mm.h 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/rbtree.h>
  9. #include <linux/prio_tree.h>
  10. #include <linux/debug_locks.h>
  11. #include <linux/mm_types.h>
  12. #include <linux/range.h>
  13. #include <linux/pfn.h>
  14. #include <linux/bit_spinlock.h>
  15. struct mempolicy;
  16. struct anon_vma;
  17. struct file_ra_state;
  18. struct user_struct;
  19. struct writeback_control;
  20. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  21. extern unsigned long max_mapnr;
  22. #endif
  23. extern unsigned long num_physpages;
  24. extern unsigned long totalram_pages;
  25. extern void * high_memory;
  26. extern int page_cluster;
  27. #ifdef CONFIG_SYSCTL
  28. extern int sysctl_legacy_va_layout;
  29. #else
  30. #define sysctl_legacy_va_layout 0
  31. #endif
  32. #include <asm/page.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/processor.h>
  35. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  36. /* to align the pointer to the (next) page boundary */
  37. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  38. /*
  39. * Linux kernel virtual memory manager primitives.
  40. * The idea being to have a "virtual" mm in the same way
  41. * we have a virtual fs - giving a cleaner interface to the
  42. * mm details, and allowing different kinds of memory mappings
  43. * (from shared memory to executable loading to arbitrary
  44. * mmap() functions).
  45. */
  46. extern struct kmem_cache *vm_area_cachep;
  47. #ifndef CONFIG_MMU
  48. extern struct rb_root nommu_region_tree;
  49. extern struct rw_semaphore nommu_region_sem;
  50. extern unsigned int kobjsize(const void *objp);
  51. #endif
  52. /*
  53. * vm_flags in vm_area_struct, see mm_types.h.
  54. */
  55. #define VM_READ 0x00000001 /* currently active flags */
  56. #define VM_WRITE 0x00000002
  57. #define VM_EXEC 0x00000004
  58. #define VM_SHARED 0x00000008
  59. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  60. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  61. #define VM_MAYWRITE 0x00000020
  62. #define VM_MAYEXEC 0x00000040
  63. #define VM_MAYSHARE 0x00000080
  64. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  65. #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
  66. #define VM_GROWSUP 0x00000200
  67. #else
  68. #define VM_GROWSUP 0x00000000
  69. #endif
  70. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  71. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  72. #define VM_EXECUTABLE 0x00001000
  73. #define VM_LOCKED 0x00002000
  74. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  75. /* Used by sys_madvise() */
  76. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  77. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  78. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  79. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  80. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  81. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  82. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  83. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  84. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  85. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  86. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  87. #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
  88. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  89. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  90. #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
  91. #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
  92. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  93. /* Bits set in the VMA until the stack is in its final location */
  94. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  95. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  96. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  97. #endif
  98. #ifdef CONFIG_STACK_GROWSUP
  99. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  100. #else
  101. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  102. #endif
  103. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  104. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  105. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  106. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  107. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  108. /*
  109. * special vmas that are non-mergable, non-mlock()able
  110. */
  111. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
  112. /*
  113. * mapping from the currently active vm_flags protection bits (the
  114. * low four bits) to a page protection mask..
  115. */
  116. extern pgprot_t protection_map[16];
  117. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  118. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  119. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  120. #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
  121. /*
  122. * This interface is used by x86 PAT code to identify a pfn mapping that is
  123. * linear over entire vma. This is to optimize PAT code that deals with
  124. * marking the physical region with a particular prot. This is not for generic
  125. * mm use. Note also that this check will not work if the pfn mapping is
  126. * linear for a vma starting at physical address 0. In which case PAT code
  127. * falls back to slow path of reserving physical range page by page.
  128. */
  129. static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
  130. {
  131. return (vma->vm_flags & VM_PFN_AT_MMAP);
  132. }
  133. static inline int is_pfn_mapping(struct vm_area_struct *vma)
  134. {
  135. return (vma->vm_flags & VM_PFNMAP);
  136. }
  137. /*
  138. * vm_fault is filled by the the pagefault handler and passed to the vma's
  139. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  140. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  141. *
  142. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  143. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  144. * mapping support.
  145. */
  146. struct vm_fault {
  147. unsigned int flags; /* FAULT_FLAG_xxx flags */
  148. pgoff_t pgoff; /* Logical page offset based on vma */
  149. void __user *virtual_address; /* Faulting virtual address */
  150. struct page *page; /* ->fault handlers should return a
  151. * page here, unless VM_FAULT_NOPAGE
  152. * is set (which is also implied by
  153. * VM_FAULT_ERROR).
  154. */
  155. };
  156. /*
  157. * These are the virtual MM functions - opening of an area, closing and
  158. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  159. * to the functions called when a no-page or a wp-page exception occurs.
  160. */
  161. struct vm_operations_struct {
  162. void (*open)(struct vm_area_struct * area);
  163. void (*close)(struct vm_area_struct * area);
  164. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  165. /* notification that a previously read-only page is about to become
  166. * writable, if an error is returned it will cause a SIGBUS */
  167. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  168. /* called by access_process_vm when get_user_pages() fails, typically
  169. * for use by special VMAs that can switch between memory and hardware
  170. */
  171. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  172. void *buf, int len, int write);
  173. #ifdef CONFIG_NUMA
  174. /*
  175. * set_policy() op must add a reference to any non-NULL @new mempolicy
  176. * to hold the policy upon return. Caller should pass NULL @new to
  177. * remove a policy and fall back to surrounding context--i.e. do not
  178. * install a MPOL_DEFAULT policy, nor the task or system default
  179. * mempolicy.
  180. */
  181. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  182. /*
  183. * get_policy() op must add reference [mpol_get()] to any policy at
  184. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  185. * in mm/mempolicy.c will do this automatically.
  186. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  187. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  188. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  189. * must return NULL--i.e., do not "fallback" to task or system default
  190. * policy.
