dn_neigh.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609
  1. /*
  2. * DECnet An implementation of the DECnet protocol suite for the LINUX
  3. * operating system. DECnet is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * DECnet Neighbour Functions (Adjacency Database and
  7. * On-Ethernet Cache)
  8. *
  9. * Author: Steve Whitehouse <SteveW@ACM.org>
  10. *
  11. *
  12. * Changes:
  13. * Steve Whitehouse : Fixed router listing routine
  14. * Steve Whitehouse : Added error_report functions
  15. * Steve Whitehouse : Added default router detection
  16. * Steve Whitehouse : Hop counts in outgoing messages
  17. * Steve Whitehouse : Fixed src/dst in outgoing messages so
  18. * forwarding now stands a good chance of
  19. * working.
  20. * Steve Whitehouse : Fixed neighbour states (for now anyway).
  21. * Steve Whitehouse : Made error_report functions dummies. This
  22. * is not the right place to return skbs.
  23. * Steve Whitehouse : Convert to seq_file
  24. *
  25. */
  26. #include <linux/net.h>
  27. #include <linux/module.h>
  28. #include <linux/socket.h>
  29. #include <linux/if_arp.h>
  30. #include <linux/slab.h>
  31. #include <linux/if_ether.h>
  32. #include <linux/init.h>
  33. #include <linux/proc_fs.h>
  34. #include <linux/string.h>
  35. #include <linux/netfilter_decnet.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/seq_file.h>
  38. #include <linux/rcupdate.h>
  39. #include <linux/jhash.h>
  40. #include <asm/atomic.h>
  41. #include <net/net_namespace.h>
  42. #include <net/neighbour.h>
  43. #include <net/dst.h>
  44. #include <net/flow.h>
  45. #include <net/dn.h>
  46. #include <net/dn_dev.h>
  47. #include <net/dn_neigh.h>
  48. #include <net/dn_route.h>
  49. static int dn_neigh_construct(struct neighbour *);
  50. static void dn_long_error_report(struct neighbour *, struct sk_buff *);
  51. static void dn_short_error_report(struct neighbour *, struct sk_buff *);
  52. static int dn_long_output(struct sk_buff *);
  53. static int dn_short_output(struct sk_buff *);
  54. static int dn_phase3_output(struct sk_buff *);
  55. /*
  56. * For talking to broadcast devices: Ethernet & PPP
  57. */
  58. static const struct neigh_ops dn_long_ops = {
  59. .family = AF_DECnet,
  60. .error_report = dn_long_error_report,
  61. .output = dn_long_output,
  62. .connected_output = dn_long_output,
  63. .queue_xmit = dev_queue_xmit,
  64. };
  65. /*
  66. * For talking to pointopoint and multidrop devices: DDCMP and X.25
  67. */
  68. static const struct neigh_ops dn_short_ops = {
  69. .family = AF_DECnet,
  70. .error_report = dn_short_error_report,
  71. .output = dn_short_output,
  72. .connected_output = dn_short_output,
  73. .queue_xmit = dev_queue_xmit,
  74. };
  75. /*
  76. * For talking to DECnet phase III nodes
  77. */
  78. static const struct neigh_ops dn_phase3_ops = {
  79. .family = AF_DECnet,
  80. .error_report = dn_short_error_report, /* Can use short version here */
  81. .output = dn_phase3_output,
