mmu.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <asm/page.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/module.h>
  25. #include "vmx.h"
  26. #include "kvm.h"
  27. #undef MMU_DEBUG
  28. #undef AUDIT
  29. #ifdef AUDIT
  30. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  31. #else
  32. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  33. #endif
  34. #ifdef MMU_DEBUG
  35. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  36. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  37. #else
  38. #define pgprintk(x...) do { } while (0)
  39. #define rmap_printk(x...) do { } while (0)
  40. #endif
  41. #if defined(MMU_DEBUG) || defined(AUDIT)
  42. static int dbg = 1;
  43. #endif
  44. #ifndef MMU_DEBUG
  45. #define ASSERT(x) do { } while (0)
  46. #else
  47. #define ASSERT(x) \
  48. if (!(x)) { \
  49. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  50. __FILE__, __LINE__, #x); \
  51. }
  52. #endif
  53. #define PT64_PT_BITS 9
  54. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  55. #define PT32_PT_BITS 10
  56. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  57. #define PT_WRITABLE_SHIFT 1
  58. #define PT_PRESENT_MASK (1ULL << 0)
  59. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  60. #define PT_USER_MASK (1ULL << 2)
  61. #define PT_PWT_MASK (1ULL << 3)
  62. #define PT_PCD_MASK (1ULL << 4)
  63. #define PT_ACCESSED_MASK (1ULL << 5)
  64. #define PT_DIRTY_MASK (1ULL << 6)
  65. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  66. #define PT_PAT_MASK (1ULL << 7)
  67. #define PT_GLOBAL_MASK (1ULL << 8)
  68. #define PT64_NX_MASK (1ULL << 63)
  69. #define PT_PAT_SHIFT 7
  70. #define PT_DIR_PAT_SHIFT 12
  71. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  72. #define PT32_DIR_PSE36_SIZE 4
  73. #define PT32_DIR_PSE36_SHIFT 13
  74. #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  75. #define PT32_PTE_COPY_MASK \
  76. (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
  77. #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  81. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  82. #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
  83. #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
  84. #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
  85. #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
  86. #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
  87. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  88. #define PT64_LEVEL_BITS 9
  89. #define PT64_LEVEL_SHIFT(level) \
  90. ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
  91. #define PT64_LEVEL_MASK(level) \
  92. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  93. #define PT64_INDEX(address, level)\
  94. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  95. #define PT32_LEVEL_BITS 10
  96. #define PT32_LEVEL_SHIFT(level) \
  97. ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
  98. #define PT32_LEVEL_MASK(level) \
  99. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  100. #define PT32_INDEX(address, level)\
  101. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  102. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  103. #define PT64_DIR_BASE_ADDR_MASK \
  104. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  105. #define PT32_BASE_ADDR_MASK PAGE_MASK
  106. #define PT32_DIR_BASE_ADDR_MASK \
  107. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  108. #define PFERR_PRESENT_MASK (1U << 0)
  109. #define PFERR_WRITE_MASK (1U << 1)
  110. #define PFERR_USER_MASK (1U << 2)
  111. #define PFERR_FETCH_MASK (1U << 4)
  112. #define PT64_ROOT_LEVEL 4
  113. #define PT32_ROOT_LEVEL 2
  114. #define PT32E_ROOT_LEVEL 3
  115. #define PT_DIRECTORY_LEVEL 2
  116. #define PT_PAGE_TABLE_LEVEL 1
  117. #define RMAP_EXT 4
  118. struct kvm_rmap_desc {
  119. u64 *shadow_ptes[RMAP_EXT];
  120. struct kvm_rmap_desc *more;
  121. };
  122. static struct kmem_cache *pte_chain_cache;
  123. static struct kmem_cache *rmap_desc_cache;
  124. static int is_write_protection(struct kvm_vcpu *vcpu)
  125. {
  126. return vcpu->cr0 & CR0_WP_MASK;
  127. }
  128. static int is_cpuid_PSE36(void)
  129. {
  130. return 1;
  131. }
  132. static int is_nx(struct kvm_vcpu *vcpu)
  133. {
  134. return vcpu->shadow_efer & EFER_NX;
  135. }
  136. static int is_present_pte(unsigned long pte)
  137. {
  138. return pte & PT_PRESENT_MASK;
  139. }
  140. static int is_writeble_pte(unsigned long pte)
  141. {
  142. return pte & PT_WRITABLE_MASK;
  143. }
  144. static int is_io_pte(unsigned long pte)
  145. {
  146. return pte & PT_SHADOW_IO_MARK;
  147. }
  148. static int is_rmap_pte(u64 pte)
  149. {
  150. return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
  151. == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
  152. }
  153. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  154. struct kmem_cache *base_cache, int min,
  155. gfp_t gfp_flags)
  156. {
  157. void *obj;
  158. if (cache->nobjs >= min)
  159. return 0;
  160. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  161. obj = kmem_cache_zalloc(base_cache, gfp_flags);
  162. if (!obj)
  163. return -ENOMEM;
  164. cache->objects[cache->nobjs++] = obj;
  165. }
  166. return 0;
  167. }
  168. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  169. {
  170. while (mc->nobjs)
  171. kfree(mc->objects[--mc->nobjs]);
  172. }
  173. static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
  174. {
  175. int r;
  176. r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
  177. pte_chain_cache, 4, gfp_flags);
  178. if (r)