  191. */
  192. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  193. unsigned long addr);
  194. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  195. const nodemask_t *to, unsigned long flags);
  196. #endif
  197. };
  198. struct mmu_gather;
  199. struct inode;
  200. #define page_private(page) ((page)->private)
  201. #define set_page_private(page, v) ((page)->private = (v))
  202. /*
  203. * FIXME: take this include out, include page-flags.h in
  204. * files which need it (119 of them)
  205. */
  206. #include <linux/page-flags.h>
  207. /*
  208. * Methods to modify the page usage count.
  209. *
  210. * What counts for a page usage:
  211. * - cache mapping (page->mapping)
  212. * - private data (page->private)
  213. * - page mapped in a task's page tables, each mapping
  214. * is counted separately
  215. *
  216. * Also, many kernel routines increase the page count before a critical
  217. * routine so they can be sure the page doesn't go away from under them.
  218. */
  219. /*
  220. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  221. */
  222. static inline int put_page_testzero(struct page *page)
  223. {
  224. VM_BUG_ON(atomic_read(&page->_count) == 0);
  225. return atomic_dec_and_test(&page->_count);
  226. }
  227. /*
  228. * Try to grab a ref unless the page has a refcount of zero, return false if
  229. * that is the case.
  230. */
  231. static inline int get_page_unless_zero(struct page *page)
  232. {
  233. return atomic_inc_not_zero(&page->_count);
  234. }
  235. extern int page_is_ram(unsigned long pfn);
  236. /* Support for virtually mapped pages */
  237. struct page *vmalloc_to_page(const void *addr);
  238. unsigned long vmalloc_to_pfn(const void *addr);
  239. /*
  240. * Determine if an address is within the vmalloc range
  241. *
  242. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  243. * is no special casing required.
  244. */
  245. static inline int is_vmalloc_addr(const void *x)
  246. {
  247. #ifdef CONFIG_MMU
  248. unsigned long addr = (unsigned long)x;
  249. return addr >= VMALLOC_START && addr < VMALLOC_END;
  250. #else
  251. return 0;
  252. #endif
  253. }
  254. #ifdef CONFIG_MMU
  255. extern int is_vmalloc_or_module_addr(const void *x);
  256. #else
  257. static inline int is_vmalloc_or_module_addr(const void *x)
  258. {
  259. return 0;
  260. }
  261. #endif
  262. static inline void compound_lock(struct page *page)
  263. {
  264. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  265. bit_spin_lock(PG_compound_lock, &page->flags);
  266. #endif
  267. }
  268. static inline void compound_unlock(struct page *page)
  269. {
  270. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  271. bit_spin_unlock(PG_compound_lock, &page->flags);
  272. #endif
  273. }
  274. static inline unsigned long compound_lock_irqsave(struct page *page)
  275. {
  276. unsigned long uninitialized_var(flags);
  277. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  278. local_irq_save(flags);
  279. compound_lock(page);
  280. #endif
  281. return flags;
  282. }
  283. static inline void compound_unlock_irqrestore(struct page *page,
  284. unsigned long flags)
  285. {
  286. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  287. compound_unlock(page);
  288. local_irq_restore(flags);
  289. #endif
  290. }
  291. static inline struct page *compound_head(struct page *page)
  292. {
  293. if (unlikely(PageTail(page)))
  294. return page->first_page;
  295. return page;
  296. }
  297. static inline int page_count(struct page *page)
  298. {
  299. return atomic_read(&compound_head(page)->_count);
  300. }
  301. static inline void get_page(struct page *page)
  302. {
  303. /*
  304. * Getting a normal page or the head of a compound page
  305. * requires to already have an elevated page->_count. Only if
  306. * we're getting a tail page, the elevated page->_count is
  307. * required only in the head page, so for tail pages the
  308. * bugcheck only verifies that the page->_count isn't
  309. * negative.
  310. */
  311. VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
  312. atomic_inc(&page->_count);
  313. /*
  314. * Getting a tail page will elevate both the head and tail
  315. * page->_count(s).
  316. */
  317. if (unlikely(PageTail(page))) {
  318. /*
  319. * This is safe only because
  320. * __split_huge_page_refcount can't run under
  321. * get_page().
  322. */
  323. VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
  324. atomic_inc(&page->first_page->_count);
  325. }
  326. }
  327. static inline struct page *virt_to_head_page(const void *x)
  328. {
  329. struct page *page = virt_to_page(x);
  330. return compound_head(page);
  331. }
  332. /*
  333. * Setup the page count before being freed into the page allocator for
  334. * the first time (boot or memory hotplug)
  335. */
  336. static inline void init_page_count(struct page *page)
  337. {
  338. atomic_set(&page->_count, 1);
  339. }
  340. void put_page(struct page *page);
  341. void put_pages_list(struct list_head *pages);
  342. void split_page(struct page *page, unsigned int order);
  343. int split_free_page(struct page *page);
  344. /*
  345. * Compound pages have a destructor function. Provide a
  346. * prototype for that function and accessor functions.
  347. * These are _only_ valid on the head of a PG_compound page.
  348. */
  349. typedef void compound_page_dtor(struct page *);
  350. static inline void set_compound_page_dtor(struct page *page,
  351. compound_page_dtor *dtor)
  352. {
  353. page[1].lru.next = (void *)dtor;
  354. }
  355. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  356. {
  357. return (compound_page_dtor *)page[1].lru.next;
  358. }
  359. static inline int compound_order(struct page *page)
  360. {
  361. if (!PageHead(page))
  362. return 0;
  363. return (unsigned long)page[1].lru.prev;
  364. }
  365. static inline void set_compound_order(struct page *page, unsigned long order)
  366. {
  367. page[1].lru.prev = (void *)order;
  368. }
  369. /*
  370. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  371. * servicing faults for write access. In the normal case, do always want
  372. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  373. * that do not have writing enabled, when used by access_process_vm.
