slab.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/config.h>
  89. #include <linux/slab.h>
  90. #include <linux/mm.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/seq_file.h>
  98. #include <linux/notifier.h>
  99. #include <linux/kallsyms.h>
  100. #include <linux/cpu.h>
  101. #include <linux/sysctl.h>
  102. #include <linux/module.h>
  103. #include <linux/rcupdate.h>
  104. #include <linux/string.h>
  105. #include <linux/nodemask.h>
  106. #include <linux/mempolicy.h>
  107. #include <linux/mutex.h>
  108. #include <asm/uaccess.h>
  109. #include <asm/cacheflush.h>
  110. #include <asm/tlbflush.h>
  111. #include <asm/page.h>
  112. /*
  113. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  114. * SLAB_RED_ZONE & SLAB_POISON.
  115. * 0 for faster, smaller code (especially in the critical paths).
  116. *
  117. * STATS - 1 to collect stats for /proc/slabinfo.
  118. * 0 for faster, smaller code (especially in the critical paths).
  119. *
  120. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  121. */
  122. #ifdef CONFIG_DEBUG_SLAB
  123. #define DEBUG 1
  124. #define STATS 1
  125. #define FORCED_DEBUG 1
  126. #else
  127. #define DEBUG 0
  128. #define STATS 0
  129. #define FORCED_DEBUG 0
  130. #endif
  131. /* Shouldn't this be in a header file somewhere? */
  132. #define BYTES_PER_WORD sizeof(void *)
  133. #ifndef cache_line_size
  134. #define cache_line_size() L1_CACHE_BYTES
  135. #endif
  136. #ifndef ARCH_KMALLOC_MINALIGN
  137. /*
  138. * Enforce a minimum alignment for the kmalloc caches.
  139. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  140. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  141. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  142. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  143. * Note that this flag disables some debug features.
  144. */
  145. #define ARCH_KMALLOC_MINALIGN 0
  146. #endif
  147. #ifndef ARCH_SLAB_MINALIGN
  148. /*
  149. * Enforce a minimum alignment for all caches.
  150. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  151. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  152. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  153. * some debug features.
  154. */
  155. #define ARCH_SLAB_MINALIGN 0
  156. #endif
  157. #ifndef ARCH_KMALLOC_FLAGS
  158. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  159. #endif
  160. /* Legal flag mask for kmem_cache_create(). */
  161. #if DEBUG
  162. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  163. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  164. SLAB_CACHE_DMA | \
  165. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  166. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  167. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  168. #else
  169. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  170. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  171. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  172. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  173. #endif
  174. /*
  175. * kmem_bufctl_t:
  176. *
  177. * Bufctl's are used for linking objs within a slab
  178. * linked offsets.
  179. *
  180. * This implementation relies on "struct page" for locating the cache &
  181. * slab an object belongs to.
  182. * This allows the bufctl structure to be small (one int), but limits
  183. * the number of objects a slab (not a cache) can contain when off-slab
  184. * bufctls are used. The limit is the size of the largest general cache
  185. * that does not use off-slab slabs.
  186. * For 32bit archs with 4 kB pages, is this 56.
  187. * This is not serious, as it is only for large objects, when it is unwise
  188. * to have too many per slab.
  189. * Note: This limit can be raised by introducing a general cache whose size
  190. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  191. */
  192. typedef unsigned int kmem_bufctl_t;
  193. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  194. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  195. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  196. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  197. /*
  198. * struct slab
  199. *
  200. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  201. * for a slab, or allocated from an general cache.
  202. * Slabs are chained into three list: fully used, partial, fully free slabs.
  203. */
  204. struct slab {
  205. struct list_head list;
  206. unsigned long colouroff;
  207. void *s_mem; /* including colour offset */
  208. unsigned int inuse; /* num of objs active in slab */
  209. kmem_bufctl_t free;
  210. unsigned short nodeid;
  211. };
  212. /*
  213. * struct slab_rcu
  214. *
  215. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  216. * arrange for kmem_freepages to be called via RCU. This is useful if
  217. * we need to approach a kernel structure obliquely, from its address
  218. * obtained without the usual locking. We can lock the structure to
  219. * stabilize it and check it's still at the given address, only if we
  220. * can be sure that the memory has not been meanwhile reused for some
  221. * other kind of object (which our subsystem's lock might corrupt).
  222. *
  223. * rcu_read_lock before reading the address, then rcu_read_unlock after
  224. * taking the spinlock within the structure expected at that address.
  225. *
  226. * We assume struct slab_rcu can overlay struct slab when destroying.
  227. */
  228. struct slab_rcu {
  229. struct rcu_head head;
  230. struct kmem_cache *cachep;
  231. void *addr;
  232. };
  233. /*
  234. * struct array_cache
  235. *
  236. * Purpose:
  237. * - LIFO ordering, to hand out cache-warm objects from _alloc
  238. * - reduce the number of linked list operations
  239. * - reduce spinlock operations
  240. *
  241. * The limit is stored in the per-cpu structure to reduce the data cache
  242. * footprint.
  243. *
  244. */
  245. struct array_cache {
  246. unsigned int avail;
  247. unsigned int limit;
  248. unsigned int batchcount;
  249. unsigned int touched;
  250. spinlock_t lock;
  251. void *entry[0]; /*
  252. * Must have this definition in here for the proper
  253. * alignment of array_cache. Also simplifies accessing
  254. * the entries.
  255. * [0] is for gcc 2.95. It should really be [].
  256. */
  257. };
  258. /*
  259. * bootstrap: The caches do not work without cpuarrays anymore, but the
  260. * cpuarrays are allocated from the generic caches...
  261. */
  262. #define BOOT_CPUCACHE_ENTRIES 1
  263. struct arraycache_init {
  264. struct array_cache cache;
  265. void *entries[BOOT_CPUCACHE_ENTRIES];
  266. };
  267. /*
  268. * The slab lists for all objects.
  269. */
  270. struct kmem_list3 {
  271. struct list_head slabs_partial; /* partial list first, better asm code */
  272. struct list_head slabs_full;
  273. struct list_head slabs_free;
  274. unsigned long free_objects;
  275. unsigned int free_limit;
  276. unsigned int colour_next; /* Per-node cache coloring */
  277. spinlock_t list_lock;
  278. struct array_cache *shared; /* shared per node */
  279. struct array_cache **alien; /* on other nodes */
  280. unsigned long next_reap; /* updated without locking */
  281. int free_touched; /* updated without locking */
  282. };
  283. /*
  284. * Need this for bootstrapping a per node allocator.
  285. */
  286. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  287. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  288. #define CACHE_CACHE 0
  289. #define SIZE_AC 1
  290. #define SIZE_L3 (1 + MAX_NUMNODES)
  291. /*
  292. * This function must be completely optimized away if a constant is passed to
  293. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  294. */
  295. static __always_inline int index_of(const size_t size)
  296. {
  297. extern void __bad_size(void);
  298. if (__builtin_constant_p(size)) {
  299. int i = 0;
  300. #define CACHE(x) \
  301. if (size <=x) \
  302. return i; \
  303. else \
  304. i++;
  305. #include "linux/kmalloc_sizes.h"
  306. #undef CACHE
  307. __bad_size();
  308. } else
  309. __bad_size();
  310. return 0;
  311. }
  312. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  313. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  314. static void kmem_list3_init(struct kmem_list3 *parent)
  315. {
  316. INIT_LIST_HEAD(&parent->slabs_full);
  317. INIT_LIST_HEAD(&parent->slabs_partial);
  318. INIT_LIST_HEAD(&parent->slabs_free);
  319. parent->shared = NULL;
  320. parent->alien = NULL;
  321. parent->colour_next = 0;
  322. spin_lock_init(&parent->list_lock);
  323. parent->free_objects = 0;
  324. parent->free_touched = 0;
  325. }
  326. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  327. do { \
  328. INIT_LIST_HEAD(listp); \
  329. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  330. } while (0)
  331. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  332. do { \
  333. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  334. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  335. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  336. } while (0)
  337. /*
  338. * struct kmem_cache
  339. *
  340. * manages a cache.
  341. */
  342. struct kmem_cache {
  343. /* 1) per-cpu data, touched during every alloc/free */
  344. struct array_cache *array[NR_CPUS];
  345. /* 2) Cache tunables. Protected by cache_chain_mutex */
  346. unsigned int batchcount;
  347. unsigned int limit;
  348. unsigned int shared;
  349. unsigned int buffer_size;
  350. /* 3) touched by every alloc & free from the backend */
  351. struct kmem_list3 *nodelists[MAX_NUMNODES];
  352. unsigned int flags; /* constant flags */
  353. unsigned int num; /* # of objs per slab */
  354. /* 4) cache_grow/shrink */
  355. /* order of pgs per slab (2^n) */
  356. unsigned int gfporder;
  357. /* force GFP flags, e.g. GFP_DMA */
  358. gfp_t gfpflags;
  359. size_t colour; /* cache colouring range */
  360. unsigned int colour_off; /* colour offset */
  361. struct kmem_cache *slabp_cache;
  362. unsigned int slab_size;
  363. unsigned int dflags; /* dynamic flags */
  364. /* constructor func */
  365. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  366. /* de-constructor func */
  367. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  368. /* 5) cache creation/removal */
  369. const char *name;
  370. struct list_head next;
  371. /* 6) statistics */
  372. #if STATS
  373. unsigned long num_active;
  374. unsigned long num_allocations;
  375. unsigned long high_mark;
  376. unsigned long grown;
  377. unsigned long reaped;
  378. unsigned long errors;
  379. unsigned long max_freeable;
  380. unsigned long node_allocs;
  381. unsigned long node_frees;
  382. unsigned long node_overflow;
  383. atomic_t allochit;
  384. atomic_t allocmiss;
  385. atomic_t freehit;
  386. atomic_t freemiss;
  387. #endif
  388. #if DEBUG
  389. /*
  390. * If debugging is enabled, then the allocator can add additional
  391. * fields and/or padding to every object. buffer_size contains the total
  392. * object size including these internal fields, the following two
  393. * variables contain the offset to the user object and its size.
  394. */
  395. int obj_offset;
  396. int obj_size;
  397. #endif
  398. };
  399. #define CFLGS_OFF_SLAB (0x80000000UL)
  400. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  401. #define BATCHREFILL_LIMIT 16
  402. /*
  403. * Optimization question: fewer reaps means less probability for unnessary
  404. * cpucache drain/refill cycles.
  405. *
  406. * OTOH the cpuarrays can contain lots of objects,
  407. * which could lock up otherwise freeable slabs.
