kvm_main.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <linux/magic.h>
  22. #include <asm/processor.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <asm/msr.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <asm/uaccess.h>
  30. #include <linux/reboot.h>
  31. #include <asm/io.h>
  32. #include <linux/debugfs.h>
  33. #include <linux/highmem.h>
  34. #include <linux/file.h>
  35. #include <asm/desc.h>
  36. #include <linux/sysdev.h>
  37. #include <linux/cpu.h>
  38. #include <linux/file.h>
  39. #include <linux/fs.h>
  40. #include <linux/mount.h>
  41. #include <linux/sched.h>
  42. #include "x86_emulate.h"
  43. #include "segment_descriptor.h"
  44. MODULE_AUTHOR("Qumranet");
  45. MODULE_LICENSE("GPL");
  46. static DEFINE_SPINLOCK(kvm_lock);
  47. static LIST_HEAD(vm_list);
  48. struct kvm_arch_ops *kvm_arch_ops;
  49. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  50. static struct kvm_stats_debugfs_item {
  51. const char *name;
  52. int offset;
  53. struct dentry *dentry;
  54. } debugfs_entries[] = {
  55. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  56. { "pf_guest", STAT_OFFSET(pf_guest) },
  57. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  58. { "invlpg", STAT_OFFSET(invlpg) },
  59. { "exits", STAT_OFFSET(exits) },
  60. { "io_exits", STAT_OFFSET(io_exits) },
  61. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  62. { "signal_exits", STAT_OFFSET(signal_exits) },
  63. { "irq_window", STAT_OFFSET(irq_window_exits) },
  64. { "halt_exits", STAT_OFFSET(halt_exits) },
  65. { "request_irq", STAT_OFFSET(request_irq_exits) },
  66. { "irq_exits", STAT_OFFSET(irq_exits) },
  67. { "light_exits", STAT_OFFSET(light_exits) },
  68. { NULL }
  69. };
  70. static struct dentry *debugfs_dir;
  71. struct vfsmount *kvmfs_mnt;
  72. #define MAX_IO_MSRS 256
  73. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  74. #define LMSW_GUEST_MASK 0x0eULL
  75. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  76. #define CR8_RESEVED_BITS (~0x0fULL)
  77. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  78. #ifdef CONFIG_X86_64
  79. // LDT or TSS descriptor in the GDT. 16 bytes.
  80. struct segment_descriptor_64 {
  81. struct segment_descriptor s;
  82. u32 base_higher;
  83. u32 pad_zero;
  84. };
  85. #endif
  86. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  87. unsigned long arg);
  88. static struct inode *kvmfs_inode(struct file_operations *fops)
  89. {
  90. int error = -ENOMEM;
  91. struct inode *inode = new_inode(kvmfs_mnt->mnt_sb);
  92. if (!inode)
  93. goto eexit_1;
  94. inode->i_fop = fops;
  95. /*
  96. * Mark the inode dirty from the very beginning,
  97. * that way it will never be moved to the dirty
  98. * list because mark_inode_dirty() will think
  99. * that it already _is_ on the dirty list.
  100. */
  101. inode->i_state = I_DIRTY;
  102. inode->i_mode = S_IRUSR | S_IWUSR;
  103. inode->i_uid = current->fsuid;
  104. inode->i_gid = current->fsgid;
  105. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  106. return inode;
  107. eexit_1:
  108. return ERR_PTR(error);
  109. }
  110. static struct file *kvmfs_file(struct inode *inode, void *private_data)
  111. {
  112. struct file *file = get_empty_filp();
  113. if (!file)
  114. return ERR_PTR(-ENFILE);
  115. file->f_path.mnt = mntget(kvmfs_mnt);
  116. file->f_path.dentry = d_alloc_anon(inode);
  117. if (!file->f_path.dentry)
  118. return ERR_PTR(-ENOMEM);
  119. file->f_mapping = inode->i_mapping;
  120. file->f_pos = 0;
  121. file->f_flags = O_RDWR;
  122. file->f_op = inode->i_fop;
  123. file->f_mode = FMODE_READ | FMODE_WRITE;
  124. file->f_version = 0;
  125. file->private_data = private_data;
  126. return file;
  127. }
  128. unsigned long segment_base(u16 selector)
  129. {
  130. struct descriptor_table gdt;
  131. struct segment_descriptor *d;
  132. unsigned long table_base;
  133. typedef unsigned long ul;
  134. unsigned long v;
  135. if (selector == 0)
  136. return 0;
  137. asm ("sgdt %0" : "=m"(gdt));
  138. table_base = gdt.base;
  139. if (selector & 4) { /* from ldt */
  140. u16 ldt_selector;
  141. asm ("sldt %0" : "=g"(ldt_selector));
  142. table_base = segment_base(ldt_selector);
  143. }
  144. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  145. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  146. #ifdef CONFIG_X86_64
  147. if (d->system == 0
  148. && (d->type == 2 || d->type == 9 || d->type == 11))
  149. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  150. #endif
  151. return v;
  152. }
  153. EXPORT_SYMBOL_GPL(segment_base);
  154. static inline int valid_vcpu(int n)
  155. {
  156. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  157. }
  158. int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  159. void *dest)
  160. {
  161. unsigned char *host_buf = dest;
  162. unsigned long req_size = size;
  163. while (size) {
  164. hpa_t paddr;
  165. unsigned now;
  166. unsigned offset;
  167. hva_t guest_buf;
  168. paddr = gva_to_hpa(vcpu, addr);
  169. if (is_error_hpa(paddr))
  170. break;
  171. guest_buf = (hva_t)kmap_atomic(
  172. pfn_to_page(paddr >> PAGE_SHIFT),
  173. KM_USER0);
  174. offset = addr & ~PAGE_MASK;
  175. guest_buf |= offset;
  176. now = min(size, PAGE_SIZE - offset);
  177. memcpy(host_buf, (void*)guest_buf, now);
  178. host_buf += now;
  179. addr += now;
  180. size -= now;
  181. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  182. }
  183. return req_size - size;
  184. }
  185. EXPORT_SYMBOL_GPL(kvm_read_guest);
  186. int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  187. void *data)
  188. {
  189. unsigned char *host_buf = data;
  190. unsigned long req_size = size;
  191. while (size) {
  192. hpa_t paddr;
  193. unsigned now;
  194. unsigned offset;
  195. hva_t guest_buf;
  196. gfn_t gfn;
  197. paddr = gva_to_hpa(vcpu, addr);
  198. if (is_error_hpa(paddr))
  199. break;
  200. gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
  201. mark_page_dirty(vcpu->kvm, gfn);
  202. guest_buf = (hva_t)kmap_atomic(
  203. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  204. offset = addr & ~PAGE_MASK;
  205. guest_buf |= offset;
  206. now = min(size, PAGE_SIZE - offset);
  207. memcpy((void*)guest_buf, host_buf, now);
  208. host_buf += now;
  209. addr += now;
  210. size -= now;
  211. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  212. }
  213. return req_size - size;
  214. }
  215. EXPORT_SYMBOL_GPL(kvm_write_guest);
  216. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  217. {
  218. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  219. return;
  220. vcpu->guest_fpu_loaded = 1;
  221. fx_save(vcpu->host_fx_image);
  222. fx_restore(vcpu->guest_fx_image);
  223. }
  224. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  225. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  226. {
  227. if (!vcpu->guest_fpu_loaded)
  228. return;
  229. vcpu->guest_fpu_loaded = 0;
  230. fx_save(vcpu->guest_fx_image);
  231. fx_restore(vcpu->host_fx_image);
  232. }
  233. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  234. /*
  235. * Switches to specified vcpu, until a matching vcpu_put()
  236. */
  237. static void vcpu_load(struct kvm_vcpu *vcpu)
  238. {
  239. mutex_lock(&vcpu->mutex);
  240. kvm_arch_ops->vcpu_load(vcpu);
  241. }
  242. /*
  243. * Switches to specified vcpu, until a matching vcpu_put(). Will return NULL
  244. * if the slot is not populated.
  245. */
  246. static struct kvm_vcpu *vcpu_load_slot(struct kvm *kvm, int slot)
  247. {
  248. struct kvm_vcpu *vcpu = &kvm->vcpus[slot];
  249. mutex_lock(&vcpu->mutex);
  250. if (!vcpu->vmcs) {
  251. mutex_unlock(&vcpu->mutex);
  252. return NULL;
  253. }
  254. kvm_arch_ops->vcpu_load(vcpu);
  255. return vcpu;
  256. }
  257. static void vcpu_put(struct kvm_vcpu *vcpu)
  258. {
  259. kvm_arch_ops->vcpu_put(vcpu);
  260. mutex_unlock(&vcpu->mutex);
  261. }
  262. static struct kvm *kvm_create_vm(void)
  263. {
  264. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  265. int i;
  266. if (!kvm)
  267. return ERR_PTR(-ENOMEM);
  268. spin_lock_init(&kvm->lock);
  269. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  270. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  271. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  272. mutex_init(&vcpu->mutex);
  273. vcpu->cpu = -1;
  274. vcpu->kvm = kvm;
  275. vcpu->mmu.root_hpa = INVALID_PAGE;
  276. INIT_LIST_HEAD(&vcpu->free_pages);
  277. spin_lock(&kvm_lock);
  278. list_add(&kvm->vm_list, &vm_list);
  279. spin_unlock(&kvm_lock);
  280. }
  281. return kvm;
  282. }
  283. static int kvm_dev_open(struct inode *inode, struct file *filp)
  284. {
  285. return 0;
  286. }
  287. /*
  288. * Free any memory in @free but not in @dont.
  289. */
  290. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  291. struct kvm_memory_slot *dont)
  292. {
  293. int i;
  294. if (!dont || free->phys_mem != dont->phys_mem)
  295. if (free->phys_mem) {
  296. for (i = 0; i < free->npages; ++i)
  297. if (free->phys_mem[i])
  298. __free_page(free->phys_mem[i]);
  299. vfree(free->phys_mem);
  300. }
  301. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  302. vfree(free->dirty_bitmap);
  303. free->phys_mem = NULL;
  304. free->npages = 0;
  305. free->dirty_bitmap = NULL;
  306. }
  307. static void kvm_free_physmem(struct kvm *kvm)
  308. {
  309. int i;
  310. for (i = 0; i < kvm->nmemslots; ++i)
  311. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  312. }
  313. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  314. {
  315. int i;
  316. for (i = 0; i < 2; ++i)
  317. if (vcpu->pio.guest_pages[i]) {
  318. __free_page(vcpu->pio.guest_pages[i]);
  319. vcpu->pio.guest_pages[i] = NULL;
  320. }
  321. }
  322. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  323. {
  324. if (!vcpu->vmcs)
  325. return;
  326. vcpu_load(vcpu);
  327. kvm_mmu_destroy(vcpu);
  328. vcpu_put(vcpu);
  329. kvm_arch_ops->vcpu_free(vcpu);
  330. free_page((unsigned long)vcpu->run);
  331. vcpu->run = NULL;
  332. free_page((unsigned long)vcpu->pio_data);
  333. vcpu->pio_data = NULL;
  334. free_pio_guest_pages(vcpu);
  335. }
  336. static void kvm_free_vcpus(struct kvm *kvm)
  337. {
  338. unsigned int i;
  339. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  340. kvm_free_vcpu(&kvm->vcpus[i]);
  341. }
  342. static int kvm_dev_release(struct inode *inode, struct file *filp)
  343. {
  344. return 0;
  345. }
  346. static void kvm_destroy_vm(struct kvm *kvm)
  347. {
  348. spin_lock(&kvm_lock);
  349. list_del(&kvm->vm_list);
  350. spin_unlock(&kvm_lock);
  351. kvm_free_vcpus(kvm);
  352. kvm_free_physmem(kvm);
  353. kfree(kvm);
  354. }
  355. static int kvm_vm_release(struct inode *inode, struct file *filp)
  356. {
  357. struct kvm *kvm = filp->private_data;
  358. kvm_destroy_vm(kvm);
  359. return 0;
  360. }
  361. static void inject_gp(struct kvm_vcpu *vcpu)
  362. {
  363. kvm_arch_ops->inject_gp(vcpu, 0);
  364. }
  365. /*
  366. * Load the pae pdptrs. Return true is they are all valid.