  374. */
  375. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  376. {
  377. if (likely(vma->vm_flags & VM_WRITE))
  378. pte = pte_mkwrite(pte);
  379. return pte;
  380. }
  381. /*
  382. * Multiple processes may "see" the same page. E.g. for untouched
  383. * mappings of /dev/null, all processes see the same page full of
  384. * zeroes, and text pages of executables and shared libraries have
  385. * only one copy in memory, at most, normally.
  386. *
  387. * For the non-reserved pages, page_count(page) denotes a reference count.
  388. * page_count() == 0 means the page is free. page->lru is then used for
  389. * freelist management in the buddy allocator.
  390. * page_count() > 0 means the page has been allocated.
  391. *
  392. * Pages are allocated by the slab allocator in order to provide memory
  393. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  394. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  395. * unless a particular usage is carefully commented. (the responsibility of
  396. * freeing the kmalloc memory is the caller's, of course).
  397. *
  398. * A page may be used by anyone else who does a __get_free_page().
  399. * In this case, page_count still tracks the references, and should only
  400. * be used through the normal accessor functions. The top bits of page->flags
  401. * and page->virtual store page management information, but all other fields
  402. * are unused and could be used privately, carefully. The management of this
  403. * page is the responsibility of the one who allocated it, and those who have
  404. * subsequently been given references to it.
  405. *
  406. * The other pages (we may call them "pagecache pages") are completely
  407. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  408. * The following discussion applies only to them.
  409. *
  410. * A pagecache page contains an opaque `private' member, which belongs to the
  411. * page's address_space. Usually, this is the address of a circular list of
  412. * the page's disk buffers. PG_private must be set to tell the VM to call
  413. * into the filesystem to release these pages.
  414. *
  415. * A page may belong to an inode's memory mapping. In this case, page->mapping
  416. * is the pointer to the inode, and page->index is the file offset of the page,
  417. * in units of PAGE_CACHE_SIZE.
  418. *
  419. * If pagecache pages are not associated with an inode, they are said to be
  420. * anonymous pages. These may become associated with the swapcache, and in that
  421. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  422. *
  423. * In either case (swapcache or inode backed), the pagecache itself holds one
  424. * reference to the page. Setting PG_private should also increment the
  425. * refcount. The each user mapping also has a reference to the page.
  426. *
  427. * The pagecache pages are stored in a per-mapping radix tree, which is
  428. * rooted at mapping->page_tree, and indexed by offset.
  429. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  430. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  431. *
  432. * All pagecache pages may be subject to I/O:
  433. * - inode pages may need to be read from disk,
  434. * - inode pages which have been modified and are MAP_SHARED may need
  435. * to be written back to the inode on disk,
  436. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  437. * modified may need to be swapped out to swap space and (later) to be read
  438. * back into memory.
  439. */
  440. /*
  441. * The zone field is never updated after free_area_init_core()
  442. * sets it, so none of the operations on it need to be atomic.
  443. */
  444. /*
  445. * page->flags layout:
  446. *
  447. * There are three possibilities for how page->flags get
  448. * laid out. The first is for the normal case, without
  449. * sparsemem. The second is for sparsemem when there is
  450. * plenty of space for node and section. The last is when
  451. * we have run out of space and have to fall back to an
  452. * alternate (slower) way of determining the node.
  453. *
  454. * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
  455. * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
  456. * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
  457. */
  458. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  459. #define SECTIONS_WIDTH SECTIONS_SHIFT
  460. #else
  461. #define SECTIONS_WIDTH 0
  462. #endif
  463. #define ZONES_WIDTH ZONES_SHIFT
  464. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
  465. #define NODES_WIDTH NODES_SHIFT
  466. #else
  467. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  468. #error "Vmemmap: No space for nodes field in page flags"
  469. #endif
  470. #define NODES_WIDTH 0
  471. #endif
  472. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  473. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  474. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  475. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  476. /*
  477. * We are going to use the flags for the page to node mapping if its in
  478. * there. This includes the case where there is no node, so it is implicit.
  479. */
  480. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  481. #define NODE_NOT_IN_PAGE_FLAGS
  482. #endif
  483. #ifndef PFN_SECTION_SHIFT
  484. #define PFN_SECTION_SHIFT 0
  485. #endif
  486. /*
  487. * Define the bit shifts to access each section. For non-existant
  488. * sections we define the shift as 0; that plus a 0 mask ensures
  489. * the compiler will optimise away reference to them.
  490. */
  491. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  492. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  493. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  494. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  495. #ifdef NODE_NOT_IN_PAGE_FLAGS
  496. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  497. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  498. SECTIONS_PGOFF : ZONES_PGOFF)
  499. #else
  500. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  501. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  502. NODES_PGOFF : ZONES_PGOFF)
  503. #endif
  504. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  505. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  506. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  507. #endif
  508. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  509. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  510. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  511. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  512. static inline enum zone_type page_zonenum(struct page *page)
  513. {
  514. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  515. }
  516. /*
  517. * The identification function is only used by the buddy allocator for
  518. * determining if two pages could be buddies. We are not really
  519. * identifying a zone since we could be using a the section number
  520. * id if we have not node id available in page flags.
  521. * We guarantee only that it will return the same value for two
  522. * combinable pages in a zone.
