, not for
  783. * synchronizing independent access to the underlying pages.
  784. */
  785. int
  786. xfs_buf_cond_lock(
  787. xfs_buf_t *bp)
  788. {
  789. int locked;
  790. locked = down_trylock(&bp->b_sema) == 0;
  791. if (locked) {
  792. XB_SET_OWNER(bp);
  793. }
  794. XB_TRACE(bp, "cond_lock", (long)locked);
  795. return locked ? 0 : -EBUSY;
  796. }
  797. #if defined(DEBUG) || defined(XFS_BLI_TRACE)
  798. int
  799. xfs_buf_lock_value(
  800. xfs_buf_t *bp)
  801. {
  802. return bp->b_sema.count;
  803. }
  804. #endif
  805. /*
  806. * Locks a buffer object.
  807. * Note that this in no way locks the underlying pages, so it is only
  808. * useful for synchronizing concurrent use of buffer objects, not for
  809. * synchronizing independent access to the underlying pages.
  810. */
  811. void
  812. xfs_buf_lock(
  813. xfs_buf_t *bp)
  814. {
  815. XB_TRACE(bp, "lock", 0);
  816. if (atomic_read(&bp->b_io_remaining))
  817. blk_run_address_space(bp->b_target->bt_mapping);
  818. down(&bp->b_sema);
  819. XB_SET_OWNER(bp);
  820. XB_TRACE(bp, "locked", 0);
  821. }
  822. /*
  823. * Releases the lock on the buffer object.
  824. * If the buffer is marked delwri but is not queued, do so before we
  825. * unlock the buffer as we need to set flags correctly. We also need to
  826. * take a reference for the delwri queue because the unlocker is going to
  827. * drop their's and they don't know we just queued it.
  828. */
  829. void
  830. xfs_buf_unlock(
  831. xfs_buf_t *bp)
  832. {
  833. if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
  834. atomic_inc(&bp->b_hold);
  835. bp->b_flags |= XBF_ASYNC;
  836. xfs_buf_delwri_queue(bp, 0);
  837. }
  838. XB_CLEAR_OWNER(bp);
  839. up(&bp->b_sema);
  840. XB_TRACE(bp, "unlock", 0);
  841. }
  842. /*
  843. * Pinning Buffer Storage in Memory
  844. * Ensure that no attempt to force a buffer to disk will succeed.
  845. */
  846. void
  847. xfs_buf_pin(
  848. xfs_buf_t *bp)
  849. {
  850. atomic_inc(&bp->b_pin_count);
  851. XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
  852. }
  853. void
  854. xfs_buf_unpin(
  855. xfs_buf_t *bp)
  856. {
  857. if (atomic_dec_and_test(&bp->b_pin_count))
  858. wake_up_all(&bp->b_waiters);
  859. XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
  860. }
  861. int
  862. xfs_buf_ispin(
  863. xfs_buf_t *bp)
  864. {
  865. return atomic_read(&bp->b_pin_count);
  866. }
  867. STATIC void
  868. xfs_buf_wait_unpin(
  869. xfs_buf_t *bp)
  870. {
  871. DECLARE_WAITQUEUE (wait, current);
  872. if (atomic_read(&bp->b_pin_count) == 0)
  873. return;
  874. add_wait_queue(&bp->b_waiters, &wait);
  875. for (;;) {
  876. set_current_state(TASK_UNINTERRUPTIBLE);
  877. if (atomic_read(&bp->b_pin_count) == 0)
  878. break;
  879. if (atomic_read(&bp->b_io_remaining))
  880. blk_run_address_space(bp->b_target->bt_mapping);
  881. schedule();
  882. }
  883. remove_wait_queue(&bp->b_waiters, &wait);
  884. set_current_state(TASK_RUNNING);
  885. }
  886. /*
  887. * Buffer Utility Routines
  888. */
  889. STATIC void
  890. xfs_buf_iodone_work(
  891. struct work_struct *work)
  892. {
  893. xfs_buf_t *bp =
  894. container_of(work, xfs_buf_t, b_iodone_work);
  895. /*
  896. * We can get an EOPNOTSUPP to ordered writes. Here we clear the