  367. */
  368. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  369. {
  370. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  371. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  372. int i;
  373. u64 pdpte;
  374. u64 *pdpt;
  375. int ret;
  376. struct page *page;
  377. spin_lock(&vcpu->kvm->lock);
  378. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  379. /* FIXME: !page - emulate? 0xff? */
  380. pdpt = kmap_atomic(page, KM_USER0);
  381. ret = 1;
  382. for (i = 0; i < 4; ++i) {
  383. pdpte = pdpt[offset + i];
  384. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
  385. ret = 0;
  386. goto out;
  387. }
  388. }
  389. for (i = 0; i < 4; ++i)
  390. vcpu->pdptrs[i] = pdpt[offset + i];
  391. out:
  392. kunmap_atomic(pdpt, KM_USER0);
  393. spin_unlock(&vcpu->kvm->lock);
  394. return ret;
  395. }
  396. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  397. {
  398. if (cr0 & CR0_RESEVED_BITS) {
  399. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  400. cr0, vcpu->cr0);
  401. inject_gp(vcpu);
  402. return;
  403. }
  404. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  405. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  406. inject_gp(vcpu);
  407. return;
  408. }
  409. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  410. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  411. "and a clear PE flag\n");
  412. inject_gp(vcpu);
  413. return;
  414. }
  415. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  416. #ifdef CONFIG_X86_64
  417. if ((vcpu->shadow_efer & EFER_LME)) {
  418. int cs_db, cs_l;
  419. if (!is_pae(vcpu)) {
  420. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  421. "in long mode while PAE is disabled\n");
  422. inject_gp(vcpu);
  423. return;
  424. }
  425. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  426. if (cs_l) {
  427. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  428. "in long mode while CS.L == 1\n");
  429. inject_gp(vcpu);
  430. return;
  431. }
  432. } else
  433. #endif
  434. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  435. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  436. "reserved bits\n");
  437. inject_gp(vcpu);
  438. return;
  439. }
  440. }
  441. kvm_arch_ops->set_cr0(vcpu, cr0);
  442. vcpu->cr0 = cr0;
  443. spin_lock(&vcpu->kvm->lock);
  444. kvm_mmu_reset_context(vcpu);
  445. spin_unlock(&vcpu->kvm->lock);
  446. return;
  447. }
  448. EXPORT_SYMBOL_GPL(set_cr0);
  449. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  450. {
  451. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  452. }
  453. EXPORT_SYMBOL_GPL(lmsw);
  454. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  455. {
  456. if (cr4 & CR4_RESEVED_BITS) {
  457. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  458. inject_gp(vcpu);
  459. return;
  460. }
  461. if (is_long_mode(vcpu)) {
  462. if (!(cr4 & CR4_PAE_MASK)) {
  463. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  464. "in long mode\n");
  465. inject_gp(vcpu);
  466. return;
  467. }
  468. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  469. && !load_pdptrs(vcpu, vcpu->cr3)) {
  470. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  471. inject_gp(vcpu);
  472. }
  473. if (cr4 & CR4_VMXE_MASK) {
  474. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  475. inject_gp(vcpu);
  476. return;
  477. }
  478. kvm_arch_ops->set_cr4(vcpu, cr4);
  479. spin_lock(&vcpu->kvm->lock);
  480. kvm_mmu_reset_context(vcpu);
  481. spin_unlock(&vcpu->kvm->lock);
  482. }
  483. EXPORT_SYMBOL_GPL(set_cr4);
  484. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  485. {
  486. if (is_long_mode(vcpu)) {
  487. if (cr3 & CR3_L_MODE_RESEVED_BITS) {
  488. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  489. inject_gp(vcpu);
  490. return;
  491. }
  492. } else {
  493. if (cr3 & CR3_RESEVED_BITS) {
  494. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  495. inject_gp(vcpu);
  496. return;
  497. }
  498. if (is_paging(vcpu) && is_pae(vcpu) &&
  499. !load_pdptrs(vcpu, cr3)) {
  500. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  501. "reserved bits\n");
  502. inject_gp(vcpu);
  503. return;
  504. }
  505. }
  506. vcpu->cr3 = cr3;
  507. spin_lock(&vcpu->kvm->lock);
  508. /*
  509. * Does the new cr3 value map to physical memory? (Note, we
  510. * catch an invalid cr3 even in real-mode, because it would
  511. * cause trouble later on when we turn on paging anyway.)
  512. *
  513. * A real CPU would silently accept an invalid cr3 and would
  514. * attempt to use it - with largely undefined (and often hard
  515. * to debug) behavior on the guest side.
  516. */
  517. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  518. inject_gp(vcpu);
  519. else
  520. vcpu->mmu.new_cr3(vcpu);
  521. spin_unlock(&vcpu->kvm->lock);
  522. }
  523. EXPORT_SYMBOL_GPL(set_cr3);
  524. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  525. {
  526. if ( cr8 & CR8_RESEVED_BITS) {
  527. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  528. inject_gp(vcpu);
  529. return;
  530. }
  531. vcpu->cr8 = cr8;
  532. }
  533. EXPORT_SYMBOL_GPL(set_cr8);
  534. void fx_init(struct kvm_vcpu *vcpu)
  535. {
  536. struct __attribute__ ((__packed__)) fx_image_s {
  537. u16 control; //fcw
  538. u16 status; //fsw
  539. u16 tag; // ftw
  540. u16 opcode; //fop
  541. u64 ip; // fpu ip
  542. u64 operand;// fpu dp
  543. u32 mxcsr;
  544. u32 mxcsr_mask;
  545. } *fx_image;
  546. fx_save(vcpu->host_fx_image);
  547. fpu_init();
  548. fx_save(vcpu->guest_fx_image);
  549. fx_restore(vcpu->host_fx_image);
  550. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  551. fx_image->mxcsr = 0x1f80;
  552. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  553. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  554. }
  555. EXPORT_SYMBOL_GPL(fx_init);
  556. static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  557. {
  558. spin_lock(&vcpu->kvm->lock);
  559. kvm_mmu_slot_remove_write_access(vcpu, slot);
  560. spin_unlock(&vcpu->kvm->lock);
  561. }
  562. /*
  563. * Allocate some memory and give it an address in the guest physical address
  564. * space.
  565. *
  566. * Discontiguous memory is allowed, mostly for framebuffers.
  567. */
  568. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  569. struct kvm_memory_region *mem)
  570. {
  571. int r;
  572. gfn_t base_gfn;
  573. unsigned long npages;
  574. unsigned long i;
  575. struct kvm_memory_slot *memslot;
  576. struct kvm_memory_slot old, new;
  577. int memory_config_version;
  578. r = -EINVAL;
  579. /* General sanity checks */
  580. if (mem->memory_size & (PAGE_SIZE - 1))
  581. goto out;
  582. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  583. goto out;
  584. if (mem->slot >= KVM_MEMORY_SLOTS)
  585. goto out;
  586. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  587. goto out;
  588. memslot = &kvm->memslots[mem->slot];
  589. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  590. npages = mem->memory_size >> PAGE_SHIFT;
  591. if (!npages)
  592. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  593. raced:
  594. spin_lock(&kvm->lock);
  595. memory_config_version = kvm->memory_config_version;
  596. new = old = *memslot;
  597. new.base_gfn = base_gfn;
  598. new.npages = npages;
  599. new.flags = mem->flags;
  600. /* Disallow changing a memory slot's size. */
  601. r = -EINVAL;
  602. if (npages && old.npages && npages != old.npages)
  603. goto out_unlock;
  604. /* Check for overlaps */
  605. r = -EEXIST;
  606. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  607. struct kvm_memory_slot *s = &kvm->memslots[i];
  608. if (s == memslot)
  609. continue;
  610. if (!((base_gfn + npages <= s->base_gfn) ||
  611. (base_gfn >= s->base_gfn + s->npages)))
  612. goto out_unlock;
  613. }
  614. /*
  615. * Do memory allocations outside lock. memory_config_version will
  616. * detect any races.
  617. */
  618. spin_unlock(&kvm->lock);
  619. /* Deallocate if slot is being removed */
  620. if (!npages)
  621. new.phys_mem = NULL;
  622. /* Free page dirty bitmap if unneeded */
  623. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  624. new.dirty_bitmap = NULL;
  625. r = -ENOMEM;
  626. /* Allocate if a slot is being created */
  627. if (npages && !new.phys_mem) {
  628. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  629. if (!new.phys_mem)
  630. goto out_free;
  631. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  632. for (i = 0; i < npages; ++i) {
  633. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  634. | __GFP_ZERO);
  635. if (!new.phys_mem[i])
  636. goto out_free;
  637. set_page_private(new.phys_mem[i],0);
  638. }
  639. }
  640. /* Allocate page dirty bitmap if needed */
  641. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  642. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  643. new.dirty_bitmap = vmalloc(dirty_bytes);
  644. if (!new.dirty_bitmap)
  645. goto out_free;
  646. memset(new.dirty_bitmap, 0, dirty_bytes);
  647. }
  648. spin_lock(&kvm->lock);
  649. if (memory_config_version != kvm->memory_config_version) {
  650. spin_unlock(&kvm->lock);
  651. kvm_free_physmem_slot(&new, &old);
  652. goto raced;
  653. }
  654. r = -EAGAIN;
  655. if (kvm->busy)
  656. goto out_unlock;
  657. if (mem->slot >= kvm->nmemslots)
  658. kvm->nmemslots = mem->slot + 1;
  659. *memslot = new;
  660. ++kvm->memory_config_version;
  661. spin_unlock(&kvm->lock);
  662. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  663. struct kvm_vcpu *vcpu;
  664. vcpu = vcpu_load_slot(kvm, i);
  665. if (!vcpu)
  666. continue;
  667. if (new.flags & KVM_MEM_LOG_DIRTY_PAGES)
  668. do_remove_write_access(vcpu, mem->slot);
  669. kvm_mmu_reset_context(vcpu);
  670. vcpu_put(vcpu);
  671. }
  672. kvm_free_physmem_slot(&old, &new);
  673. return 0;
  674. out_unlock:
  675. spin_unlock(&kvm->lock);
  676. out_free:
  677. kvm_free_physmem_slot(&new, &old);
  678. out:
  679. return r;
  680. }
  681. /*
  682. * Get (and clear) the dirty memory log for a memory slot.