  179. goto out;
  180. r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
  181. rmap_desc_cache, 1, gfp_flags);
  182. out:
  183. return r;
  184. }
  185. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  186. {
  187. int r;
  188. r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
  189. if (r < 0) {
  190. spin_unlock(&vcpu->kvm->lock);
  191. kvm_arch_ops->vcpu_put(vcpu);
  192. r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
  193. kvm_arch_ops->vcpu_load(vcpu);
  194. spin_lock(&vcpu->kvm->lock);
  195. }
  196. return r;
  197. }
  198. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  199. {
  200. mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
  201. mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
  202. }
  203. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  204. size_t size)
  205. {
  206. void *p;
  207. BUG_ON(!mc->nobjs);
  208. p = mc->objects[--mc->nobjs];
  209. memset(p, 0, size);
  210. return p;
  211. }
  212. static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
  213. {
  214. if (mc->nobjs < KVM_NR_MEM_OBJS)
  215. mc->objects[mc->nobjs++] = obj;
  216. else
  217. kfree(obj);
  218. }
  219. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  220. {
  221. return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
  222. sizeof(struct kvm_pte_chain));
  223. }
  224. static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
  225. struct kvm_pte_chain *pc)
  226. {
  227. mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
  228. }
  229. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  230. {
  231. return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
  232. sizeof(struct kvm_rmap_desc));
  233. }
  234. static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
  235. struct kvm_rmap_desc *rd)
  236. {
  237. mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
  238. }
  239. /*
  240. * Reverse mapping data structures:
  241. *
  242. * If page->private bit zero is zero, then page->private points to the
  243. * shadow page table entry that points to page_address(page).
  244. *
  245. * If page->private bit zero is one, (then page->private & ~1) points
  246. * to a struct kvm_rmap_desc containing more mappings.
  247. */
  248. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
  249. {
  250. struct page *page;
  251. struct kvm_rmap_desc *desc;
  252. int i;
  253. if (!is_rmap_pte(*spte))
  254. return;
  255. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  256. if (!page_private(page)) {
  257. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  258. set_page_private(page,(unsigned long)spte);
  259. } else if (!(page_private(page) & 1)) {
  260. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  261. desc = mmu_alloc_rmap_desc(vcpu);
  262. desc->shadow_ptes[0] = (u64 *)page_private(page);
  263. desc->shadow_ptes[1] = spte;
  264. set_page_private(page,(unsigned long)desc | 1);
  265. } else {
  266. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  267. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  268. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  269. desc = desc->more;
  270. if (desc->shadow_ptes[RMAP_EXT-1]) {
  271. desc->more = mmu_alloc_rmap_desc(vcpu);
  272. desc = desc->more;
  273. }
  274. for (i = 0; desc->shadow_ptes[i]; ++i)
  275. ;
  276. desc->shadow_ptes[i] = spte;
  277. }
  278. }
  279. static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
  280. struct page *page,
  281. struct kvm_rmap_desc *desc,
  282. int i,
  283. struct kvm_rmap_desc *prev_desc)
  284. {
  285. int j;
  286. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  287. ;
  288. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  289. desc->shadow_ptes[j] = NULL;
  290. if (j != 0)
  291. return;
  292. if (!prev_desc && !desc->more)
  293. set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
  294. else
  295. if (prev_desc)
  296. prev_desc->more = desc->more;
  297. else
  298. set_page_private(page,(unsigned long)desc->more | 1);
  299. mmu_free_rmap_desc(vcpu, desc);
  300. }
  301. static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
  302. {
  303. struct page *page;
  304. struct kvm_rmap_desc *desc;
  305. struct kvm_rmap_desc *prev_desc;
  306. int i;
  307. if (!is_rmap_pte(*spte))
  308. return;
  309. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  310. if (!page_private(page)) {
  311. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  312. BUG();
  313. } else if (!(page_private(page) & 1)) {
  314. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  315. if ((u64 *)page_private(page) != spte) {
  316. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  317. spte, *spte);
  318. BUG();
  319. }
  320. set_page_private(page,0);
  321. } else {
  322. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  323. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  324. prev_desc = NULL;
  325. while (desc) {
  326. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  327. if (desc->shadow_ptes[i] == spte) {
  328. rmap_desc_remove_entry(vcpu, page,
  329. desc, i,
  330. prev_desc);
  331. return;
  332. }
  333. prev_desc = desc;
  334. desc = desc->more;
  335. }
  336. BUG();
  337. }
  338. }
  339. static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
  340. {
  341. struct kvm *kvm = vcpu->kvm;
  342. struct page *page;
  343. struct kvm_rmap_desc *desc;
  344. u64 *spte;
  345. page = gfn_to_page(kvm, gfn);
  346. BUG_ON(!page);
  347. while (page_private(page)) {
  348. if (!(page_private(page) & 1))
  349. spte = (u64 *)page_private(page);