  408. */
  409. #define REAPTIMEOUT_CPUC (2*HZ)
  410. #define REAPTIMEOUT_LIST3 (4*HZ)
  411. #if STATS
  412. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  413. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  414. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  415. #define STATS_INC_GROWN(x) ((x)->grown++)
  416. #define STATS_INC_REAPED(x) ((x)->reaped++)
  417. #define STATS_SET_HIGH(x) \
  418. do { \
  419. if ((x)->num_active > (x)->high_mark) \
  420. (x)->high_mark = (x)->num_active; \
  421. } while (0)
  422. #define STATS_INC_ERR(x) ((x)->errors++)
  423. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  424. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  425. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  426. #define STATS_SET_FREEABLE(x, i) \
  427. do { \
  428. if ((x)->max_freeable < i) \
  429. (x)->max_freeable = i; \
  430. } while (0)
  431. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  432. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  433. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  434. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  435. #else
  436. #define STATS_INC_ACTIVE(x) do { } while (0)
  437. #define STATS_DEC_ACTIVE(x) do { } while (0)
  438. #define STATS_INC_ALLOCED(x) do { } while (0)
  439. #define STATS_INC_GROWN(x) do { } while (0)
  440. #define STATS_INC_REAPED(x) do { } while (0)
  441. #define STATS_SET_HIGH(x) do { } while (0)
  442. #define STATS_INC_ERR(x) do { } while (0)
  443. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  444. #define STATS_INC_NODEFREES(x) do { } while (0)
  445. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  446. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  447. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  448. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  449. #define STATS_INC_FREEHIT(x) do { } while (0)
  450. #define STATS_INC_FREEMISS(x) do { } while (0)
  451. #endif
  452. #if DEBUG
  453. /*
  454. * Magic nums for obj red zoning.
  455. * Placed in the first word before and the first word after an obj.
  456. */
  457. #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
  458. #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
  459. /* ...and for poisoning */
  460. #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
  461. #define POISON_FREE 0x6b /* for use-after-free poisoning */
  462. #define POISON_END 0xa5 /* end-byte of poisoning */
  463. /*
  464. * memory layout of objects:
  465. * 0 : objp
  466. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  467. * the end of an object is aligned with the end of the real
  468. * allocation. Catches writes behind the end of the allocation.
  469. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  470. * redzone word.
  471. * cachep->obj_offset: The real object.
  472. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  473. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  474. * [BYTES_PER_WORD long]
  475. */
  476. static int obj_offset(struct kmem_cache *cachep)
  477. {
  478. return cachep->obj_offset;
  479. }
  480. static int obj_size(struct kmem_cache *cachep)
  481. {
  482. return cachep->obj_size;
  483. }
  484. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  485. {
  486. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  487. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  488. }
  489. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  490. {
  491. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  492. if (cachep->flags & SLAB_STORE_USER)
  493. return (unsigned long *)(objp + cachep->buffer_size -
  494. 2 * BYTES_PER_WORD);
  495. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  496. }
  497. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  498. {
  499. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  500. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  501. }
  502. #else
  503. #define obj_offset(x) 0
  504. #define obj_size(cachep) (cachep->buffer_size)
  505. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  506. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  507. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  508. #endif
  509. /*
  510. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  511. * order.
  512. */
  513. #if defined(CONFIG_LARGE_ALLOCS)
  514. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  515. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  516. #elif defined(CONFIG_MMU)
  517. #define MAX_OBJ_ORDER 5 /* 32 pages */
  518. #define MAX_GFP_ORDER 5 /* 32 pages */
  519. #else
  520. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  521. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  522. #endif
  523. /*
  524. * Do not go above this order unless 0 objects fit into the slab.
  525. */
  526. #define BREAK_GFP_ORDER_HI 1
  527. #define BREAK_GFP_ORDER_LO 0
  528. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  529. /*
  530. * Functions for storing/retrieving the cachep and or slab from the page
  531. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  532. * these are used to find the cache which an obj belongs to.
  533. */
  534. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  535. {
  536. page->lru.next = (struct list_head *)cache;
  537. }
  538. static inline struct kmem_cache *page_get_cache(struct page *page)
  539. {
  540. if (unlikely(PageCompound(page)))
  541. page = (struct page *)page_private(page);
  542. return (struct kmem_cache *)page->lru.next;
  543. }
  544. static inline void page_set_slab(struct page *page, struct slab *slab)
  545. {
  546. page->lru.prev = (struct list_head *)slab;
  547. }
  548. static inline struct slab *page_get_slab(struct page *page)
  549. {
  550. if (unlikely(PageCompound(page)))
  551. page = (struct page *)page_private(page);
  552. return (struct slab *)page->lru.prev;
  553. }
  554. static inline struct kmem_cache *virt_to_cache(const void *obj)
  555. {
  556. struct page *page = virt_to_page(obj);
  557. return page_get_cache(page);
  558. }
  559. static inline struct slab *virt_to_slab(const void *obj)
  560. {
  561. struct page *page = virt_to_page(obj);
  562. return page_get_slab(page);
  563. }
  564. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  565. unsigned int idx)
  566. {
  567. return slab->s_mem + cache->buffer_size * idx;
  568. }
  569. static inline unsigned int obj_to_index(struct kmem_cache *cache,
  570. struct slab *slab, void *obj)
  571. {
  572. return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
  573. }
  574. /*
  575. * These are the default caches for kmalloc. Custom caches can have other sizes.
  576. */
  577. struct cache_sizes malloc_sizes[] = {
  578. #define CACHE(x) { .cs_size = (x) },
  579. #include <linux/kmalloc_sizes.h>
  580. CACHE(ULONG_MAX)
  581. #undef CACHE
  582. };
  583. EXPORT_SYMBOL(malloc_sizes);
  584. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  585. struct cache_names {
  586. char *name;
  587. char *name_dma;
  588. };
  589. static struct cache_names __initdata cache_names[] = {
  590. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  591. #include <linux/kmalloc_sizes.h>
  592. {NULL,}
  593. #undef CACHE
  594. };
  595. static struct arraycache_init initarray_cache __initdata =
  596. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  597. static struct arraycache_init initarray_generic =
  598. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  599. /* internal cache of cache description objs */
  600. static struct kmem_cache cache_cache = {
  601. .batchcount = 1,
  602. .limit = BOOT_CPUCACHE_ENTRIES,
  603. .shared = 1,
  604. .buffer_size = sizeof(struct kmem_cache),
  605. .name = "kmem_cache",
  606. #if DEBUG
  607. .obj_size = sizeof(struct kmem_cache),
  608. #endif
  609. };
  610. /* Guard access to the cache-chain. */
  611. static DEFINE_MUTEX(cache_chain_mutex);
  612. static struct list_head cache_chain;
  613. /*
  614. * vm_enough_memory() looks at this to determine how many slab-allocated pages
  615. * are possibly freeable under pressure
  616. *
  617. * SLAB_RECLAIM_ACCOUNT turns this on per-slab
  618. */
  619. atomic_t slab_reclaim_pages;
  620. /*
  621. * chicken and egg problem: delay the per-cpu array allocation
  622. * until the general caches are up.
  623. */
  624. static enum {
  625. NONE,
  626. PARTIAL_AC,
  627. PARTIAL_L3,
  628. FULL
  629. } g_cpucache_up;
  630. /*
  631. * used by boot code to determine if it can use slab based allocator
  632. */
  633. int slab_is_available(void)
  634. {
  635. return g_cpucache_up == FULL;
  636. }
  637. static DEFINE_PER_CPU(struct work_struct, reap_work);
  638. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  639. int node);
  640. static void enable_cpucache(struct kmem_cache *cachep);
  641. static void cache_reap(void *unused);
  642. static int __node_shrink(struct kmem_cache *cachep, int node);
  643. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  644. {
  645. return cachep->array[smp_processor_id()];
  646. }
  647. static inline struct kmem_cache *__find_general_cachep(size_t size,
  648. gfp_t gfpflags)
  649. {
  650. struct cache_sizes *csizep = malloc_sizes;
  651. #if DEBUG
  652. /* This happens if someone tries to call
  653. * kmem_cache_create(), or __kmalloc(), before
  654. * the generic caches are initialized.
  655. */
  656. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  657. #endif
  658. while (size > csizep->cs_size)
  659. csizep++;
  660. /*
  661. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  662. * has cs_{dma,}cachep==NULL. Thus no special case
  663. * for large kmalloc calls required.
  664. */
  665. if (unlikely(gfpflags & GFP_DMA))
  666. return csizep->cs_dmacachep;
  667. return csizep->cs_cachep;
  668. }
  669. struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  670. {
  671. return __find_general_cachep(size, gfpflags);
  672. }
  673. EXPORT_SYMBOL(kmem_find_general_cachep);
  674. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  675. {
  676. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  677. }
  678. /*
  679. * Calculate the number of objects and left-over bytes for a given buffer size.
  680. */
  681. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  682. size_t align, int flags, size_t *left_over,
  683. unsigned int *num)
  684. {
  685. int nr_objs;
  686. size_t mgmt_size;
  687. size_t slab_size = PAGE_SIZE << gfporder;
  688. /*
  689. * The slab management structure can be either off the slab or
  690. * on it. For the latter case, the memory allocated for a
  691. * slab is used for:
  692. *
  693. * - The struct slab
  694. * - One kmem_bufctl_t for each object
  695. * - Padding to respect alignment of @align
  696. * - @buffer_size bytes for each object
  697. *
  698. * If the slab management structure is off the slab, then the
  699. * alignment will already be calculated into the size. Because
  700. * the slabs are all pages aligned, the objects will be at the
  701. * correct alignment when allocated.
  702. */
  703. if (flags & CFLGS_OFF_SLAB) {
  704. mgmt_size = 0;
  705. nr_objs = slab_size / buffer_size;
  706. if (nr_objs > SLAB_LIMIT)
  707. nr_objs = SLAB_LIMIT;
  708. } else {
  709. /*
  710. * Ignore padding for the initial guess. The padding
  711. * is at most @align-1 bytes, and @buffer_size is at
  712. * least @align. In the worst case, this result will
  713. * be one greater than the number of objects that fit
  714. * into the memory allocation when taking the padding
  715. * into account.
  716. */
  717. nr_objs = (slab_size - sizeof(struct slab)) /
  718. (buffer_size + sizeof(kmem_bufctl_t));
  719. /*
  720. * This calculated number will be either the right
  721. * amount, or one greater than what we want.
  722. */
  723. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  724. > slab_size)
  725. nr_objs--;
  726. if (nr_objs > SLAB_LIMIT)
  727. nr_objs = SLAB_LIMIT;
  728. mgmt_size = slab_mgmt_size(nr_objs, align);
  729. }
  730. *num = nr_objs;
  731. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  732. }
  733. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  734. static void __slab_error(const char *function, struct kmem_cache *cachep,
  735. char *msg)
  736. {
  737. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  738. function, cachep->name, msg);
  739. dump_stack();
  740. }
  741. #ifdef CONFIG_NUMA
  742. /*
  743. * Special reaping functions for NUMA systems called from cache_reap().
  744. * These take care of doing round robin flushing of alien caches (containing
  745. * objects freed on different nodes from which they were allocated) and the
  746. * flushing of remote pcps by calling drain_node_pages.