  683. */
  684. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  685. struct kvm_dirty_log *log)
  686. {
  687. struct kvm_memory_slot *memslot;
  688. int r, i;
  689. int n;
  690. int cleared;
  691. unsigned long any = 0;
  692. spin_lock(&kvm->lock);
  693. /*
  694. * Prevent changes to guest memory configuration even while the lock
  695. * is not taken.
  696. */
  697. ++kvm->busy;
  698. spin_unlock(&kvm->lock);
  699. r = -EINVAL;
  700. if (log->slot >= KVM_MEMORY_SLOTS)
  701. goto out;
  702. memslot = &kvm->memslots[log->slot];
  703. r = -ENOENT;
  704. if (!memslot->dirty_bitmap)
  705. goto out;
  706. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  707. for (i = 0; !any && i < n/sizeof(long); ++i)
  708. any = memslot->dirty_bitmap[i];
  709. r = -EFAULT;
  710. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  711. goto out;
  712. if (any) {
  713. cleared = 0;
  714. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  715. struct kvm_vcpu *vcpu;
  716. vcpu = vcpu_load_slot(kvm, i);
  717. if (!vcpu)
  718. continue;
  719. if (!cleared) {
  720. do_remove_write_access(vcpu, log->slot);
  721. memset(memslot->dirty_bitmap, 0, n);
  722. cleared = 1;
  723. }
  724. kvm_arch_ops->tlb_flush(vcpu);
  725. vcpu_put(vcpu);
  726. }
  727. }
  728. r = 0;
  729. out:
  730. spin_lock(&kvm->lock);
  731. --kvm->busy;
  732. spin_unlock(&kvm->lock);
  733. return r;
  734. }
  735. /*
  736. * Set a new alias region. Aliases map a portion of physical memory into
  737. * another portion. This is useful for memory windows, for example the PC
  738. * VGA region.
  739. */
  740. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  741. struct kvm_memory_alias *alias)
  742. {
  743. int r, n;
  744. struct kvm_mem_alias *p;
  745. r = -EINVAL;
  746. /* General sanity checks */
  747. if (alias->memory_size & (PAGE_SIZE - 1))
  748. goto out;
  749. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  750. goto out;
  751. if (alias->slot >= KVM_ALIAS_SLOTS)
  752. goto out;
  753. if (alias->guest_phys_addr + alias->memory_size
  754. < alias->guest_phys_addr)
  755. goto out;
  756. if (alias->target_phys_addr + alias->memory_size
  757. < alias->target_phys_addr)
  758. goto out;
  759. spin_lock(&kvm->lock);
  760. p = &kvm->aliases[alias->slot];
  761. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  762. p->npages = alias->memory_size >> PAGE_SHIFT;
  763. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  764. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  765. if (kvm->aliases[n - 1].npages)
  766. break;
  767. kvm->naliases = n;
  768. spin_unlock(&kvm->lock);
  769. vcpu_load(&kvm->vcpus[0]);
  770. spin_lock(&kvm->lock);
  771. kvm_mmu_zap_all(&kvm->vcpus[0]);
  772. spin_unlock(&kvm->lock);
  773. vcpu_put(&kvm->vcpus[0]);
  774. return 0;
  775. out:
  776. return r;
  777. }
  778. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  779. {
  780. int i;
  781. struct kvm_mem_alias *alias;
  782. for (i = 0; i < kvm->naliases; ++i) {
  783. alias = &kvm->aliases[i];
  784. if (gfn >= alias->base_gfn
  785. && gfn < alias->base_gfn + alias->npages)
  786. return alias->target_gfn + gfn - alias->base_gfn;
  787. }
  788. return gfn;
  789. }
  790. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  791. {
  792. int i;
  793. for (i = 0; i < kvm->nmemslots; ++i) {
  794. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  795. if (gfn >= memslot->base_gfn
  796. && gfn < memslot->base_gfn + memslot->npages)
  797. return memslot;
  798. }
  799. return NULL;
  800. }
  801. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  802. {
  803. gfn = unalias_gfn(kvm, gfn);
  804. return __gfn_to_memslot(kvm, gfn);
  805. }
  806. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  807. {
  808. struct kvm_memory_slot *slot;
  809. gfn = unalias_gfn(kvm, gfn);
  810. slot = __gfn_to_memslot(kvm, gfn);
  811. if (!slot)
  812. return NULL;
  813. return slot->phys_mem[gfn - slot->base_gfn];
  814. }
  815. EXPORT_SYMBOL_GPL(gfn_to_page);
  816. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  817. {
  818. int i;
  819. struct kvm_memory_slot *memslot = NULL;
  820. unsigned long rel_gfn;
  821. for (i = 0; i < kvm->nmemslots; ++i) {
  822. memslot = &kvm->memslots[i];
  823. if (gfn >= memslot->base_gfn
  824. && gfn < memslot->base_gfn + memslot->npages) {
  825. if (!memslot || !memslot->dirty_bitmap)
  826. return;
  827. rel_gfn = gfn - memslot->base_gfn;
  828. /* avoid RMW */
  829. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  830. set_bit(rel_gfn, memslot->dirty_bitmap);
  831. return;
  832. }
  833. }
  834. }
  835. static int emulator_read_std(unsigned long addr,
  836. void *val,
  837. unsigned int bytes,
  838. struct x86_emulate_ctxt *ctxt)
  839. {
  840. struct kvm_vcpu *vcpu = ctxt->vcpu;
  841. void *data = val;
  842. while (bytes) {
  843. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  844. unsigned offset = addr & (PAGE_SIZE-1);
  845. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  846. unsigned long pfn;
  847. struct page *page;
  848. void *page_virt;
  849. if (gpa == UNMAPPED_GVA)
  850. return X86EMUL_PROPAGATE_FAULT;
  851. pfn = gpa >> PAGE_SHIFT;
  852. page = gfn_to_page(vcpu->kvm, pfn);
  853. if (!page)
  854. return X86EMUL_UNHANDLEABLE;
  855. page_virt = kmap_atomic(page, KM_USER0);
  856. memcpy(data, page_virt + offset, tocopy);
  857. kunmap_atomic(page_virt, KM_USER0);
  858. bytes -= tocopy;
  859. data += tocopy;
  860. addr += tocopy;
  861. }
  862. return X86EMUL_CONTINUE;
  863. }
  864. static int emulator_write_std(unsigned long addr,
  865. const void *val,
  866. unsigned int bytes,
  867. struct x86_emulate_ctxt *ctxt)
  868. {
  869. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  870. addr, bytes);
  871. return X86EMUL_UNHANDLEABLE;
  872. }
  873. static int emulator_read_emulated(unsigned long addr,
  874. void *val,
  875. unsigned int bytes,
  876. struct x86_emulate_ctxt *ctxt)
  877. {
  878. struct kvm_vcpu *vcpu = ctxt->vcpu;
  879. if (vcpu->mmio_read_completed) {
  880. memcpy(val, vcpu->mmio_data, bytes);
  881. vcpu->mmio_read_completed = 0;
  882. return X86EMUL_CONTINUE;
  883. } else if (emulator_read_std(addr, val, bytes, ctxt)
  884. == X86EMUL_CONTINUE)
  885. return X86EMUL_CONTINUE;
  886. else {
  887. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  888. if (gpa == UNMAPPED_GVA)
  889. return X86EMUL_PROPAGATE_FAULT;
  890. vcpu->mmio_needed = 1;
  891. vcpu->mmio_phys_addr = gpa;
  892. vcpu->mmio_size = bytes;
  893. vcpu->mmio_is_write = 0;
  894. return X86EMUL_UNHANDLEABLE;
  895. }
  896. }
  897. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  898. const void *val, int bytes)
  899. {
  900. struct page *page;
  901. void *virt;
  902. unsigned offset = offset_in_page(gpa);
  903. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  904. return 0;
  905. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  906. if (!page)
  907. return 0;
  908. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  909. virt = kmap_atomic(page, KM_USER0);
  910. kvm_mmu_pte_write(vcpu, gpa, virt + offset, val, bytes);
  911. memcpy(virt + offset_in_page(gpa), val, bytes);
  912. kunmap_atomic(virt, KM_USER0);
  913. return 1;
  914. }
  915. static int emulator_write_emulated(unsigned long addr,
  916. const void *val,
  917. unsigned int bytes,
  918. struct x86_emulate_ctxt *ctxt)
  919. {
  920. struct kvm_vcpu *vcpu = ctxt->vcpu;
  921. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  922. if (gpa == UNMAPPED_GVA) {
  923. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  924. return X86EMUL_PROPAGATE_FAULT;
  925. }
  926. if (emulator_write_phys(vcpu, gpa, val, bytes))
  927. return X86EMUL_CONTINUE;
  928. vcpu->mmio_needed = 1;
  929. vcpu->mmio_phys_addr = gpa;
  930. vcpu->mmio_size = bytes;
  931. vcpu->mmio_is_write = 1;
  932. memcpy(vcpu->mmio_data, val, bytes);
  933. return X86EMUL_CONTINUE;
  934. }
  935. static int emulator_cmpxchg_emulated(unsigned long addr,
  936. const void *old,
  937. const void *new,
  938. unsigned int bytes,
  939. struct x86_emulate_ctxt *ctxt)
  940. {
  941. static int reported;
  942. if (!reported) {
  943. reported = 1;
  944. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  945. }
  946. return emulator_write_emulated(addr, new, bytes, ctxt);
  947. }
  948. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  949. {
  950. return kvm_arch_ops->get_segment_base(vcpu, seg);
  951. }
  952. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  953. {
  954. return X86EMUL_CONTINUE;
  955. }
  956. int emulate_clts(struct kvm_vcpu *vcpu)
  957. {
  958. unsigned long cr0;
  959. cr0 = vcpu->cr0 & ~CR0_TS_MASK;
  960. kvm_arch_ops->set_cr0(vcpu, cr0);
  961. return X86EMUL_CONTINUE;
  962. }
  963. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  964. {
  965. struct kvm_vcpu *vcpu = ctxt->vcpu;
  966. switch (dr) {
  967. case 0 ... 3:
  968. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  969. return X86EMUL_CONTINUE;
  970. default:
  971. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  972. __FUNCTION__, dr);
  973. return X86EMUL_UNHANDLEABLE;
  974. }
  975. }
  976. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  977. {
  978. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  979. int exception;
  980. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  981. if (exception) {
  982. /* FIXME: better handling */
  983. return X86EMUL_UNHANDLEABLE;
  984. }
  985. return X86EMUL_CONTINUE;
  986. }
  987. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  988. {
  989. static int reported;
  990. u8 opcodes[4];
  991. unsigned long rip = ctxt->vcpu->rip;
  992. unsigned long rip_linear;
  993. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  994. if (reported)
  995. return;
  996. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  997. printk(KERN_ERR "emulation failed but !mmio_needed?"
