lm85.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526
  1. /*
  2. lm85.c - Part of lm_sensors, Linux kernel modules for hardware
  3. monitoring
  4. Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
  5. Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
  6. Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
  7. Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
  8. Copyright (C) 2007, 2008 Jean Delvare <khali@linux-fr.org>
  9. Chip details at <http://www.national.com/ds/LM/LM85.pdf>
  10. This program is free software; you can redistribute it and/or modify
  11. it under the terms of the GNU General Public License as published by
  12. the Free Software Foundation; either version 2 of the License, or
  13. (at your option) any later version.
  14. This program is distributed in the hope that it will be useful,
  15. but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. GNU General Public License for more details.
  18. You should have received a copy of the GNU General Public License
  19. along with this program; if not, write to the Free Software
  20. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/init.h>
  24. #include <linux/slab.h>
  25. #include <linux/jiffies.h>
  26. #include <linux/i2c.h>
  27. #include <linux/hwmon.h>
  28. #include <linux/hwmon-vid.h>
  29. #include <linux/hwmon-sysfs.h>
  30. #include <linux/err.h>
  31. #include <linux/mutex.h>
  32. /* Addresses to scan */
  33. static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  34. /* Insmod parameters */
  35. I2C_CLIENT_INSMOD_6(lm85b, lm85c, adm1027, adt7463, emc6d100, emc6d102);
  36. /* The LM85 registers */
  37. #define LM85_REG_IN(nr) (0x20 + (nr))
  38. #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
  39. #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
  40. #define LM85_REG_TEMP(nr) (0x25 + (nr))
  41. #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
  42. #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
  43. /* Fan speeds are LSB, MSB (2 bytes) */
  44. #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
  45. #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
  46. #define LM85_REG_PWM(nr) (0x30 + (nr))
  47. #define LM85_REG_COMPANY 0x3e
  48. #define LM85_REG_VERSTEP 0x3f
  49. /* These are the recognized values for the above regs */
  50. #define LM85_COMPANY_NATIONAL 0x01
  51. #define LM85_COMPANY_ANALOG_DEV 0x41
  52. #define LM85_COMPANY_SMSC 0x5c
  53. #define LM85_VERSTEP_VMASK 0xf0
  54. #define LM85_VERSTEP_GENERIC 0x60
  55. #define LM85_VERSTEP_LM85C 0x60
  56. #define LM85_VERSTEP_LM85B 0x62
  57. #define LM85_VERSTEP_ADM1027 0x60
  58. #define LM85_VERSTEP_ADT7463 0x62
  59. #define LM85_VERSTEP_ADT7463C 0x6A
  60. #define LM85_VERSTEP_EMC6D100_A0 0x60
  61. #define LM85_VERSTEP_EMC6D100_A1 0x61
  62. #define LM85_VERSTEP_EMC6D102 0x65
  63. #define LM85_REG_CONFIG 0x40
  64. #define LM85_REG_ALARM1 0x41
  65. #define LM85_REG_ALARM2 0x42
  66. #define LM85_REG_VID 0x43
  67. /* Automated FAN control */
  68. #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
  69. #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
  70. #define LM85_REG_AFAN_SPIKE1 0x62
  71. #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
  72. #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
  73. #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
  74. #define LM85_REG_AFAN_HYST1 0x6d
  75. #define LM85_REG_AFAN_HYST2 0x6e
  76. #define ADM1027_REG_EXTEND_ADC1 0x76
  77. #define ADM1027_REG_EXTEND_ADC2 0x77
  78. #define EMC6D100_REG_ALARM3 0x7d
  79. /* IN5, IN6 and IN7 */
  80. #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
  81. #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
  82. #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
  83. #define EMC6D102_REG_EXTEND_ADC1 0x85
  84. #define EMC6D102_REG_EXTEND_ADC2 0x86
  85. #define EMC6D102_REG_EXTEND_ADC3 0x87
  86. #define EMC6D102_REG_EXTEND_ADC4 0x88
  87. /* Conversions. Rounding and limit checking is only done on the TO_REG
  88. variants. Note that you should be a bit careful with which arguments
  89. these macros are called: arguments may be evaluated more than once.
  90. */
  91. /* IN are scaled acording to built-in resistors */
  92. static const int lm85_scaling[] = { /* .001 Volts */
  93. 2500, 2250, 3300, 5000, 12000,
  94. 3300, 1500, 1800 /*EMC6D100*/
  95. };
  96. #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
  97. #define INS_TO_REG(n, val) \
  98. SENSORS_LIMIT(SCALE(val, lm85_scaling[n], 192), 0, 255)
  99. #define INSEXT_FROM_REG(n, val, ext) \
  100. SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
  101. #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
  102. /* FAN speed is measured using 90kHz clock */
  103. static inline u16 FAN_TO_REG(unsigned long val)
  104. {
  105. if (!val)
  106. return 0xffff;
  107. return SENSORS_LIMIT(5400000 / val, 1, 0xfffe);
  108. }
  109. #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
  110. 5400000 / (val))
  111. /* Temperature is reported in .001 degC increments */
  112. #define TEMP_TO_REG(val) \
  113. SENSORS_LIMIT(SCALE(val, 1000, 1), -127, 127)
  114. #define TEMPEXT_FROM_REG(val, ext) \
  115. SCALE(((val) << 4) + (ext), 16, 1000)
  116. #define TEMP_FROM_REG(val) ((val) * 1000)
  117. #define PWM_TO_REG(val) SENSORS_LIMIT(val, 0, 255)
  118. #define PWM_FROM_REG(val) (val)
  119. /* ZONEs have the following parameters:
  120. * Limit (low) temp, 1. degC
  121. * Hysteresis (below limit), 1. degC (0-15)
  122. * Range of speed control, .1 degC (2-80)
  123. * Critical (high) temp, 1. degC
  124. *
  125. * FAN PWMs have the following parameters:
  126. * Reference Zone, 1, 2, 3, etc.
  127. * Spinup time, .05 sec
  128. * PWM value at limit/low temp, 1 count
  129. * PWM Frequency, 1. Hz
  130. * PWM is Min or OFF below limit, flag
  131. * Invert PWM output, flag
  132. *
  133. * Some chips filter the temp, others the fan.