  747. */
  748. static DEFINE_PER_CPU(unsigned long, reap_node);
  749. static void init_reap_node(int cpu)
  750. {
  751. int node;
  752. node = next_node(cpu_to_node(cpu), node_online_map);
  753. if (node == MAX_NUMNODES)
  754. node = first_node(node_online_map);
  755. __get_cpu_var(reap_node) = node;
  756. }
  757. static void next_reap_node(void)
  758. {
  759. int node = __get_cpu_var(reap_node);
  760. /*
  761. * Also drain per cpu pages on remote zones
  762. */
  763. if (node != numa_node_id())
  764. drain_node_pages(node);
  765. node = next_node(node, node_online_map);
  766. if (unlikely(node >= MAX_NUMNODES))
  767. node = first_node(node_online_map);
  768. __get_cpu_var(reap_node) = node;
  769. }
  770. #else
  771. #define init_reap_node(cpu) do { } while (0)
  772. #define next_reap_node(void) do { } while (0)
  773. #endif
  774. /*
  775. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  776. * via the workqueue/eventd.
  777. * Add the CPU number into the expiration time to minimize the possibility of
  778. * the CPUs getting into lockstep and contending for the global cache chain
  779. * lock.
  780. */
  781. static void __devinit start_cpu_timer(int cpu)
  782. {
  783. struct work_struct *reap_work = &per_cpu(reap_work, cpu);
  784. /*
  785. * When this gets called from do_initcalls via cpucache_init(),
  786. * init_workqueues() has already run, so keventd will be setup
  787. * at that time.
  788. */
  789. if (keventd_up() && reap_work->func == NULL) {
  790. init_reap_node(cpu);
  791. INIT_WORK(reap_work, cache_reap, NULL);
  792. schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
  793. }
  794. }
  795. static struct array_cache *alloc_arraycache(int node, int entries,
  796. int batchcount)
  797. {
  798. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  799. struct array_cache *nc = NULL;
  800. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  801. if (nc) {
  802. nc->avail = 0;
  803. nc->limit = entries;
  804. nc->batchcount = batchcount;
  805. nc->touched = 0;
  806. spin_lock_init(&nc->lock);
  807. }
  808. return nc;
  809. }
  810. /*
  811. * Transfer objects in one arraycache to another.
  812. * Locking must be handled by the caller.
  813. *
  814. * Return the number of entries transferred.
  815. */
  816. static int transfer_objects(struct array_cache *to,
  817. struct array_cache *from, unsigned int max)
  818. {
  819. /* Figure out how many entries to transfer */
  820. int nr = min(min(from->avail, max), to->limit - to->avail);
  821. if (!nr)
  822. return 0;
  823. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  824. sizeof(void *) *nr);
  825. from->avail -= nr;
  826. to->avail += nr;
  827. to->touched = 1;
  828. return nr;
  829. }
  830. #ifdef CONFIG_NUMA
  831. static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
  832. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  833. static struct array_cache **alloc_alien_cache(int node, int limit)
  834. {
  835. struct array_cache **ac_ptr;
  836. int memsize = sizeof(void *) * MAX_NUMNODES;
  837. int i;
  838. if (limit > 1)
  839. limit = 12;
  840. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  841. if (ac_ptr) {
  842. for_each_node(i) {
  843. if (i == node || !node_online(i)) {
  844. ac_ptr[i] = NULL;
  845. continue;
  846. }
  847. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  848. if (!ac_ptr[i]) {
  849. for (i--; i <= 0; i--)
  850. kfree(ac_ptr[i]);
  851. kfree(ac_ptr);
  852. return NULL;
  853. }
  854. }
  855. }
  856. return ac_ptr;
  857. }
  858. static void free_alien_cache(struct array_cache **ac_ptr)
  859. {
  860. int i;
  861. if (!ac_ptr)
  862. return;
  863. for_each_node(i)
  864. kfree(ac_ptr[i]);
  865. kfree(ac_ptr);
  866. }
  867. static void __drain_alien_cache(struct kmem_cache *cachep,
  868. struct array_cache *ac, int node)
  869. {
  870. struct kmem_list3 *rl3 = cachep->nodelists[node];
  871. if (ac->avail) {
  872. spin_lock(&rl3->list_lock);
  873. /*
  874. * Stuff objects into the remote nodes shared array first.
  875. * That way we could avoid the overhead of putting the objects
  876. * into the free lists and getting them back later.
  877. */
  878. if (rl3->shared)
  879. transfer_objects(rl3->shared, ac, ac->limit);
  880. free_block(cachep, ac->entry, ac->avail, node);
  881. ac->avail = 0;
  882. spin_unlock(&rl3->list_lock);
  883. }
  884. }
  885. /*
  886. * Called from cache_reap() to regularly drain alien caches round robin.
  887. */
  888. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  889. {
  890. int node = __get_cpu_var(reap_node);
  891. if (l3->alien) {
  892. struct array_cache *ac = l3->alien[node];
  893. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  894. __drain_alien_cache(cachep, ac, node);
  895. spin_unlock_irq(&ac->lock);
  896. }
  897. }
  898. }
  899. static void drain_alien_cache(struct kmem_cache *cachep,
  900. struct array_cache **alien)
  901. {
  902. int i = 0;
  903. struct array_cache *ac;
  904. unsigned long flags;
  905. for_each_online_node(i) {
  906. ac = alien[i];
  907. if (ac) {
  908. spin_lock_irqsave(&ac->lock, flags);
  909. __drain_alien_cache(cachep, ac, i);
  910. spin_unlock_irqrestore(&ac->lock, flags);
  911. }
  912. }
  913. }
  914. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  915. {
  916. struct slab *slabp = virt_to_slab(objp);
  917. int nodeid = slabp->nodeid;
  918. struct kmem_list3 *l3;
  919. struct array_cache *alien = NULL;
  920. /*
  921. * Make sure we are not freeing a object from another node to the array
  922. * cache on this cpu.
  923. */
  924. if (likely(slabp->nodeid == numa_node_id()))
  925. return 0;
  926. l3 = cachep->nodelists[numa_node_id()];
  927. STATS_INC_NODEFREES(cachep);
  928. if (l3->alien && l3->alien[nodeid]) {
  929. alien = l3->alien[nodeid];
  930. spin_lock(&alien->lock);
  931. if (unlikely(alien->avail == alien->limit)) {
  932. STATS_INC_ACOVERFLOW(cachep);
  933. __drain_alien_cache(cachep, alien, nodeid);
  934. }
  935. alien->entry[alien->avail++] = objp;
  936. spin_unlock(&alien->lock);
  937. } else {
  938. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  939. free_block(cachep, &objp, 1, nodeid);
  940. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  941. }
  942. return 1;
  943. }
  944. #else
  945. #define drain_alien_cache(cachep, alien) do { } while (0)
  946. #define reap_alien(cachep, l3) do { } while (0)
  947. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  948. {
  949. return (struct array_cache **) 0x01020304ul;
  950. }
  951. static inline void free_alien_cache(struct array_cache **ac_ptr)
  952. {
  953. }
  954. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  955. {
  956. return 0;
  957. }
  958. #endif
  959. static int cpuup_callback(struct notifier_block *nfb,
  960. unsigned long action, void *hcpu)
  961. {
  962. long cpu = (long)hcpu;
  963. struct kmem_cache *cachep;
  964. struct kmem_list3 *l3 = NULL;
  965. int node = cpu_to_node(cpu);
  966. int memsize = sizeof(struct kmem_list3);
  967. switch (action) {
  968. case CPU_UP_PREPARE:
  969. mutex_lock(&cache_chain_mutex);
  970. /*
  971. * We need to do this right in the beginning since
  972. * alloc_arraycache's are going to use this list.
  973. * kmalloc_node allows us to add the slab to the right
  974. * kmem_list3 and not this cpu's kmem_list3
  975. */
  976. list_for_each_entry(cachep, &cache_chain, next) {
  977. /*
  978. * Set up the size64 kmemlist for cpu before we can
  979. * begin anything. Make sure some other cpu on this
  980. * node has not already allocated this
  981. */
  982. if (!cachep->nodelists[node]) {
  983. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  984. if (!l3)
  985. goto bad;
  986. kmem_list3_init(l3);
  987. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  988. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  989. /*
  990. * The l3s don't come and go as CPUs come and
  991. * go. cache_chain_mutex is sufficient
  992. * protection here.
  993. */
  994. cachep->nodelists[node] = l3;
  995. }
  996. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  997. cachep->nodelists[node]->free_limit =
  998. (1 + nr_cpus_node(node)) *
  999. cachep->batchcount + cachep->num;
  1000. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1001. }
  1002. /*
  1003. * Now we can go ahead with allocating the shared arrays and
  1004. * array caches
  1005. */
  1006. list_for_each_entry(cachep, &cache_chain, next) {
  1007. struct array_cache *nc;
  1008. struct array_cache *shared;
  1009. struct array_cache **alien;
  1010. nc = alloc_arraycache(node, cachep->limit,
  1011. cachep->batchcount);
  1012. if (!nc)
  1013. goto bad;
  1014. shared = alloc_arraycache(node,
  1015. cachep->shared * cachep->batchcount,
  1016. 0xbaadf00d);
  1017. if (!shared)
  1018. goto bad;
  1019. alien = alloc_alien_cache(node, cachep->limit);
  1020. if (!alien)
  1021. goto bad;
  1022. cachep->array[cpu] = nc;
  1023. l3 = cachep->nodelists[node];
  1024. BUG_ON(!l3);
  1025. spin_lock_irq(&l3->list_lock);
  1026. if (!l3->shared) {
  1027. /*
  1028. * We are serialised from CPU_DEAD or
  1029. * CPU_UP_CANCELLED by the cpucontrol lock
  1030. */
  1031. l3->shared = shared;
  1032. shared = NULL;
  1033. }
  1034. #ifdef CONFIG_NUMA
  1035. if (!l3->alien) {
  1036. l3->alien = alien;
  1037. alien = NULL;
  1038. }
  1039. #endif
  1040. spin_unlock_irq(&l3->list_lock);
  1041. kfree(shared);
  1042. free_alien_cache(alien);
  1043. }
  1044. mutex_unlock(&cache_chain_mutex);
  1045. break;
  1046. case CPU_ONLINE:
  1047. start_cpu_timer(cpu);
  1048. break;
  1049. #ifdef CONFIG_HOTPLUG_CPU
  1050. case CPU_DEAD:
  1051. /*
  1052. * Even if all the cpus of a node are down, we don't free the
  1053. * kmem_list3 of any cache. This to avoid a race between
  1054. * cpu_down, and a kmalloc allocation from another cpu for
  1055. * memory from the node of the cpu going down. The list3
  1056. * structure is usually allocated from kmem_cache_create() and
  1057. * gets destroyed at kmem_cache_destroy().