  897. * ordered flag and reissue them. Because we can't tell the higher
  898. * layers directly that they should not issue ordered I/O anymore, they
  899. * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
  900. */
  901. if ((bp->b_error == EOPNOTSUPP) &&
  902. (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
  903. XB_TRACE(bp, "ordered_retry", bp->b_iodone);
  904. bp->b_flags &= ~XBF_ORDERED;
  905. bp->b_flags |= _XFS_BARRIER_FAILED;
  906. xfs_buf_iorequest(bp);
  907. } else if (bp->b_iodone)
  908. (*(bp->b_iodone))(bp);
  909. else if (bp->b_flags & XBF_ASYNC)
  910. xfs_buf_relse(bp);
  911. }
  912. void
  913. xfs_buf_ioend(
  914. xfs_buf_t *bp,
  915. int schedule)
  916. {
  917. bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
  918. if (bp->b_error == 0)
  919. bp->b_flags |= XBF_DONE;
  920. XB_TRACE(bp, "iodone", bp->b_iodone);
  921. if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
  922. if (schedule) {
  923. INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
  924. queue_work(xfslogd_workqueue, &bp->b_iodone_work);
  925. } else {
  926. xfs_buf_iodone_work(&bp->b_iodone_work);
  927. }
  928. } else {
  929. complete(&bp->b_iowait);
  930. }
  931. }
  932. void
  933. xfs_buf_ioerror(
  934. xfs_buf_t *bp,
  935. int error)
  936. {
  937. ASSERT(error >= 0 && error <= 0xffff);
  938. bp->b_error = (unsigned short)error;
  939. XB_TRACE(bp, "ioerror", (unsigned long)error);
  940. }
  941. int
  942. xfs_bawrite(
  943. void *mp,
  944. struct xfs_buf *bp)
  945. {
  946. XB_TRACE(bp, "bawrite", 0);
  947. ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
  948. xfs_buf_delwri_dequeue(bp);
  949. bp->b_flags &= ~(XBF_READ | XBF_DELWRI | XBF_READ_AHEAD);
  950. bp->b_flags |= (XBF_WRITE | XBF_ASYNC | _XBF_RUN_QUEUES);
  951. bp->b_mount = mp;
  952. bp->b_strat = xfs_bdstrat_cb;
  953. return xfs_bdstrat_cb(bp);
  954. }
  955. void
  956. xfs_bdwrite(
  957. void *mp,
  958. struct xfs_buf *bp)
  959. {
  960. XB_TRACE(bp, "bdwrite", 0);
  961. bp->b_strat = xfs_bdstrat_cb;
  962. bp->b_mount = mp;
  963. bp->b_flags &= ~XBF_READ;
  964. bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
  965. xfs_buf_delwri_queue(bp, 1);
  966. }
  967. STATIC_INLINE void
  968. _xfs_buf_ioend(
  969. xfs_buf_t *bp,
  970. int schedule)
  971. {
  972. if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
  973. bp->b_flags &= ~_XBF_PAGE_LOCKED;
  974. xfs_buf_ioend(bp, schedule);
  975. }
  976. }
  977. STATIC void
  978. xfs_buf_bio_end_io(
  979. struct bio *bio,
  980. int error)
  981. {
  982. xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
  983. unsigned int blocksize = bp->b_target->bt_bsize;
  984. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  985. xfs_buf_ioerror(bp, -error);
  986. do {
  987. struct page *page = bvec->bv_page;
  988. ASSERT(!PagePrivate(page));
  989. if (unlikely(bp->b_error)) {
  990. if (bp->b_flags & XBF_READ)
  991. ClearPageUptodate(page);
  992. } else if (blocksize >= PAGE_CACHE_SIZE) {
  993. SetPageUptodate(page);
  994. } else if (!PagePrivate(page) &&
  995. (bp->b_flags & _XBF_PAGE_CACHE)) {
  996. set_page_region(page, bvec->bv_offset, bvec->bv_len);
  997. }
  998. if (--bvec >= bio->bi_io_vec)
  999. prefetchw(&bvec->bv_page->flags);
  1000. if (bp->b_flags & _XBF_PAGE_LOCKED)
  1001. unlock_page(page);