  350. else {
  351. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  352. spte = desc->shadow_ptes[0];
  353. }
  354. BUG_ON(!spte);
  355. BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
  356. != page_to_pfn(page));
  357. BUG_ON(!(*spte & PT_PRESENT_MASK));
  358. BUG_ON(!(*spte & PT_WRITABLE_MASK));
  359. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  360. rmap_remove(vcpu, spte);
  361. kvm_arch_ops->tlb_flush(vcpu);
  362. *spte &= ~(u64)PT_WRITABLE_MASK;
  363. }
  364. }
  365. #ifdef MMU_DEBUG
  366. static int is_empty_shadow_page(u64 *spt)
  367. {
  368. u64 *pos;
  369. u64 *end;
  370. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  371. if (*pos != 0) {
  372. printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
  373. pos, *pos);
  374. return 0;
  375. }
  376. return 1;
  377. }
  378. #endif
  379. static void kvm_mmu_free_page(struct kvm_vcpu *vcpu,
  380. struct kvm_mmu_page *page_head)
  381. {
  382. ASSERT(is_empty_shadow_page(page_head->spt));
  383. list_move(&page_head->link, &vcpu->free_pages);
  384. ++vcpu->kvm->n_free_mmu_pages;
  385. }
  386. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  387. {
  388. return gfn;
  389. }
  390. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  391. u64 *parent_pte)
  392. {
  393. struct kvm_mmu_page *page;
  394. if (list_empty(&vcpu->free_pages))
  395. return NULL;
  396. page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
  397. list_move(&page->link, &vcpu->kvm->active_mmu_pages);
  398. ASSERT(is_empty_shadow_page(page->spt));
  399. page->slot_bitmap = 0;
  400. page->multimapped = 0;
  401. page->parent_pte = parent_pte;
  402. --vcpu->kvm->n_free_mmu_pages;
  403. return page;
  404. }
  405. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  406. struct kvm_mmu_page *page, u64 *parent_pte)
  407. {
  408. struct kvm_pte_chain *pte_chain;
  409. struct hlist_node *node;
  410. int i;
  411. if (!parent_pte)
  412. return;
  413. if (!page->multimapped) {
  414. u64 *old = page->parent_pte;
  415. if (!old) {
  416. page->parent_pte = parent_pte;
  417. return;
  418. }
  419. page->multimapped = 1;
  420. pte_chain = mmu_alloc_pte_chain(vcpu);
  421. INIT_HLIST_HEAD(&page->parent_ptes);
  422. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  423. pte_chain->parent_ptes[0] = old;
  424. }
  425. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  426. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  427. continue;
  428. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  429. if (!pte_chain->parent_ptes[i]) {
  430. pte_chain->parent_ptes[i] = parent_pte;
  431. return;
  432. }
  433. }
  434. pte_chain = mmu_alloc_pte_chain(vcpu);
  435. BUG_ON(!pte_chain);
  436. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  437. pte_chain->parent_ptes[0] = parent_pte;
  438. }
  439. static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
  440. struct kvm_mmu_page *page,
  441. u64 *parent_pte)
  442. {
  443. struct kvm_pte_chain *pte_chain;
  444. struct hlist_node *node;
  445. int i;
  446. if (!page->multimapped) {
  447. BUG_ON(page->parent_pte != parent_pte);
  448. page->parent_pte = NULL;
  449. return;
  450. }
  451. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  452. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  453. if (!pte_chain->parent_ptes[i])
  454. break;
  455. if (pte_chain->parent_ptes[i] != parent_pte)
  456. continue;
  457. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  458. && pte_chain->parent_ptes[i + 1]) {
  459. pte_chain->parent_ptes[i]
  460. = pte_chain->parent_ptes[i + 1];
  461. ++i;
  462. }
  463. pte_chain->parent_ptes[i] = NULL;
  464. if (i == 0) {
  465. hlist_del(&pte_chain->link);
  466. mmu_free_pte_chain(vcpu, pte_chain);
  467. if (hlist_empty(&page->parent_ptes)) {
  468. page->multimapped = 0;
  469. page->parent_pte = NULL;
  470. }
  471. }
  472. return;
  473. }
  474. BUG();
  475. }
  476. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
  477. gfn_t gfn)
  478. {
  479. unsigned index;
  480. struct hlist_head *bucket;
  481. struct kvm_mmu_page *page;
  482. struct hlist_node *node;
  483. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  484. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  485. bucket = &vcpu->kvm->mmu_page_hash[index];
  486. hlist_for_each_entry(page, node, bucket, hash_link)
  487. if (page->gfn == gfn && !page->role.metaphysical) {
  488. pgprintk("%s: found role %x\n",
  489. __FUNCTION__, page->role.word);
  490. return page;
  491. }
  492. return NULL;
  493. }
  494. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  495. gfn_t gfn,
  496. gva_t gaddr,
  497. unsigned level,
  498. int metaphysical,
  499. unsigned hugepage_access,
  500. u64 *parent_pte)
  501. {
  502. union kvm_mmu_page_role role;
  503. unsigned index;
  504. unsigned quadrant;
  505. struct hlist_head *bucket;
  506. struct kvm_mmu_page *page;
  507. struct hlist_node *node;
  508. role.word = 0;
  509. role.glevels = vcpu->mmu.root_level;
  510. role.level = level;
  511. role.metaphysical = metaphysical;
  512. role.hugepage_access = hugepage_access;
  513. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  514. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  515. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  516. role.quadrant = quadrant;
  517. }
  518. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  519. gfn, role.word);
  520. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  521. bucket = &vcpu->kvm->mmu_page_hash[index];