  1058. */
  1059. /* fall thru */
  1060. case CPU_UP_CANCELED:
  1061. mutex_lock(&cache_chain_mutex);
  1062. list_for_each_entry(cachep, &cache_chain, next) {
  1063. struct array_cache *nc;
  1064. struct array_cache *shared;
  1065. struct array_cache **alien;
  1066. cpumask_t mask;
  1067. mask = node_to_cpumask(node);
  1068. /* cpu is dead; no one can alloc from it. */
  1069. nc = cachep->array[cpu];
  1070. cachep->array[cpu] = NULL;
  1071. l3 = cachep->nodelists[node];
  1072. if (!l3)
  1073. goto free_array_cache;
  1074. spin_lock_irq(&l3->list_lock);
  1075. /* Free limit for this kmem_list3 */
  1076. l3->free_limit -= cachep->batchcount;
  1077. if (nc)
  1078. free_block(cachep, nc->entry, nc->avail, node);
  1079. if (!cpus_empty(mask)) {
  1080. spin_unlock_irq(&l3->list_lock);
  1081. goto free_array_cache;
  1082. }
  1083. shared = l3->shared;
  1084. if (shared) {
  1085. free_block(cachep, l3->shared->entry,
  1086. l3->shared->avail, node);
  1087. l3->shared = NULL;
  1088. }
  1089. alien = l3->alien;
  1090. l3->alien = NULL;
  1091. spin_unlock_irq(&l3->list_lock);
  1092. kfree(shared);
  1093. if (alien) {
  1094. drain_alien_cache(cachep, alien);
  1095. free_alien_cache(alien);
  1096. }
  1097. free_array_cache:
  1098. kfree(nc);
  1099. }
  1100. /*
  1101. * In the previous loop, all the objects were freed to
  1102. * the respective cache's slabs, now we can go ahead and
  1103. * shrink each nodelist to its limit.
  1104. */
  1105. list_for_each_entry(cachep, &cache_chain, next) {
  1106. l3 = cachep->nodelists[node];
  1107. if (!l3)
  1108. continue;
  1109. spin_lock_irq(&l3->list_lock);
  1110. /* free slabs belonging to this node */
  1111. __node_shrink(cachep, node);
  1112. spin_unlock_irq(&l3->list_lock);
  1113. }
  1114. mutex_unlock(&cache_chain_mutex);
  1115. break;
  1116. #endif
  1117. }
  1118. return NOTIFY_OK;
  1119. bad:
  1120. mutex_unlock(&cache_chain_mutex);
  1121. return NOTIFY_BAD;
  1122. }
  1123. static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
  1124. /*
  1125. * swap the static kmem_list3 with kmalloced memory
  1126. */
  1127. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1128. int nodeid)
  1129. {
  1130. struct kmem_list3 *ptr;
  1131. BUG_ON(cachep->nodelists[nodeid] != list);
  1132. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1133. BUG_ON(!ptr);
  1134. local_irq_disable();
  1135. memcpy(ptr, list, sizeof(struct kmem_list3));
  1136. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1137. cachep->nodelists[nodeid] = ptr;
  1138. local_irq_enable();
  1139. }
  1140. /*
  1141. * Initialisation. Called after the page allocator have been initialised and
  1142. * before smp_init().
  1143. */
  1144. void __init kmem_cache_init(void)
  1145. {
  1146. size_t left_over;
  1147. struct cache_sizes *sizes;
  1148. struct cache_names *names;
  1149. int i;
  1150. int order;
  1151. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1152. kmem_list3_init(&initkmem_list3[i]);
  1153. if (i < MAX_NUMNODES)
  1154. cache_cache.nodelists[i] = NULL;
  1155. }
  1156. /*
  1157. * Fragmentation resistance on low memory - only use bigger
  1158. * page orders on machines with more than 32MB of memory.
  1159. */
  1160. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1161. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1162. /* Bootstrap is tricky, because several objects are allocated
  1163. * from caches that do not exist yet:
  1164. * 1) initialize the cache_cache cache: it contains the struct
  1165. * kmem_cache structures of all caches, except cache_cache itself:
  1166. * cache_cache is statically allocated.
  1167. * Initially an __init data area is used for the head array and the
  1168. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1169. * array at the end of the bootstrap.
  1170. * 2) Create the first kmalloc cache.
  1171. * The struct kmem_cache for the new cache is allocated normally.
  1172. * An __init data area is used for the head array.
  1173. * 3) Create the remaining kmalloc caches, with minimally sized
  1174. * head arrays.
  1175. * 4) Replace the __init data head arrays for cache_cache and the first
  1176. * kmalloc cache with kmalloc allocated arrays.
  1177. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1178. * the other cache's with kmalloc allocated memory.
  1179. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1180. */
  1181. /* 1) create the cache_cache */
  1182. INIT_LIST_HEAD(&cache_chain);
  1183. list_add(&cache_cache.next, &cache_chain);
  1184. cache_cache.colour_off = cache_line_size();
  1185. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1186. cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
  1187. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1188. cache_line_size());
  1189. for (order = 0; order < MAX_ORDER; order++) {
  1190. cache_estimate(order, cache_cache.buffer_size,
  1191. cache_line_size(), 0, &left_over, &cache_cache.num);
  1192. if (cache_cache.num)
  1193. break;
  1194. }
  1195. BUG_ON(!cache_cache.num);
  1196. cache_cache.gfporder = order;
  1197. cache_cache.colour = left_over / cache_cache.colour_off;
  1198. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1199. sizeof(struct slab), cache_line_size());
  1200. /* 2+3) create the kmalloc caches */
  1201. sizes = malloc_sizes;
  1202. names = cache_names;
  1203. /*
  1204. * Initialize the caches that provide memory for the array cache and the
  1205. * kmem_list3 structures first. Without this, further allocations will
  1206. * bug.
  1207. */
  1208. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1209. sizes[INDEX_AC].cs_size,
  1210. ARCH_KMALLOC_MINALIGN,
  1211. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1212. NULL, NULL);
  1213. if (INDEX_AC != INDEX_L3) {
  1214. sizes[INDEX_L3].cs_cachep =
  1215. kmem_cache_create(names[INDEX_L3].name,
  1216. sizes[INDEX_L3].cs_size,
  1217. ARCH_KMALLOC_MINALIGN,
  1218. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1219. NULL, NULL);
  1220. }
  1221. while (sizes->cs_size != ULONG_MAX) {
  1222. /*
  1223. * For performance, all the general caches are L1 aligned.
  1224. * This should be particularly beneficial on SMP boxes, as it
  1225. * eliminates "false sharing".
  1226. * Note for systems short on memory removing the alignment will
  1227. * allow tighter packing of the smaller caches.
  1228. */
  1229. if (!sizes->cs_cachep) {
  1230. sizes->cs_cachep = kmem_cache_create(names->name,
  1231. sizes->cs_size,
  1232. ARCH_KMALLOC_MINALIGN,
  1233. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1234. NULL, NULL);
  1235. }
  1236. sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
  1237. sizes->cs_size,
  1238. ARCH_KMALLOC_MINALIGN,
  1239. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1240. SLAB_PANIC,
  1241. NULL, NULL);
  1242. sizes++;
  1243. names++;
  1244. }
  1245. /* 4) Replace the bootstrap head arrays */
  1246. {
  1247. void *ptr;
  1248. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1249. local_irq_disable();
  1250. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1251. memcpy(ptr, cpu_cache_get(&cache_cache),
  1252. sizeof(struct arraycache_init));
  1253. cache_cache.array[smp_processor_id()] = ptr;
  1254. local_irq_enable();
  1255. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1256. local_irq_disable();
  1257. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1258. != &initarray_generic.cache);
  1259. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1260. sizeof(struct arraycache_init));
  1261. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1262. ptr;
  1263. local_irq_enable();
  1264. }
  1265. /* 5) Replace the bootstrap kmem_list3's */
  1266. {
  1267. int node;
  1268. /* Replace the static kmem_list3 structures for the boot cpu */
  1269. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
  1270. numa_node_id());
  1271. for_each_online_node(node) {
  1272. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1273. &initkmem_list3[SIZE_AC + node], node);
  1274. if (INDEX_AC != INDEX_L3) {
  1275. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1276. &initkmem_list3[SIZE_L3 + node],
  1277. node);
  1278. }
  1279. }
  1280. }
  1281. /* 6) resize the head arrays to their final sizes */
  1282. {
  1283. struct kmem_cache *cachep;
  1284. mutex_lock(&cache_chain_mutex);
  1285. list_for_each_entry(cachep, &cache_chain, next)
  1286. enable_cpucache(cachep);
  1287. mutex_unlock(&cache_chain_mutex);
  1288. }
  1289. /* Done! */
  1290. g_cpucache_up = FULL;
  1291. /*
  1292. * Register a cpu startup notifier callback that initializes
  1293. * cpu_cache_get for all new cpus
  1294. */
  1295. register_cpu_notifier(&cpucache_notifier);
  1296. /*
  1297. * The reap timers are started later, with a module init call: That part
  1298. * of the kernel is not yet operational.
  1299. */
  1300. }
  1301. static int __init cpucache_init(void)
  1302. {
  1303. int cpu;
  1304. /*
  1305. * Register the timers that return unneeded pages to the page allocator
  1306. */
  1307. for_each_online_cpu(cpu)
  1308. start_cpu_timer(cpu);
  1309. return 0;
  1310. }
  1311. __initcall(cpucache_init);
  1312. /*
  1313. * Interface to system's page allocator. No need to hold the cache-lock.
  1314. *
  1315. * If we requested dmaable memory, we will get it. Even if we
  1316. * did not request dmaable memory, we might get it, but that
  1317. * would be relatively rare and ignorable.
  1318. */
  1319. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1320. {
  1321. struct page *page;
  1322. void *addr;
  1323. int i;
  1324. flags |= cachep->gfpflags;
  1325. #ifndef CONFIG_MMU
  1326. /* nommu uses slab's for process anonymous memory allocations, so
  1327. * requires __GFP_COMP to properly refcount higher order allocations"
  1328. */
  1329. page = alloc_pages_node(nodeid, (flags | __GFP_COMP), cachep->gfporder);
  1330. #else
  1331. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1332. #endif
  1333. if (!page)
  1334. return NULL;
  1335. addr = page_address(page);
  1336. i = (1 << cachep->gfporder);
  1337. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1338. atomic_add(i, &slab_reclaim_pages);
  1339. add_page_state(nr_slab, i);
  1340. while (i--) {
  1341. __SetPageSlab(page);
  1342. page++;
  1343. }
  1344. return addr;
  1345. }
  1346. /*
  1347. * Interface to system's page release.