  1002. } while (bvec >= bio->bi_io_vec);
  1003. _xfs_buf_ioend(bp, 1);
  1004. bio_put(bio);
  1005. }
  1006. STATIC void
  1007. _xfs_buf_ioapply(
  1008. xfs_buf_t *bp)
  1009. {
  1010. int rw, map_i, total_nr_pages, nr_pages;
  1011. struct bio *bio;
  1012. int offset = bp->b_offset;
  1013. int size = bp->b_count_desired;
  1014. sector_t sector = bp->b_bn;
  1015. unsigned int blocksize = bp->b_target->bt_bsize;
  1016. total_nr_pages = bp->b_page_count;
  1017. map_i = 0;
  1018. if (bp->b_flags & XBF_ORDERED) {
  1019. ASSERT(!(bp->b_flags & XBF_READ));
  1020. rw = WRITE_BARRIER;
  1021. } else if (bp->b_flags & _XBF_RUN_QUEUES) {
  1022. ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
  1023. bp->b_flags &= ~_XBF_RUN_QUEUES;
  1024. rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
  1025. } else {
  1026. rw = (bp->b_flags & XBF_WRITE) ? WRITE :
  1027. (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
  1028. }
  1029. /* Special code path for reading a sub page size buffer in --
  1030. * we populate up the whole page, and hence the other metadata
  1031. * in the same page. This optimization is only valid when the
  1032. * filesystem block size is not smaller than the page size.
  1033. */
  1034. if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
  1035. ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
  1036. (XBF_READ|_XBF_PAGE_LOCKED)) &&
  1037. (blocksize >= PAGE_CACHE_SIZE)) {
  1038. bio = bio_alloc(GFP_NOIO, 1);
  1039. bio->bi_bdev = bp->b_target->bt_bdev;
  1040. bio->bi_sector = sector - (offset >> BBSHIFT);
  1041. bio->bi_end_io = xfs_buf_bio_end_io;
  1042. bio->bi_private = bp;
  1043. bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
  1044. size = 0;
  1045. atomic_inc(&bp->b_io_remaining);
  1046. goto submit_io;
  1047. }
  1048. next_chunk:
  1049. atomic_inc(&bp->b_io_remaining);
  1050. nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
  1051. if (nr_pages > total_nr_pages)
  1052. nr_pages = total_nr_pages;
  1053. bio = bio_alloc(GFP_NOIO, nr_pages);
  1054. bio->bi_bdev = bp->b_target->bt_bdev;
  1055. bio->bi_sector = sector;
  1056. bio->bi_end_io = xfs_buf_bio_end_io;
  1057. bio->bi_private = bp;
  1058. for (; size && nr_pages; nr_pages--, map_i++) {
  1059. int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
  1060. if (nbytes > size)
  1061. nbytes = size;
  1062. rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
  1063. if (rbytes < nbytes)
  1064. break;
  1065. offset = 0;
  1066. sector += nbytes >> BBSHIFT;
  1067. size -= nbytes;
  1068. total_nr_pages--;
  1069. }
  1070. submit_io:
  1071. if (likely(bio->bi_size)) {
  1072. submit_bio(rw, bio);
  1073. if (size)
  1074. goto next_chunk;
  1075. } else {
  1076. bio_put(bio);
  1077. xfs_buf_ioerror(bp, EIO);
  1078. }
  1079. }
  1080. int
  1081. xfs_buf_iorequest(
  1082. xfs_buf_t *bp)
  1083. {
  1084. XB_TRACE(bp, "iorequest", 0);
  1085. if (bp->b_flags & XBF_DELWRI) {
  1086. xfs_buf_delwri_queue(bp, 1);
  1087. return 0;
  1088. }
  1089. if (bp->b_flags & XBF_WRITE) {
  1090. xfs_buf_wait_unpin(bp);
  1091. }
  1092. xfs_buf_hold(bp);
  1093. /* Set the count to 1 initially, this will stop an I/O
  1094. * completion callout which happens before we have started
  1095. * all the I/O from calling xfs_buf_ioend too early.