  998. " rip %lx %02x %02x %02x %02x\n",
  999. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1000. reported = 1;
  1001. }
  1002. struct x86_emulate_ops emulate_ops = {
  1003. .read_std = emulator_read_std,
  1004. .write_std = emulator_write_std,
  1005. .read_emulated = emulator_read_emulated,
  1006. .write_emulated = emulator_write_emulated,
  1007. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1008. };
  1009. int emulate_instruction(struct kvm_vcpu *vcpu,
  1010. struct kvm_run *run,
  1011. unsigned long cr2,
  1012. u16 error_code)
  1013. {
  1014. struct x86_emulate_ctxt emulate_ctxt;
  1015. int r;
  1016. int cs_db, cs_l;
  1017. vcpu->mmio_fault_cr2 = cr2;
  1018. kvm_arch_ops->cache_regs(vcpu);
  1019. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1020. emulate_ctxt.vcpu = vcpu;
  1021. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1022. emulate_ctxt.cr2 = cr2;
  1023. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1024. ? X86EMUL_MODE_REAL : cs_l
  1025. ? X86EMUL_MODE_PROT64 : cs_db
  1026. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1027. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1028. emulate_ctxt.cs_base = 0;
  1029. emulate_ctxt.ds_base = 0;
  1030. emulate_ctxt.es_base = 0;
  1031. emulate_ctxt.ss_base = 0;
  1032. } else {
  1033. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1034. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1035. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1036. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1037. }
  1038. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1039. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1040. vcpu->mmio_is_write = 0;
  1041. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1042. if ((r || vcpu->mmio_is_write) && run) {
  1043. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1044. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1045. run->mmio.len = vcpu->mmio_size;
  1046. run->mmio.is_write = vcpu->mmio_is_write;
  1047. }
  1048. if (r) {
  1049. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1050. return EMULATE_DONE;
  1051. if (!vcpu->mmio_needed) {
  1052. report_emulation_failure(&emulate_ctxt);
  1053. return EMULATE_FAIL;
  1054. }
  1055. return EMULATE_DO_MMIO;
  1056. }
  1057. kvm_arch_ops->decache_regs(vcpu);
  1058. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1059. if (vcpu->mmio_is_write) {
  1060. vcpu->mmio_needed = 0;
  1061. return EMULATE_DO_MMIO;
  1062. }
  1063. return EMULATE_DONE;
  1064. }
  1065. EXPORT_SYMBOL_GPL(emulate_instruction);
  1066. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1067. {
  1068. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1069. kvm_arch_ops->cache_regs(vcpu);
  1070. ret = -KVM_EINVAL;
  1071. #ifdef CONFIG_X86_64
  1072. if (is_long_mode(vcpu)) {
  1073. nr = vcpu->regs[VCPU_REGS_RAX];
  1074. a0 = vcpu->regs[VCPU_REGS_RDI];
  1075. a1 = vcpu->regs[VCPU_REGS_RSI];
  1076. a2 = vcpu->regs[VCPU_REGS_RDX];
  1077. a3 = vcpu->regs[VCPU_REGS_RCX];
  1078. a4 = vcpu->regs[VCPU_REGS_R8];
  1079. a5 = vcpu->regs[VCPU_REGS_R9];
  1080. } else
  1081. #endif
  1082. {
  1083. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1084. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1085. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1086. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1087. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1088. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1089. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1090. }
  1091. switch (nr) {
  1092. default:
  1093. run->hypercall.args[0] = a0;
  1094. run->hypercall.args[1] = a1;
  1095. run->hypercall.args[2] = a2;
  1096. run->hypercall.args[3] = a3;
  1097. run->hypercall.args[4] = a4;
  1098. run->hypercall.args[5] = a5;
  1099. run->hypercall.ret = ret;
  1100. run->hypercall.longmode = is_long_mode(vcpu);
  1101. kvm_arch_ops->decache_regs(vcpu);
  1102. return 0;
  1103. }
  1104. vcpu->regs[VCPU_REGS_RAX] = ret;
  1105. kvm_arch_ops->decache_regs(vcpu);
  1106. return 1;
  1107. }
  1108. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1109. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1110. {
  1111. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1112. }
  1113. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1114. {
  1115. struct descriptor_table dt = { limit, base };
  1116. kvm_arch_ops->set_gdt(vcpu, &dt);
  1117. }
  1118. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1119. {
  1120. struct descriptor_table dt = { limit, base };
  1121. kvm_arch_ops->set_idt(vcpu, &dt);
  1122. }
  1123. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1124. unsigned long *rflags)
  1125. {
  1126. lmsw(vcpu, msw);
  1127. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1128. }
  1129. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1130. {
  1131. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1132. switch (cr) {
  1133. case 0:
  1134. return vcpu->cr0;
  1135. case 2:
  1136. return vcpu->cr2;
  1137. case 3:
  1138. return vcpu->cr3;
  1139. case 4:
  1140. return vcpu->cr4;
  1141. default:
  1142. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1143. return 0;
  1144. }
  1145. }
  1146. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1147. unsigned long *rflags)
  1148. {
  1149. switch (cr) {
  1150. case 0:
  1151. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1152. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1153. break;
  1154. case 2:
  1155. vcpu->cr2 = val;
  1156. break;
  1157. case 3:
  1158. set_cr3(vcpu, val);
  1159. break;
  1160. case 4:
  1161. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1162. break;
  1163. default:
  1164. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1165. }
  1166. }
  1167. /*
  1168. * Register the para guest with the host:
  1169. */
  1170. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1171. {
  1172. struct kvm_vcpu_para_state *para_state;
  1173. hpa_t para_state_hpa, hypercall_hpa;
  1174. struct page *para_state_page;
  1175. unsigned char *hypercall;
  1176. gpa_t hypercall_gpa;
  1177. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1178. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1179. /*
  1180. * Needs to be page aligned:
  1181. */
  1182. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1183. goto err_gp;
  1184. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1185. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1186. if (is_error_hpa(para_state_hpa))
  1187. goto err_gp;
  1188. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1189. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1190. para_state = kmap_atomic(para_state_page, KM_USER0);
  1191. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1192. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1193. para_state->host_version = KVM_PARA_API_VERSION;
  1194. /*
  1195. * We cannot support guests that try to register themselves
  1196. * with a newer API version than the host supports:
  1197. */
  1198. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1199. para_state->ret = -KVM_EINVAL;
  1200. goto err_kunmap_skip;
  1201. }
  1202. hypercall_gpa = para_state->hypercall_gpa;
  1203. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1204. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1205. if (is_error_hpa(hypercall_hpa)) {
  1206. para_state->ret = -KVM_EINVAL;
  1207. goto err_kunmap_skip;
  1208. }
  1209. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1210. vcpu->para_state_page = para_state_page;
  1211. vcpu->para_state_gpa = para_state_gpa;
  1212. vcpu->hypercall_gpa = hypercall_gpa;
  1213. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1214. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1215. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1216. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1217. kunmap_atomic(hypercall, KM_USER1);
  1218. para_state->ret = 0;
  1219. err_kunmap_skip:
  1220. kunmap_atomic(para_state, KM_USER0);
  1221. return 0;
  1222. err_gp:
  1223. return 1;
  1224. }
  1225. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1226. {
  1227. u64 data;
  1228. switch (msr) {
  1229. case 0xc0010010: /* SYSCFG */
  1230. case 0xc0010015: /* HWCR */
  1231. case MSR_IA32_PLATFORM_ID:
  1232. case MSR_IA32_P5_MC_ADDR:
  1233. case MSR_IA32_P5_MC_TYPE:
  1234. case MSR_IA32_MC0_CTL:
  1235. case MSR_IA32_MCG_STATUS:
  1236. case MSR_IA32_MCG_CAP:
  1237. case MSR_IA32_MC0_MISC:
  1238. case MSR_IA32_MC0_MISC+4:
  1239. case MSR_IA32_MC0_MISC+8:
  1240. case MSR_IA32_MC0_MISC+12:
  1241. case MSR_IA32_MC0_MISC+16:
  1242. case MSR_IA32_UCODE_REV:
  1243. case MSR_IA32_PERF_STATUS:
  1244. case MSR_IA32_EBL_CR_POWERON:
  1245. /* MTRR registers */
  1246. case 0xfe:
  1247. case 0x200 ... 0x2ff:
  1248. data = 0;
  1249. break;
  1250. case 0xcd: /* fsb frequency */
  1251. data = 3;
  1252. break;
  1253. case MSR_IA32_APICBASE:
  1254. data = vcpu->apic_base;
  1255. break;
  1256. case MSR_IA32_MISC_ENABLE:
  1257. data = vcpu->ia32_misc_enable_msr;
  1258. break;
  1259. #ifdef CONFIG_X86_64
  1260. case MSR_EFER:
  1261. data = vcpu->shadow_efer;
  1262. break;
  1263. #endif
  1264. default:
  1265. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1266. return 1;
  1267. }
  1268. *pdata = data;
  1269. return 0;
  1270. }
  1271. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1272. /*
  1273. * Reads an msr value (of 'msr_index') into 'pdata'.
  1274. * Returns 0 on success, non-0 otherwise.
  1275. * Assumes vcpu_load() was already called.
  1276. */
  1277. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1278. {
  1279. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1280. }
  1281. #ifdef CONFIG_X86_64
  1282. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1283. {
  1284. if (efer & EFER_RESERVED_BITS) {
  1285. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1286. efer);
  1287. inject_gp(vcpu);
  1288. return;
  1289. }
  1290. if (is_paging(vcpu)
  1291. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1292. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1293. inject_gp(vcpu);
  1294. return;
  1295. }
  1296. kvm_arch_ops->set_efer(vcpu, efer);
  1297. efer &= ~EFER_LMA;
  1298. efer |= vcpu->shadow_efer & EFER_LMA;
  1299. vcpu->shadow_efer = efer;
  1300. }
  1301. #endif
  1302. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1303. {
  1304. switch (msr) {
  1305. #ifdef CONFIG_X86_64
  1306. case MSR_EFER:
  1307. set_efer(vcpu, data);
  1308. break;
  1309. #endif
  1310. case MSR_IA32_MC0_STATUS:
  1311. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1312. __FUNCTION__, data);
  1313. break;
  1314. case MSR_IA32_MCG_STATUS:
  1315. printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1316. __FUNCTION__, data);
  1317. break;
  1318. case MSR_IA32_UCODE_REV:
  1319. case MSR_IA32_UCODE_WRITE:
  1320. case 0x200 ... 0x2ff: /* MTRRs */
  1321. break;
  1322. case MSR_IA32_APICBASE:
  1323. vcpu->apic_base = data;
  1324. break;
  1325. case MSR_IA32_MISC_ENABLE:
  1326. vcpu->ia32_misc_enable_msr = data;
  1327. break;
  1328. /*
  1329. * This is the 'probe whether the host is KVM' logic:
  1330. */
  1331. case MSR_KVM_API_MAGIC:
  1332. return vcpu_register_para(vcpu, data);
  1333. default:
  1334. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1335. return 1;
  1336. }
  1337. return 0;
  1338. }
  1339. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1340. /*
  1341. * Writes msr value into into the appropriate "register".