  1348. */
  1349. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1350. {
  1351. unsigned long i = (1 << cachep->gfporder);
  1352. struct page *page = virt_to_page(addr);
  1353. const unsigned long nr_freed = i;
  1354. while (i--) {
  1355. BUG_ON(!PageSlab(page));
  1356. __ClearPageSlab(page);
  1357. page++;
  1358. }
  1359. sub_page_state(nr_slab, nr_freed);
  1360. if (current->reclaim_state)
  1361. current->reclaim_state->reclaimed_slab += nr_freed;
  1362. free_pages((unsigned long)addr, cachep->gfporder);
  1363. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1364. atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
  1365. }
  1366. static void kmem_rcu_free(struct rcu_head *head)
  1367. {
  1368. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1369. struct kmem_cache *cachep = slab_rcu->cachep;
  1370. kmem_freepages(cachep, slab_rcu->addr);
  1371. if (OFF_SLAB(cachep))
  1372. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1373. }
  1374. #if DEBUG
  1375. #ifdef CONFIG_DEBUG_PAGEALLOC
  1376. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1377. unsigned long caller)
  1378. {
  1379. int size = obj_size(cachep);
  1380. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1381. if (size < 5 * sizeof(unsigned long))
  1382. return;
  1383. *addr++ = 0x12345678;
  1384. *addr++ = caller;
  1385. *addr++ = smp_processor_id();
  1386. size -= 3 * sizeof(unsigned long);
  1387. {
  1388. unsigned long *sptr = &caller;
  1389. unsigned long svalue;
  1390. while (!kstack_end(sptr)) {
  1391. svalue = *sptr++;
  1392. if (kernel_text_address(svalue)) {
  1393. *addr++ = svalue;
  1394. size -= sizeof(unsigned long);
  1395. if (size <= sizeof(unsigned long))
  1396. break;
  1397. }
  1398. }
  1399. }
  1400. *addr++ = 0x87654321;
  1401. }
  1402. #endif
  1403. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1404. {
  1405. int size = obj_size(cachep);
  1406. addr = &((char *)addr)[obj_offset(cachep)];
  1407. memset(addr, val, size);
  1408. *(unsigned char *)(addr + size - 1) = POISON_END;
  1409. }
  1410. static void dump_line(char *data, int offset, int limit)
  1411. {
  1412. int i;
  1413. printk(KERN_ERR "%03x:", offset);
  1414. for (i = 0; i < limit; i++)
  1415. printk(" %02x", (unsigned char)data[offset + i]);
  1416. printk("\n");
  1417. }
  1418. #endif
  1419. #if DEBUG
  1420. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1421. {
  1422. int i, size;
  1423. char *realobj;
  1424. if (cachep->flags & SLAB_RED_ZONE) {
  1425. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1426. *dbg_redzone1(cachep, objp),
  1427. *dbg_redzone2(cachep, objp));
  1428. }
  1429. if (cachep->flags & SLAB_STORE_USER) {
  1430. printk(KERN_ERR "Last user: [<%p>]",
  1431. *dbg_userword(cachep, objp));
  1432. print_symbol("(%s)",
  1433. (unsigned long)*dbg_userword(cachep, objp));
  1434. printk("\n");
  1435. }
  1436. realobj = (char *)objp + obj_offset(cachep);
  1437. size = obj_size(cachep);
  1438. for (i = 0; i < size && lines; i += 16, lines--) {
  1439. int limit;
  1440. limit = 16;
  1441. if (i + limit > size)
  1442. limit = size - i;
  1443. dump_line(realobj, i, limit);
  1444. }
  1445. }
  1446. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1447. {
  1448. char *realobj;
  1449. int size, i;
  1450. int lines = 0;
  1451. realobj = (char *)objp + obj_offset(cachep);
  1452. size = obj_size(cachep);
  1453. for (i = 0; i < size; i++) {
  1454. char exp = POISON_FREE;
  1455. if (i == size - 1)
  1456. exp = POISON_END;
  1457. if (realobj[i] != exp) {
  1458. int limit;
  1459. /* Mismatch ! */
  1460. /* Print header */
  1461. if (lines == 0) {
  1462. printk(KERN_ERR
  1463. "Slab corruption: start=%p, len=%d\n",
  1464. realobj, size);
  1465. print_objinfo(cachep, objp, 0);
  1466. }
  1467. /* Hexdump the affected line */
  1468. i = (i / 16) * 16;
  1469. limit = 16;
  1470. if (i + limit > size)
  1471. limit = size - i;
  1472. dump_line(realobj, i, limit);
  1473. i += 16;
  1474. lines++;
  1475. /* Limit to 5 lines */
  1476. if (lines > 5)
  1477. break;
  1478. }
  1479. }
  1480. if (lines != 0) {
  1481. /* Print some data about the neighboring objects, if they
  1482. * exist:
  1483. */
  1484. struct slab *slabp = virt_to_slab(objp);
  1485. unsigned int objnr;
  1486. objnr = obj_to_index(cachep, slabp, objp);
  1487. if (objnr) {
  1488. objp = index_to_obj(cachep, slabp, objnr - 1);
  1489. realobj = (char *)objp + obj_offset(cachep);
  1490. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1491. realobj, size);
  1492. print_objinfo(cachep, objp, 2);
  1493. }
  1494. if (objnr + 1 < cachep->num) {
  1495. objp = index_to_obj(cachep, slabp, objnr + 1);
  1496. realobj = (char *)objp + obj_offset(cachep);
  1497. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1498. realobj, size);
  1499. print_objinfo(cachep, objp, 2);
  1500. }
  1501. }
  1502. }
  1503. #endif
  1504. #if DEBUG
  1505. /**
  1506. * slab_destroy_objs - destroy a slab and its objects
  1507. * @cachep: cache pointer being destroyed
  1508. * @slabp: slab pointer being destroyed
  1509. *
  1510. * Call the registered destructor for each object in a slab that is being
  1511. * destroyed.
  1512. */
  1513. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1514. {
  1515. int i;
  1516. for (i = 0; i < cachep->num; i++) {
  1517. void *objp = index_to_obj(cachep, slabp, i);
  1518. if (cachep->flags & SLAB_POISON) {
  1519. #ifdef CONFIG_DEBUG_PAGEALLOC
  1520. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1521. OFF_SLAB(cachep))
  1522. kernel_map_pages(virt_to_page(objp),
  1523. cachep->buffer_size / PAGE_SIZE, 1);
  1524. else
  1525. check_poison_obj(cachep, objp);
  1526. #else
  1527. check_poison_obj(cachep, objp);
  1528. #endif
  1529. }
  1530. if (cachep->flags & SLAB_RED_ZONE) {
  1531. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1532. slab_error(cachep, "start of a freed object "
  1533. "was overwritten");
  1534. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1535. slab_error(cachep, "end of a freed object "
  1536. "was overwritten");
  1537. }
  1538. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1539. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1540. }
  1541. }
  1542. #else
  1543. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1544. {
  1545. if (cachep->dtor) {
  1546. int i;
  1547. for (i = 0; i < cachep->num; i++) {
  1548. void *objp = index_to_obj(cachep, slabp, i);
  1549. (cachep->dtor) (objp, cachep, 0);
  1550. }
  1551. }
  1552. }
  1553. #endif
  1554. /**
  1555. * slab_destroy - destroy and release all objects in a slab
  1556. * @cachep: cache pointer being destroyed
  1557. * @slabp: slab pointer being destroyed
  1558. *
  1559. * Destroy all the objs in a slab, and release the mem back to the system.
  1560. * Before calling the slab must have been unlinked from the cache. The
  1561. * cache-lock is not held/needed.
  1562. */
  1563. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1564. {
  1565. void *addr = slabp->s_mem - slabp->colouroff;
  1566. slab_destroy_objs(cachep, slabp);
  1567. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1568. struct slab_rcu *slab_rcu;
  1569. slab_rcu = (struct slab_rcu *)slabp;
  1570. slab_rcu->cachep = cachep;
  1571. slab_rcu->addr = addr;
  1572. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1573. } else {
  1574. kmem_freepages(cachep, addr);
  1575. if (OFF_SLAB(cachep))
  1576. kmem_cache_free(cachep->slabp_cache, slabp);
  1577. }
  1578. }
  1579. /*
  1580. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1581. * size of kmem_list3.
  1582. */
  1583. static void set_up_list3s(struct kmem_cache *cachep, int index)
  1584. {
  1585. int node;
  1586. for_each_online_node(node) {
  1587. cachep->nodelists[node] = &initkmem_list3[index + node];
  1588. cachep->nodelists[node]->next_reap = jiffies +
  1589. REAPTIMEOUT_LIST3 +
  1590. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1591. }
  1592. }
  1593. /**
  1594. * calculate_slab_order - calculate size (page order) of slabs
  1595. * @cachep: pointer to the cache that is being created
  1596. * @size: size of objects to be created in this cache.
  1597. * @align: required alignment for the objects.
  1598. * @flags: slab allocation flags
  1599. *
  1600. * Also calculates the number of objects per slab.
  1601. *
  1602. * This could be made much more intelligent. For now, try to avoid using
  1603. * high order pages for slabs. When the gfp() functions are more friendly
  1604. * towards high-order requests, this should be changed.
  1605. */
  1606. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1607. size_t size, size_t align, unsigned long flags)
  1608. {
  1609. unsigned long offslab_limit;
  1610. size_t left_over = 0;
  1611. int gfporder;
  1612. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1613. unsigned int num;
  1614. size_t remainder;
  1615. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1616. if (!num)
  1617. continue;
  1618. if (flags & CFLGS_OFF_SLAB) {
  1619. /*
  1620. * Max number of objs-per-slab for caches which
  1621. * use off-slab slabs. Needed to avoid a possible
  1622. * looping condition in cache_grow().
  1623. */
  1624. offslab_limit = size - sizeof(struct slab);
  1625. offslab_limit /= sizeof(kmem_bufctl_t);
  1626. if (num > offslab_limit)
  1627. break;
  1628. }
  1629. /* Found something acceptable - save it away */
  1630. cachep->num = num;
  1631. cachep->gfporder = gfporder;
  1632. left_over = remainder;
  1633. /*
  1634. * A VFS-reclaimable slab tends to have most allocations
  1635. * as GFP_NOFS and we really don't want to have to be allocating
  1636. * higher-order pages when we are unable to shrink dcache.
  1637. */
  1638. if (flags & SLAB_RECLAIM_ACCOUNT)
  1639. break;
  1640. /*
  1641. * Large number of objects is good, but very large slabs are
  1642. * currently bad for the gfp()s.
  1643. */
  1644. if (gfporder >= slab_break_gfp_order)
  1645. break;
  1646. /*
  1647. * Acceptable internal fragmentation?
  1648. */
  1649. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1650. break;
  1651. }
  1652. return left_over;
  1653. }
  1654. static void setup_cpu_cache(struct kmem_cache *cachep)
  1655. {
  1656. if (g_cpucache_up == FULL) {
  1657. enable_cpucache(cachep);
  1658. return;
  1659. }
  1660. if (g_cpucache_up == NONE) {
  1661. /*
  1662. * Note: the first kmem_cache_create must create the cache
  1663. * that's used by kmalloc(24), otherwise the creation of
  1664. * further caches will BUG().
  1665. */
  1666. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1667. /*
  1668. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1669. * the first cache, then we need to set up all its list3s,
  1670. * otherwise the creation of further caches will BUG().
  1671. */
  1672. set_up_list3s(cachep, SIZE_AC);
  1673. if (INDEX_AC == INDEX_L3)
  1674. g_cpucache_up = PARTIAL_L3;
  1675. else
  1676. g_cpucache_up = PARTIAL_AC;
  1677. } else {
  1678. cachep->array[smp_processor_id()] =
  1679. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1680. if (g_cpucache_up == PARTIAL_AC) {
  1681. set_up_list3s(cachep, SIZE_L3);
  1682. g_cpucache_up = PARTIAL_L3;
  1683. } else {
  1684. int node;
  1685. for_each_online_node(node) {
  1686. cachep->nodelists[node] =
  1687. kmalloc_node(sizeof(struct kmem_list3),
  1688. GFP_KERNEL, node);
  1689. BUG_ON(!cachep->nodelists[node]);
  1690. kmem_list3_init(cachep->nodelists[node]);
  1691. }
  1692. }
  1693. }
  1694. cachep->nodelists[numa_node_id()]->next_reap =
  1695. jiffies + REAPTIMEOUT_LIST3 +
  1696. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1697. cpu_cache_get(cachep)->avail = 0;
  1698. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1699. cpu_cache_get(cachep)->batchcount = 1;
  1700. cpu_cache_get(cachep)->touched = 0;
  1701. cachep->batchcount = 1;
  1702. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1703. }
  1704. /**
  1705. * kmem_cache_create - Create a cache.