  523. */
  524. static inline int page_zone_id(struct page *page)
  525. {
  526. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  527. }
  528. static inline int zone_to_nid(struct zone *zone)
  529. {
  530. #ifdef CONFIG_NUMA
  531. return zone->node;
  532. #else
  533. return 0;
  534. #endif
  535. }
  536. #ifdef NODE_NOT_IN_PAGE_FLAGS
  537. extern int page_to_nid(struct page *page);
  538. #else
  539. static inline int page_to_nid(struct page *page)
  540. {
  541. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  542. }
  543. #endif
  544. static inline struct zone *page_zone(struct page *page)
  545. {
  546. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  547. }
  548. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  549. static inline unsigned long page_to_section(struct page *page)
  550. {
  551. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  552. }
  553. #endif
  554. static inline void set_page_zone(struct page *page, enum zone_type zone)
  555. {
  556. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  557. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  558. }
  559. static inline void set_page_node(struct page *page, unsigned long node)
  560. {
  561. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  562. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  563. }
  564. static inline void set_page_section(struct page *page, unsigned long section)
  565. {
  566. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  567. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  568. }
  569. static inline void set_page_links(struct page *page, enum zone_type zone,
  570. unsigned long node, unsigned long pfn)
  571. {
  572. set_page_zone(page, zone);
  573. set_page_node(page, node);
  574. set_page_section(page, pfn_to_section_nr(pfn));
  575. }
  576. /*
  577. * Some inline functions in vmstat.h depend on page_zone()
  578. */
  579. #include <linux/vmstat.h>
  580. static __always_inline void *lowmem_page_address(struct page *page)
  581. {
  582. return __va(PFN_PHYS(page_to_pfn(page)));
  583. }
  584. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  585. #define HASHED_PAGE_VIRTUAL
  586. #endif
  587. #if defined(WANT_PAGE_VIRTUAL)
  588. #define page_address(page) ((page)->virtual)
  589. #define set_page_address(page, address) \
  590. do { \
  591. (page)->virtual = (address); \
  592. } while(0)
  593. #define page_address_init() do { } while(0)
  594. #endif
  595. #if defined(HASHED_PAGE_VIRTUAL)
  596. void *page_address(struct page *page);
  597. void set_page_address(struct page *page, void *virtual);
  598. void page_address_init(void);
  599. #endif
  600. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  601. #define page_address(page) lowmem_page_address(page)
  602. #define set_page_address(page, address) do { } while(0)
  603. #define page_address_init() do { } while(0)
  604. #endif
  605. /*
  606. * On an anonymous page mapped into a user virtual memory area,
  607. * page->mapping points to its anon_vma, not to a struct address_space;
  608. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  609. *
  610. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  611. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  612. * and then page->mapping points, not to an anon_vma, but to a private
  613. * structure which KSM associates with that merged page. See ksm.h.
  614. *
  615. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  616. *
  617. * Please note that, confusingly, "page_mapping" refers to the inode
  618. * address_space which maps the page from disk; whereas "page_mapped"
  619. * refers to user virtual address space into which the page is mapped.
  620. */
  621. #define PAGE_MAPPING_ANON 1
  622. #define PAGE_MAPPING_KSM 2
  623. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  624. extern struct address_space swapper_space;
  625. static inline struct address_space *page_mapping(struct page *page)
  626. {
  627. struct address_space *mapping = page->mapping;
  628. VM_BUG_ON(PageSlab(page));
  629. if (unlikely(PageSwapCache(page)))
  630. mapping = &swapper_space;
  631. else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
  632. mapping = NULL;
  633. return mapping;
  634. }
  635. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  636. static inline void *page_rmapping(struct page *page)
  637. {
  638. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  639. }
  640. static inline int PageAnon(struct page *page)
  641. {
  642. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  643. }
  644. /*
  645. * Return the pagecache index of the passed page. Regular pagecache pages
  646. * use ->index whereas swapcache pages use ->private
  647. */
  648. static inline pgoff_t page_index(struct page *page)
  649. {
  650. if (unlikely(PageSwapCache(page)))
  651. return page_private(page);
  652. return page->index;
  653. }
  654. /*
  655. * The atomic page->_mapcount, like _count, starts from -1:
  656. * so that transitions both from it and to it can be tracked,
  657. * using atomic_inc_and_test and atomic_add_negative(-1).
  658. */
  659. static inline void reset_page_mapcount(struct page *page)
  660. {
  661. atomic_set(&(page)->_mapcount, -1);
  662. }
  663. static inline int page_mapcount(struct page *page)
  664. {
  665. return atomic_read(&(page)->_mapcount) + 1;
  666. }
  667. /*
  668. * Return true if this page is mapped into pagetables.
  669. */
  670. static inline int page_mapped(struct page *page)
  671. {
  672. return atomic_read(&(page)->_mapcount) >= 0;
  673. }
  674. /*
  675. * Different kinds of faults, as returned by handle_mm_fault().
  676. * Used to decide whether a process gets delivered SIGBUS or
  677. * just gets major/minor fault counters bumped up.
  678. */
  679. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  680. #define VM_FAULT_OOM 0x0001
  681. #define VM_FAULT_SIGBUS 0x0002
  682. #define VM_FAULT_MAJOR 0x0004
  683. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  684. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  685. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  686. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  687. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  688. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  689. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  690. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
  691. VM_FAULT_HWPOISON_LARGE)
  692. /* Encode hstate index for a hwpoisoned large page */
  693. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  694. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  695. /*
  696. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  697. */
  698. extern void pagefault_out_of_memory(void);
  699. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  700. extern void show_free_areas(void);
  701. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  702. struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
  703. int shmem_zero_setup(struct vm_area_struct *);
  704. #ifndef CONFIG_MMU
  705. extern unsigned long shmem_get_unmapped_area(struct file *file,
  706. unsigned long addr,
  707. unsigned long len,
  708. unsigned long pgoff,
  709. unsigned long flags);
  710. #endif
  711. extern int can_do_mlock(void);
  712. extern int user_shm_lock(size_t, struct user_struct *);
  713. extern void user_shm_unlock(size_t, struct user_struct *);
  714. /*
  715. * Parameter block passed down to zap_pte_range in exceptional cases.