  134. * Filter constant (or disabled) .1 seconds
  135. */
  136. /* These are the zone temperature range encodings in .001 degree C */
  137. static const int lm85_range_map[] = {
  138. 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
  139. 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
  140. };
  141. static int RANGE_TO_REG(int range)
  142. {
  143. int i;
  144. /* Find the closest match */
  145. for (i = 0; i < 15; ++i) {
  146. if (range <= (lm85_range_map[i] + lm85_range_map[i + 1]) / 2)
  147. break;
  148. }
  149. return i;
  150. }
  151. #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
  152. /* These are the PWM frequency encodings */
  153. static const int lm85_freq_map[8] = { /* 1 Hz */
  154. 10, 15, 23, 30, 38, 47, 61, 94
  155. };
  156. static const int adm1027_freq_map[8] = { /* 1 Hz */
  157. 11, 15, 22, 29, 35, 44, 59, 88
  158. };
  159. static int FREQ_TO_REG(const int *map, int freq)
  160. {
  161. int i;
  162. /* Find the closest match */
  163. for (i = 0; i < 7; ++i)
  164. if (freq <= (map[i] + map[i + 1]) / 2)
  165. break;
  166. return i;
  167. }
  168. static int FREQ_FROM_REG(const int *map, u8 reg)
  169. {
  170. return map[reg & 0x07];
  171. }
  172. /* Since we can't use strings, I'm abusing these numbers
  173. * to stand in for the following meanings:
  174. * 1 -- PWM responds to Zone 1
  175. * 2 -- PWM responds to Zone 2
  176. * 3 -- PWM responds to Zone 3
  177. * 23 -- PWM responds to the higher temp of Zone 2 or 3
  178. * 123 -- PWM responds to highest of Zone 1, 2, or 3
  179. * 0 -- PWM is always at 0% (ie, off)
  180. * -1 -- PWM is always at 100%
  181. * -2 -- PWM responds to manual control
  182. */
  183. static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
  184. #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
  185. static int ZONE_TO_REG(int zone)
  186. {
  187. int i;
  188. for (i = 0; i <= 7; ++i)
  189. if (zone == lm85_zone_map[i])
  190. break;
  191. if (i > 7) /* Not found. */
  192. i = 3; /* Always 100% */
  193. return i << 5;
  194. }
  195. #define HYST_TO_REG(val) SENSORS_LIMIT(((val) + 500) / 1000, 0, 15)
  196. #define HYST_FROM_REG(val) ((val) * 1000)
  197. /* Chip sampling rates
  198. *
  199. * Some sensors are not updated more frequently than once per second
  200. * so it doesn't make sense to read them more often than that.
  201. * We cache the results and return the saved data if the driver
  202. * is called again before a second has elapsed.
  203. *
  204. * Also, there is significant configuration data for this chip
  205. * given the automatic PWM fan control that is possible. There
  206. * are about 47 bytes of config data to only 22 bytes of actual
  207. * readings. So, we keep the config data up to date in the cache
  208. * when it is written and only sample it once every 1 *minute*
  209. */
  210. #define LM85_DATA_INTERVAL (HZ + HZ / 2)
  211. #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
  212. /* LM85 can automatically adjust fan speeds based on temperature
  213. * This structure encapsulates an entire Zone config. There are
  214. * three zones (one for each temperature input) on the lm85
  215. */
  216. struct lm85_zone {
  217. s8 limit; /* Low temp limit */
  218. u8 hyst; /* Low limit hysteresis. (0-15) */
  219. u8 range; /* Temp range, encoded */
  220. s8 critical; /* "All fans ON" temp limit */
  221. u8 off_desired; /* Actual "off" temperature specified. Preserved
  222. * to prevent "drift" as other autofan control
  223. * values change.
  224. */
  225. u8 max_desired; /* Actual "max" temperature specified. Preserved
  226. * to prevent "drift" as other autofan control
  227. * values change.
  228. */
  229. };
  230. struct lm85_autofan {
  231. u8 config; /* Register value */
  232. u8 min_pwm; /* Minimum PWM value, encoded */
  233. u8 min_off; /* Min PWM or OFF below "limit", flag */
  234. };
  235. /* For each registered chip, we need to keep some data in memory.
  236. The structure is dynamically allocated. */
  237. struct lm85_data {
  238. struct device *hwmon_dev;
  239. const int *freq_map;
  240. enum chips type;
  241. struct mutex update_lock;
  242. int valid; /* !=0 if following fields are valid */
  243. unsigned long last_reading; /* In jiffies */
  244. unsigned long last_config; /* In jiffies */
  245. u8 in[8]; /* Register value */
  246. u8 in_max[8]; /* Register value */
  247. u8 in_min[8]; /* Register value */
  248. s8 temp[3]; /* Register value */
  249. s8 temp_min[3]; /* Register value */
  250. s8 temp_max[3]; /* Register value */
  251. u16 fan[4]; /* Register value */
  252. u16 fan_min[4]; /* Register value */
  253. u8 pwm[3]; /* Register value */
  254. u8 pwm_freq[3]; /* Register encoding */
  255. u8 temp_ext[3]; /* Decoded values */
  256. u8 in_ext[8]; /* Decoded values */
  257. u8 vid; /* Register value */
  258. u8 vrm; /* VRM version */
  259. u32 alarms; /* Register encoding, combined */
  260. struct lm85_autofan autofan[3];
  261. struct lm85_zone zone[3];
  262. };
  263. static int lm85_detect(struct i2c_client *client, int kind,
  264. struct i2c_board_info *info);
  265. static int lm85_probe(struct i2c_client *client,
  266. const struct i2c_device_id *id);
  267. static int lm85_remove(struct i2c_client *client);
  268. static int lm85_read_value(struct i2c_client *client, u8 reg);
  269. static void lm85_write_value(struct i2c_client *client, u8 reg, int value);
  270. static struct lm85_data *lm85_update_device(struct device *dev);
  271. static const struct i2c_device_id lm85_id[] = {
  272. { "adm1027", adm1027 },
  273. { "adt7463", adt7463 },
  274. { "lm85", any_chip },
  275. { "lm85b", lm85b },
  276. { "lm85c", lm85c },
  277. { "emc6d100", emc6d100 },
  278. { "emc6d101", emc6d100 },
  279. { "emc6d102", emc6d102 },
  280. { }
  281. };
  282. MODULE_DEVICE_TABLE(i2c, lm85_id);
  283. static struct i2c_driver lm85_driver = {
  284. .class = I2C_CLASS_HWMON,
  285. .driver = {
  286. .name = "lm85",
  287. },
  288. .probe = lm85_probe,
  289. .remove = lm85_remove,
  290. .id_table = lm85_id,
  291. .detect = lm85_detect,
  292. .address_data = &addr_data,
  293. };
  294. /* 4 Fans */
  295. static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
  296. char *buf)
  297. {
  298. int nr = to_sensor_dev_attr(attr)->index;
  299. struct lm85_data *data = lm85_update_device(dev);
  300. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
  301. }
  302. static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
  303. char *buf)
  304. {
  305. int nr = to_sensor_dev_attr(attr)->index;
  306. struct lm85_data *data = lm85_update_device(dev);
  307. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
  308. }
  309. static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
  310. const char *buf, size_t count)
  311. {
  312. int nr = to_sensor_dev_attr(attr)->index;
  313. struct i2c_client *client = to_i2c_client(dev);