  1706. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1707. * @size: The size of objects to be created in this cache.
  1708. * @align: The required alignment for the objects.
  1709. * @flags: SLAB flags
  1710. * @ctor: A constructor for the objects.
  1711. * @dtor: A destructor for the objects.
  1712. *
  1713. * Returns a ptr to the cache on success, NULL on failure.
  1714. * Cannot be called within a int, but can be interrupted.
  1715. * The @ctor is run when new pages are allocated by the cache
  1716. * and the @dtor is run before the pages are handed back.
  1717. *
  1718. * @name must be valid until the cache is destroyed. This implies that
  1719. * the module calling this has to destroy the cache before getting unloaded.
  1720. *
  1721. * The flags are
  1722. *
  1723. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1724. * to catch references to uninitialised memory.
  1725. *
  1726. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1727. * for buffer overruns.
  1728. *
  1729. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1730. * cacheline. This can be beneficial if you're counting cycles as closely
  1731. * as davem.
  1732. */
  1733. struct kmem_cache *
  1734. kmem_cache_create (const char *name, size_t size, size_t align,
  1735. unsigned long flags,
  1736. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1737. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1738. {
  1739. size_t left_over, slab_size, ralign;
  1740. struct kmem_cache *cachep = NULL;
  1741. struct list_head *p;
  1742. /*
  1743. * Sanity checks... these are all serious usage bugs.
  1744. */
  1745. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1746. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1747. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1748. name);
  1749. BUG();
  1750. }
  1751. /*
  1752. * Prevent CPUs from coming and going.
  1753. * lock_cpu_hotplug() nests outside cache_chain_mutex
  1754. */
  1755. lock_cpu_hotplug();
  1756. mutex_lock(&cache_chain_mutex);
  1757. list_for_each(p, &cache_chain) {
  1758. struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
  1759. mm_segment_t old_fs = get_fs();
  1760. char tmp;
  1761. int res;
  1762. /*
  1763. * This happens when the module gets unloaded and doesn't
  1764. * destroy its slab cache and no-one else reuses the vmalloc
  1765. * area of the module. Print a warning.
  1766. */
  1767. set_fs(KERNEL_DS);
  1768. res = __get_user(tmp, pc->name);
  1769. set_fs(old_fs);
  1770. if (res) {
  1771. printk("SLAB: cache with size %d has lost its name\n",
  1772. pc->buffer_size);
  1773. continue;
  1774. }
  1775. if (!strcmp(pc->name, name)) {
  1776. printk("kmem_cache_create: duplicate cache %s\n", name);
  1777. dump_stack();
  1778. goto oops;
  1779. }
  1780. }
  1781. #if DEBUG
  1782. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1783. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1784. /* No constructor, but inital state check requested */
  1785. printk(KERN_ERR "%s: No con, but init state check "
  1786. "requested - %s\n", __FUNCTION__, name);
  1787. flags &= ~SLAB_DEBUG_INITIAL;
  1788. }
  1789. #if FORCED_DEBUG
  1790. /*
  1791. * Enable redzoning and last user accounting, except for caches with
  1792. * large objects, if the increased size would increase the object size
  1793. * above the next power of two: caches with object sizes just above a
  1794. * power of two have a significant amount of internal fragmentation.
  1795. */
  1796. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1797. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1798. if (!(flags & SLAB_DESTROY_BY_RCU))
  1799. flags |= SLAB_POISON;
  1800. #endif
  1801. if (flags & SLAB_DESTROY_BY_RCU)
  1802. BUG_ON(flags & SLAB_POISON);
  1803. #endif
  1804. if (flags & SLAB_DESTROY_BY_RCU)
  1805. BUG_ON(dtor);
  1806. /*
  1807. * Always checks flags, a caller might be expecting debug support which
  1808. * isn't available.
  1809. */
  1810. BUG_ON(flags & ~CREATE_MASK);
  1811. /*
  1812. * Check that size is in terms of words. This is needed to avoid
  1813. * unaligned accesses for some archs when redzoning is used, and makes
  1814. * sure any on-slab bufctl's are also correctly aligned.
  1815. */
  1816. if (size & (BYTES_PER_WORD - 1)) {
  1817. size += (BYTES_PER_WORD - 1);
  1818. size &= ~(BYTES_PER_WORD - 1);
  1819. }
  1820. /* calculate the final buffer alignment: */
  1821. /* 1) arch recommendation: can be overridden for debug */
  1822. if (flags & SLAB_HWCACHE_ALIGN) {
  1823. /*
  1824. * Default alignment: as specified by the arch code. Except if
  1825. * an object is really small, then squeeze multiple objects into
  1826. * one cacheline.
  1827. */
  1828. ralign = cache_line_size();
  1829. while (size <= ralign / 2)
  1830. ralign /= 2;
  1831. } else {
  1832. ralign = BYTES_PER_WORD;
  1833. }
  1834. /* 2) arch mandated alignment: disables debug if necessary */
  1835. if (ralign < ARCH_SLAB_MINALIGN) {
  1836. ralign = ARCH_SLAB_MINALIGN;
  1837. if (ralign > BYTES_PER_WORD)
  1838. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1839. }
  1840. /* 3) caller mandated alignment: disables debug if necessary */
  1841. if (ralign < align) {
  1842. ralign = align;
  1843. if (ralign > BYTES_PER_WORD)
  1844. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1845. }
  1846. /*
  1847. * 4) Store it. Note that the debug code below can reduce
  1848. * the alignment to BYTES_PER_WORD.
  1849. */
  1850. align = ralign;
  1851. /* Get cache's description obj. */
  1852. cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
  1853. if (!cachep)
  1854. goto oops;
  1855. #if DEBUG
  1856. cachep->obj_size = size;
  1857. if (flags & SLAB_RED_ZONE) {
  1858. /* redzoning only works with word aligned caches */
  1859. align = BYTES_PER_WORD;
  1860. /* add space for red zone words */
  1861. cachep->obj_offset += BYTES_PER_WORD;
  1862. size += 2 * BYTES_PER_WORD;
  1863. }
  1864. if (flags & SLAB_STORE_USER) {
  1865. /* user store requires word alignment and
  1866. * one word storage behind the end of the real
  1867. * object.
  1868. */
  1869. align = BYTES_PER_WORD;
  1870. size += BYTES_PER_WORD;
  1871. }
  1872. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1873. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  1874. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  1875. cachep->obj_offset += PAGE_SIZE - size;
  1876. size = PAGE_SIZE;
  1877. }
  1878. #endif
  1879. #endif
  1880. /* Determine if the slab management is 'on' or 'off' slab. */
  1881. if (size >= (PAGE_SIZE >> 3))
  1882. /*
  1883. * Size is large, assume best to place the slab management obj
  1884. * off-slab (should allow better packing of objs).
  1885. */
  1886. flags |= CFLGS_OFF_SLAB;
  1887. size = ALIGN(size, align);
  1888. left_over = calculate_slab_order(cachep, size, align, flags);
  1889. if (!cachep->num) {
  1890. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  1891. kmem_cache_free(&cache_cache, cachep);
  1892. cachep = NULL;
  1893. goto oops;
  1894. }
  1895. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  1896. + sizeof(struct slab), align);
  1897. /*
  1898. * If the slab has been placed off-slab, and we have enough space then
  1899. * move it on-slab. This is at the expense of any extra colouring.
  1900. */
  1901. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  1902. flags &= ~CFLGS_OFF_SLAB;
  1903. left_over -= slab_size;
  1904. }
  1905. if (flags & CFLGS_OFF_SLAB) {
  1906. /* really off slab. No need for manual alignment */
  1907. slab_size =
  1908. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  1909. }
  1910. cachep->colour_off = cache_line_size();
  1911. /* Offset must be a multiple of the alignment. */
  1912. if (cachep->colour_off < align)
  1913. cachep->colour_off = align;
  1914. cachep->colour = left_over / cachep->colour_off;
  1915. cachep->slab_size = slab_size;
  1916. cachep->flags = flags;
  1917. cachep->gfpflags = 0;
  1918. if (flags & SLAB_CACHE_DMA)
  1919. cachep->gfpflags |= GFP_DMA;
  1920. cachep->buffer_size = size;
  1921. if (flags & CFLGS_OFF_SLAB)
  1922. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  1923. cachep->ctor = ctor;
  1924. cachep->dtor = dtor;
  1925. cachep->name = name;
  1926. setup_cpu_cache(cachep);
  1927. /* cache setup completed, link it into the list */
  1928. list_add(&cachep->next, &cache_chain);
  1929. oops:
  1930. if (!cachep && (flags & SLAB_PANIC))
  1931. panic("kmem_cache_create(): failed to create slab `%s'\n",
  1932. name);
  1933. mutex_unlock(&cache_chain_mutex);
  1934. unlock_cpu_hotplug();
  1935. return cachep;
  1936. }
  1937. EXPORT_SYMBOL(kmem_cache_create);
  1938. #if DEBUG
  1939. static void check_irq_off(void)
  1940. {
  1941. BUG_ON(!irqs_disabled());
  1942. }
  1943. static void check_irq_on(void)
  1944. {
  1945. BUG_ON(irqs_disabled());
  1946. }
  1947. static void check_spinlock_acquired(struct kmem_cache *cachep)
  1948. {
  1949. #ifdef CONFIG_SMP
  1950. check_irq_off();
  1951. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  1952. #endif
  1953. }
  1954. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  1955. {
  1956. #ifdef CONFIG_SMP
  1957. check_irq_off();
  1958. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  1959. #endif
  1960. }
  1961. #else
  1962. #define check_irq_off() do { } while(0)
  1963. #define check_irq_on() do { } while(0)
  1964. #define check_spinlock_acquired(x) do { } while(0)
  1965. #define check_spinlock_acquired_node(x, y) do { } while(0)
  1966. #endif
  1967. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  1968. struct array_cache *ac,
  1969. int force, int node);
  1970. static void do_drain(void *arg)
  1971. {
  1972. struct kmem_cache *cachep = arg;
  1973. struct array_cache *ac;
  1974. int node = numa_node_id();
  1975. check_irq_off();
  1976. ac = cpu_cache_get(cachep);
  1977. spin_lock(&cachep->nodelists[node]->list_lock);
  1978. free_block(cachep, ac->entry, ac->avail, node);
  1979. spin_unlock(&cachep->nodelists[node]->list_lock);
  1980. ac->avail = 0;
  1981. }
  1982. static void drain_cpu_caches(struct kmem_cache *cachep)
  1983. {
  1984. struct kmem_list3 *l3;
  1985. int node;
  1986. on_each_cpu(do_drain, cachep, 1, 1);
  1987. check_irq_on();
  1988. for_each_online_node(node) {
  1989. l3 = cachep->nodelists[node];
  1990. if (l3 && l3->alien)
  1991. drain_alien_cache(cachep, l3->alien);
  1992. }
  1993. for_each_online_node(node) {
  1994. l3 = cachep->nodelists[node];
  1995. if (l3)
  1996. drain_array(cachep, l3, l3->shared, 1, node);
  1997. }
  1998. }
  1999. static int __node_shrink(struct kmem_cache *cachep, int node)
  2000. {
  2001. struct slab *slabp;
  2002. struct kmem_list3 *l3 = cachep->nodelists[node];
  2003. int ret;
  2004. for (;;) {
  2005. struct list_head *p;
  2006. p = l3->slabs_free.prev;
  2007. if (p == &l3->slabs_free)
  2008. break;
  2009. slabp = list_entry(l3->slabs_free.prev, struct slab, list);
  2010. #if DEBUG
  2011. BUG_ON(slabp->inuse);
  2012. #endif
  2013. list_del(&slabp->list);
  2014. l3->free_objects -= cachep->num;
  2015. spin_unlock_irq(&l3->list_lock);
  2016. slab_destroy(cachep, slabp);
  2017. spin_lock_irq(&l3->list_lock);
  2018. }
  2019. ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
  2020. return ret;
  2021. }
  2022. static int __cache_shrink(struct kmem_cache *cachep)
  2023. {
  2024. int ret = 0, i = 0;
  2025. struct kmem_list3 *l3;
  2026. drain_cpu_caches(cachep);
  2027. check_irq_on();
  2028. for_each_online_node(i) {
  2029. l3 = cachep->nodelists[i];
  2030. if (l3) {
  2031. spin_lock_irq(&l3->list_lock);
  2032. ret += __node_shrink(cachep, i);
  2033. spin_unlock_irq(&l3->list_lock);
  2034. }
  2035. }
  2036. return (ret ? 1 : 0);
  2037. }
  2038. /**
  2039. * kmem_cache_shrink - Shrink a cache.