  716. */
  717. struct zap_details {
  718. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  719. struct address_space *check_mapping; /* Check page->mapping if set */
  720. pgoff_t first_index; /* Lowest page->index to unmap */
  721. pgoff_t last_index; /* Highest page->index to unmap */
  722. spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
  723. unsigned long truncate_count; /* Compare vm_truncate_count */
  724. };
  725. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  726. pte_t pte);
  727. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  728. unsigned long size);
  729. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  730. unsigned long size, struct zap_details *);
  731. unsigned long unmap_vmas(struct mmu_gather **tlb,
  732. struct vm_area_struct *start_vma, unsigned long start_addr,
  733. unsigned long end_addr, unsigned long *nr_accounted,
  734. struct zap_details *);
  735. /**
  736. * mm_walk - callbacks for walk_page_range
  737. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  738. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  739. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  740. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  741. * @pte_hole: if set, called for each hole at all levels
  742. * @hugetlb_entry: if set, called for each hugetlb entry
  743. *
  744. * (see walk_page_range for more details)
  745. */
  746. struct mm_walk {
  747. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
  748. int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
  749. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
  750. int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
  751. int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
  752. int (*hugetlb_entry)(pte_t *, unsigned long,
  753. unsigned long, unsigned long, struct mm_walk *);
  754. struct mm_struct *mm;
  755. void *private;
  756. };
  757. int walk_page_range(unsigned long addr, unsigned long end,
  758. struct mm_walk *walk);
  759. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  760. unsigned long end, unsigned long floor, unsigned long ceiling);
  761. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  762. struct vm_area_struct *vma);
  763. void unmap_mapping_range(struct address_space *mapping,
  764. loff_t const holebegin, loff_t const holelen, int even_cows);
  765. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  766. unsigned long *pfn);
  767. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  768. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  769. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  770. void *buf, int len, int write);
  771. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  772. loff_t const holebegin, loff_t const holelen)
  773. {
  774. unmap_mapping_range(mapping, holebegin, holelen, 0);
  775. }
  776. extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
  777. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  778. extern int vmtruncate(struct inode *inode, loff_t offset);
  779. extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
  780. int truncate_inode_page(struct address_space *mapping, struct page *page);
  781. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  782. int invalidate_inode_page(struct page *page);
  783. #ifdef CONFIG_MMU
  784. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  785. unsigned long address, unsigned int flags);
  786. #else
  787. static inline int handle_mm_fault(struct mm_struct *mm,
  788. struct vm_area_struct *vma, unsigned long address,
  789. unsigned int flags)
  790. {
  791. /* should never happen if there's no MMU */
  792. BUG();
  793. return VM_FAULT_SIGBUS;
  794. }
  795. #endif
  796. extern int make_pages_present(unsigned long addr, unsigned long end);
  797. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  798. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  799. unsigned long start, int nr_pages, int write, int force,
  800. struct page **pages, struct vm_area_struct **vmas);
  801. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  802. struct page **pages);
  803. struct page *get_dump_page(unsigned long addr);
  804. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  805. extern void do_invalidatepage(struct page *page, unsigned long offset);
  806. int __set_page_dirty_nobuffers(struct page *page);
  807. int __set_page_dirty_no_writeback(struct page *page);
  808. int redirty_page_for_writepage(struct writeback_control *wbc,
  809. struct page *page);
  810. void account_page_dirtied(struct page *page, struct address_space *mapping);
  811. void account_page_writeback(struct page *page);
  812. int set_page_dirty(struct page *page);
  813. int set_page_dirty_lock(struct page *page);
  814. int clear_page_dirty_for_io(struct page *page);
  815. /* Is the vma a continuation of the stack vma above it? */
  816. static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
  817. {
  818. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  819. }
  820. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  821. unsigned long old_addr, struct vm_area_struct *new_vma,
  822. unsigned long new_addr, unsigned long len);
  823. extern unsigned long do_mremap(unsigned long addr,
  824. unsigned long old_len, unsigned long new_len,
  825. unsigned long flags, unsigned long new_addr);
  826. extern int mprotect_fixup(struct vm_area_struct *vma,
  827. struct vm_area_struct **pprev, unsigned long start,
  828. unsigned long end, unsigned long newflags);
  829. /*
  830. * doesn't attempt to fault and will return short.
  831. */
  832. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  833. struct page **pages);
  834. /*
  835. * per-process(per-mm_struct) statistics.
  836. */
  837. #if defined(SPLIT_RSS_COUNTING)
  838. /*
  839. * The mm counters are not protected by its page_table_lock,
  840. * so must be incremented atomically.
  841. */
  842. static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
  843. {
  844. atomic_long_set(&mm->rss_stat.count[member], value);
  845. }
  846. unsigned long get_mm_counter(struct mm_struct *mm, int member);
  847. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  848. {
  849. atomic_long_add(value, &mm->rss_stat.count[member]);
  850. }
  851. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  852. {
  853. atomic_long_inc(&mm->rss_stat.count[member]);
  854. }
  855. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  856. {
  857. atomic_long_dec(&mm->rss_stat.count[member]);
  858. }
  859. #else /* !USE_SPLIT_PTLOCKS */
  860. /*
  861. * The mm counters are protected by its page_table_lock,
  862. * so can be incremented directly.