  314. struct lm85_data *data = i2c_get_clientdata(client);
  315. unsigned long val = simple_strtoul(buf, NULL, 10);
  316. mutex_lock(&data->update_lock);
  317. data->fan_min[nr] = FAN_TO_REG(val);
  318. lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
  319. mutex_unlock(&data->update_lock);
  320. return count;
  321. }
  322. #define show_fan_offset(offset) \
  323. static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
  324. show_fan, NULL, offset - 1); \
  325. static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
  326. show_fan_min, set_fan_min, offset - 1)
  327. show_fan_offset(1);
  328. show_fan_offset(2);
  329. show_fan_offset(3);
  330. show_fan_offset(4);
  331. /* vid, vrm, alarms */
  332. static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
  333. char *buf)
  334. {
  335. struct lm85_data *data = lm85_update_device(dev);
  336. int vid;
  337. if (data->type == adt7463 && (data->vid & 0x80)) {
  338. /* 6-pin VID (VRM 10) */
  339. vid = vid_from_reg(data->vid & 0x3f, data->vrm);
  340. } else {
  341. /* 5-pin VID (VRM 9) */
  342. vid = vid_from_reg(data->vid & 0x1f, data->vrm);
  343. }
  344. return sprintf(buf, "%d\n", vid);
  345. }
  346. static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
  347. static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
  348. char *buf)
  349. {
  350. struct lm85_data *data = dev_get_drvdata(dev);
  351. return sprintf(buf, "%ld\n", (long) data->vrm);
  352. }
  353. static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
  354. const char *buf, size_t count)
  355. {
  356. struct lm85_data *data = dev_get_drvdata(dev);
  357. data->vrm = simple_strtoul(buf, NULL, 10);
  358. return count;
  359. }
  360. static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
  361. static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
  362. *attr, char *buf)
  363. {
  364. struct lm85_data *data = lm85_update_device(dev);
  365. return sprintf(buf, "%u\n", data->alarms);
  366. }
  367. static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
  368. static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
  369. char *buf)
  370. {
  371. int nr = to_sensor_dev_attr(attr)->index;
  372. struct lm85_data *data = lm85_update_device(dev);
  373. return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
  374. }
  375. static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
  376. static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
  377. static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
  378. static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
  379. static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
  380. static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
  381. static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
  382. static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
  383. static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
  384. static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
  385. static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
  386. static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
  387. static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
  388. static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
  389. static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
  390. static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
  391. static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
  392. /* pwm */
  393. static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
  394. char *buf)
  395. {
  396. int nr = to_sensor_dev_attr(attr)->index;
  397. struct lm85_data *data = lm85_update_device(dev);
  398. return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
  399. }
  400. static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
  401. const char *buf, size_t count)
  402. {
  403. int nr = to_sensor_dev_attr(attr)->index;
  404. struct i2c_client *client = to_i2c_client(dev);
  405. struct lm85_data *data = i2c_get_clientdata(client);
  406. long val = simple_strtol(buf, NULL, 10);
  407. mutex_lock(&data->update_lock);
  408. data->pwm[nr] = PWM_TO_REG(val);
  409. lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
  410. mutex_unlock(&data->update_lock);
  411. return count;
  412. }
  413. static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
  414. *attr, char *buf)
  415. {
  416. int nr = to_sensor_dev_attr(attr)->index;
  417. struct lm85_data *data = lm85_update_device(dev);
  418. int pwm_zone, enable;
  419. pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
  420. switch (pwm_zone) {
  421. case -1: /* PWM is always at 100% */
  422. enable = 0;
  423. break;
  424. case 0: /* PWM is always at 0% */
  425. case -2: /* PWM responds to manual control */
  426. enable = 1;
  427. break;
  428. default: /* PWM in automatic mode */
  429. enable = 2;
  430. }
  431. return sprintf(buf, "%d\n", enable);
  432. }
  433. static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
  434. *attr, const char *buf, size_t count)
  435. {
  436. int nr = to_sensor_dev_attr(attr)->index;
  437. struct i2c_client *client = to_i2c_client(dev);
  438. struct lm85_data *data = i2c_get_clientdata(client);
  439. long val = simple_strtol(buf, NULL, 10);
  440. u8 config;
  441. switch (val) {
  442. case 0:
  443. config = 3;
  444. break;
  445. case 1:
  446. config = 7;
  447. break;
  448. case 2:
  449. /* Here we have to choose arbitrarily one of the 5 possible
  450. configurations; I go for the safest */
  451. config = 6;
  452. break;
  453. default:
  454. return -EINVAL;
  455. }
  456. mutex_lock(&data->update_lock);
  457. data->autofan[nr].config = lm85_read_value(client,
  458. LM85_REG_AFAN_CONFIG(nr));
  459. data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
  460. | (config << 5);
  461. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  462. data->autofan[nr].config);
  463. mutex_unlock(&data->update_lock);
  464. return count;
  465. }
  466. static ssize_t show_pwm_freq(struct device *dev,
  467. struct device_attribute *attr, char *buf)
  468. {
  469. int nr = to_sensor_dev_attr(attr)->index;
  470. struct lm85_data *data = lm85_update_device(dev);
  471. return sprintf(buf, "%d\n", FREQ_FROM_REG(data->freq_map,
  472. data->pwm_freq[nr]));
  473. }
  474. static ssize_t set_pwm_freq(struct device *dev,
  475. struct device_attribute *attr, const char *buf, size_t count)
  476. {
  477. int nr = to_sensor_dev_attr(attr)->index;
  478. struct i2c_client *client = to_i2c_client(dev);
  479. struct lm85_data *data = i2c_get_clientdata(client);
  480. long val = simple_strtol(buf, NULL, 10);
  481. mutex_lock(&data->update_lock);
  482. data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, val);
  483. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  484. (data->zone[nr].range << 4)
  485. | data->pwm_freq[nr]);
  486. mutex_unlock(&data->update_lock);