  1342. * Returns 0 on success, non-0 otherwise.
  1343. * Assumes vcpu_load() was already called.
  1344. */
  1345. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1346. {
  1347. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1348. }
  1349. void kvm_resched(struct kvm_vcpu *vcpu)
  1350. {
  1351. if (!need_resched())
  1352. return;
  1353. vcpu_put(vcpu);
  1354. cond_resched();
  1355. vcpu_load(vcpu);
  1356. }
  1357. EXPORT_SYMBOL_GPL(kvm_resched);
  1358. void load_msrs(struct vmx_msr_entry *e, int n)
  1359. {
  1360. int i;
  1361. for (i = 0; i < n; ++i)
  1362. wrmsrl(e[i].index, e[i].data);
  1363. }
  1364. EXPORT_SYMBOL_GPL(load_msrs);
  1365. void save_msrs(struct vmx_msr_entry *e, int n)
  1366. {
  1367. int i;
  1368. for (i = 0; i < n; ++i)
  1369. rdmsrl(e[i].index, e[i].data);
  1370. }
  1371. EXPORT_SYMBOL_GPL(save_msrs);
  1372. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1373. {
  1374. int i;
  1375. u32 function;
  1376. struct kvm_cpuid_entry *e, *best;
  1377. kvm_arch_ops->cache_regs(vcpu);
  1378. function = vcpu->regs[VCPU_REGS_RAX];
  1379. vcpu->regs[VCPU_REGS_RAX] = 0;
  1380. vcpu->regs[VCPU_REGS_RBX] = 0;
  1381. vcpu->regs[VCPU_REGS_RCX] = 0;
  1382. vcpu->regs[VCPU_REGS_RDX] = 0;
  1383. best = NULL;
  1384. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1385. e = &vcpu->cpuid_entries[i];
  1386. if (e->function == function) {
  1387. best = e;
  1388. break;
  1389. }
  1390. /*
  1391. * Both basic or both extended?
  1392. */
  1393. if (((e->function ^ function) & 0x80000000) == 0)
  1394. if (!best || e->function > best->function)
  1395. best = e;
  1396. }
  1397. if (best) {
  1398. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1399. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1400. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1401. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1402. }
  1403. kvm_arch_ops->decache_regs(vcpu);
  1404. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1405. }
  1406. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1407. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1408. {
  1409. void *p = vcpu->pio_data;
  1410. void *q;
  1411. unsigned bytes;
  1412. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1413. kvm_arch_ops->vcpu_put(vcpu);
  1414. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1415. PAGE_KERNEL);
  1416. if (!q) {
  1417. kvm_arch_ops->vcpu_load(vcpu);
  1418. free_pio_guest_pages(vcpu);
  1419. return -ENOMEM;
  1420. }
  1421. q += vcpu->pio.guest_page_offset;
  1422. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1423. if (vcpu->pio.in)
  1424. memcpy(q, p, bytes);
  1425. else
  1426. memcpy(p, q, bytes);
  1427. q -= vcpu->pio.guest_page_offset;
  1428. vunmap(q);
  1429. kvm_arch_ops->vcpu_load(vcpu);
  1430. free_pio_guest_pages(vcpu);
  1431. return 0;
  1432. }
  1433. static int complete_pio(struct kvm_vcpu *vcpu)
  1434. {
  1435. struct kvm_pio_request *io = &vcpu->pio;
  1436. long delta;
  1437. int r;
  1438. kvm_arch_ops->cache_regs(vcpu);
  1439. if (!io->string) {
  1440. if (io->in)
  1441. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1442. io->size);
  1443. } else {
  1444. if (io->in) {
  1445. r = pio_copy_data(vcpu);
  1446. if (r) {
  1447. kvm_arch_ops->cache_regs(vcpu);
  1448. return r;
  1449. }
  1450. }
  1451. delta = 1;
  1452. if (io->rep) {
  1453. delta *= io->cur_count;
  1454. /*
  1455. * The size of the register should really depend on
  1456. * current address size.
  1457. */
  1458. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1459. }
  1460. if (io->down)
  1461. delta = -delta;
  1462. delta *= io->size;
  1463. if (io->in)
  1464. vcpu->regs[VCPU_REGS_RDI] += delta;
  1465. else
  1466. vcpu->regs[VCPU_REGS_RSI] += delta;
  1467. }
  1468. kvm_arch_ops->decache_regs(vcpu);
  1469. io->count -= io->cur_count;
  1470. io->cur_count = 0;
  1471. if (!io->count)
  1472. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1473. return 0;
  1474. }
  1475. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1476. int size, unsigned long count, int string, int down,
  1477. gva_t address, int rep, unsigned port)
  1478. {
  1479. unsigned now, in_page;
  1480. int i;
  1481. int nr_pages = 1;
  1482. struct page *page;
  1483. vcpu->run->exit_reason = KVM_EXIT_IO;
  1484. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1485. vcpu->run->io.size = size;
  1486. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1487. vcpu->run->io.count = count;
  1488. vcpu->run->io.port = port;
  1489. vcpu->pio.count = count;
  1490. vcpu->pio.cur_count = count;
  1491. vcpu->pio.size = size;
  1492. vcpu->pio.in = in;
  1493. vcpu->pio.string = string;
  1494. vcpu->pio.down = down;
  1495. vcpu->pio.guest_page_offset = offset_in_page(address);
  1496. vcpu->pio.rep = rep;
  1497. if (!string) {
  1498. kvm_arch_ops->cache_regs(vcpu);
  1499. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1500. kvm_arch_ops->decache_regs(vcpu);
  1501. return 0;
  1502. }
  1503. if (!count) {
  1504. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1505. return 1;
  1506. }
  1507. now = min(count, PAGE_SIZE / size);
  1508. if (!down)
  1509. in_page = PAGE_SIZE - offset_in_page(address);
  1510. else
  1511. in_page = offset_in_page(address) + size;
  1512. now = min(count, (unsigned long)in_page / size);
  1513. if (!now) {
  1514. /*
  1515. * String I/O straddles page boundary. Pin two guest pages
  1516. * so that we satisfy atomicity constraints. Do just one
  1517. * transaction to avoid complexity.
  1518. */
  1519. nr_pages = 2;
  1520. now = 1;
  1521. }
  1522. if (down) {
  1523. /*
  1524. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1525. */
  1526. printk(KERN_ERR "kvm: guest string pio down\n");
  1527. inject_gp(vcpu);
  1528. return 1;
  1529. }
  1530. vcpu->run->io.count = now;
  1531. vcpu->pio.cur_count = now;
  1532. for (i = 0; i < nr_pages; ++i) {
  1533. spin_lock(&vcpu->kvm->lock);
  1534. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1535. if (page)
  1536. get_page(page);
  1537. vcpu->pio.guest_pages[i] = page;
  1538. spin_unlock(&vcpu->kvm->lock);
  1539. if (!page) {
  1540. inject_gp(vcpu);
  1541. free_pio_guest_pages(vcpu);
  1542. return 1;
  1543. }
  1544. }
  1545. if (!vcpu->pio.in)
  1546. return pio_copy_data(vcpu);
  1547. return 0;
  1548. }
  1549. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1550. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1551. {
  1552. int r;
  1553. sigset_t sigsaved;
  1554. vcpu_load(vcpu);
  1555. if (vcpu->sigset_active)
  1556. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1557. /* re-sync apic's tpr */
  1558. vcpu->cr8 = kvm_run->cr8;
  1559. if (vcpu->pio.cur_count) {
  1560. r = complete_pio(vcpu);
  1561. if (r)
  1562. goto out;
  1563. }
  1564. if (vcpu->mmio_needed) {
  1565. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1566. vcpu->mmio_read_completed = 1;
  1567. vcpu->mmio_needed = 0;
  1568. r = emulate_instruction(vcpu, kvm_run,
  1569. vcpu->mmio_fault_cr2, 0);
  1570. if (r == EMULATE_DO_MMIO) {
  1571. /*
  1572. * Read-modify-write. Back to userspace.
  1573. */
  1574. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1575. r = 0;
  1576. goto out;
  1577. }
  1578. }
  1579. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1580. kvm_arch_ops->cache_regs(vcpu);
  1581. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1582. kvm_arch_ops->decache_regs(vcpu);
  1583. }
  1584. r = kvm_arch_ops->run(vcpu, kvm_run);
  1585. out:
  1586. if (vcpu->sigset_active)
  1587. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1588. vcpu_put(vcpu);
  1589. return r;
  1590. }
  1591. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1592. struct kvm_regs *regs)
  1593. {
  1594. vcpu_load(vcpu);
  1595. kvm_arch_ops->cache_regs(vcpu);
  1596. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1597. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1598. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1599. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1600. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1601. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1602. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1603. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1604. #ifdef CONFIG_X86_64
  1605. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1606. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1607. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1608. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1609. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1610. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1611. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1612. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1613. #endif
  1614. regs->rip = vcpu->rip;
  1615. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1616. /*
  1617. * Don't leak debug flags in case they were set for guest debugging
  1618. */
  1619. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1620. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1621. vcpu_put(vcpu);
  1622. return 0;
  1623. }
  1624. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1625. struct kvm_regs *regs)
  1626. {
  1627. vcpu_load(vcpu);
  1628. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1629. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1630. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1631. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1632. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1633. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1634. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1635. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1636. #ifdef CONFIG_X86_64
  1637. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1638. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1639. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1640. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1641. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1642. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1643. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1644. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1645. #endif
  1646. vcpu->rip = regs->rip;
  1647. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1648. kvm_arch_ops->decache_regs(vcpu);
  1649. vcpu_put(vcpu);
  1650. return 0;
  1651. }
  1652. static void get_segment(struct kvm_vcpu *vcpu,
  1653. struct kvm_segment *var, int seg)
  1654. {
  1655. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1656. }
  1657. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1658. struct kvm_sregs *sregs)
  1659. {
  1660. struct descriptor_table dt;
  1661. vcpu_load(vcpu);
  1662. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1663. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1664. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1665. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1666. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1667. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1668. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1669. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1670. kvm_arch_ops->get_idt(vcpu, &dt);
  1671. sregs->idt.limit = dt.limit;
  1672. sregs->idt.base = dt.base;
  1673. kvm_arch_ops->get_gdt(vcpu, &dt);
  1674. sregs->gdt.limit = dt.limit;
  1675. sregs->gdt.base = dt.base;
  1676. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1677. sregs->cr0 = vcpu->cr0;
  1678. sregs->cr2 = vcpu->cr2;
  1679. sregs->cr3 = vcpu->cr3;
  1680. sregs->cr4 = vcpu->cr4;
  1681. sregs->cr8 = vcpu->cr8;
  1682. sregs->efer = vcpu->shadow_efer;
  1683. sregs->apic_base = vcpu->apic_base;
  1684. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1685. sizeof sregs->interrupt_bitmap);
  1686. vcpu_put(vcpu);
  1687. return 0;
  1688. }
  1689. static void set_segment(struct kvm_vcpu *vcpu,
  1690. struct kvm_segment *var, int seg)
  1691. {
  1692. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1693. }
  1694. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1695. struct kvm_sregs *sregs)
  1696. {
  1697. int mmu_reset_needed = 0;
  1698. int i;
  1699. struct descriptor_table dt;
  1700. vcpu_load(vcpu);
  1701. dt.limit = sregs->idt.limit;
  1702. dt.base = sregs->idt.base;
  1703. kvm_arch_ops->set_idt(vcpu, &dt);
  1704. dt.limit = sregs->gdt.limit;
  1705. dt.base = sregs->gdt.base;
  1706. kvm_arch_ops->set_gdt(vcpu, &dt);
  1707. vcpu->cr2 = sregs->cr2;
  1708. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1709. vcpu->cr3 = sregs->cr3;
  1710. vcpu->cr8 = sregs->cr8;
  1711. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1712. #ifdef CONFIG_X86_64
  1713. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1714. #endif
  1715. vcpu->apic_base = sregs->apic_base;
  1716. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1717. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1718. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1719. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1720. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1721. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1722. load_pdptrs(vcpu, vcpu->cr3);
  1723. if (mmu_reset_needed)
  1724. kvm_mmu_reset_context(vcpu);
  1725. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1726. sizeof vcpu->irq_pending);
  1727. vcpu->irq_summary = 0;
  1728. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1729. if (vcpu->irq_pending[i])
  1730. __set_bit(i, &vcpu->irq_summary);
  1731. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1732. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1733. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1734. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1735. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1736. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1737. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1738. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1739. vcpu_put(vcpu);
  1740. return 0;
  1741. }
  1742. /*
  1743. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1744. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1745. *
  1746. * This list is modified at module load time to reflect the
  1747. * capabilities of the host cpu.