  863. */
  864. static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
  865. {
  866. mm->rss_stat.count[member] = value;
  867. }
  868. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  869. {
  870. return mm->rss_stat.count[member];
  871. }
  872. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  873. {
  874. mm->rss_stat.count[member] += value;
  875. }
  876. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  877. {
  878. mm->rss_stat.count[member]++;
  879. }
  880. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  881. {
  882. mm->rss_stat.count[member]--;
  883. }
  884. #endif /* !USE_SPLIT_PTLOCKS */
  885. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  886. {
  887. return get_mm_counter(mm, MM_FILEPAGES) +
  888. get_mm_counter(mm, MM_ANONPAGES);
  889. }
  890. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  891. {
  892. return max(mm->hiwater_rss, get_mm_rss(mm));
  893. }
  894. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  895. {
  896. return max(mm->hiwater_vm, mm->total_vm);
  897. }
  898. static inline void update_hiwater_rss(struct mm_struct *mm)
  899. {
  900. unsigned long _rss = get_mm_rss(mm);
  901. if ((mm)->hiwater_rss < _rss)
  902. (mm)->hiwater_rss = _rss;
  903. }
  904. static inline void update_hiwater_vm(struct mm_struct *mm)
  905. {
  906. if (mm->hiwater_vm < mm->total_vm)
  907. mm->hiwater_vm = mm->total_vm;
  908. }
  909. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  910. struct mm_struct *mm)
  911. {
  912. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  913. if (*maxrss < hiwater_rss)
  914. *maxrss = hiwater_rss;
  915. }
  916. #if defined(SPLIT_RSS_COUNTING)
  917. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
  918. #else
  919. static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  920. {
  921. }
  922. #endif
  923. /*
  924. * A callback you can register to apply pressure to ageable caches.
  925. *
  926. * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
  927. * look through the least-recently-used 'nr_to_scan' entries and
  928. * attempt to free them up. It should return the number of objects
  929. * which remain in the cache. If it returns -1, it means it cannot do
  930. * any scanning at this time (eg. there is a risk of deadlock).
  931. *
  932. * The 'gfpmask' refers to the allocation we are currently trying to
  933. * fulfil.
  934. *
  935. * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
  936. * querying the cache size, so a fastpath for that case is appropriate.
  937. */
  938. struct shrinker {
  939. int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
  940. int seeks; /* seeks to recreate an obj */
  941. /* These are for internal use */
  942. struct list_head list;
  943. long nr; /* objs pending delete */
  944. };
  945. #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
  946. extern void register_shrinker(struct shrinker *);
  947. extern void unregister_shrinker(struct shrinker *);
  948. int vma_wants_writenotify(struct vm_area_struct *vma);
  949. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  950. spinlock_t **ptl);
  951. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  952. spinlock_t **ptl)
  953. {
  954. pte_t *ptep;
  955. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  956. return ptep;
  957. }
  958. #ifdef __PAGETABLE_PUD_FOLDED
  959. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  960. unsigned long address)
  961. {
  962. return 0;
  963. }
  964. #else
  965. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  966. #endif
  967. #ifdef __PAGETABLE_PMD_FOLDED
  968. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  969. unsigned long address)
  970. {
  971. return 0;
  972. }
  973. #else
  974. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  975. #endif
  976. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  977. pmd_t *pmd, unsigned long address);
  978. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  979. /*
  980. * The following ifdef needed to get the 4level-fixup.h header to work.
  981. * Remove it when 4level-fixup.h has been removed.
  982. */
  983. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  984. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  985. {
  986. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  987. NULL: pud_offset(pgd, address);
  988. }
  989. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  990. {
  991. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  992. NULL: pmd_offset(pud, address);
  993. }
  994. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  995. #if USE_SPLIT_PTLOCKS
  996. /*
  997. * We tuck a spinlock to guard each pagetable page into its struct page,
  998. * at page->private, with BUILD_BUG_ON to make sure that this will not
  999. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  1000. * When freeing, reset page->mapping so free_pages_check won't complain.
  1001. */
  1002. #define __pte_lockptr(page) &((page)->ptl)
  1003. #define pte_lock_init(_page) do { \
  1004. spin_lock_init(__pte_lockptr(_page)); \
  1005. } while (0)
  1006. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  1007. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  1008. #else /* !USE_SPLIT_PTLOCKS */
  1009. /*
  1010. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1011. */
  1012. #define pte_lock_init(page) do {} while (0)
  1013. #define pte_lock_deinit(page) do {} while (0)
  1014. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  1015. #endif /* USE_SPLIT_PTLOCKS */
  1016. static inline void pgtable_page_ctor(struct page *page)
  1017. {
  1018. pte_lock_init(page);
  1019. inc_zone_page_state(page, NR_PAGETABLE);
  1020. }
  1021. static inline void pgtable_page_dtor(struct page *page)
  1022. {
  1023. pte_lock_deinit(page);
  1024. dec_zone_page_state(page, NR_PAGETABLE);
  1025. }
  1026. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1027. ({ \
  1028. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1029. pte_t *__pte = pte_offset_map(pmd, address); \
  1030. *(ptlp) = __ptl; \
  1031. spin_lock(__ptl); \
  1032. __pte; \
  1033. })
  1034. #define pte_unmap_unlock(pte, ptl) do { \
  1035. spin_unlock(ptl); \
  1036. pte_unmap(pte); \
  1037. } while (0)
  1038. #define pte_alloc_map(mm, vma, pmd, address) \
  1039. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1040. pmd, address))? \
  1041. NULL: pte_offset_map(pmd, address))
  1042. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1043. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1044. pmd, address))? \
  1045. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1046. #define pte_alloc_kernel(pmd, address) \
  1047. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1048. NULL: pte_offset_kernel(pmd, address))
  1049. extern void free_area_init(unsigned long * zones_size);
  1050. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1051. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1052. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  1053. /*
  1054. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  1055. * zones, allocate the backing mem_map and account for memory holes in a more
  1056. * architecture independent manner. This is a substitute for creating the
  1057. * zone_sizes[] and zholes_size[] arrays and passing them to
  1058. * free_area_init_node()
  1059. *
  1060. * An architecture is expected to register range of page frames backed by
  1061. * physical memory with add_active_range() before calling
  1062. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1063. * usage, an architecture is expected to do something like
  1064. *
  1065. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1066. * max_highmem_pfn};
  1067. * for_each_valid_physical_page_range()
  1068. * add_active_range(node_id, start_pfn, end_pfn)
  1069. * free_area_init_nodes(max_zone_pfns);
  1070. *
  1071. * If the architecture guarantees that there are no holes in the ranges
  1072. * registered with add_active_range(), free_bootmem_active_regions()
  1073. * will call free_bootmem_node() for each registered physical page range.