  82. .connected_output = dn_phase3_output,
  83. .queue_xmit = dev_queue_xmit
  84. };
  85. static u32 dn_neigh_hash(const void *pkey,
  86. const struct net_device *dev,
  87. __u32 hash_rnd)
  88. {
  89. return jhash_2words(*(__u16 *)pkey, 0, hash_rnd);
  90. }
  91. struct neigh_table dn_neigh_table = {
  92. .family = PF_DECnet,
  93. .entry_size = sizeof(struct dn_neigh),
  94. .key_len = sizeof(__le16),
  95. .hash = dn_neigh_hash,
  96. .constructor = dn_neigh_construct,
  97. .id = "dn_neigh_cache",
  98. .parms ={
  99. .tbl = &dn_neigh_table,
  100. .base_reachable_time = 30 * HZ,
  101. .retrans_time = 1 * HZ,
  102. .gc_staletime = 60 * HZ,
  103. .reachable_time = 30 * HZ,
  104. .delay_probe_time = 5 * HZ,
  105. .queue_len = 3,
  106. .ucast_probes = 0,
  107. .app_probes = 0,
  108. .mcast_probes = 0,
  109. .anycast_delay = 0,
  110. .proxy_delay = 0,
  111. .proxy_qlen = 0,
  112. .locktime = 1 * HZ,
  113. },
  114. .gc_interval = 30 * HZ,
  115. .gc_thresh1 = 128,
  116. .gc_thresh2 = 512,
  117. .gc_thresh3 = 1024,
  118. };
  119. static int dn_neigh_construct(struct neighbour *neigh)
  120. {
  121. struct net_device *dev = neigh->dev;
  122. struct dn_neigh *dn = (struct dn_neigh *)neigh;
  123. struct dn_dev *dn_db;
  124. struct neigh_parms *parms;
  125. rcu_read_lock();
  126. dn_db = rcu_dereference(dev->dn_ptr);
  127. if (dn_db == NULL) {
  128. rcu_read_unlock();
  129. return -EINVAL;
  130. }
  131. parms = dn_db->neigh_parms;
  132. if (!parms) {
  133. rcu_read_unlock();
  134. return -EINVAL;
  135. }
  136. __neigh_parms_put(neigh->parms);
  137. neigh->parms = neigh_parms_clone(parms);
  138. if (dn_db->use_long)
  139. neigh->ops = &dn_long_ops;
  140. else
  141. neigh->ops = &dn_short_ops;
  142. rcu_read_unlock();
  143. if (dn->flags & DN_NDFLAG_P3)
  144. neigh->ops = &dn_phase3_ops;
  145. neigh->nud_state = NUD_NOARP;
  146. neigh->output = neigh->ops->connected_output;
  147. if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
  148. memcpy(neigh->ha, dev->broadcast, dev->addr_len);
  149. else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
  150. dn_dn2eth(neigh->ha, dn->addr);
  151. else {
  152. if (net_ratelimit())
  153. printk(KERN_DEBUG "Trying to create neigh for hw %d\n", dev->type);
  154. return -EINVAL;
  155. }
  156. /*
  157. * Make an estimate of the remote block size by assuming that its
  158. * two less then the device mtu, which it true for ethernet (and
  159. * other things which support long format headers) since there is
  160. * an extra length field (of 16 bits) which isn't part of the
  161. * ethernet headers and which the DECnet specs won't admit is part
  162. * of the DECnet routing headers either.
  163. *
  164. * If we over estimate here its no big deal, the NSP negotiations
  165. * will prevent us from sending packets which are too large for the
  166. * remote node to handle. In any case this figure is normally updated
  167. * by a hello message in most cases.