  1748. */
  1749. static u32 msrs_to_save[] = {
  1750. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1751. MSR_K6_STAR,
  1752. #ifdef CONFIG_X86_64
  1753. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1754. #endif
  1755. MSR_IA32_TIME_STAMP_COUNTER,
  1756. };
  1757. static unsigned num_msrs_to_save;
  1758. static u32 emulated_msrs[] = {
  1759. MSR_IA32_MISC_ENABLE,
  1760. };
  1761. static __init void kvm_init_msr_list(void)
  1762. {
  1763. u32 dummy[2];
  1764. unsigned i, j;
  1765. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1766. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1767. continue;
  1768. if (j < i)
  1769. msrs_to_save[j] = msrs_to_save[i];
  1770. j++;
  1771. }
  1772. num_msrs_to_save = j;
  1773. }
  1774. /*
  1775. * Adapt set_msr() to msr_io()'s calling convention
  1776. */
  1777. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1778. {
  1779. return set_msr(vcpu, index, *data);
  1780. }
  1781. /*
  1782. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1783. *
  1784. * @return number of msrs set successfully.
  1785. */
  1786. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1787. struct kvm_msr_entry *entries,
  1788. int (*do_msr)(struct kvm_vcpu *vcpu,
  1789. unsigned index, u64 *data))
  1790. {
  1791. int i;
  1792. vcpu_load(vcpu);
  1793. for (i = 0; i < msrs->nmsrs; ++i)
  1794. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1795. break;
  1796. vcpu_put(vcpu);
  1797. return i;
  1798. }
  1799. /*
  1800. * Read or write a bunch of msrs. Parameters are user addresses.
  1801. *
  1802. * @return number of msrs set successfully.
  1803. */
  1804. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1805. int (*do_msr)(struct kvm_vcpu *vcpu,
  1806. unsigned index, u64 *data),
  1807. int writeback)
  1808. {
  1809. struct kvm_msrs msrs;
  1810. struct kvm_msr_entry *entries;
  1811. int r, n;
  1812. unsigned size;
  1813. r = -EFAULT;
  1814. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1815. goto out;
  1816. r = -E2BIG;
  1817. if (msrs.nmsrs >= MAX_IO_MSRS)
  1818. goto out;
  1819. r = -ENOMEM;
  1820. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1821. entries = vmalloc(size);
  1822. if (!entries)
  1823. goto out;
  1824. r = -EFAULT;
  1825. if (copy_from_user(entries, user_msrs->entries, size))
  1826. goto out_free;
  1827. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1828. if (r < 0)
  1829. goto out_free;
  1830. r = -EFAULT;
  1831. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1832. goto out_free;
  1833. r = n;
  1834. out_free:
  1835. vfree(entries);
  1836. out:
  1837. return r;
  1838. }
  1839. /*
  1840. * Translate a guest virtual address to a guest physical address.
  1841. */
  1842. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1843. struct kvm_translation *tr)
  1844. {
  1845. unsigned long vaddr = tr->linear_address;
  1846. gpa_t gpa;
  1847. vcpu_load(vcpu);
  1848. spin_lock(&vcpu->kvm->lock);
  1849. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1850. tr->physical_address = gpa;
  1851. tr->valid = gpa != UNMAPPED_GVA;
  1852. tr->writeable = 1;
  1853. tr->usermode = 0;
  1854. spin_unlock(&vcpu->kvm->lock);
  1855. vcpu_put(vcpu);
  1856. return 0;
  1857. }
  1858. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1859. struct kvm_interrupt *irq)
  1860. {
  1861. if (irq->irq < 0 || irq->irq >= 256)
  1862. return -EINVAL;
  1863. vcpu_load(vcpu);
  1864. set_bit(irq->irq, vcpu->irq_pending);
  1865. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1866. vcpu_put(vcpu);
  1867. return 0;
  1868. }
  1869. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1870. struct kvm_debug_guest *dbg)
  1871. {
  1872. int r;
  1873. vcpu_load(vcpu);
  1874. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1875. vcpu_put(vcpu);
  1876. return r;
  1877. }
  1878. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1879. unsigned long address,
  1880. int *type)
  1881. {
  1882. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1883. unsigned long pgoff;
  1884. struct page *page;
  1885. *type = VM_FAULT_MINOR;
  1886. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1887. if (pgoff == 0)
  1888. page = virt_to_page(vcpu->run);
  1889. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1890. page = virt_to_page(vcpu->pio_data);
  1891. else
  1892. return NOPAGE_SIGBUS;
  1893. get_page(page);
  1894. return page;
  1895. }
  1896. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1897. .nopage = kvm_vcpu_nopage,
  1898. };
  1899. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1900. {
  1901. vma->vm_ops = &kvm_vcpu_vm_ops;
  1902. return 0;
  1903. }
  1904. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1905. {
  1906. struct kvm_vcpu *vcpu = filp->private_data;
  1907. fput(vcpu->kvm->filp);
  1908. return 0;
  1909. }
  1910. static struct file_operations kvm_vcpu_fops = {
  1911. .release = kvm_vcpu_release,
  1912. .unlocked_ioctl = kvm_vcpu_ioctl,
  1913. .compat_ioctl = kvm_vcpu_ioctl,
  1914. .mmap = kvm_vcpu_mmap,
  1915. };
  1916. /*
  1917. * Allocates an inode for the vcpu.
  1918. */
  1919. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1920. {
  1921. int fd, r;
  1922. struct inode *inode;
  1923. struct file *file;
  1924. atomic_inc(&vcpu->kvm->filp->f_count);
  1925. inode = kvmfs_inode(&kvm_vcpu_fops);
  1926. if (IS_ERR(inode)) {
  1927. r = PTR_ERR(inode);
  1928. goto out1;
  1929. }
  1930. file = kvmfs_file(inode, vcpu);
  1931. if (IS_ERR(file)) {
  1932. r = PTR_ERR(file);
  1933. goto out2;
  1934. }
  1935. r = get_unused_fd();
  1936. if (r < 0)
  1937. goto out3;
  1938. fd = r;
  1939. fd_install(fd, file);
  1940. return fd;
  1941. out3:
  1942. fput(file);
  1943. out2:
  1944. iput(inode);
  1945. out1:
  1946. fput(vcpu->kvm->filp);
  1947. return r;
  1948. }
  1949. /*
  1950. * Creates some virtual cpus. Good luck creating more than one.