  1074. * Similarly sparse_memory_present_with_active_regions() calls
  1075. * memory_present() for each range when SPARSEMEM is enabled.
  1076. *
  1077. * See mm/page_alloc.c for more information on each function exposed by
  1078. * CONFIG_ARCH_POPULATES_NODE_MAP
  1079. */
  1080. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1081. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  1082. unsigned long end_pfn);
  1083. extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
  1084. unsigned long end_pfn);
  1085. extern void remove_all_active_ranges(void);
  1086. void sort_node_map(void);
  1087. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1088. unsigned long end_pfn);
  1089. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1090. unsigned long end_pfn);
  1091. extern void get_pfn_range_for_nid(unsigned int nid,
  1092. unsigned long *start_pfn, unsigned long *end_pfn);
  1093. extern unsigned long find_min_pfn_with_active_regions(void);
  1094. extern void free_bootmem_with_active_regions(int nid,
  1095. unsigned long max_low_pfn);
  1096. int add_from_early_node_map(struct range *range, int az,
  1097. int nr_range, int nid);
  1098. u64 __init find_memory_core_early(int nid, u64 size, u64 align,
  1099. u64 goal, u64 limit);
  1100. void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
  1101. u64 goal, u64 limit);
  1102. typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
  1103. extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
  1104. extern void sparse_memory_present_with_active_regions(int nid);
  1105. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  1106. #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
  1107. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1108. static inline int __early_pfn_to_nid(unsigned long pfn)
  1109. {
  1110. return 0;
  1111. }
  1112. #else
  1113. /* please see mm/page_alloc.c */
  1114. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1115. #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1116. /* there is a per-arch backend function. */
  1117. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1118. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1119. #endif
  1120. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1121. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1122. unsigned long, enum memmap_context);
  1123. extern void setup_per_zone_wmarks(void);
  1124. extern void calculate_zone_inactive_ratio(struct zone *zone);
  1125. extern void mem_init(void);
  1126. extern void __init mmap_init(void);
  1127. extern void show_mem(void);
  1128. extern void si_meminfo(struct sysinfo * val);
  1129. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1130. extern int after_bootmem;
  1131. extern void setup_per_cpu_pageset(void);
  1132. extern void zone_pcp_update(struct zone *zone);
  1133. /* nommu.c */
  1134. extern atomic_long_t mmap_pages_allocated;
  1135. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1136. /* prio_tree.c */
  1137. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  1138. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  1139. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  1140. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  1141. struct prio_tree_iter *iter);
  1142. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  1143. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  1144. (vma = vma_prio_tree_next(vma, iter)); )
  1145. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1146. struct list_head *list)
  1147. {
  1148. vma->shared.vm_set.parent = NULL;
  1149. list_add_tail(&vma->shared.vm_set.list, list);
  1150. }
  1151. /* mmap.c */
  1152. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1153. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1154. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1155. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1156. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1157. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1158. struct mempolicy *);
  1159. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1160. extern int split_vma(struct mm_struct *,
  1161. struct vm_area_struct *, unsigned long addr, int new_below);
  1162. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1163. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1164. struct rb_node **, struct rb_node *);
  1165. extern void unlink_file_vma(struct vm_area_struct *);
  1166. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1167. unsigned long addr, unsigned long len, pgoff_t pgoff);
  1168. extern void exit_mmap(struct mm_struct *);
  1169. extern int mm_take_all_locks(struct mm_struct *mm);
  1170. extern void mm_drop_all_locks(struct mm_struct *mm);
  1171. #ifdef CONFIG_PROC_FS
  1172. /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
  1173. extern void added_exe_file_vma(struct mm_struct *mm);
  1174. extern void removed_exe_file_vma(struct mm_struct *mm);
  1175. #else
  1176. static inline void added_exe_file_vma(struct mm_struct *mm)
  1177. {}
  1178. static inline void removed_exe_file_vma(struct mm_struct *mm)
  1179. {}
  1180. #endif /* CONFIG_PROC_FS */
  1181. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1182. extern int install_special_mapping(struct mm_struct *mm,
  1183. unsigned long addr, unsigned long len,
  1184. unsigned long flags, struct page **pages);
  1185. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1186. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  1187. unsigned long len, unsigned long prot,
  1188. unsigned long flag, unsigned long pgoff);
  1189. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1190. unsigned long len, unsigned long flags,
  1191. unsigned int vm_flags, unsigned long pgoff);
  1192. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  1193. unsigned long len, unsigned long prot,
  1194. unsigned long flag, unsigned long offset)
  1195. {
  1196. unsigned long ret = -EINVAL;
  1197. if ((offset + PAGE_ALIGN(len)) < offset)
  1198. goto out;
  1199. if (!(offset & ~PAGE_MASK))
  1200. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  1201. out:
  1202. return ret;
  1203. }
  1204. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1205. extern unsigned long do_brk(unsigned long, unsigned long);
  1206. /* filemap.c */
  1207. extern unsigned long page_unuse(struct page *);
  1208. extern void truncate_inode_pages(struct address_space *, loff_t);
  1209. extern void truncate_inode_pages_range(struct address_space *,
  1210. loff_t lstart, loff_t lend);
  1211. /* generic vm_area_ops exported for stackable file systems */
  1212. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1213. /* mm/page-writeback.c */
  1214. int write_one_page(struct page *page, int wait);
  1215. void task_dirty_inc(struct task_struct *tsk);
  1216. /* readahead.c */
  1217. #define VM_MAX_READAHEAD 128 /* kbytes */