  487. return count;
  488. }
  489. #define show_pwm_reg(offset) \
  490. static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
  491. show_pwm, set_pwm, offset - 1); \
  492. static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
  493. show_pwm_enable, set_pwm_enable, offset - 1); \
  494. static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \
  495. show_pwm_freq, set_pwm_freq, offset - 1)
  496. show_pwm_reg(1);
  497. show_pwm_reg(2);
  498. show_pwm_reg(3);
  499. /* Voltages */
  500. static ssize_t show_in(struct device *dev, struct device_attribute *attr,
  501. char *buf)
  502. {
  503. int nr = to_sensor_dev_attr(attr)->index;
  504. struct lm85_data *data = lm85_update_device(dev);
  505. return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
  506. data->in_ext[nr]));
  507. }
  508. static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
  509. char *buf)
  510. {
  511. int nr = to_sensor_dev_attr(attr)->index;
  512. struct lm85_data *data = lm85_update_device(dev);
  513. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
  514. }
  515. static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
  516. const char *buf, size_t count)
  517. {
  518. int nr = to_sensor_dev_attr(attr)->index;
  519. struct i2c_client *client = to_i2c_client(dev);
  520. struct lm85_data *data = i2c_get_clientdata(client);
  521. long val = simple_strtol(buf, NULL, 10);
  522. mutex_lock(&data->update_lock);
  523. data->in_min[nr] = INS_TO_REG(nr, val);
  524. lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
  525. mutex_unlock(&data->update_lock);
  526. return count;
  527. }
  528. static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
  529. char *buf)
  530. {
  531. int nr = to_sensor_dev_attr(attr)->index;
  532. struct lm85_data *data = lm85_update_device(dev);
  533. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
  534. }
  535. static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
  536. const char *buf, size_t count)
  537. {
  538. int nr = to_sensor_dev_attr(attr)->index;
  539. struct i2c_client *client = to_i2c_client(dev);
  540. struct lm85_data *data = i2c_get_clientdata(client);
  541. long val = simple_strtol(buf, NULL, 10);
  542. mutex_lock(&data->update_lock);
  543. data->in_max[nr] = INS_TO_REG(nr, val);
  544. lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
  545. mutex_unlock(&data->update_lock);
  546. return count;
  547. }
  548. #define show_in_reg(offset) \
  549. static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
  550. show_in, NULL, offset); \
  551. static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
  552. show_in_min, set_in_min, offset); \
  553. static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
  554. show_in_max, set_in_max, offset)
  555. show_in_reg(0);
  556. show_in_reg(1);
  557. show_in_reg(2);
  558. show_in_reg(3);
  559. show_in_reg(4);
  560. show_in_reg(5);
  561. show_in_reg(6);
  562. show_in_reg(7);
  563. /* Temps */
  564. static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
  565. char *buf)
  566. {
  567. int nr = to_sensor_dev_attr(attr)->index;
  568. struct lm85_data *data = lm85_update_device(dev);
  569. return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
  570. data->temp_ext[nr]));
  571. }
  572. static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
  573. char *buf)
  574. {
  575. int nr = to_sensor_dev_attr(attr)->index;
  576. struct lm85_data *data = lm85_update_device(dev);
  577. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
  578. }
  579. static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
  580. const char *buf, size_t count)
  581. {
  582. int nr = to_sensor_dev_attr(attr)->index;
  583. struct i2c_client *client = to_i2c_client(dev);
  584. struct lm85_data *data = i2c_get_clientdata(client);
  585. long val = simple_strtol(buf, NULL, 10);
  586. mutex_lock(&data->update_lock);
  587. data->temp_min[nr] = TEMP_TO_REG(val);
  588. lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
  589. mutex_unlock(&data->update_lock);
  590. return count;
  591. }
  592. static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
  593. char *buf)
  594. {
  595. int nr = to_sensor_dev_attr(attr)->index;
  596. struct lm85_data *data = lm85_update_device(dev);
  597. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
  598. }
  599. static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
  600. const char *buf, size_t count)
  601. {
  602. int nr = to_sensor_dev_attr(attr)->index;
  603. struct i2c_client *client = to_i2c_client(dev);
  604. struct lm85_data *data = i2c_get_clientdata(client);
  605. long val = simple_strtol(buf, NULL, 10);
  606. mutex_lock(&data->update_lock);
  607. data->temp_max[nr] = TEMP_TO_REG(val);
  608. lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
  609. mutex_unlock(&data->update_lock);
  610. return count;
  611. }
  612. #define show_temp_reg(offset) \
  613. static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
  614. show_temp, NULL, offset - 1); \
  615. static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
  616. show_temp_min, set_temp_min, offset - 1); \
  617. static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
  618. show_temp_max, set_temp_max, offset - 1);
  619. show_temp_reg(1);
  620. show_temp_reg(2);
  621. show_temp_reg(3);
  622. /* Automatic PWM control */
  623. static ssize_t show_pwm_auto_channels(struct device *dev,
  624. struct device_attribute *attr, char *buf)
  625. {
  626. int nr = to_sensor_dev_attr(attr)->index;
  627. struct lm85_data *data = lm85_update_device(dev);
  628. return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
  629. }
  630. static ssize_t set_pwm_auto_channels(struct device *dev,
  631. struct device_attribute *attr, const char *buf, size_t count)
  632. {
  633. int nr = to_sensor_dev_attr(attr)->index;
  634. struct i2c_client *client = to_i2c_client(dev);
  635. struct lm85_data *data = i2c_get_clientdata(client);
  636. long val = simple_strtol(buf, NULL, 10);
  637. mutex_lock(&data->update_lock);
  638. data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
  639. | ZONE_TO_REG(val);
  640. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  641. data->autofan[nr].config);
  642. mutex_unlock(&data->update_lock);
  643. return count;
  644. }
  645. static ssize_t show_pwm_auto_pwm_min(struct device *dev,
  646. struct device_attribute *attr, char *buf)
  647. {
  648. int nr = to_sensor_dev_attr(attr)->index;
  649. struct lm85_data *data = lm85_update_device(dev);
  650. return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
  651. }
  652. static ssize_t set_pwm_auto_pwm_min(struct device *dev,
  653. struct device_attribute *attr, const char *buf, size_t count)
  654. {
  655. int nr = to_sensor_dev_attr(attr)->index;
  656. struct i2c_client *client = to_i2c_client(dev);
  657. struct lm85_data *data = i2c_get_clientdata(client);