  1951. */
  1952. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1953. {
  1954. int r;
  1955. struct kvm_vcpu *vcpu;
  1956. struct page *page;
  1957. r = -EINVAL;
  1958. if (!valid_vcpu(n))
  1959. goto out;
  1960. vcpu = &kvm->vcpus[n];
  1961. mutex_lock(&vcpu->mutex);
  1962. if (vcpu->vmcs) {
  1963. mutex_unlock(&vcpu->mutex);
  1964. return -EEXIST;
  1965. }
  1966. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1967. r = -ENOMEM;
  1968. if (!page)
  1969. goto out_unlock;
  1970. vcpu->run = page_address(page);
  1971. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1972. r = -ENOMEM;
  1973. if (!page)
  1974. goto out_free_run;
  1975. vcpu->pio_data = page_address(page);
  1976. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  1977. FX_IMAGE_ALIGN);
  1978. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  1979. vcpu->cr0 = 0x10;
  1980. r = kvm_arch_ops->vcpu_create(vcpu);
  1981. if (r < 0)
  1982. goto out_free_vcpus;
  1983. r = kvm_mmu_create(vcpu);
  1984. if (r < 0)
  1985. goto out_free_vcpus;
  1986. kvm_arch_ops->vcpu_load(vcpu);
  1987. r = kvm_mmu_setup(vcpu);
  1988. if (r >= 0)
  1989. r = kvm_arch_ops->vcpu_setup(vcpu);
  1990. vcpu_put(vcpu);
  1991. if (r < 0)
  1992. goto out_free_vcpus;
  1993. r = create_vcpu_fd(vcpu);
  1994. if (r < 0)
  1995. goto out_free_vcpus;
  1996. return r;
  1997. out_free_vcpus:
  1998. kvm_free_vcpu(vcpu);
  1999. out_free_run:
  2000. free_page((unsigned long)vcpu->run);
  2001. vcpu->run = NULL;
  2002. out_unlock:
  2003. mutex_unlock(&vcpu->mutex);
  2004. out:
  2005. return r;
  2006. }
  2007. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2008. struct kvm_cpuid *cpuid,
  2009. struct kvm_cpuid_entry __user *entries)
  2010. {
  2011. int r;
  2012. r = -E2BIG;
  2013. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2014. goto out;
  2015. r = -EFAULT;
  2016. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2017. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2018. goto out;
  2019. vcpu->cpuid_nent = cpuid->nent;
  2020. return 0;
  2021. out:
  2022. return r;
  2023. }
  2024. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2025. {
  2026. if (sigset) {
  2027. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2028. vcpu->sigset_active = 1;
  2029. vcpu->sigset = *sigset;
  2030. } else
  2031. vcpu->sigset_active = 0;
  2032. return 0;
  2033. }
  2034. /*
  2035. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2036. * we have asm/x86/processor.h
  2037. */
  2038. struct fxsave {
  2039. u16 cwd;
  2040. u16 swd;
  2041. u16 twd;
  2042. u16 fop;
  2043. u64 rip;
  2044. u64 rdp;
  2045. u32 mxcsr;
  2046. u32 mxcsr_mask;
  2047. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2048. #ifdef CONFIG_X86_64
  2049. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2050. #else
  2051. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2052. #endif
  2053. };
  2054. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2055. {
  2056. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2057. vcpu_load(vcpu);
  2058. memcpy(fpu->fpr, fxsave->st_space, 128);
  2059. fpu->fcw = fxsave->cwd;
  2060. fpu->fsw = fxsave->swd;
  2061. fpu->ftwx = fxsave->twd;
  2062. fpu->last_opcode = fxsave->fop;
  2063. fpu->last_ip = fxsave->rip;
  2064. fpu->last_dp = fxsave->rdp;
  2065. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2066. vcpu_put(vcpu);
  2067. return 0;
  2068. }
  2069. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2070. {
  2071. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2072. vcpu_load(vcpu);
  2073. memcpy(fxsave->st_space, fpu->fpr, 128);
  2074. fxsave->cwd = fpu->fcw;
  2075. fxsave->swd = fpu->fsw;
  2076. fxsave->twd = fpu->ftwx;
  2077. fxsave->fop = fpu->last_opcode;
  2078. fxsave->rip = fpu->last_ip;
  2079. fxsave->rdp = fpu->last_dp;
  2080. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2081. vcpu_put(vcpu);
  2082. return 0;
  2083. }
  2084. static long kvm_vcpu_ioctl(struct file *filp,
  2085. unsigned int ioctl, unsigned long arg)
  2086. {
  2087. struct kvm_vcpu *vcpu = filp->private_data;
  2088. void __user *argp = (void __user *)arg;
  2089. int r = -EINVAL;
  2090. switch (ioctl) {
  2091. case KVM_RUN:
  2092. r = -EINVAL;
  2093. if (arg)
  2094. goto out;
  2095. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2096. break;
  2097. case KVM_GET_REGS: {
  2098. struct kvm_regs kvm_regs;
  2099. memset(&kvm_regs, 0, sizeof kvm_regs);
  2100. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2101. if (r)
  2102. goto out;
  2103. r = -EFAULT;
  2104. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2105. goto out;
  2106. r = 0;
  2107. break;
  2108. }
  2109. case KVM_SET_REGS: {
  2110. struct kvm_regs kvm_regs;
  2111. r = -EFAULT;
  2112. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2113. goto out;
  2114. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2115. if (r)
  2116. goto out;
  2117. r = 0;
  2118. break;
  2119. }
  2120. case KVM_GET_SREGS: {
  2121. struct kvm_sregs kvm_sregs;
  2122. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2123. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2124. if (r)
  2125. goto out;
  2126. r = -EFAULT;
  2127. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2128. goto out;
  2129. r = 0;
  2130. break;
  2131. }
  2132. case KVM_SET_SREGS: {
  2133. struct kvm_sregs kvm_sregs;
  2134. r = -EFAULT;
  2135. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2136. goto out;
  2137. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2138. if (r)
  2139. goto out;
  2140. r = 0;
  2141. break;
  2142. }
  2143. case KVM_TRANSLATE: {
  2144. struct kvm_translation tr;
  2145. r = -EFAULT;
  2146. if (copy_from_user(&tr, argp, sizeof tr))
  2147. goto out;
  2148. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2149. if (r)
  2150. goto out;
  2151. r = -EFAULT;
  2152. if (copy_to_user(argp, &tr, sizeof tr))
  2153. goto out;
  2154. r = 0;
  2155. break;
  2156. }
  2157. case KVM_INTERRUPT: {
  2158. struct kvm_interrupt irq;
  2159. r = -EFAULT;
  2160. if (copy_from_user(&irq, argp, sizeof irq))
  2161. goto out;
  2162. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2163. if (r)
  2164. goto out;
  2165. r = 0;
  2166. break;
  2167. }
  2168. case KVM_DEBUG_GUEST: {
  2169. struct kvm_debug_guest dbg;
  2170. r = -EFAULT;
  2171. if (copy_from_user(&dbg, argp, sizeof dbg))
  2172. goto out;
  2173. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2174. if (r)
  2175. goto out;
  2176. r = 0;
  2177. break;
  2178. }
  2179. case KVM_GET_MSRS:
  2180. r = msr_io(vcpu, argp, get_msr, 1);
  2181. break;
  2182. case KVM_SET_MSRS:
  2183. r = msr_io(vcpu, argp, do_set_msr, 0);
  2184. break;
  2185. case KVM_SET_CPUID: {
  2186. struct kvm_cpuid __user *cpuid_arg = argp;
  2187. struct kvm_cpuid cpuid;
  2188. r = -EFAULT;
  2189. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2190. goto out;
  2191. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2192. if (r)
  2193. goto out;
  2194. break;
  2195. }
  2196. case KVM_SET_SIGNAL_MASK: {
  2197. struct kvm_signal_mask __user *sigmask_arg = argp;
  2198. struct kvm_signal_mask kvm_sigmask;
  2199. sigset_t sigset, *p;
  2200. p = NULL;
  2201. if (argp) {
  2202. r = -EFAULT;
  2203. if (copy_from_user(&kvm_sigmask, argp,
  2204. sizeof kvm_sigmask))
  2205. goto out;
  2206. r = -EINVAL;
  2207. if (kvm_sigmask.len != sizeof sigset)
  2208. goto out;
  2209. r = -EFAULT;
  2210. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2211. sizeof sigset))
  2212. goto out;
  2213. p = &sigset;
  2214. }
  2215. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2216. break;
  2217. }
  2218. case KVM_GET_FPU: {
  2219. struct kvm_fpu fpu;
  2220. memset(&fpu, 0, sizeof fpu);
  2221. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2222. if (r)
  2223. goto out;
  2224. r = -EFAULT;
  2225. if (copy_to_user(argp, &fpu, sizeof fpu))
  2226. goto out;
  2227. r = 0;
  2228. break;
  2229. }
  2230. case KVM_SET_FPU: {
  2231. struct kvm_fpu fpu;
  2232. r = -EFAULT;
  2233. if (copy_from_user(&fpu, argp, sizeof fpu))
  2234. goto out;
  2235. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2236. if (r)
  2237. goto out;
  2238. r = 0;
  2239. break;
  2240. }
  2241. default:
  2242. ;
  2243. }
  2244. out:
  2245. return r;
  2246. }
  2247. static long kvm_vm_ioctl(struct file *filp,
  2248. unsigned int ioctl, unsigned long arg)
  2249. {
  2250. struct kvm *kvm = filp->private_data;
  2251. void __user *argp = (void __user *)arg;
  2252. int r = -EINVAL;
  2253. switch (ioctl) {
  2254. case KVM_CREATE_VCPU:
  2255. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2256. if (r < 0)
  2257. goto out;
  2258. break;
  2259. case KVM_SET_MEMORY_REGION: {
  2260. struct kvm_memory_region kvm_mem;
  2261. r = -EFAULT;
  2262. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2263. goto out;
  2264. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2265. if (r)
  2266. goto out;
  2267. break;
  2268. }
  2269. case KVM_GET_DIRTY_LOG: {
  2270. struct kvm_dirty_log log;
  2271. r = -EFAULT;
  2272. if (copy_from_user(&log, argp, sizeof log))
  2273. goto out;
  2274. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2275. if (r)
  2276. goto out;
  2277. break;
  2278. }
  2279. case KVM_SET_MEMORY_ALIAS: {
  2280. struct kvm_memory_alias alias;
  2281. r = -EFAULT;
  2282. if (copy_from_user(&alias, argp, sizeof alias))
  2283. goto out;
  2284. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2285. if (r)
  2286. goto out;
  2287. break;
  2288. }
  2289. default:
  2290. ;
  2291. }
  2292. out:
  2293. return r;
  2294. }
  2295. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2296. unsigned long address,
  2297. int *type)
  2298. {
  2299. struct kvm *kvm = vma->vm_file->private_data;
  2300. unsigned long pgoff;
  2301. struct page *page;
  2302. *type = VM_FAULT_MINOR;
  2303. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2304. page = gfn_to_page(kvm, pgoff);
  2305. if (!page)
  2306. return NOPAGE_SIGBUS;
  2307. get_page(page);
  2308. return page;
  2309. }
  2310. static struct vm_operations_struct kvm_vm_vm_ops = {
  2311. .nopage = kvm_vm_nopage,
  2312. };
  2313. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2314. {
  2315. vma->vm_ops = &kvm_vm_vm_ops;
  2316. return 0;
  2317. }
  2318. static struct file_operations kvm_vm_fops = {
  2319. .release = kvm_vm_release,
  2320. .unlocked_ioctl = kvm_vm_ioctl,
  2321. .compat_ioctl = kvm_vm_ioctl,
  2322. .mmap = kvm_vm_mmap,
  2323. };
  2324. static int kvm_dev_ioctl_create_vm(void)
  2325. {
  2326. int fd, r;
  2327. struct inode *inode;
  2328. struct file *file;
  2329. struct kvm *kvm;
  2330. inode = kvmfs_inode(&kvm_vm_fops);
  2331. if (IS_ERR(inode)) {
  2332. r = PTR_ERR(inode);
  2333. goto out1;
  2334. }
  2335. kvm = kvm_create_vm();
  2336. if (IS_ERR(kvm)) {
  2337. r = PTR_ERR(kvm);
  2338. goto out2;
  2339. }
  2340. file = kvmfs_file(inode, kvm);
  2341. if (IS_ERR(file)) {
  2342. r = PTR_ERR(file);
  2343. goto out3;
  2344. }
  2345. kvm->filp = file;
  2346. r = get_unused_fd();
  2347. if (r < 0)
  2348. goto out4;
  2349. fd = r;
  2350. fd_install(fd, file);
  2351. return fd;
  2352. out4:
  2353. fput(file);
  2354. out3:
  2355. kvm_destroy_vm(kvm);
  2356. out2:
  2357. iput(inode);
  2358. out1:
  2359. return r;
  2360. }
  2361. static long kvm_dev_ioctl(struct file *filp,
  2362. unsigned int ioctl, unsigned long arg)
  2363. {
  2364. void __user *argp = (void __user *)arg;
  2365. long r = -EINVAL;
  2366. switch (ioctl) {
  2367. case KVM_GET_API_VERSION:
  2368. r = -EINVAL;
  2369. if (arg)
  2370. goto out;
  2371. r = KVM_API_VERSION;
  2372. break;
  2373. case KVM_CREATE_VM:
  2374. r = -EINVAL;
  2375. if (arg)
  2376. goto out;
  2377. r = kvm_dev_ioctl_create_vm();
  2378. break;
  2379. case KVM_GET_MSR_INDEX_LIST: {
  2380. struct kvm_msr_list __user *user_msr_list = argp;
  2381. struct kvm_msr_list msr_list;
  2382. unsigned n;
  2383. r = -EFAULT;
  2384. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2385. goto out;
  2386. n = msr_list.nmsrs;
  2387. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2388. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2389. goto out;
  2390. r = -E2BIG;
  2391. if (n < num_msrs_to_save)
  2392. goto out;
  2393. r = -EFAULT;
  2394. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2395. num_msrs_to_save * sizeof(u32)))
  2396. goto out;
  2397. if (copy_to_user(user_msr_list->indices
  2398. + num_msrs_to_save * sizeof(u32),
  2399. &emulated_msrs,
  2400. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2401. goto out;
  2402. r = 0;
  2403. break;
  2404. }
  2405. case KVM_CHECK_EXTENSION:
  2406. /*
  2407. * No extensions defined at present.