  1096. */
  1097. atomic_set(&bp->b_io_remaining, 1);
  1098. _xfs_buf_ioapply(bp);
  1099. _xfs_buf_ioend(bp, 0);
  1100. xfs_buf_rele(bp);
  1101. return 0;
  1102. }
  1103. /*
  1104. * Waits for I/O to complete on the buffer supplied.
  1105. * It returns immediately if no I/O is pending.
  1106. * It returns the I/O error code, if any, or 0 if there was no error.
  1107. */
  1108. int
  1109. xfs_buf_iowait(
  1110. xfs_buf_t *bp)
  1111. {
  1112. XB_TRACE(bp, "iowait", 0);
  1113. if (atomic_read(&bp->b_io_remaining))
  1114. blk_run_address_space(bp->b_target->bt_mapping);
  1115. wait_for_completion(&bp->b_iowait);
  1116. XB_TRACE(bp, "iowaited", (long)bp->b_error);
  1117. return bp->b_error;
  1118. }
  1119. xfs_caddr_t
  1120. xfs_buf_offset(
  1121. xfs_buf_t *bp,
  1122. size_t offset)
  1123. {
  1124. struct page *page;
  1125. if (bp->b_flags & XBF_MAPPED)
  1126. return XFS_BUF_PTR(bp) + offset;
  1127. offset += bp->b_offset;
  1128. page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
  1129. return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
  1130. }
  1131. /*
  1132. * Move data into or out of a buffer.
  1133. */
  1134. void
  1135. xfs_buf_iomove(
  1136. xfs_buf_t *bp, /* buffer to process */
  1137. size_t boff, /* starting buffer offset */
  1138. size_t bsize, /* length to copy */
  1139. caddr_t data, /* data address */
  1140. xfs_buf_rw_t mode) /* read/write/zero flag */
  1141. {
  1142. size_t bend, cpoff, csize;
  1143. struct page *page;
  1144. bend = boff + bsize;
  1145. while (boff < bend) {
  1146. page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
  1147. cpoff = xfs_buf_poff(boff + bp->b_offset);
  1148. csize = min_t(size_t,
  1149. PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
  1150. ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
  1151. switch (mode) {
  1152. case XBRW_ZERO:
  1153. memset(page_address(page) + cpoff, 0, csize);
  1154. break;
  1155. case XBRW_READ:
  1156. memcpy(data, page_address(page) + cpoff, csize);
  1157. break;
  1158. case XBRW_WRITE:
  1159. memcpy(page_address(page) + cpoff, data, csize);
  1160. }
  1161. boff += csize;
  1162. data += csize;
  1163. }
  1164. }
  1165. /*
  1166. * Handling of buffer targets (buftargs).
  1167. */
  1168. /*
  1169. * Wait for any bufs with callbacks that have been submitted but
  1170. * have not yet returned... walk the hash list for the target.
  1171. */
  1172. void
  1173. xfs_wait_buftarg(
  1174. xfs_buftarg_t *btp)
  1175. {
  1176. xfs_buf_t *bp, *n;
  1177. xfs_bufhash_t *hash;
  1178. uint i;
  1179. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1180. hash = &btp->bt_hash[i];
  1181. again:
  1182. spin_lock(&hash->bh_lock);
  1183. list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
  1184. ASSERT(btp == bp->b_target);
  1185. if (!(bp->b_flags & XBF_FS_MANAGED)) {
  1186. spin_unlock(&hash->bh_lock);
  1187. /*
  1188. * Catch superblock reference count leaks
  1189. * immediately
  1190. */
  1191. BUG_ON(bp->b_bn == 0);
  1192. delay(100);
  1193. goto again;
  1194. }
  1195. }
  1196. spin_unlock(&hash->bh_lock);
  1197. }
  1198. }
  1199. /*
  1200. * Allocate buffer hash table for a given target.