  658. long val = simple_strtol(buf, NULL, 10);
  659. mutex_lock(&data->update_lock);
  660. data->autofan[nr].min_pwm = PWM_TO_REG(val);
  661. lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
  662. data->autofan[nr].min_pwm);
  663. mutex_unlock(&data->update_lock);
  664. return count;
  665. }
  666. static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
  667. struct device_attribute *attr, char *buf)
  668. {
  669. int nr = to_sensor_dev_attr(attr)->index;
  670. struct lm85_data *data = lm85_update_device(dev);
  671. return sprintf(buf, "%d\n", data->autofan[nr].min_off);
  672. }
  673. static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
  674. struct device_attribute *attr, const char *buf, size_t count)
  675. {
  676. int nr = to_sensor_dev_attr(attr)->index;
  677. struct i2c_client *client = to_i2c_client(dev);
  678. struct lm85_data *data = i2c_get_clientdata(client);
  679. long val = simple_strtol(buf, NULL, 10);
  680. u8 tmp;
  681. mutex_lock(&data->update_lock);
  682. data->autofan[nr].min_off = val;
  683. tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  684. tmp &= ~(0x20 << nr);
  685. if (data->autofan[nr].min_off)
  686. tmp |= 0x20 << nr;
  687. lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
  688. mutex_unlock(&data->update_lock);
  689. return count;
  690. }
  691. #define pwm_auto(offset) \
  692. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
  693. S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
  694. set_pwm_auto_channels, offset - 1); \
  695. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
  696. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
  697. set_pwm_auto_pwm_min, offset - 1); \
  698. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
  699. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
  700. set_pwm_auto_pwm_minctl, offset - 1)
  701. pwm_auto(1);
  702. pwm_auto(2);
  703. pwm_auto(3);
  704. /* Temperature settings for automatic PWM control */
  705. static ssize_t show_temp_auto_temp_off(struct device *dev,
  706. struct device_attribute *attr, char *buf)
  707. {
  708. int nr = to_sensor_dev_attr(attr)->index;
  709. struct lm85_data *data = lm85_update_device(dev);
  710. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
  711. HYST_FROM_REG(data->zone[nr].hyst));
  712. }
  713. static ssize_t set_temp_auto_temp_off(struct device *dev,
  714. struct device_attribute *attr, const char *buf, size_t count)
  715. {
  716. int nr = to_sensor_dev_attr(attr)->index;
  717. struct i2c_client *client = to_i2c_client(dev);
  718. struct lm85_data *data = i2c_get_clientdata(client);
  719. int min;
  720. long val = simple_strtol(buf, NULL, 10);
  721. mutex_lock(&data->update_lock);
  722. min = TEMP_FROM_REG(data->zone[nr].limit);
  723. data->zone[nr].off_desired = TEMP_TO_REG(val);
  724. data->zone[nr].hyst = HYST_TO_REG(min - val);
  725. if (nr == 0 || nr == 1) {
  726. lm85_write_value(client, LM85_REG_AFAN_HYST1,
  727. (data->zone[0].hyst << 4)
  728. | data->zone[1].hyst);
  729. } else {
  730. lm85_write_value(client, LM85_REG_AFAN_HYST2,
  731. (data->zone[2].hyst << 4));
  732. }
  733. mutex_unlock(&data->update_lock);
  734. return count;
  735. }
  736. static ssize_t show_temp_auto_temp_min(struct device *dev,
  737. struct device_attribute *attr, char *buf)
  738. {
  739. int nr = to_sensor_dev_attr(attr)->index;
  740. struct lm85_data *data = lm85_update_device(dev);
  741. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
  742. }
  743. static ssize_t set_temp_auto_temp_min(struct device *dev,
  744. struct device_attribute *attr, const char *buf, size_t count)
  745. {
  746. int nr = to_sensor_dev_attr(attr)->index;
  747. struct i2c_client *client = to_i2c_client(dev);
  748. struct lm85_data *data = i2c_get_clientdata(client);
  749. long val = simple_strtol(buf, NULL, 10);
  750. mutex_lock(&data->update_lock);
  751. data->zone[nr].limit = TEMP_TO_REG(val);
  752. lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
  753. data->zone[nr].limit);
  754. /* Update temp_auto_max and temp_auto_range */
  755. data->zone[nr].range = RANGE_TO_REG(
  756. TEMP_FROM_REG(data->zone[nr].max_desired) -
  757. TEMP_FROM_REG(data->zone[nr].limit));
  758. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  759. ((data->zone[nr].range & 0x0f) << 4)
  760. | (data->pwm_freq[nr] & 0x07));
  761. /* Update temp_auto_hyst and temp_auto_off */
  762. data->zone[nr].hyst = HYST_TO_REG(TEMP_FROM_REG(
  763. data->zone[nr].limit) - TEMP_FROM_REG(
  764. data->zone[nr].off_desired));
  765. if (nr == 0 || nr == 1) {
  766. lm85_write_value(client, LM85_REG_AFAN_HYST1,
  767. (data->zone[0].hyst << 4)
  768. | data->zone[1].hyst);
  769. } else {
  770. lm85_write_value(client, LM85_REG_AFAN_HYST2,
  771. (data->zone[2].hyst << 4));
  772. }
  773. mutex_unlock(&data->update_lock);
  774. return count;
  775. }
  776. static ssize_t show_temp_auto_temp_max(struct device *dev,
  777. struct device_attribute *attr, char *buf)
  778. {
  779. int nr = to_sensor_dev_attr(attr)->index;
  780. struct lm85_data *data = lm85_update_device(dev);
  781. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
  782. RANGE_FROM_REG(data->zone[nr].range));
  783. }
  784. static ssize_t set_temp_auto_temp_max(struct device *dev,
  785. struct device_attribute *attr, const char *buf, size_t count)
  786. {
  787. int nr = to_sensor_dev_attr(attr)->index;
  788. struct i2c_client *client = to_i2c_client(dev);
  789. struct lm85_data *data = i2c_get_clientdata(client);
  790. int min;
  791. long val = simple_strtol(buf, NULL, 10);
  792. mutex_lock(&data->update_lock);
  793. min = TEMP_FROM_REG(data->zone[nr].limit);
  794. data->zone[nr].max_desired = TEMP_TO_REG(val);
  795. data->zone[nr].range = RANGE_TO_REG(
  796. val - min);
  797. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  798. ((data->zone[nr].range & 0x0f) << 4)
  799. | (data->pwm_freq[nr] & 0x07));
  800. mutex_unlock(&data->update_lock);
  801. return count;
  802. }
  803. static ssize_t show_temp_auto_temp_crit(struct device *dev,
  804. struct device_attribute *attr, char *buf)
  805. {
  806. int nr = to_sensor_dev_attr(attr)->index;
  807. struct lm85_data *data = lm85_update_device(dev);
  808. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
  809. }
  810. static ssize_t set_temp_auto_temp_crit(struct device *dev,
  811. struct device_attribute *attr, const char *buf, size_t count)
  812. {
  813. int nr = to_sensor_dev_attr(attr)->index;
  814. struct i2c_client *client = to_i2c_client(dev);
  815. struct lm85_data *data = i2c_get_clientdata(client);
  816. long val = simple_strtol(buf, NULL, 10);
  817. mutex_lock(&data->update_lock);
  818. data->zone[nr].critical = TEMP_TO_REG(val);
  819. lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
  820. data->zone[nr].critical);
  821. mutex_unlock(&data->update_lock);