  2408. */
  2409. r = 0;
  2410. break;
  2411. case KVM_GET_VCPU_MMAP_SIZE:
  2412. r = -EINVAL;
  2413. if (arg)
  2414. goto out;
  2415. r = 2 * PAGE_SIZE;
  2416. break;
  2417. default:
  2418. ;
  2419. }
  2420. out:
  2421. return r;
  2422. }
  2423. static struct file_operations kvm_chardev_ops = {
  2424. .open = kvm_dev_open,
  2425. .release = kvm_dev_release,
  2426. .unlocked_ioctl = kvm_dev_ioctl,
  2427. .compat_ioctl = kvm_dev_ioctl,
  2428. };
  2429. static struct miscdevice kvm_dev = {
  2430. KVM_MINOR,
  2431. "kvm",
  2432. &kvm_chardev_ops,
  2433. };
  2434. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2435. void *v)
  2436. {
  2437. if (val == SYS_RESTART) {
  2438. /*
  2439. * Some (well, at least mine) BIOSes hang on reboot if
  2440. * in vmx root mode.
  2441. */
  2442. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2443. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2444. }
  2445. return NOTIFY_OK;
  2446. }
  2447. static struct notifier_block kvm_reboot_notifier = {
  2448. .notifier_call = kvm_reboot,
  2449. .priority = 0,
  2450. };
  2451. /*
  2452. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2453. * cached on it.
  2454. */
  2455. static void decache_vcpus_on_cpu(int cpu)
  2456. {
  2457. struct kvm *vm;
  2458. struct kvm_vcpu *vcpu;
  2459. int i;
  2460. spin_lock(&kvm_lock);
  2461. list_for_each_entry(vm, &vm_list, vm_list)
  2462. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2463. vcpu = &vm->vcpus[i];
  2464. /*
  2465. * If the vcpu is locked, then it is running on some
  2466. * other cpu and therefore it is not cached on the
  2467. * cpu in question.
  2468. *
  2469. * If it's not locked, check the last cpu it executed
  2470. * on.
  2471. */
  2472. if (mutex_trylock(&vcpu->mutex)) {
  2473. if (vcpu->cpu == cpu) {
  2474. kvm_arch_ops->vcpu_decache(vcpu);
  2475. vcpu->cpu = -1;
  2476. }
  2477. mutex_unlock(&vcpu->mutex);
  2478. }
  2479. }
  2480. spin_unlock(&kvm_lock);
  2481. }
  2482. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2483. void *v)
  2484. {
  2485. int cpu = (long)v;
  2486. switch (val) {
  2487. case CPU_DOWN_PREPARE:
  2488. case CPU_DOWN_PREPARE_FROZEN:
  2489. case CPU_UP_CANCELED:
  2490. case CPU_UP_CANCELED_FROZEN:
  2491. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2492. cpu);
  2493. decache_vcpus_on_cpu(cpu);
  2494. smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
  2495. NULL, 0, 1);
  2496. break;
  2497. case CPU_ONLINE:
  2498. case CPU_ONLINE_FROZEN:
  2499. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2500. cpu);
  2501. smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
  2502. NULL, 0, 1);
  2503. break;
  2504. }
  2505. return NOTIFY_OK;
  2506. }
  2507. static struct notifier_block kvm_cpu_notifier = {
  2508. .notifier_call = kvm_cpu_hotplug,
  2509. .priority = 20, /* must be > scheduler priority */
  2510. };
  2511. static u64 stat_get(void *_offset)
  2512. {
  2513. unsigned offset = (long)_offset;
  2514. u64 total = 0;
  2515. struct kvm *kvm;
  2516. struct kvm_vcpu *vcpu;
  2517. int i;
  2518. spin_lock(&kvm_lock);
  2519. list_for_each_entry(kvm, &vm_list, vm_list)
  2520. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2521. vcpu = &kvm->vcpus[i];
  2522. total += *(u32 *)((void *)vcpu + offset);
  2523. }
  2524. spin_unlock(&kvm_lock);
  2525. return total;
  2526. }
  2527. static void stat_set(void *offset, u64 val)
  2528. {
  2529. }
  2530. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
  2531. static __init void kvm_init_debug(void)
  2532. {
  2533. struct kvm_stats_debugfs_item *p;
  2534. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2535. for (p = debugfs_entries; p->name; ++p)
  2536. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2537. (void *)(long)p->offset,
  2538. &stat_fops);
  2539. }
  2540. static void kvm_exit_debug(void)
  2541. {
  2542. struct kvm_stats_debugfs_item *p;
  2543. for (p = debugfs_entries; p->name; ++p)
  2544. debugfs_remove(p->dentry);
  2545. debugfs_remove(debugfs_dir);
  2546. }
  2547. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2548. {
  2549. decache_vcpus_on_cpu(raw_smp_processor_id());
  2550. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2551. return 0;
  2552. }
  2553. static int kvm_resume(struct sys_device *dev)
  2554. {
  2555. on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
  2556. return 0;
  2557. }
  2558. static struct sysdev_class kvm_sysdev_class = {
  2559. set_kset_name("kvm"),
  2560. .suspend = kvm_suspend,
  2561. .resume = kvm_resume,
  2562. };
  2563. static struct sys_device kvm_sysdev = {
  2564. .id = 0,
  2565. .cls = &kvm_sysdev_class,
  2566. };
  2567. hpa_t bad_page_address;
  2568. static int kvmfs_get_sb(struct file_system_type *fs_type, int flags,
  2569. const char *dev_name, void *data, struct vfsmount *mnt)
  2570. {
  2571. return get_sb_pseudo(fs_type, "kvm:", NULL, KVMFS_SUPER_MAGIC, mnt);
  2572. }
  2573. static struct file_system_type kvm_fs_type = {
  2574. .name = "kvmfs",
  2575. .get_sb = kvmfs_get_sb,
  2576. .kill_sb = kill_anon_super,
  2577. };
  2578. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  2579. {
  2580. int r;
  2581. if (kvm_arch_ops) {
  2582. printk(KERN_ERR "kvm: already loaded the other module\n");
  2583. return -EEXIST;
  2584. }
  2585. if (!ops->cpu_has_kvm_support()) {
  2586. printk(KERN_ERR "kvm: no hardware support\n");
  2587. return -EOPNOTSUPP;
  2588. }
  2589. if (ops->disabled_by_bios()) {
  2590. printk(KERN_ERR "kvm: disabled by bios\n");
  2591. return -EOPNOTSUPP;
  2592. }
  2593. kvm_arch_ops = ops;
  2594. r = kvm_arch_ops->hardware_setup();
  2595. if (r < 0)
  2596. goto out;
  2597. on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
  2598. r = register_cpu_notifier(&kvm_cpu_notifier);
  2599. if (r)
  2600. goto out_free_1;
  2601. register_reboot_notifier(&kvm_reboot_notifier);
  2602. r = sysdev_class_register(&kvm_sysdev_class);
  2603. if (r)
  2604. goto out_free_2;
  2605. r = sysdev_register(&kvm_sysdev);
  2606. if (r)
  2607. goto out_free_3;
  2608. kvm_chardev_ops.owner = module;
  2609. r = misc_register(&kvm_dev);
  2610. if (r) {
  2611. printk (KERN_ERR "kvm: misc device register failed\n");
  2612. goto out_free;
  2613. }
  2614. return r;
  2615. out_free:
  2616. sysdev_unregister(&kvm_sysdev);
  2617. out_free_3:
  2618. sysdev_class_unregister(&kvm_sysdev_class);
  2619. out_free_2:
  2620. unregister_reboot_notifier(&kvm_reboot_notifier);
  2621. unregister_cpu_notifier(&kvm_cpu_notifier);
  2622. out_free_1:
  2623. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2624. kvm_arch_ops->hardware_unsetup();
  2625. out:
  2626. kvm_arch_ops = NULL;
  2627. return r;
  2628. }
  2629. void kvm_exit_arch(void)
  2630. {
  2631. misc_deregister(&kvm_dev);
  2632. sysdev_unregister(&kvm_sysdev);
  2633. sysdev_class_unregister(&kvm_sysdev_class);
  2634. unregister_reboot_notifier(&kvm_reboot_notifier);
  2635. unregister_cpu_notifier(&kvm_cpu_notifier);
  2636. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2637. kvm_arch_ops->hardware_unsetup();
  2638. kvm_arch_ops = NULL;
  2639. }
  2640. static __init int kvm_init(void)
  2641. {
  2642. static struct page *bad_page;
  2643. int r;
  2644. r = kvm_mmu_module_init();
  2645. if (r)
  2646. goto out4;
  2647. r = register_filesystem(&kvm_fs_type);
  2648. if (r)
  2649. goto out3;
  2650. kvmfs_mnt = kern_mount(&kvm_fs_type);
  2651. r = PTR_ERR(kvmfs_mnt);
  2652. if (IS_ERR(kvmfs_mnt))
  2653. goto out2;
  2654. kvm_init_debug();
  2655. kvm_init_msr_list();
  2656. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2657. r = -ENOMEM;
  2658. goto out;
  2659. }
  2660. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2661. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2662. return 0;
  2663. out:
  2664. kvm_exit_debug();
  2665. mntput(kvmfs_mnt);
  2666. out2:
  2667. unregister_filesystem(&kvm_fs_type);
  2668. out3:
  2669. kvm_mmu_module_exit();
  2670. out4:
  2671. return r;
  2672. }
  2673. static __exit void kvm_exit(void)
  2674. {
  2675. kvm_exit_debug();
  2676. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2677. mntput(kvmfs_mnt);
  2678. unregister_filesystem(&kvm_fs_type);
  2679. kvm_mmu_module_exit();
  2680. }
  2681. module_init(kvm_init)
  2682. module_exit(kvm_exit)
  2683. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2684. EXPORT_SYMBOL_GPL(kvm_exit_arch);