  1201. * For devices containing metadata (i.e. not the log/realtime devices)
  1202. * we need to allocate a much larger hash table.
  1203. */
  1204. STATIC void
  1205. xfs_alloc_bufhash(
  1206. xfs_buftarg_t *btp,
  1207. int external)
  1208. {
  1209. unsigned int i;
  1210. btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
  1211. btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
  1212. btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
  1213. sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
  1214. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1215. spin_lock_init(&btp->bt_hash[i].bh_lock);
  1216. INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
  1217. }
  1218. }
  1219. STATIC void
  1220. xfs_free_bufhash(
  1221. xfs_buftarg_t *btp)
  1222. {
  1223. kmem_free(btp->bt_hash);
  1224. btp->bt_hash = NULL;
  1225. }
  1226. /*
  1227. * buftarg list for delwrite queue processing
  1228. */
  1229. static LIST_HEAD(xfs_buftarg_list);
  1230. static DEFINE_SPINLOCK(xfs_buftarg_lock);
  1231. STATIC void
  1232. xfs_register_buftarg(
  1233. xfs_buftarg_t *btp)
  1234. {
  1235. spin_lock(&xfs_buftarg_lock);
  1236. list_add(&btp->bt_list, &xfs_buftarg_list);
  1237. spin_unlock(&xfs_buftarg_lock);
  1238. }
  1239. STATIC void
  1240. xfs_unregister_buftarg(
  1241. xfs_buftarg_t *btp)
  1242. {
  1243. spin_lock(&xfs_buftarg_lock);
  1244. list_del(&btp->bt_list);
  1245. spin_unlock(&xfs_buftarg_lock);
  1246. }
  1247. void
  1248. xfs_free_buftarg(
  1249. struct xfs_mount *mp,
  1250. struct xfs_buftarg *btp)
  1251. {
  1252. xfs_flush_buftarg(btp, 1);
  1253. if (mp->m_flags & XFS_MOUNT_BARRIER)
  1254. xfs_blkdev_issue_flush(btp);
  1255. xfs_free_bufhash(btp);
  1256. iput(btp->bt_mapping->host);
  1257. /* Unregister the buftarg first so that we don't get a
  1258. * wakeup finding a non-existent task
  1259. */
  1260. xfs_unregister_buftarg(btp);
  1261. kthread_stop(btp->bt_task);
  1262. kmem_free(btp);
  1263. }
  1264. STATIC int
  1265. xfs_setsize_buftarg_flags(
  1266. xfs_buftarg_t *btp,
  1267. unsigned int blocksize,
  1268. unsigned int sectorsize,
  1269. int verbose)
  1270. {
  1271. btp->bt_bsize = blocksize;
  1272. btp->bt_sshift = ffs(sectorsize) - 1;
  1273. btp->bt_smask = sectorsize - 1;
  1274. if (set_blocksize(btp->bt_bdev, sectorsize)) {
  1275. printk(KERN_WARNING
  1276. "XFS: Cannot set_blocksize to %u on device %s\n",
  1277. sectorsize, XFS_BUFTARG_NAME(btp));
  1278. return EINVAL;
  1279. }
  1280. if (verbose &&
  1281. (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
  1282. printk(KERN_WARNING
  1283. "XFS: %u byte sectors in use on device %s. "
  1284. "This is suboptimal; %u or greater is ideal.\n",
  1285. sectorsize, XFS_BUFTARG_NAME(btp),
  1286. (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
  1287. }
  1288. return 0;
  1289. }
  1290. /*
  1291. * When allocating the initial buffer target we have not yet
  1292. * read in the superblock, so don't know what sized sectors
  1293. * are being used is at this early stage. Play safe.