  822. return count;
  823. }
  824. #define temp_auto(offset) \
  825. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
  826. S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
  827. set_temp_auto_temp_off, offset - 1); \
  828. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
  829. S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
  830. set_temp_auto_temp_min, offset - 1); \
  831. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
  832. S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
  833. set_temp_auto_temp_max, offset - 1); \
  834. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
  835. S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
  836. set_temp_auto_temp_crit, offset - 1);
  837. temp_auto(1);
  838. temp_auto(2);
  839. temp_auto(3);
  840. static struct attribute *lm85_attributes[] = {
  841. &sensor_dev_attr_fan1_input.dev_attr.attr,
  842. &sensor_dev_attr_fan2_input.dev_attr.attr,
  843. &sensor_dev_attr_fan3_input.dev_attr.attr,
  844. &sensor_dev_attr_fan4_input.dev_attr.attr,
  845. &sensor_dev_attr_fan1_min.dev_attr.attr,
  846. &sensor_dev_attr_fan2_min.dev_attr.attr,
  847. &sensor_dev_attr_fan3_min.dev_attr.attr,
  848. &sensor_dev_attr_fan4_min.dev_attr.attr,
  849. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  850. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  851. &sensor_dev_attr_fan3_alarm.dev_attr.attr,
  852. &sensor_dev_attr_fan4_alarm.dev_attr.attr,
  853. &sensor_dev_attr_pwm1.dev_attr.attr,
  854. &sensor_dev_attr_pwm2.dev_attr.attr,
  855. &sensor_dev_attr_pwm3.dev_attr.attr,
  856. &sensor_dev_attr_pwm1_enable.dev_attr.attr,
  857. &sensor_dev_attr_pwm2_enable.dev_attr.attr,
  858. &sensor_dev_attr_pwm3_enable.dev_attr.attr,
  859. &sensor_dev_attr_pwm1_freq.dev_attr.attr,
  860. &sensor_dev_attr_pwm2_freq.dev_attr.attr,
  861. &sensor_dev_attr_pwm3_freq.dev_attr.attr,
  862. &sensor_dev_attr_in0_input.dev_attr.attr,
  863. &sensor_dev_attr_in1_input.dev_attr.attr,
  864. &sensor_dev_attr_in2_input.dev_attr.attr,
  865. &sensor_dev_attr_in3_input.dev_attr.attr,
  866. &sensor_dev_attr_in0_min.dev_attr.attr,
  867. &sensor_dev_attr_in1_min.dev_attr.attr,
  868. &sensor_dev_attr_in2_min.dev_attr.attr,
  869. &sensor_dev_attr_in3_min.dev_attr.attr,
  870. &sensor_dev_attr_in0_max.dev_attr.attr,
  871. &sensor_dev_attr_in1_max.dev_attr.attr,
  872. &sensor_dev_attr_in2_max.dev_attr.attr,
  873. &sensor_dev_attr_in3_max.dev_attr.attr,
  874. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  875. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  876. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  877. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  878. &sensor_dev_attr_temp1_input.dev_attr.attr,
  879. &sensor_dev_attr_temp2_input.dev_attr.attr,
  880. &sensor_dev_attr_temp3_input.dev_attr.attr,
  881. &sensor_dev_attr_temp1_min.dev_attr.attr,
  882. &sensor_dev_attr_temp2_min.dev_attr.attr,
  883. &sensor_dev_attr_temp3_min.dev_attr.attr,
  884. &sensor_dev_attr_temp1_max.dev_attr.attr,
  885. &sensor_dev_attr_temp2_max.dev_attr.attr,
  886. &sensor_dev_attr_temp3_max.dev_attr.attr,
  887. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  888. &sensor_dev_attr_temp2_alarm.dev_attr.attr,
  889. &sensor_dev_attr_temp3_alarm.dev_attr.attr,
  890. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  891. &sensor_dev_attr_temp3_fault.dev_attr.attr,
  892. &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
  893. &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
  894. &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
  895. &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
  896. &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
  897. &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
  898. &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
  899. &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
  900. &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
  901. &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
  902. &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
  903. &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
  904. &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
  905. &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
  906. &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
  907. &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
  908. &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
  909. &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
  910. &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
  911. &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
  912. &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
  913. &dev_attr_vrm.attr,
  914. &dev_attr_cpu0_vid.attr,
  915. &dev_attr_alarms.attr,
  916. NULL
  917. };
  918. static const struct attribute_group lm85_group = {
  919. .attrs = lm85_attributes,
  920. };
  921. static struct attribute *lm85_attributes_in4[] = {
  922. &sensor_dev_attr_in4_input.dev_attr.attr,
  923. &sensor_dev_attr_in4_min.dev_attr.attr,
  924. &sensor_dev_attr_in4_max.dev_attr.attr,
  925. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  926. NULL
  927. };
  928. static const struct attribute_group lm85_group_in4 = {
  929. .attrs = lm85_attributes_in4,
  930. };
  931. static struct attribute *lm85_attributes_in567[] = {
  932. &sensor_dev_attr_in5_input.dev_attr.attr,
  933. &sensor_dev_attr_in6_input.dev_attr.attr,
  934. &sensor_dev_attr_in7_input.dev_attr.attr,
  935. &sensor_dev_attr_in5_min.dev_attr.attr,
  936. &sensor_dev_attr_in6_min.dev_attr.attr,
  937. &sensor_dev_attr_in7_min.dev_attr.attr,
  938. &sensor_dev_attr_in5_max.dev_attr.attr,
  939. &sensor_dev_attr_in6_max.dev_attr.attr,
  940. &sensor_dev_attr_in7_max.dev_attr.attr,
  941. &sensor_dev_attr_in5_alarm.dev_attr.attr,
  942. &sensor_dev_attr_in6_alarm.dev_attr.attr,
  943. &sensor_dev_attr_in7_alarm.dev_attr.attr,
  944. NULL
  945. };
  946. static const struct attribute_group lm85_group_in567 = {
  947. .attrs = lm85_attributes_in567,
  948. };
  949. static void lm85_init_client(struct i2c_client *client)
  950. {
  951. int value;
  952. /* Start monitoring if needed */
  953. value = lm85_read_value(client, LM85_REG_CONFIG);
  954. if (!(value & 0x01)) {
  955. dev_info(&client->dev, "Starting monitoring\n");
  956. lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
  957. }
  958. /* Warn about unusual configuration bits */
  959. if (value & 0x02)
  960. dev_warn(&client->dev, "Device configuration is locked\n");
  961. if (!(value & 0x04))
  962. dev_warn(&client->dev, "Device is not ready\n");
  963. }
  964. /* Return 0 if detection is successful, -ENODEV otherwise */
  965. static int lm85_detect(struct i2c_client *client, int kind,
  966. struct i2c_board_info *info)
  967. {
  968. struct i2c_adapter *adapter = client->adapter;
  969. int address = client->addr;
  970. const char *type_name;