  2040. * @cachep: The cache to shrink.
  2041. *
  2042. * Releases as many slabs as possible for a cache.
  2043. * To help debugging, a zero exit status indicates all slabs were released.
  2044. */
  2045. int kmem_cache_shrink(struct kmem_cache *cachep)
  2046. {
  2047. BUG_ON(!cachep || in_interrupt());
  2048. return __cache_shrink(cachep);
  2049. }
  2050. EXPORT_SYMBOL(kmem_cache_shrink);
  2051. /**
  2052. * kmem_cache_destroy - delete a cache
  2053. * @cachep: the cache to destroy
  2054. *
  2055. * Remove a struct kmem_cache object from the slab cache.
  2056. * Returns 0 on success.
  2057. *
  2058. * It is expected this function will be called by a module when it is
  2059. * unloaded. This will remove the cache completely, and avoid a duplicate
  2060. * cache being allocated each time a module is loaded and unloaded, if the
  2061. * module doesn't have persistent in-kernel storage across loads and unloads.
  2062. *
  2063. * The cache must be empty before calling this function.
  2064. *
  2065. * The caller must guarantee that noone will allocate memory from the cache
  2066. * during the kmem_cache_destroy().
  2067. */
  2068. int kmem_cache_destroy(struct kmem_cache *cachep)
  2069. {
  2070. int i;
  2071. struct kmem_list3 *l3;
  2072. BUG_ON(!cachep || in_interrupt());
  2073. /* Don't let CPUs to come and go */
  2074. lock_cpu_hotplug();
  2075. /* Find the cache in the chain of caches. */
  2076. mutex_lock(&cache_chain_mutex);
  2077. /*
  2078. * the chain is never empty, cache_cache is never destroyed
  2079. */
  2080. list_del(&cachep->next);
  2081. mutex_unlock(&cache_chain_mutex);
  2082. if (__cache_shrink(cachep)) {
  2083. slab_error(cachep, "Can't free all objects");
  2084. mutex_lock(&cache_chain_mutex);
  2085. list_add(&cachep->next, &cache_chain);
  2086. mutex_unlock(&cache_chain_mutex);
  2087. unlock_cpu_hotplug();
  2088. return 1;
  2089. }
  2090. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2091. synchronize_rcu();
  2092. for_each_online_cpu(i)
  2093. kfree(cachep->array[i]);
  2094. /* NUMA: free the list3 structures */
  2095. for_each_online_node(i) {
  2096. l3 = cachep->nodelists[i];
  2097. if (l3) {
  2098. kfree(l3->shared);
  2099. free_alien_cache(l3->alien);
  2100. kfree(l3);
  2101. }
  2102. }
  2103. kmem_cache_free(&cache_cache, cachep);
  2104. unlock_cpu_hotplug();
  2105. return 0;
  2106. }
  2107. EXPORT_SYMBOL(kmem_cache_destroy);
  2108. /* Get the memory for a slab management obj. */
  2109. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2110. int colour_off, gfp_t local_flags,
  2111. int nodeid)
  2112. {
  2113. struct slab *slabp;
  2114. if (OFF_SLAB(cachep)) {
  2115. /* Slab management obj is off-slab. */
  2116. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2117. local_flags, nodeid);
  2118. if (!slabp)
  2119. return NULL;
  2120. } else {
  2121. slabp = objp + colour_off;
  2122. colour_off += cachep->slab_size;
  2123. }
  2124. slabp->inuse = 0;
  2125. slabp->colouroff = colour_off;
  2126. slabp->s_mem = objp + colour_off;
  2127. slabp->nodeid = nodeid;
  2128. return slabp;
  2129. }
  2130. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2131. {
  2132. return (kmem_bufctl_t *) (slabp + 1);
  2133. }
  2134. static void cache_init_objs(struct kmem_cache *cachep,
  2135. struct slab *slabp, unsigned long ctor_flags)
  2136. {
  2137. int i;
  2138. for (i = 0; i < cachep->num; i++) {
  2139. void *objp = index_to_obj(cachep, slabp, i);
  2140. #if DEBUG
  2141. /* need to poison the objs? */
  2142. if (cachep->flags & SLAB_POISON)
  2143. poison_obj(cachep, objp, POISON_FREE);
  2144. if (cachep->flags & SLAB_STORE_USER)
  2145. *dbg_userword(cachep, objp) = NULL;
  2146. if (cachep->flags & SLAB_RED_ZONE) {
  2147. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2148. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2149. }
  2150. /*
  2151. * Constructors are not allowed to allocate memory from the same
  2152. * cache which they are a constructor for. Otherwise, deadlock.
  2153. * They must also be threaded.
  2154. */
  2155. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2156. cachep->ctor(objp + obj_offset(cachep), cachep,
  2157. ctor_flags);
  2158. if (cachep->flags & SLAB_RED_ZONE) {
  2159. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2160. slab_error(cachep, "constructor overwrote the"
  2161. " end of an object");
  2162. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2163. slab_error(cachep, "constructor overwrote the"
  2164. " start of an object");
  2165. }
  2166. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2167. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2168. kernel_map_pages(virt_to_page(objp),
  2169. cachep->buffer_size / PAGE_SIZE, 0);
  2170. #else
  2171. if (cachep->ctor)
  2172. cachep->ctor(objp, cachep, ctor_flags);
  2173. #endif
  2174. slab_bufctl(slabp)[i] = i + 1;
  2175. }
  2176. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2177. slabp->free = 0;
  2178. }
  2179. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2180. {
  2181. if (flags & SLAB_DMA)
  2182. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2183. else
  2184. BUG_ON(cachep->gfpflags & GFP_DMA);
  2185. }
  2186. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2187. int nodeid)
  2188. {
  2189. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2190. kmem_bufctl_t next;
  2191. slabp->inuse++;
  2192. next = slab_bufctl(slabp)[slabp->free];
  2193. #if DEBUG
  2194. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2195. WARN_ON(slabp->nodeid != nodeid);
  2196. #endif
  2197. slabp->free = next;
  2198. return objp;
  2199. }
  2200. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2201. void *objp, int nodeid)
  2202. {
  2203. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2204. #if DEBUG
  2205. /* Verify that the slab belongs to the intended node */
  2206. WARN_ON(slabp->nodeid != nodeid);
  2207. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2208. printk(KERN_ERR "slab: double free detected in cache "
  2209. "'%s', objp %p\n", cachep->name, objp);
  2210. BUG();
  2211. }
  2212. #endif
  2213. slab_bufctl(slabp)[objnr] = slabp->free;
  2214. slabp->free = objnr;
  2215. slabp->inuse--;
  2216. }
  2217. /*
  2218. * Map pages beginning at addr to the given cache and slab. This is required
  2219. * for the slab allocator to be able to lookup the cache and slab of a
  2220. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2221. */
  2222. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2223. void *addr)
  2224. {
  2225. int nr_pages;
  2226. struct page *page;
  2227. page = virt_to_page(addr);
  2228. nr_pages = 1;
  2229. if (likely(!PageCompound(page)))
  2230. nr_pages <<= cache->gfporder;
  2231. do {
  2232. page_set_cache(page, cache);
  2233. page_set_slab(page, slab);
  2234. page++;
  2235. } while (--nr_pages);
  2236. }
  2237. /*
  2238. * Grow (by 1) the number of slabs within a cache. This is called by
  2239. * kmem_cache_alloc() when there are no active objs left in a cache.
  2240. */
  2241. static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2242. {
  2243. struct slab *slabp;
  2244. void *objp;
  2245. size_t offset;
  2246. gfp_t local_flags;
  2247. unsigned long ctor_flags;
  2248. struct kmem_list3 *l3;
  2249. /*
  2250. * Be lazy and only check for valid flags here, keeping it out of the
  2251. * critical path in kmem_cache_alloc().
  2252. */
  2253. BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
  2254. if (flags & SLAB_NO_GROW)
  2255. return 0;
  2256. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2257. local_flags = (flags & SLAB_LEVEL_MASK);
  2258. if (!(local_flags & __GFP_WAIT))
  2259. /*
  2260. * Not allowed to sleep. Need to tell a constructor about
  2261. * this - it might need to know...
  2262. */
  2263. ctor_flags |= SLAB_CTOR_ATOMIC;
  2264. /* Take the l3 list lock to change the colour_next on this node */
  2265. check_irq_off();
  2266. l3 = cachep->nodelists[nodeid];
  2267. spin_lock(&l3->list_lock);
  2268. /* Get colour for the slab, and cal the next value. */
  2269. offset = l3->colour_next;
  2270. l3->colour_next++;
  2271. if (l3->colour_next >= cachep->colour)
  2272. l3->colour_next = 0;
  2273. spin_unlock(&l3->list_lock);
  2274. offset *= cachep->colour_off;
  2275. if (local_flags & __GFP_WAIT)
  2276. local_irq_enable();
  2277. /*
  2278. * The test for missing atomic flag is performed here, rather than
  2279. * the more obvious place, simply to reduce the critical path length
  2280. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2281. * will eventually be caught here (where it matters).