  168. */
  169. dn->blksize = dev->mtu - 2;
  170. return 0;
  171. }
  172. static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
  173. {
  174. printk(KERN_DEBUG "dn_long_error_report: called\n");
  175. kfree_skb(skb);
  176. }
  177. static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
  178. {
  179. printk(KERN_DEBUG "dn_short_error_report: called\n");
  180. kfree_skb(skb);
  181. }
  182. static int dn_neigh_output_packet(struct sk_buff *skb)
  183. {
  184. struct dst_entry *dst = skb_dst(skb);
  185. struct dn_route *rt = (struct dn_route *)dst;
  186. struct neighbour *neigh = dst->neighbour;
  187. struct net_device *dev = neigh->dev;
  188. char mac_addr[ETH_ALEN];
  189. dn_dn2eth(mac_addr, rt->rt_local_src);
  190. if (dev_hard_header(skb, dev, ntohs(skb->protocol), neigh->ha,
  191. mac_addr, skb->len) >= 0)
  192. return neigh->ops->queue_xmit(skb);
  193. if (net_ratelimit())
  194. printk(KERN_DEBUG "dn_neigh_output_packet: oops, can't send packet\n");
  195. kfree_skb(skb);
  196. return -EINVAL;
  197. }
  198. static int dn_long_output(struct sk_buff *skb)
  199. {
  200. struct dst_entry *dst = skb_dst(skb);
  201. struct neighbour *neigh = dst->neighbour;
  202. struct net_device *dev = neigh->dev;
  203. int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
  204. unsigned char *data;
  205. struct dn_long_packet *lp;
  206. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  207. if (skb_headroom(skb) < headroom) {
  208. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  209. if (skb2 == NULL) {
  210. if (net_ratelimit())
  211. printk(KERN_CRIT "dn_long_output: no memory\n");
  212. kfree_skb(skb);
  213. return -ENOBUFS;
  214. }
  215. kfree_skb(skb);
  216. skb = skb2;
  217. if (net_ratelimit())
  218. printk(KERN_INFO "dn_long_output: Increasing headroom\n");
  219. }
  220. data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
  221. lp = (struct dn_long_packet *)(data+3);
  222. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  223. *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
  224. lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
  225. lp->d_area = lp->d_subarea = 0;
  226. dn_dn2eth(lp->d_id, cb->dst);
  227. lp->s_area = lp->s_subarea = 0;
  228. dn_dn2eth(lp->s_id, cb->src);
  229. lp->nl2 = 0;
  230. lp->visit_ct = cb->hops & 0x3f;
  231. lp->s_class = 0;
  232. lp->pt = 0;
  233. skb_reset_network_header(skb);
  234. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  235. neigh->dev, dn_neigh_output_packet);
  236. }
  237. static int dn_short_output(struct sk_buff *skb)
  238. {
  239. struct dst_entry *dst = skb_dst(skb);
  240. struct neighbour *neigh = dst->neighbour;
  241. struct net_device *dev = neigh->dev;
  242. int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
  243. struct dn_short_packet *sp;
  244. unsigned char *data;
  245. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  246. if (skb_headroom(skb) < headroom) {
  247. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  248. if (skb2 == NULL) {
  249. if (net_ratelimit())
  250. printk(KERN_CRIT "dn_short_output: no memory\n");
  251. kfree_skb(skb);
  252. return -ENOBUFS;
  253. }
  254. kfree_skb(skb);
  255. skb = skb2;
  256. if (net_ratelimit())
  257. printk(KERN_INFO "dn_short_output: Increasing headroom\n");
  258. }
  259. data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
  260. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  261. sp = (struct dn_short_packet *)(data+2);
  262. sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
  263. sp->dstnode = cb->dst;
  264. sp->srcnode = cb->src;
  265. sp->forward = cb->hops & 0x3f;
  266. skb_reset_network_header(skb);
  267. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  268. neigh->dev, dn_neigh_output_packet);
  269. }
  270. /*
  271. * Phase 3 output is the same is short output, execpt that
  272. * it clears the area bits before transmission.