  971. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
  972. /* We need to be able to do byte I/O */
  973. return -ENODEV;
  974. }
  975. /* If auto-detecting, determine the chip type */
  976. if (kind < 0) {
  977. int company = lm85_read_value(client, LM85_REG_COMPANY);
  978. int verstep = lm85_read_value(client, LM85_REG_VERSTEP);
  979. dev_dbg(&adapter->dev, "Detecting device at 0x%02x with "
  980. "COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
  981. address, company, verstep);
  982. /* All supported chips have the version in common */
  983. if ((verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC) {
  984. dev_dbg(&adapter->dev, "Autodetection failed: "
  985. "unsupported version\n");
  986. return -ENODEV;
  987. }
  988. kind = any_chip;
  989. /* Now, refine the detection */
  990. if (company == LM85_COMPANY_NATIONAL) {
  991. switch (verstep) {
  992. case LM85_VERSTEP_LM85C:
  993. kind = lm85c;
  994. break;
  995. case LM85_VERSTEP_LM85B:
  996. kind = lm85b;
  997. break;
  998. }
  999. } else if (company == LM85_COMPANY_ANALOG_DEV) {
  1000. switch (verstep) {
  1001. case LM85_VERSTEP_ADM1027:
  1002. kind = adm1027;
  1003. break;
  1004. case LM85_VERSTEP_ADT7463:
  1005. case LM85_VERSTEP_ADT7463C:
  1006. kind = adt7463;
  1007. break;
  1008. }
  1009. } else if (company == LM85_COMPANY_SMSC) {
  1010. switch (verstep) {
  1011. case LM85_VERSTEP_EMC6D100_A0:
  1012. case LM85_VERSTEP_EMC6D100_A1:
  1013. /* Note: we can't tell a '100 from a '101 */
  1014. kind = emc6d100;
  1015. break;
  1016. case LM85_VERSTEP_EMC6D102:
  1017. kind = emc6d102;
  1018. break;
  1019. }
  1020. } else {
  1021. dev_dbg(&adapter->dev, "Autodetection failed: "
  1022. "unknown vendor\n");
  1023. return -ENODEV;
  1024. }
  1025. }
  1026. switch (kind) {
  1027. case lm85b:
  1028. type_name = "lm85b";
  1029. break;
  1030. case lm85c:
  1031. type_name = "lm85c";
  1032. break;
  1033. case adm1027:
  1034. type_name = "adm1027";
  1035. break;
  1036. case adt7463:
  1037. type_name = "adt7463";
  1038. break;
  1039. case emc6d100:
  1040. type_name = "emc6d100";
  1041. break;
  1042. case emc6d102:
  1043. type_name = "emc6d102";
  1044. break;
  1045. default:
  1046. type_name = "lm85";
  1047. }
  1048. strlcpy(info->type, type_name, I2C_NAME_SIZE);
  1049. return 0;
  1050. }
  1051. static int lm85_probe(struct i2c_client *client,
  1052. const struct i2c_device_id *id)
  1053. {
  1054. struct lm85_data *data;
  1055. int err;
  1056. data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL);
  1057. if (!data)
  1058. return -ENOMEM;
  1059. i2c_set_clientdata(client, data);
  1060. data->type = id->driver_data;
  1061. mutex_init(&data->update_lock);
  1062. /* Fill in the chip specific driver values */
  1063. switch (data->type) {
  1064. case adm1027:
  1065. case adt7463:
  1066. case emc6d100:
  1067. case emc6d102:
  1068. data->freq_map = adm1027_freq_map;
  1069. break;
  1070. default:
  1071. data->freq_map = lm85_freq_map;
  1072. }
  1073. /* Set the VRM version */
  1074. data->vrm = vid_which_vrm();
  1075. /* Initialize the LM85 chip */
  1076. lm85_init_client(client);
  1077. /* Register sysfs hooks */
  1078. err = sysfs_create_group(&client->dev.kobj, &lm85_group);
  1079. if (err)
  1080. goto err_kfree;
  1081. /* The ADT7463 has an optional VRM 10 mode where pin 21 is used
  1082. as a sixth digital VID input rather than an analog input. */
  1083. data->vid = lm85_read_value(client, LM85_REG_VID);
  1084. if (!(data->type == adt7463 && (data->vid & 0x80)))
  1085. if ((err = sysfs_create_group(&client->dev.kobj,
  1086. &lm85_group_in4)))
  1087. goto err_remove_files;
  1088. /* The EMC6D100 has 3 additional voltage inputs */
  1089. if (data->type == emc6d100)
  1090. if ((err = sysfs_create_group(&client->dev.kobj,
  1091. &lm85_group_in567)))
  1092. goto err_remove_files;
  1093. data->hwmon_dev = hwmon_device_register(&client->dev);
  1094. if (IS_ERR(data->hwmon_dev)) {
  1095. err = PTR_ERR(data->hwmon_dev);
  1096. goto err_remove_files;
  1097. }
  1098. return 0;
  1099. /* Error out and cleanup code */
  1100. err_remove_files:
  1101. sysfs_remove_group(&client->dev.kobj, &lm85_group);
  1102. sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
  1103. if (data->type == emc6d100)
  1104. sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
  1105. err_kfree:
  1106. kfree(data);
  1107. return err;
  1108. }
  1109. static int lm85_remove(struct i2c_client *client)
  1110. {
  1111. struct lm85_data *data = i2c_get_clientdata(client);
  1112. hwmon_device_unregister(data->hwmon_dev);
  1113. sysfs_remove_group(&client->dev.kobj, &lm85_group);
  1114. sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
  1115. if (data->type == emc6d100)
  1116. sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
  1117. kfree(data);
  1118. return 0;
  1119. }
  1120. static int lm85_read_value(struct i2c_client *client, u8 reg)
  1121. {
  1122. int res;
  1123. /* What size location is it? */
  1124. switch (reg) {
  1125. case LM85_REG_FAN(0): /* Read WORD data */
  1126. case LM85_REG_FAN(1):
  1127. case LM85_REG_FAN(2):
  1128. case LM85_REG_FAN(3):
  1129. case LM85_REG_FAN_MIN(0):
  1130. case LM85_REG_FAN_MIN(1):
  1131. case LM85_REG_FAN_MIN(2):
  1132. case LM85_REG_FAN_MIN(3):
  1133. case LM85_REG_ALARM1: /* Read both bytes at once */
  1134. res = i2c_smbus_read_byte_data(client, reg) & 0xff;
  1135. res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
  1136. break;
  1137. default: /* Read BYTE data */
  1138. res = i2c_smbus_read_byte_data(client, reg);
  1139. break;
  1140. }
  1141. return res;
  1142. }
  1143. static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
  1144. {
  1145. switch (reg) {
  1146. case LM85_REG_FAN(0): /* Write WORD data */
  1147. case LM85_REG_FAN(1):
  1148. case LM85_REG_FAN(2):
  1149. case LM85_REG_FAN(3):
  1150. case LM85_REG_FAN_MIN(0):
  1151. case LM85_REG_FAN_MIN(1):
  1152. case LM85_REG_FAN_MIN(2):
  1153. case LM85_REG_FAN_MIN(3):
  1154. /* NOTE: ALARM is read only, so not included here */
  1155. i2c_smbus_write_byte_data(client, reg, value & 0xff);
  1156. i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
  1157. break;
  1158. default: /* Write BYTE data */
  1159. i2c_smbus_write_byte_data(client, reg, value);
  1160. break;
  1161. }
  1162. }
  1163. static struct lm85_data *lm85_update_device(struct device *dev)
  1164. {
  1165. struct i2c_client *client = to_i2c_client(dev);
  1166. struct lm85_data *data = i2c_get_clientdata(client);
  1167. int i;
  1168. mutex_lock(&data->update_lock);
  1169. if (!data->valid ||
  1170. time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
  1171. /* Things that change quickly */
  1172. dev_dbg(&client->dev, "Reading sensor values\n");
  1173. /* Have to read extended bits first to "freeze" the
  1174. * more significant bits that are read later.