  1294. */
  1295. STATIC int
  1296. xfs_setsize_buftarg_early(
  1297. xfs_buftarg_t *btp,
  1298. struct block_device *bdev)
  1299. {
  1300. return xfs_setsize_buftarg_flags(btp,
  1301. PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
  1302. }
  1303. int
  1304. xfs_setsize_buftarg(
  1305. xfs_buftarg_t *btp,
  1306. unsigned int blocksize,
  1307. unsigned int sectorsize)
  1308. {
  1309. return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
  1310. }
  1311. STATIC int
  1312. xfs_mapping_buftarg(
  1313. xfs_buftarg_t *btp,
  1314. struct block_device *bdev)
  1315. {
  1316. struct backing_dev_info *bdi;
  1317. struct inode *inode;
  1318. struct address_space *mapping;
  1319. static const struct address_space_operations mapping_aops = {
  1320. .sync_page = block_sync_page,
  1321. .migratepage = fail_migrate_page,
  1322. };
  1323. inode = new_inode(bdev->bd_inode->i_sb);
  1324. if (!inode) {
  1325. printk(KERN_WARNING
  1326. "XFS: Cannot allocate mapping inode for device %s\n",
  1327. XFS_BUFTARG_NAME(btp));
  1328. return ENOMEM;
  1329. }
  1330. inode->i_mode = S_IFBLK;
  1331. inode->i_bdev = bdev;
  1332. inode->i_rdev = bdev->bd_dev;
  1333. bdi = blk_get_backing_dev_info(bdev);
  1334. if (!bdi)
  1335. bdi = &default_backing_dev_info;
  1336. mapping = &inode->i_data;
  1337. mapping->a_ops = &mapping_aops;
  1338. mapping->backing_dev_info = bdi;
  1339. mapping_set_gfp_mask(mapping, GFP_NOFS);
  1340. btp->bt_mapping = mapping;
  1341. return 0;
  1342. }
  1343. STATIC int
  1344. xfs_alloc_delwrite_queue(
  1345. xfs_buftarg_t *btp)
  1346. {
  1347. int error = 0;
  1348. INIT_LIST_HEAD(&btp->bt_list);
  1349. INIT_LIST_HEAD(&btp->bt_delwrite_queue);
  1350. spin_lock_init(&btp->bt_delwrite_lock);
  1351. btp->bt_flags = 0;
  1352. btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
  1353. if (IS_ERR(btp->bt_task)) {
  1354. error = PTR_ERR(btp->bt_task);
  1355. goto out_error;
  1356. }
  1357. xfs_register_buftarg(btp);
  1358. out_error:
  1359. return error;
  1360. }
  1361. xfs_buftarg_t *
  1362. xfs_alloc_buftarg(
  1363. struct block_device *bdev,
  1364. int external)
  1365. {
  1366. xfs_buftarg_t *btp;
  1367. btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
  1368. btp->bt_dev = bdev->bd_dev;
  1369. btp->bt_bdev = bdev;
  1370. if (xfs_setsize_buftarg_early(btp, bdev))
  1371. goto error;
  1372. if (xfs_mapping_buftarg(btp, bdev))
  1373. goto error;
  1374. if (xfs_alloc_delwrite_queue(btp))
  1375. goto error;
  1376. xfs_alloc_bufhash(btp, external);
  1377. return btp;
  1378. error:
  1379. kmem_free(btp);
  1380. return NULL;
  1381. }
  1382. /*
  1383. * Delayed write buffer handling
  1384. */
  1385. STATIC void
  1386. xfs_buf_delwri_queue(
  1387. xfs_buf_t *bp,
  1388. int unlock)
  1389. {
  1390. struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
  1391. spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
  1392. XB_TRACE(bp, "delwri_q", (long)unlock);
  1393. ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
  1394. spin_lock(dwlk);
  1395. /* If already in the queue, dequeue and place at tail */
  1396. if (!list_empty(&bp->b_list)) {
  1397. ASSERT(bp->b_flags & _XBF_DELWRI_Q);
  1398. if (unlock)
  1399. atomic_dec(&bp->b_hold);
  1400. list_del(&bp->b_list);
  1401. }
  1402. bp->b_flags |= _XBF_DELWRI_Q;
  1403. list_add_tail(&bp->b_list, dwq);
  1404. bp->b_queuetime = jiffies;
  1405. spin_unlock(dwlk);
  1406. if (unlock)
  1407. xfs_buf_unlock(bp);
  1408. }
  1409. void
  1410. xfs_buf_delwri_dequeue(
  1411. xfs_buf_t *bp)
  1412. {
  1413. spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