  273. */
  274. static int dn_phase3_output(struct sk_buff *skb)
  275. {
  276. struct dst_entry *dst = skb_dst(skb);
  277. struct neighbour *neigh = dst->neighbour;
  278. struct net_device *dev = neigh->dev;
  279. int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
  280. struct dn_short_packet *sp;
  281. unsigned char *data;
  282. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  283. if (skb_headroom(skb) < headroom) {
  284. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  285. if (skb2 == NULL) {
  286. if (net_ratelimit())
  287. printk(KERN_CRIT "dn_phase3_output: no memory\n");
  288. kfree_skb(skb);
  289. return -ENOBUFS;
  290. }
  291. kfree_skb(skb);
  292. skb = skb2;
  293. if (net_ratelimit())
  294. printk(KERN_INFO "dn_phase3_output: Increasing headroom\n");
  295. }
  296. data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
  297. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  298. sp = (struct dn_short_packet *)(data + 2);
  299. sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
  300. sp->dstnode = cb->dst & cpu_to_le16(0x03ff);
  301. sp->srcnode = cb->src & cpu_to_le16(0x03ff);
  302. sp->forward = cb->hops & 0x3f;
  303. skb_reset_network_header(skb);
  304. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  305. neigh->dev, dn_neigh_output_packet);
  306. }
  307. /*
  308. * Unfortunately, the neighbour code uses the device in its hash
  309. * function, so we don't get any advantage from it. This function
  310. * basically does a neigh_lookup(), but without comparing the device
  311. * field. This is required for the On-Ethernet cache
  312. */
  313. /*
  314. * Pointopoint link receives a hello message
  315. */
  316. void dn_neigh_pointopoint_hello(struct sk_buff *skb)
  317. {
  318. kfree_skb(skb);
  319. }
  320. /*
  321. * Ethernet router hello message received
  322. */
  323. int dn_neigh_router_hello(struct sk_buff *skb)
  324. {
  325. struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
  326. struct neighbour *neigh;
  327. struct dn_neigh *dn;
  328. struct dn_dev *dn_db;
  329. __le16 src;
  330. src = dn_eth2dn(msg->id);
  331. neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
  332. dn = (struct dn_neigh *)neigh;
  333. if (neigh) {
  334. write_lock(&neigh->lock);
  335. neigh->used = jiffies;
  336. dn_db = rcu_dereference(neigh->dev->dn_ptr);
  337. if (!(neigh->nud_state & NUD_PERMANENT)) {
  338. neigh->updated = jiffies;
  339. if (neigh->dev->type == ARPHRD_ETHER)
  340. memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
  341. dn->blksize = le16_to_cpu(msg->blksize);
  342. dn->priority = msg->priority;
  343. dn->flags &= ~DN_NDFLAG_P3;
  344. switch (msg->iinfo & DN_RT_INFO_TYPE) {
  345. case DN_RT_INFO_L1RT:
  346. dn->flags &=~DN_NDFLAG_R2;
  347. dn->flags |= DN_NDFLAG_R1;
  348. break;
  349. case DN_RT_INFO_L2RT:
  350. dn->flags |= DN_NDFLAG_R2;
  351. }
  352. }
  353. /* Only use routers in our area */
  354. if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
  355. if (!dn_db->router) {
  356. dn_db->router = neigh_clone(neigh);
  357. } else {
  358. if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
  359. neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
  360. }
  361. }
  362. write_unlock(&neigh->lock);
  363. neigh_release(neigh);
  364. }
  365. kfree_skb(skb);
  366. return 0;
  367. }
  368. /*
  369. * Endnode hello message received
  370. */
  371. int dn_neigh_endnode_hello(struct sk_buff *skb)
  372. {
  373. struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
  374. struct neighbour *neigh;
  375. struct dn_neigh *dn;
  376. __le16 src;
  377. src = dn_eth2dn(msg->id);
  378. neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
  379. dn = (struct dn_neigh *)neigh;
  380. if (neigh) {
  381. write_lock(&neigh->lock);
  382. neigh->used = jiffies;
  383. if (!(neigh->nud_state & NUD_PERMANENT)) {
  384. neigh->updated = jiffies;