  1175. * There are 2 additional resolution bits per channel and we
  1176. * have room for 4, so we shift them to the left.
  1177. */
  1178. if (data->type == adm1027 || data->type == adt7463) {
  1179. int ext1 = lm85_read_value(client,
  1180. ADM1027_REG_EXTEND_ADC1);
  1181. int ext2 = lm85_read_value(client,
  1182. ADM1027_REG_EXTEND_ADC2);
  1183. int val = (ext1 << 8) + ext2;
  1184. for (i = 0; i <= 4; i++)
  1185. data->in_ext[i] =
  1186. ((val >> (i * 2)) & 0x03) << 2;
  1187. for (i = 0; i <= 2; i++)
  1188. data->temp_ext[i] =
  1189. (val >> ((i + 4) * 2)) & 0x0c;
  1190. }
  1191. data->vid = lm85_read_value(client, LM85_REG_VID);
  1192. for (i = 0; i <= 3; ++i) {
  1193. data->in[i] =
  1194. lm85_read_value(client, LM85_REG_IN(i));
  1195. data->fan[i] =
  1196. lm85_read_value(client, LM85_REG_FAN(i));
  1197. }
  1198. if (!(data->type == adt7463 && (data->vid & 0x80))) {
  1199. data->in[4] = lm85_read_value(client,
  1200. LM85_REG_IN(4));
  1201. }
  1202. for (i = 0; i <= 2; ++i) {
  1203. data->temp[i] =
  1204. lm85_read_value(client, LM85_REG_TEMP(i));
  1205. data->pwm[i] =
  1206. lm85_read_value(client, LM85_REG_PWM(i));
  1207. }
  1208. data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
  1209. if (data->type == emc6d100) {
  1210. /* Three more voltage sensors */
  1211. for (i = 5; i <= 7; ++i) {
  1212. data->in[i] = lm85_read_value(client,
  1213. EMC6D100_REG_IN(i));
  1214. }
  1215. /* More alarm bits */
  1216. data->alarms |= lm85_read_value(client,
  1217. EMC6D100_REG_ALARM3) << 16;
  1218. } else if (data->type == emc6d102) {
  1219. /* Have to read LSB bits after the MSB ones because
  1220. the reading of the MSB bits has frozen the
  1221. LSBs (backward from the ADM1027).
  1222. */
  1223. int ext1 = lm85_read_value(client,
  1224. EMC6D102_REG_EXTEND_ADC1);
  1225. int ext2 = lm85_read_value(client,
  1226. EMC6D102_REG_EXTEND_ADC2);
  1227. int ext3 = lm85_read_value(client,
  1228. EMC6D102_REG_EXTEND_ADC3);
  1229. int ext4 = lm85_read_value(client,
  1230. EMC6D102_REG_EXTEND_ADC4);
  1231. data->in_ext[0] = ext3 & 0x0f;
  1232. data->in_ext[1] = ext4 & 0x0f;
  1233. data->in_ext[2] = ext4 >> 4;
  1234. data->in_ext[3] = ext3 >> 4;
  1235. data->in_ext[4] = ext2 >> 4;
  1236. data->temp_ext[0] = ext1 & 0x0f;
  1237. data->temp_ext[1] = ext2 & 0x0f;
  1238. data->temp_ext[2] = ext1 >> 4;
  1239. }
  1240. data->last_reading = jiffies;
  1241. } /* last_reading */
  1242. if (!data->valid ||
  1243. time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
  1244. /* Things that don't change often */
  1245. dev_dbg(&client->dev, "Reading config values\n");
  1246. for (i = 0; i <= 3; ++i) {
  1247. data->in_min[i] =
  1248. lm85_read_value(client, LM85_REG_IN_MIN(i));
  1249. data->in_max[i] =
  1250. lm85_read_value(client, LM85_REG_IN_MAX(i));
  1251. data->fan_min[i] =
  1252. lm85_read_value(client, LM85_REG_FAN_MIN(i));
  1253. }
  1254. if (!(data->type == adt7463 && (data->vid & 0x80))) {
  1255. data->in_min[4] = lm85_read_value(client,
  1256. LM85_REG_IN_MIN(4));
  1257. data->in_max[4] = lm85_read_value(client,
  1258. LM85_REG_IN_MAX(4));
  1259. }
  1260. if (data->type == emc6d100) {
  1261. for (i = 5; i <= 7; ++i) {
  1262. data->in_min[i] = lm85_read_value(client,
  1263. EMC6D100_REG_IN_MIN(i));
  1264. data->in_max[i] = lm85_read_value(client,
  1265. EMC6D100_REG_IN_MAX(i));
  1266. }
  1267. }
  1268. for (i = 0; i <= 2; ++i) {
  1269. int val;
  1270. data->temp_min[i] =
  1271. lm85_read_value(client, LM85_REG_TEMP_MIN(i));
  1272. data->temp_max[i] =
  1273. lm85_read_value(client, LM85_REG_TEMP_MAX(i));
  1274. data->autofan[i].config =
  1275. lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
  1276. val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
  1277. data->pwm_freq[i] = val & 0x07;
  1278. data->zone[i].range = val >> 4;
  1279. data->autofan[i].min_pwm =
  1280. lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
  1281. data->zone[i].limit =
  1282. lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
  1283. data->zone[i].critical =
  1284. lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
  1285. }
  1286. i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  1287. data->autofan[0].min_off = (i & 0x20) != 0;
  1288. data->autofan[1].min_off = (i & 0x40) != 0;
  1289. data->autofan[2].min_off = (i & 0x80) != 0;
  1290. i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
  1291. data->zone[0].hyst = i >> 4;
  1292. data->zone[1].hyst = i & 0x0f;
  1293. i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
  1294. data->zone[2].hyst = i >> 4;
  1295. data->last_config = jiffies;
  1296. } /* last_config */
  1297. data->valid = 1;
  1298. mutex_unlock(&data->update_lock);
  1299. return data;
  1300. }
  1301. static int __init sm_lm85_init(void)
  1302. {
  1303. return i2c_add_driver(&lm85_driver);
  1304. }
  1305. static void __exit sm_lm85_exit(void)
  1306. {
  1307. i2c_del_driver(&lm85_driver);
  1308. }
  1309. MODULE_LICENSE("GPL");
  1310. MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
  1311. "Margit Schubert-While <margitsw@t-online.de>, "
  1312. "Justin Thiessen <jthiessen@penguincomputing.com>");
  1313. MODULE_DESCRIPTION("LM85-B, LM85-C driver");
  1314. module_init(sm_lm85_init);
  1315. module_exit(sm_lm85_exit);