  1414. int dequeued = 0;
  1415. spin_lock(dwlk);
  1416. if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
  1417. ASSERT(bp->b_flags & _XBF_DELWRI_Q);
  1418. list_del_init(&bp->b_list);
  1419. dequeued = 1;
  1420. }
  1421. bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
  1422. spin_unlock(dwlk);
  1423. if (dequeued)
  1424. xfs_buf_rele(bp);
  1425. XB_TRACE(bp, "delwri_dq", (long)dequeued);
  1426. }
  1427. STATIC void
  1428. xfs_buf_runall_queues(
  1429. struct workqueue_struct *queue)
  1430. {
  1431. flush_workqueue(queue);
  1432. }
  1433. STATIC int
  1434. xfsbufd_wakeup(
  1435. int priority,
  1436. gfp_t mask)
  1437. {
  1438. xfs_buftarg_t *btp;
  1439. spin_lock(&xfs_buftarg_lock);
  1440. list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
  1441. if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
  1442. continue;
  1443. set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
  1444. wake_up_process(btp->bt_task);
  1445. }
  1446. spin_unlock(&xfs_buftarg_lock);
  1447. return 0;
  1448. }
  1449. /*
  1450. * Move as many buffers as specified to the supplied list
  1451. * idicating if we skipped any buffers to prevent deadlocks.
  1452. */
  1453. STATIC int
  1454. xfs_buf_delwri_split(
  1455. xfs_buftarg_t *target,
  1456. struct list_head *list,
  1457. unsigned long age)
  1458. {
  1459. xfs_buf_t *bp, *n;
  1460. struct list_head *dwq = &target->bt_delwrite_queue;
  1461. spinlock_t *dwlk = &target->bt_delwrite_lock;
  1462. int skipped = 0;
  1463. int force;
  1464. force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
  1465. INIT_LIST_HEAD(list);
  1466. spin_lock(dwlk);
  1467. list_for_each_entry_safe(bp, n, dwq, b_list) {
  1468. XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
  1469. ASSERT(bp->b_flags & XBF_DELWRI);
  1470. if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
  1471. if (!force &&
  1472. time_before(jiffies, bp->b_queuetime + age)) {
  1473. xfs_buf_unlock(bp);
  1474. break;
  1475. }
  1476. bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
  1477. _XBF_RUN_QUEUES);
  1478. bp->b_flags |= XBF_WRITE;
  1479. list_move_tail(&bp->b_list, list);
  1480. } else
  1481. skipped++;
  1482. }
  1483. spin_unlock(dwlk);
  1484. return skipped;
  1485. }
  1486. STATIC int
  1487. xfsbufd(
  1488. void *data)
  1489. {
  1490. struct list_head tmp;
  1491. xfs_buftarg_t *target = (xfs_buftarg_t *)data;
  1492. int count;
  1493. xfs_buf_t *bp;
  1494. current->flags |= PF_MEMALLOC;
  1495. set_freezable();
  1496. do {
  1497. if (unlikely(freezing(current))) {
  1498. set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
  1499. refrigerator();
  1500. } else {
  1501. clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
  1502. }
  1503. schedule_timeout_interruptible(
  1504. xfs_buf_timer_centisecs * msecs_to_jiffies(10));
  1505. xfs_buf_delwri_split(target, &tmp,
  1506. xfs_buf_age_centisecs * msecs_to_jiffies(10));
  1507. count = 0;
  1508. while (!list_empty(&tmp)) {
  1509. bp = list_entry(tmp.next, xfs_buf_t, b_list);
  1510. ASSERT(target == bp->b_target);
  1511. list_del_init(&bp->b_list);
  1512. xfs_buf_iostrategy(bp);
  1513. count++;
  1514. }
  1515. if (as_list_len > 0)
  1516. purge_addresses();
  1517. if (count)
  1518. blk_run_address_space(target->bt_mapping);
  1519. } while (!kthread_should_stop());
  1520. return 0;
  1521. }
  1522. /*
  1523. * Go through all incore buffers, and release buffers if they belong to
  1524. * the given device. This is used in filesystem error handling to
  1525. * preserve the consistency of its metadata.