  522. hlist_for_each_entry(page, node, bucket, hash_link)
  523. if (page->gfn == gfn && page->role.word == role.word) {
  524. mmu_page_add_parent_pte(vcpu, page, parent_pte);
  525. pgprintk("%s: found\n", __FUNCTION__);
  526. return page;
  527. }
  528. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  529. if (!page)
  530. return page;
  531. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  532. page->gfn = gfn;
  533. page->role = role;
  534. hlist_add_head(&page->hash_link, bucket);
  535. if (!metaphysical)
  536. rmap_write_protect(vcpu, gfn);
  537. return page;
  538. }
  539. static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
  540. struct kvm_mmu_page *page)
  541. {
  542. unsigned i;
  543. u64 *pt;
  544. u64 ent;
  545. pt = page->spt;
  546. if (page->role.level == PT_PAGE_TABLE_LEVEL) {
  547. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  548. if (pt[i] & PT_PRESENT_MASK)
  549. rmap_remove(vcpu, &pt[i]);
  550. pt[i] = 0;
  551. }
  552. kvm_arch_ops->tlb_flush(vcpu);
  553. return;
  554. }
  555. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  556. ent = pt[i];
  557. pt[i] = 0;
  558. if (!(ent & PT_PRESENT_MASK))
  559. continue;
  560. ent &= PT64_BASE_ADDR_MASK;
  561. mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
  562. }
  563. }
  564. static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
  565. struct kvm_mmu_page *page,
  566. u64 *parent_pte)
  567. {
  568. mmu_page_remove_parent_pte(vcpu, page, parent_pte);
  569. }
  570. static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
  571. struct kvm_mmu_page *page)
  572. {
  573. u64 *parent_pte;
  574. while (page->multimapped || page->parent_pte) {
  575. if (!page->multimapped)
  576. parent_pte = page->parent_pte;
  577. else {
  578. struct kvm_pte_chain *chain;
  579. chain = container_of(page->parent_ptes.first,
  580. struct kvm_pte_chain, link);
  581. parent_pte = chain->parent_ptes[0];
  582. }
  583. BUG_ON(!parent_pte);
  584. kvm_mmu_put_page(vcpu, page, parent_pte);
  585. *parent_pte = 0;
  586. }
  587. kvm_mmu_page_unlink_children(vcpu, page);
  588. if (!page->root_count) {
  589. hlist_del(&page->hash_link);
  590. kvm_mmu_free_page(vcpu, page);
  591. } else
  592. list_move(&page->link, &vcpu->kvm->active_mmu_pages);
  593. }
  594. static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  595. {
  596. unsigned index;
  597. struct hlist_head *bucket;
  598. struct kvm_mmu_page *page;
  599. struct hlist_node *node, *n;
  600. int r;
  601. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  602. r = 0;
  603. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  604. bucket = &vcpu->kvm->mmu_page_hash[index];
  605. hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
  606. if (page->gfn == gfn && !page->role.metaphysical) {
  607. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  608. page->role.word);
  609. kvm_mmu_zap_page(vcpu, page);
  610. r = 1;
  611. }
  612. return r;
  613. }
  614. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  615. {
  616. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  617. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  618. __set_bit(slot, &page_head->slot_bitmap);
  619. }
  620. hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  621. {
  622. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  623. return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
  624. }
  625. hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  626. {
  627. struct page *page;
  628. ASSERT((gpa & HPA_ERR_MASK) == 0);
  629. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  630. if (!page)
  631. return gpa | HPA_ERR_MASK;
  632. return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
  633. | (gpa & (PAGE_SIZE-1));
  634. }
  635. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  636. {
  637. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  638. if (gpa == UNMAPPED_GVA)
  639. return UNMAPPED_GVA;
  640. return gpa_to_hpa(vcpu, gpa);
  641. }
  642. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  643. {
  644. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  645. if (gpa == UNMAPPED_GVA)
  646. return NULL;
  647. return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
  648. }
  649. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  650. {
  651. }
  652. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  653. {
  654. int level = PT32E_ROOT_LEVEL;
  655. hpa_t table_addr = vcpu->mmu.root_hpa;
  656. for (; ; level--) {
  657. u32 index = PT64_INDEX(v, level);
  658. u64 *table;
  659. u64 pte;
  660. ASSERT(VALID_PAGE(table_addr));
  661. table = __va(table_addr);
  662. if (level == 1) {
  663. pte = table[index];
  664. if (is_present_pte(pte) && is_writeble_pte(pte))
  665. return 0;
  666. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  667. page_header_update_slot(vcpu->kvm, table, v);
  668. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  669. PT_USER_MASK;
  670. rmap_add(vcpu, &table[index]);
  671. return 0;
  672. }
  673. if (table[index] == 0) {
  674. struct kvm_mmu_page *new_table;
  675. gfn_t pseudo_gfn;
  676. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  677. >> PAGE_SHIFT;
  678. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  679. v, level - 1,
  680. 1, 0, &table[index]);
  681. if (!new_table) {
  682. pgprintk("nonpaging_map: ENOMEM\n");
  683. return -ENOMEM;
  684. }
  685. table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
  686. | PT_WRITABLE_MASK | PT_USER_MASK;
  687. }
  688. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  689. }