  385. if (neigh->dev->type == ARPHRD_ETHER)
  386. memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
  387. dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
  388. dn->blksize = le16_to_cpu(msg->blksize);
  389. dn->priority = 0;
  390. }
  391. write_unlock(&neigh->lock);
  392. neigh_release(neigh);
  393. }
  394. kfree_skb(skb);
  395. return 0;
  396. }
  397. static char *dn_find_slot(char *base, int max, int priority)
  398. {
  399. int i;
  400. unsigned char *min = NULL;
  401. base += 6; /* skip first id */
  402. for(i = 0; i < max; i++) {
  403. if (!min || (*base < *min))
  404. min = base;
  405. base += 7; /* find next priority */
  406. }
  407. if (!min)
  408. return NULL;
  409. return (*min < priority) ? (min - 6) : NULL;
  410. }
  411. struct elist_cb_state {
  412. struct net_device *dev;
  413. unsigned char *ptr;
  414. unsigned char *rs;
  415. int t, n;
  416. };
  417. static void neigh_elist_cb(struct neighbour *neigh, void *_info)
  418. {
  419. struct elist_cb_state *s = _info;
  420. struct dn_neigh *dn;
  421. if (neigh->dev != s->dev)
  422. return;
  423. dn = (struct dn_neigh *) neigh;
  424. if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
  425. return;
  426. if (s->t == s->n)
  427. s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
  428. else
  429. s->t++;
  430. if (s->rs == NULL)
  431. return;
  432. dn_dn2eth(s->rs, dn->addr);
  433. s->rs += 6;
  434. *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
  435. *(s->rs) |= dn->priority;
  436. s->rs++;
  437. }
  438. int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
  439. {
  440. struct elist_cb_state state;
  441. state.dev = dev;
  442. state.t = 0;
  443. state.n = n;
  444. state.ptr = ptr;
  445. state.rs = ptr;
  446. neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
  447. return state.t;
  448. }
  449. #ifdef CONFIG_PROC_FS
  450. static inline void dn_neigh_format_entry(struct seq_file *seq,
  451. struct neighbour *n)
  452. {
  453. struct dn_neigh *dn = (struct dn_neigh *) n;
  454. char buf[DN_ASCBUF_LEN];
  455. read_lock(&n->lock);
  456. seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n",
  457. dn_addr2asc(le16_to_cpu(dn->addr), buf),
  458. (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
  459. (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
  460. (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
  461. dn->n.nud_state,
  462. atomic_read(&dn->n.refcnt),
  463. dn->blksize,
  464. (dn->n.dev) ? dn->n.dev->name : "?");
  465. read_unlock(&n->lock);
  466. }
  467. static int dn_neigh_seq_show(struct seq_file *seq, void *v)
  468. {
  469. if (v == SEQ_START_TOKEN) {
  470. seq_puts(seq, "Addr Flags State Use Blksize Dev\n");
  471. } else {
  472. dn_neigh_format_entry(seq, v);
  473. }
  474. return 0;
  475. }
  476. static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
  477. {
  478. return neigh_seq_start(seq, pos, &dn_neigh_table,
  479. NEIGH_SEQ_NEIGH_ONLY);
  480. }
  481. static const struct seq_operations dn_neigh_seq_ops = {
  482. .start = dn_neigh_seq_start,
  483. .next = neigh_seq_next,
  484. .stop = neigh_seq_stop,
  485. .show = dn_neigh_seq_show,
  486. };
  487. static int dn_neigh_seq_open(struct inode *inode, struct file *file)
  488. {
  489. return seq_open_net(inode, file, &dn_neigh_seq_ops,
  490. sizeof(struct neigh_seq_state));
  491. }
  492. static const struct file_operations dn_neigh_seq_fops = {
  493. .owner = THIS_MODULE,
  494. .open = dn_neigh_seq_open,
  495. .read = seq_read,
  496. .llseek = seq_lseek,
  497. .release = seq_release_net,
  498. };
  499. #endif
  500. void __init dn_neigh_init(void)
  501. {
  502. neigh_table_init(&dn_neigh_table);
  503. proc_net_fops_create(&init_net, "decnet_neigh", S_IRUGO, &dn_neigh_seq_fops);
  504. }
  505. void __exit dn_neigh_cleanup(void)
  506. {
  507. proc_net_remove(&init_net, "decnet_neigh");
  508. neigh_table_clear(&dn_neigh_table);
  509. }