  1218. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1219. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1220. pgoff_t offset, unsigned long nr_to_read);
  1221. void page_cache_sync_readahead(struct address_space *mapping,
  1222. struct file_ra_state *ra,
  1223. struct file *filp,
  1224. pgoff_t offset,
  1225. unsigned long size);
  1226. void page_cache_async_readahead(struct address_space *mapping,
  1227. struct file_ra_state *ra,
  1228. struct file *filp,
  1229. struct page *pg,
  1230. pgoff_t offset,
  1231. unsigned long size);
  1232. unsigned long max_sane_readahead(unsigned long nr);
  1233. unsigned long ra_submit(struct file_ra_state *ra,
  1234. struct address_space *mapping,
  1235. struct file *filp);
  1236. /* Do stack extension */
  1237. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1238. #if VM_GROWSUP
  1239. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1240. #else
  1241. #define expand_upwards(vma, address) do { } while (0)
  1242. #endif
  1243. extern int expand_stack_downwards(struct vm_area_struct *vma,
  1244. unsigned long address);
  1245. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1246. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1247. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1248. struct vm_area_struct **pprev);
  1249. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1250. NULL if none. Assume start_addr < end_addr. */
  1251. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1252. {
  1253. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1254. if (vma && end_addr <= vma->vm_start)
  1255. vma = NULL;
  1256. return vma;
  1257. }
  1258. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1259. {
  1260. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1261. }
  1262. #ifdef CONFIG_MMU
  1263. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1264. #else
  1265. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1266. {
  1267. return __pgprot(0);
  1268. }
  1269. #endif
  1270. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1271. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1272. unsigned long pfn, unsigned long size, pgprot_t);
  1273. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1274. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1275. unsigned long pfn);
  1276. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1277. unsigned long pfn);
  1278. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  1279. unsigned int foll_flags);
  1280. #define FOLL_WRITE 0x01 /* check pte is writable */
  1281. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1282. #define FOLL_GET 0x04 /* do get_page on page */
  1283. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1284. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1285. #define FOLL_MLOCK 0x40 /* mark page as mlocked */
  1286. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1287. void *data);
  1288. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1289. unsigned long size, pte_fn_t fn, void *data);
  1290. #ifdef CONFIG_PROC_FS
  1291. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1292. #else
  1293. static inline void vm_stat_account(struct mm_struct *mm,
  1294. unsigned long flags, struct file *file, long pages)
  1295. {
  1296. }
  1297. #endif /* CONFIG_PROC_FS */
  1298. #ifdef CONFIG_DEBUG_PAGEALLOC
  1299. extern int debug_pagealloc_enabled;
  1300. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1301. static inline void enable_debug_pagealloc(void)
  1302. {
  1303. debug_pagealloc_enabled = 1;
  1304. }
  1305. #ifdef CONFIG_HIBERNATION
  1306. extern bool kernel_page_present(struct page *page);
  1307. #endif /* CONFIG_HIBERNATION */
  1308. #else
  1309. static inline void
  1310. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1311. static inline void enable_debug_pagealloc(void)
  1312. {
  1313. }
  1314. #ifdef CONFIG_HIBERNATION
  1315. static inline bool kernel_page_present(struct page *page) { return true; }
  1316. #endif /* CONFIG_HIBERNATION */
  1317. #endif
  1318. extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
  1319. #ifdef __HAVE_ARCH_GATE_AREA
  1320. int in_gate_area_no_task(unsigned long addr);
  1321. int in_gate_area(struct task_struct *task, unsigned long addr);
  1322. #else
  1323. int in_gate_area_no_task(unsigned long addr);
  1324. #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
  1325. #endif /* __HAVE_ARCH_GATE_AREA */
  1326. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1327. void __user *, size_t *, loff_t *);
  1328. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  1329. unsigned long lru_pages);
  1330. #ifndef CONFIG_MMU
  1331. #define randomize_va_space 0
  1332. #else
  1333. extern int randomize_va_space;
  1334. #endif
  1335. const char * arch_vma_name(struct vm_area_struct *vma);
  1336. void print_vma_addr(char *prefix, unsigned long rip);
  1337. void sparse_mem_maps_populate_node(struct page **map_map,
  1338. unsigned long pnum_begin,
  1339. unsigned long pnum_end,
  1340. unsigned long map_count,
  1341. int nodeid);
  1342. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1343. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1344. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1345. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1346. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1347. void *vmemmap_alloc_block(unsigned long size, int node);
  1348. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1349. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1350. int vmemmap_populate_basepages(struct page *start_page,
  1351. unsigned long pages, int node);
  1352. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1353. void vmemmap_populate_print_last(void);
  1354. enum mf_flags {
  1355. MF_COUNT_INCREASED = 1 << 0,
  1356. };
  1357. extern void memory_failure(unsigned long pfn, int trapno);
  1358. extern int __memory_failure(unsigned long pfn, int trapno, int flags);
  1359. extern int unpoison_memory(unsigned long pfn);
  1360. extern int sysctl_memory_failure_early_kill;
  1361. extern int sysctl_memory_failure_recovery;
  1362. extern void shake_page(struct page *p, int access);
  1363. extern atomic_long_t mce_bad_pages;
  1364. extern int soft_offline_page(struct page *page, int flags);
  1365. #ifdef CONFIG_MEMORY_FAILURE
  1366. int is_hwpoison_address(unsigned long addr);
  1367. #else
  1368. static inline int is_hwpoison_address(unsigned long addr)
  1369. {
  1370. return 0;
  1371. }
  1372. #endif
  1373. extern void dump_page(struct page *page);
  1374. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1375. extern void clear_huge_page(struct page *page,
  1376. unsigned long addr,
  1377. unsigned int pages_per_huge_page);
  1378. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1379. unsigned long addr, struct vm_area_struct *vma,
  1380. unsigned int pages_per_huge_page);
  1381. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1382. #endif /* __KERNEL__ */
  1383. #endif /* _LINUX_MM_H */