  1526. */
  1527. int
  1528. xfs_flush_buftarg(
  1529. xfs_buftarg_t *target,
  1530. int wait)
  1531. {
  1532. struct list_head tmp;
  1533. xfs_buf_t *bp, *n;
  1534. int pincount = 0;
  1535. xfs_buf_runall_queues(xfsdatad_workqueue);
  1536. xfs_buf_runall_queues(xfslogd_workqueue);
  1537. set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
  1538. pincount = xfs_buf_delwri_split(target, &tmp, 0);
  1539. /*
  1540. * Dropped the delayed write list lock, now walk the temporary list
  1541. */
  1542. list_for_each_entry_safe(bp, n, &tmp, b_list) {
  1543. ASSERT(target == bp->b_target);
  1544. if (wait)
  1545. bp->b_flags &= ~XBF_ASYNC;
  1546. else
  1547. list_del_init(&bp->b_list);
  1548. xfs_buf_iostrategy(bp);
  1549. }
  1550. if (wait)
  1551. blk_run_address_space(target->bt_mapping);
  1552. /*
  1553. * Remaining list items must be flushed before returning
  1554. */
  1555. while (!list_empty(&tmp)) {
  1556. bp = list_entry(tmp.next, xfs_buf_t, b_list);
  1557. list_del_init(&bp->b_list);
  1558. xfs_iowait(bp);
  1559. xfs_buf_relse(bp);
  1560. }
  1561. return pincount;
  1562. }
  1563. int __init
  1564. xfs_buf_init(void)
  1565. {
  1566. #ifdef XFS_BUF_TRACE
  1567. xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_NOFS);
  1568. #endif
  1569. xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
  1570. KM_ZONE_HWALIGN, NULL);
  1571. if (!xfs_buf_zone)
  1572. goto out_free_trace_buf;
  1573. xfslogd_workqueue = create_workqueue("xfslogd");
  1574. if (!xfslogd_workqueue)
  1575. goto out_free_buf_zone;
  1576. xfsdatad_workqueue = create_workqueue("xfsdatad");
  1577. if (!xfsdatad_workqueue)
  1578. goto out_destroy_xfslogd_workqueue;
  1579. register_shrinker(&xfs_buf_shake);
  1580. return 0;
  1581. out_destroy_xfslogd_workqueue:
  1582. destroy_workqueue(xfslogd_workqueue);
  1583. out_free_buf_zone:
  1584. kmem_zone_destroy(xfs_buf_zone);
  1585. out_free_trace_buf:
  1586. #ifdef XFS_BUF_TRACE
  1587. ktrace_free(xfs_buf_trace_buf);
  1588. #endif
  1589. return -ENOMEM;
  1590. }
  1591. void
  1592. xfs_buf_terminate(void)
  1593. {
  1594. unregister_shrinker(&xfs_buf_shake);
  1595. destroy_workqueue(xfsdatad_workqueue);
  1596. destroy_workqueue(xfslogd_workqueue);
  1597. kmem_zone_destroy(xfs_buf_zone);
  1598. #ifdef XFS_BUF_TRACE
  1599. ktrace_free(xfs_buf_trace_buf);
  1600. #endif
  1601. }
  1602. #ifdef CONFIG_KDB_MODULES
  1603. struct list_head *
  1604. xfs_get_buftarg_list(void)
  1605. {
  1606. return &xfs_buftarg_list;
  1607. }
  1608. #endif