  690. }
  691. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  692. {
  693. int i;
  694. struct kvm_mmu_page *page;
  695. #ifdef CONFIG_X86_64
  696. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  697. hpa_t root = vcpu->mmu.root_hpa;
  698. ASSERT(VALID_PAGE(root));
  699. page = page_header(root);
  700. --page->root_count;
  701. vcpu->mmu.root_hpa = INVALID_PAGE;
  702. return;
  703. }
  704. #endif
  705. for (i = 0; i < 4; ++i) {
  706. hpa_t root = vcpu->mmu.pae_root[i];
  707. if (root) {
  708. ASSERT(VALID_PAGE(root));
  709. root &= PT64_BASE_ADDR_MASK;
  710. page = page_header(root);
  711. --page->root_count;
  712. }
  713. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  714. }
  715. vcpu->mmu.root_hpa = INVALID_PAGE;
  716. }
  717. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  718. {
  719. int i;
  720. gfn_t root_gfn;
  721. struct kvm_mmu_page *page;
  722. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  723. #ifdef CONFIG_X86_64
  724. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  725. hpa_t root = vcpu->mmu.root_hpa;
  726. ASSERT(!VALID_PAGE(root));
  727. page = kvm_mmu_get_page(vcpu, root_gfn, 0,
  728. PT64_ROOT_LEVEL, 0, 0, NULL);
  729. root = __pa(page->spt);
  730. ++page->root_count;
  731. vcpu->mmu.root_hpa = root;
  732. return;
  733. }
  734. #endif
  735. for (i = 0; i < 4; ++i) {
  736. hpa_t root = vcpu->mmu.pae_root[i];
  737. ASSERT(!VALID_PAGE(root));
  738. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
  739. if (!is_present_pte(vcpu->pdptrs[i])) {
  740. vcpu->mmu.pae_root[i] = 0;
  741. continue;
  742. }
  743. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  744. } else if (vcpu->mmu.root_level == 0)
  745. root_gfn = 0;
  746. page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  747. PT32_ROOT_LEVEL, !is_paging(vcpu),
  748. 0, NULL);
  749. root = __pa(page->spt);
  750. ++page->root_count;
  751. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  752. }
  753. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  754. }
  755. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  756. {
  757. return vaddr;
  758. }
  759. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  760. u32 error_code)
  761. {
  762. gpa_t addr = gva;
  763. hpa_t paddr;
  764. int r;
  765. r = mmu_topup_memory_caches(vcpu);
  766. if (r)
  767. return r;
  768. ASSERT(vcpu);
  769. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  770. paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
  771. if (is_error_hpa(paddr))
  772. return 1;
  773. return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  774. }
  775. static void nonpaging_free(struct kvm_vcpu *vcpu)
  776. {
  777. mmu_free_roots(vcpu);
  778. }
  779. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  780. {
  781. struct kvm_mmu *context = &vcpu->mmu;
  782. context->new_cr3 = nonpaging_new_cr3;
  783. context->page_fault = nonpaging_page_fault;
  784. context->gva_to_gpa = nonpaging_gva_to_gpa;
  785. context->free = nonpaging_free;
  786. context->root_level = 0;
  787. context->shadow_root_level = PT32E_ROOT_LEVEL;
  788. mmu_alloc_roots(vcpu);
  789. ASSERT(VALID_PAGE(context->root_hpa));
  790. kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
  791. return 0;
  792. }
  793. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  794. {
  795. ++vcpu->stat.tlb_flush;
  796. kvm_arch_ops->tlb_flush(vcpu);
  797. }
  798. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  799. {
  800. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
  801. mmu_free_roots(vcpu);
  802. if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
  803. kvm_mmu_free_some_pages(vcpu);
  804. mmu_alloc_roots(vcpu);
  805. kvm_mmu_flush_tlb(vcpu);
  806. kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  807. }
  808. static inline void set_pte_common(struct kvm_vcpu *vcpu,
  809. u64 *shadow_pte,
  810. gpa_t gaddr,
  811. int dirty,
  812. u64 access_bits,
  813. gfn_t gfn)
  814. {
  815. hpa_t paddr;
  816. *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
  817. if (!dirty)
  818. access_bits &= ~PT_WRITABLE_MASK;
  819. paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
  820. *shadow_pte |= access_bits;
  821. if (is_error_hpa(paddr)) {
  822. *shadow_pte |= gaddr;
  823. *shadow_pte |= PT_SHADOW_IO_MARK;
  824. *shadow_pte &= ~PT_PRESENT_MASK;
  825. return;
  826. }
  827. *shadow_pte |= paddr;
  828. if (access_bits & PT_WRITABLE_MASK) {
  829. struct kvm_mmu_page *shadow;
  830. shadow = kvm_mmu_lookup_page(vcpu, gfn);
  831. if (shadow) {
  832. pgprintk("%s: found shadow page for %lx, marking ro\n",
  833. __FUNCTION__, gfn);
  834. access_bits &= ~PT_WRITABLE_MASK;
  835. if (is_writeble_pte(*shadow_pte)) {
  836. *shadow_pte &= ~PT_WRITABLE_MASK;
  837. kvm_arch_ops->tlb_flush(vcpu);
  838. }
  839. }
  840. }
  841. if (access_bits & PT_WRITABLE_MASK)
  842. mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
  843. page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
  844. rmap_add(vcpu, shadow_pte);
  845. }
  846. static void inject_page_fault(struct kvm_vcpu *vcpu,
  847. u64 addr,
  848. u32 err_code)
  849. {
  850. kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
  851. }
  852. static inline int fix_read_pf(u64 *shadow_ent)
  853. {
  854. if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
  855. !(*shadow_ent & PT_USER_MASK)) {
  856. /*
  857. * If supervisor write protect is disabled, we shadow kernel
  858. * pages as user pages so we can trap the write access.
  859. */
  860. *shadow_ent |= PT_USER_MASK;
  861. *shadow_ent &= ~PT_WRITABLE_MASK;
  862. return 1;
  863. }
  864. return 0;
  865. }
  866. static void paging_free(struct kvm_vcpu *vcpu)
  867. {
  868. nonpaging_free(vcpu);
  869. }
  870. #define PTTYPE 64
  871. #include "paging_tmpl.h"
  872. #undef PTTYPE
  873. #define PTTYPE 32
  874. #include "paging_tmpl.h"
  875. #undef PTTYPE
  876. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  877. {
  878. struct kvm_mmu *context = &vcpu->mmu;
  879. ASSERT(is_pae(vcpu));
  880. context->new_cr3 = paging_new_cr3;
  881. context->page_fault = paging64_page_fault;
  882. context->gva_to_gpa = paging64_gva_to_gpa;
  883. context->free = paging_free;
  884. context->root_level = level;
  885. context->shadow_root_level = level;
  886. mmu_alloc_roots(vcpu);
  887. ASSERT(VALID_PAGE(context->root_hpa));
  888. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  889. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  890. return 0;
  891. }
  892. static int paging64_init_context(struct kvm_vcpu *vcpu)
  893. {
  894. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  895. }
  896. static int paging32_init_context(struct kvm_vcpu *vcpu)
  897. {
  898. struct kvm_mmu *context = &vcpu->mmu;
  899. context->new_cr3 = paging_new_cr3;
  900. context->page_fault = paging32_page_fault;
  901. context->gva_to_gpa = paging32_gva_to_gpa;
  902. context->free = paging_free;
  903. context->root_level = PT32_ROOT_LEVEL;
  904. context->shadow_root_level = PT32E_ROOT_LEVEL;
  905. mmu_alloc_roots(vcpu);
  906. ASSERT(VALID_PAGE(context->root_hpa));
  907. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  908. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  909. return 0;
  910. }
  911. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  912. {
  913. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  914. }
  915. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  916. {
  917. ASSERT(vcpu);
  918. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  919. if (!is_paging(vcpu))
  920. return nonpaging_init_context(vcpu);
  921. else if (is_long_mode(vcpu))
  922. return paging64_init_context(vcpu);
  923. else if (is_pae(vcpu))
  924. return paging32E_init_context(vcpu);
  925. else
  926. return paging32_init_context(vcpu);
  927. }
  928. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  929. {
  930. ASSERT(vcpu);
  931. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  932. vcpu->mmu.free(vcpu);
  933. vcpu->mmu.root_hpa = INVALID_PAGE;
  934. }
  935. }
  936. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  937. {
  938. int r;
  939. destroy_kvm_mmu(vcpu);
  940. r = init_kvm_mmu(vcpu);
  941. if (r < 0)
  942. goto out;
  943. r = mmu_topup_memory_caches(vcpu);
  944. out:
  945. return r;
  946. }
  947. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  948. struct kvm_mmu_page *page,
  949. u64 *spte)
  950. {
  951. u64 pte;
  952. struct kvm_mmu_page *child;
  953. pte = *spte;
  954. if (is_present_pte(pte)) {
  955. if (page->role.level == PT_PAGE_TABLE_LEVEL)
  956. rmap_remove(vcpu, spte);
  957. else {
  958. child = page_header(pte & PT64_BASE_ADDR_MASK);
  959. mmu_page_remove_parent_pte(vcpu, child, spte);
  960. }
  961. }
  962. *spte = 0;
  963. }
  964. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  965. struct kvm_mmu_page *page,
  966. u64 *spte,
  967. const void *new, int bytes)
  968. {
  969. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  970. return;
  971. if (page->role.glevels == PT32_ROOT_LEVEL)
  972. paging32_update_pte(vcpu, page, spte, new, bytes);
  973. else
  974. paging64_update_pte(vcpu, page, spte, new, bytes);
  975. }
  976. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  977. const u8 *old, const u8 *new, int bytes)
  978. {
  979. gfn_t gfn = gpa >> PAGE_SHIFT;
  980. struct kvm_mmu_page *page;
  981. struct hlist_node *node, *n;
  982. struct hlist_head *bucket;
  983. unsigned index;
  984. u64 *spte;
  985. unsigned offset = offset_in_page(gpa);
  986. unsigned pte_size;
  987. unsigned page_offset;
  988. unsigned misaligned;
  989. unsigned quadrant;
  990. int level;
  991. int flooded = 0;
  992. int npte;
  993. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  994. if (gfn == vcpu->last_pt_write_gfn) {
  995. ++vcpu->last_pt_write_count;
  996. if (vcpu->last_pt_write_count >= 3)
  997. flooded = 1;
  998. } else {
  999. vcpu->last_pt_write_gfn = gfn;
  1000. vcpu->last_pt_write_count = 1;
  1001. }
  1002. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  1003. bucket = &vcpu->kvm->mmu_page_hash[index];
  1004. hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
  1005. if (page->gfn != gfn || page->role.metaphysical)
  1006. continue;
  1007. pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1008. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1009. misaligned |= bytes < 4;
  1010. if (misaligned || flooded) {
  1011. /*
  1012. * Misaligned accesses are too much trouble to fix
  1013. * up; also, they usually indicate a page is not used
  1014. * as a page table.
  1015. *
  1016. * If we're seeing too many writes to a page,
  1017. * it may no longer be a page table, or we may be
  1018. * forking, in which case it is better to unmap the
  1019. * page.
  1020. */
  1021. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1022. gpa, bytes, page->role.word);
  1023. kvm_mmu_zap_page(vcpu, page);
  1024. continue;
  1025. }
  1026. page_offset = offset;
  1027. level = page->role.level;
  1028. npte = 1;
  1029. if (page->role.glevels == PT32_ROOT_LEVEL) {
  1030. page_offset <<= 1; /* 32->64 */
  1031. /*
  1032. * A 32-bit pde maps 4MB while the shadow pdes map
  1033. * only 2MB. So we need to double the offset again
  1034. * and zap two pdes instead of one.
  1035. */
  1036. if (level == PT32_ROOT_LEVEL) {
  1037. page_offset &= ~7; /* kill rounding error */
  1038. page_offset <<= 1;
  1039. npte = 2;
  1040. }
  1041. quadrant = page_offset >> PAGE_SHIFT;
  1042. page_offset &= ~PAGE_MASK;
  1043. if (quadrant != page->role.quadrant)
  1044. continue;
  1045. }
  1046. spte = &page->spt[page_offset / sizeof(*spte)];
  1047. while (npte--) {
  1048. mmu_pte_write_zap_pte(vcpu, page, spte);
  1049. mmu_pte_write_new_pte(vcpu, page, spte, new, bytes);
  1050. ++spte;
  1051. }
  1052. }
  1053. }
  1054. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1055. {
  1056. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  1057. return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
  1058. }
  1059. void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1060. {
  1061. while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
  1062. struct kvm_mmu_page *page;
  1063. page = container_of(vcpu->kvm->active_mmu_pages.prev,
  1064. struct kvm_mmu_page, link);
  1065. kvm_mmu_zap_page(vcpu, page);
  1066. }
  1067. }
  1068. EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
  1069. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1070. {
  1071. struct kvm_mmu_page *page;
  1072. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1073. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1074. struct kvm_mmu_page, link);
  1075. kvm_mmu_zap_page(vcpu, page);
  1076. }
  1077. while (!list_empty(&vcpu->free_pages)) {
  1078. page = list_entry(vcpu->free_pages.next,
  1079. struct kvm_mmu_page, link);
  1080. list_del(&page->link);
  1081. free_page((unsigned long)page->spt);
  1082. page->spt = NULL;
  1083. }
  1084. free_page((unsigned long)vcpu->mmu.pae_root);
  1085. }
  1086. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1087. {
  1088. struct page *page;
  1089. int i;
  1090. ASSERT(vcpu);
  1091. for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
  1092. struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
  1093. INIT_LIST_HEAD(&page_header->link);
  1094. if ((page = alloc_page(GFP_KERNEL)) == NULL)
  1095. goto error_1;
  1096. set_page_private(page, (unsigned long)page_header);
  1097. page_header->spt = page_address(page);
  1098. memset(page_header->spt, 0, PAGE_SIZE);
  1099. list_add(&page_header->link, &vcpu->free_pages);
  1100. ++vcpu->kvm->n_free_mmu_pages;
  1101. }
  1102. /*
  1103. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1104. * Therefore we need to allocate shadow page tables in the first
  1105. * 4GB of memory, which happens to fit the DMA32 zone.
  1106. */
  1107. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1108. if (!page)
  1109. goto error_1;
  1110. vcpu->mmu.pae_root = page_address(page);
  1111. for (i = 0; i < 4; ++i)
  1112. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  1113. return 0;
  1114. error_1:
  1115. free_mmu_pages(vcpu);
  1116. return -ENOMEM;
  1117. }
  1118. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1119. {
  1120. ASSERT(vcpu);
  1121. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1122. ASSERT(list_empty(&vcpu->free_pages));
  1123. return alloc_mmu_pages(vcpu);
  1124. }
  1125. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1126. {
  1127. ASSERT(vcpu);
  1128. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1129. ASSERT(!list_empty(&vcpu->free_pages));
  1130. return init_kvm_mmu(vcpu);
  1131. }
  1132. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1133. {
  1134. ASSERT(vcpu);
  1135. destroy_kvm_mmu(vcpu);
  1136. free_mmu_pages(vcpu);
  1137. mmu_free_memory_caches(vcpu);
  1138. }
  1139. void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  1140. {
  1141. struct kvm *kvm = vcpu->kvm;
  1142. struct kvm_mmu_page *page;
  1143. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  1144. int i;
  1145. u64 *pt;
  1146. if (!test_bit(slot, &page->slot_bitmap))
  1147. continue;
  1148. pt = page->spt;
  1149. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1150. /* avoid RMW */
  1151. if (pt[i] & PT_WRITABLE_MASK) {
  1152. rmap_remove(vcpu, &pt[i]);
  1153. pt[i] &= ~PT_WRITABLE_MASK;
  1154. }
  1155. }
  1156. }
  1157. void kvm_mmu_zap_all(struct kvm_vcpu *vcpu)
  1158. {
  1159. destroy_kvm_mmu(vcpu);
  1160. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1161. struct kvm_mmu_page *page;
  1162. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1163. struct kvm_mmu_page, link);
  1164. kvm_mmu_zap_page(vcpu, page);
  1165. }
  1166. mmu_free_memory_caches(vcpu);
  1167. kvm_arch_ops->tlb_flush(vcpu);
  1168. init_kvm_mmu(vcpu);
  1169. }
  1170. void kvm_mmu_module_exit(void)
  1171. {
  1172. if (pte_chain_cache)
  1173. kmem_cache_destroy(pte_chain_cache);
  1174. if (rmap_desc_cache)
  1175. kmem_cache_destroy(rmap_desc_cache);
  1176. }
  1177. int kvm_mmu_module_init(void)
  1178. {
  1179. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1180. sizeof(struct kvm_pte_chain),
  1181. 0, 0, NULL, NULL);
  1182. if (!pte_chain_cache)
  1183. goto nomem;
  1184. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1185. sizeof(struct kvm_rmap_desc),
  1186. 0, 0, NULL, NULL);
  1187. if (!rmap_desc_cache)
  1188. goto nomem;
  1189. return 0;
  1190. nomem:
  1191. kvm_mmu_module_exit();
  1192. return -ENOMEM;
  1193. }
  1194. #ifdef AUDIT
  1195. static const char *audit_msg;
  1196. static gva_t canonicalize(gva_t gva)
  1197. {
  1198. #ifdef CONFIG_X86_64
  1199. gva = (long long)(gva << 16) >> 16;
  1200. #endif
  1201. return gva;
  1202. }
  1203. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1204. gva_t va, int level)
  1205. {
  1206. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1207. int i;
  1208. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1209. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1210. u64 ent = pt[i];
  1211. if (!(ent & PT_PRESENT_MASK))
  1212. continue;
  1213. va = canonicalize(va);
  1214. if (level > 1)
  1215. audit_mappings_page(vcpu, ent, va, level - 1);
  1216. else {
  1217. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
  1218. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  1219. if ((ent & PT_PRESENT_MASK)
  1220. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1221. printk(KERN_ERR "audit error: (%s) levels %d"
  1222. " gva %lx gpa %llx hpa %llx ent %llx\n",
  1223. audit_msg, vcpu->mmu.root_level,
  1224. va, gpa, hpa, ent);
  1225. }
  1226. }
  1227. }
  1228. static void audit_mappings(struct kvm_vcpu *vcpu)
  1229. {
  1230. unsigned i;
  1231. if (vcpu->mmu.root_level == 4)
  1232. audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
  1233. else
  1234. for (i = 0; i < 4; ++i)
  1235. if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
  1236. audit_mappings_page(vcpu,
  1237. vcpu->mmu.pae_root[i],
  1238. i << 30,
  1239. 2);
  1240. }
  1241. static int count_rmaps(struct kvm_vcpu *vcpu)
  1242. {
  1243. int nmaps = 0;
  1244. int i, j, k;
  1245. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1246. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1247. struct kvm_rmap_desc *d;
  1248. for (j = 0; j < m->npages; ++j) {
  1249. struct page *page = m->phys_mem[j];
  1250. if (!page->private)
  1251. continue;
  1252. if (!(page->private & 1)) {
  1253. ++nmaps;
  1254. continue;
  1255. }
  1256. d = (struct kvm_rmap_desc *)(page->private & ~1ul);
  1257. while (d) {
  1258. for (k = 0; k < RMAP_EXT; ++k)
  1259. if (d->shadow_ptes[k])
  1260. ++nmaps;
  1261. else
  1262. break;
  1263. d = d->more;
  1264. }
  1265. }
  1266. }
  1267. return nmaps;
  1268. }
  1269. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1270. {
  1271. int nmaps = 0;
  1272. struct kvm_mmu_page *page;
  1273. int i;
  1274. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1275. u64 *pt = page->spt;
  1276. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  1277. continue;
  1278. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1279. u64 ent = pt[i];
  1280. if (!(ent & PT_PRESENT_MASK))
  1281. continue;
  1282. if (!(ent & PT_WRITABLE_MASK))
  1283. continue;
  1284. ++nmaps;
  1285. }
  1286. }
  1287. return nmaps;
  1288. }
  1289. static void audit_rmap(struct kvm_vcpu *vcpu)
  1290. {
  1291. int n_rmap = count_rmaps(vcpu);
  1292. int n_actual = count_writable_mappings(vcpu);
  1293. if (n_rmap != n_actual)
  1294. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1295. __FUNCTION__, audit_msg, n_rmap, n_actual);
  1296. }
  1297. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1298. {
  1299. struct kvm_mmu_page *page;
  1300. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1301. hfn_t hfn;
  1302. struct page *pg;
  1303. if (page->role.metaphysical)
  1304. continue;
  1305. hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
  1306. >> PAGE_SHIFT;
  1307. pg = pfn_to_page(hfn);
  1308. if (pg->private)
  1309. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1310. " mappings: gfn %lx role %x\n",
  1311. __FUNCTION__, audit_msg, page->gfn,
  1312. page->role.word);
  1313. }
  1314. }
  1315. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1316. {
  1317. int olddbg = dbg;
  1318. dbg = 0;
  1319. audit_msg = msg;
  1320. audit_rmap(vcpu);
  1321. audit_write_protection(vcpu);
  1322. audit_mappings(vcpu);
  1323. dbg = olddbg;
  1324. }
  1325. #endif