  2282. */
  2283. kmem_flagcheck(cachep, flags);
  2284. /*
  2285. * Get mem for the objs. Attempt to allocate a physical page from
  2286. * 'nodeid'.
  2287. */
  2288. objp = kmem_getpages(cachep, flags, nodeid);
  2289. if (!objp)
  2290. goto failed;
  2291. /* Get slab management. */
  2292. slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
  2293. if (!slabp)
  2294. goto opps1;
  2295. slabp->nodeid = nodeid;
  2296. slab_map_pages(cachep, slabp, objp);
  2297. cache_init_objs(cachep, slabp, ctor_flags);
  2298. if (local_flags & __GFP_WAIT)
  2299. local_irq_disable();
  2300. check_irq_off();
  2301. spin_lock(&l3->list_lock);
  2302. /* Make slab active. */
  2303. list_add_tail(&slabp->list, &(l3->slabs_free));
  2304. STATS_INC_GROWN(cachep);
  2305. l3->free_objects += cachep->num;
  2306. spin_unlock(&l3->list_lock);
  2307. return 1;
  2308. opps1:
  2309. kmem_freepages(cachep, objp);
  2310. failed:
  2311. if (local_flags & __GFP_WAIT)
  2312. local_irq_disable();
  2313. return 0;
  2314. }
  2315. #if DEBUG
  2316. /*
  2317. * Perform extra freeing checks:
  2318. * - detect bad pointers.
  2319. * - POISON/RED_ZONE checking
  2320. * - destructor calls, for caches with POISON+dtor
  2321. */
  2322. static void kfree_debugcheck(const void *objp)
  2323. {
  2324. struct page *page;
  2325. if (!virt_addr_valid(objp)) {
  2326. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2327. (unsigned long)objp);
  2328. BUG();
  2329. }
  2330. page = virt_to_page(objp);
  2331. if (!PageSlab(page)) {
  2332. printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
  2333. (unsigned long)objp);
  2334. BUG();
  2335. }
  2336. }
  2337. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2338. void *caller)
  2339. {
  2340. struct page *page;
  2341. unsigned int objnr;
  2342. struct slab *slabp;
  2343. objp -= obj_offset(cachep);
  2344. kfree_debugcheck(objp);
  2345. page = virt_to_page(objp);
  2346. if (page_get_cache(page) != cachep) {
  2347. printk(KERN_ERR "mismatch in kmem_cache_free: expected "
  2348. "cache %p, got %p\n",
  2349. page_get_cache(page), cachep);
  2350. printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
  2351. printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
  2352. page_get_cache(page)->name);
  2353. WARN_ON(1);
  2354. }
  2355. slabp = page_get_slab(page);
  2356. if (cachep->flags & SLAB_RED_ZONE) {
  2357. if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
  2358. *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
  2359. slab_error(cachep, "double free, or memory outside"
  2360. " object was overwritten");
  2361. printk(KERN_ERR "%p: redzone 1:0x%lx, "
  2362. "redzone 2:0x%lx.\n",
  2363. objp, *dbg_redzone1(cachep, objp),
  2364. *dbg_redzone2(cachep, objp));
  2365. }
  2366. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2367. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2368. }
  2369. if (cachep->flags & SLAB_STORE_USER)
  2370. *dbg_userword(cachep, objp) = caller;
  2371. objnr = obj_to_index(cachep, slabp, objp);
  2372. BUG_ON(objnr >= cachep->num);
  2373. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2374. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2375. /*
  2376. * Need to call the slab's constructor so the caller can
  2377. * perform a verify of its state (debugging). Called without
  2378. * the cache-lock held.
  2379. */
  2380. cachep->ctor(objp + obj_offset(cachep),
  2381. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2382. }
  2383. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2384. /* we want to cache poison the object,
  2385. * call the destruction callback
  2386. */
  2387. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2388. }
  2389. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2390. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2391. #endif
  2392. if (cachep->flags & SLAB_POISON) {
  2393. #ifdef CONFIG_DEBUG_PAGEALLOC
  2394. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2395. store_stackinfo(cachep, objp, (unsigned long)caller);
  2396. kernel_map_pages(virt_to_page(objp),
  2397. cachep->buffer_size / PAGE_SIZE, 0);
  2398. } else {
  2399. poison_obj(cachep, objp, POISON_FREE);
  2400. }
  2401. #else
  2402. poison_obj(cachep, objp, POISON_FREE);
  2403. #endif
  2404. }
  2405. return objp;
  2406. }
  2407. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2408. {
  2409. kmem_bufctl_t i;
  2410. int entries = 0;
  2411. /* Check slab's freelist to see if this obj is there. */
  2412. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2413. entries++;
  2414. if (entries > cachep->num || i >= cachep->num)
  2415. goto bad;
  2416. }
  2417. if (entries != cachep->num - slabp->inuse) {
  2418. bad:
  2419. printk(KERN_ERR "slab: Internal list corruption detected in "
  2420. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2421. cachep->name, cachep->num, slabp, slabp->inuse);
  2422. for (i = 0;
  2423. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2424. i++) {
  2425. if (i % 16 == 0)
  2426. printk("\n%03x:", i);
  2427. printk(" %02x", ((unsigned char *)slabp)[i]);
  2428. }
  2429. printk("\n");
  2430. BUG();
  2431. }
  2432. }
  2433. #else
  2434. #define kfree_debugcheck(x) do { } while(0)
  2435. #define cache_free_debugcheck(x,objp,z) (objp)
  2436. #define check_slabp(x,y) do { } while(0)
  2437. #endif
  2438. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2439. {
  2440. int batchcount;
  2441. struct kmem_list3 *l3;
  2442. struct array_cache *ac;
  2443. check_irq_off();
  2444. ac = cpu_cache_get(cachep);
  2445. retry:
  2446. batchcount = ac->batchcount;
  2447. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2448. /*
  2449. * If there was little recent activity on this cache, then
  2450. * perform only a partial refill. Otherwise we could generate
  2451. * refill bouncing.
  2452. */
  2453. batchcount = BATCHREFILL_LIMIT;
  2454. }
  2455. l3 = cachep->nodelists[numa_node_id()];
  2456. BUG_ON(ac->avail > 0 || !l3);
  2457. spin_lock(&l3->list_lock);
  2458. /* See if we can refill from the shared array */
  2459. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2460. goto alloc_done;
  2461. while (batchcount > 0) {
  2462. struct list_head *entry;
  2463. struct slab *slabp;
  2464. /* Get slab alloc is to come from. */
  2465. entry = l3->slabs_partial.next;
  2466. if (entry == &l3->slabs_partial) {
  2467. l3->free_touched = 1;
  2468. entry = l3->slabs_free.next;
  2469. if (entry == &l3->slabs_free)
  2470. goto must_grow;
  2471. }
  2472. slabp = list_entry(entry, struct slab, list);
  2473. check_slabp(cachep, slabp);
  2474. check_spinlock_acquired(cachep);
  2475. while (slabp->inuse < cachep->num && batchcount--) {
  2476. STATS_INC_ALLOCED(cachep);
  2477. STATS_INC_ACTIVE(cachep);
  2478. STATS_SET_HIGH(cachep);
  2479. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2480. numa_node_id());
  2481. }
  2482. check_slabp(cachep, slabp);
  2483. /* move slabp to correct slabp list: */
  2484. list_del(&slabp->list);
  2485. if (slabp->free == BUFCTL_END)
  2486. list_add(&slabp->list, &l3->slabs_full);
  2487. else
  2488. list_add(&slabp->list, &l3->slabs_partial);
  2489. }
  2490. must_grow:
  2491. l3->free_objects -= ac->avail;
  2492. alloc_done:
  2493. spin_unlock(&l3->list_lock);
  2494. if (unlikely(!ac->avail)) {
  2495. int x;
  2496. x = cache_grow(cachep, flags, numa_node_id());
  2497. /* cache_grow can reenable interrupts, then ac could change. */
  2498. ac = cpu_cache_get(cachep);
  2499. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2500. return NULL;
  2501. if (!ac->avail) /* objects refilled by interrupt? */
  2502. goto retry;
  2503. }
  2504. ac->touched = 1;
  2505. return ac->entry[--ac->avail];
  2506. }
  2507. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2508. gfp_t flags)
  2509. {
  2510. might_sleep_if(flags & __GFP_WAIT);
  2511. #if DEBUG
  2512. kmem_flagcheck(cachep, flags);
  2513. #endif
  2514. }
  2515. #if DEBUG
  2516. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2517. gfp_t flags, void *objp, void *caller)
  2518. {
  2519. if (!objp)
  2520. return objp;
  2521. if (cachep->flags & SLAB_POISON) {
  2522. #ifdef CONFIG_DEBUG_PAGEALLOC
  2523. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2524. kernel_map_pages(virt_to_page(objp),
  2525. cachep->buffer_size / PAGE_SIZE, 1);
  2526. else
  2527. check_poison_obj(cachep, objp);
  2528. #else
  2529. check_poison_obj(cachep, objp);
  2530. #endif
  2531. poison_obj(cachep, objp, POISON_INUSE);
  2532. }
  2533. if (cachep->flags & SLAB_STORE_USER)
  2534. *dbg_userword(cachep, objp) = caller;
  2535. if (cachep->flags & SLAB_RED_ZONE) {
  2536. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2537. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2538. slab_error(cachep, "double free, or memory outside"
  2539. " object was overwritten");
  2540. printk(KERN_ERR
  2541. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2542. objp, *dbg_redzone1(cachep, objp),
  2543. *dbg_redzone2(cachep, objp));
  2544. }
  2545. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2546. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2547. }
  2548. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2549. {
  2550. struct slab *slabp;
  2551. unsigned objnr;
  2552. slabp = page_get_slab(virt_to_page(objp));
  2553. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2554. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2555. }
  2556. #endif
  2557. objp += obj_offset(cachep);
  2558. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2559. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2560. if (!(flags & __GFP_WAIT))
  2561. ctor_flags |= SLAB_CTOR_ATOMIC;
  2562. cachep->ctor(objp, cachep, ctor_flags);
  2563. }
  2564. return objp;
  2565. }
  2566. #else
  2567. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2568. #endif
  2569. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2570. {
  2571. void *objp;
  2572. struct array_cache *ac;
  2573. #ifdef CONFIG_NUMA
  2574. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  2575. objp = alternate_node_alloc(cachep, flags);
  2576. if (objp != NULL)
  2577. return objp;
  2578. }
  2579. #endif
  2580. check_irq_off();
  2581. ac = cpu_cache_get(cachep);
  2582. if (likely(ac->avail)) {
  2583. STATS_INC_ALLOCHIT(cachep);
  2584. ac->touched = 1;
  2585. objp = ac->entry[--ac->avail];
  2586. } else {
  2587. STATS_INC_ALLOCMISS(cachep);
  2588. objp = cache_alloc_refill(cachep, flags);
  2589. }
  2590. return objp;
  2591. }
  2592. static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
  2593. gfp_t flags, void *caller)
  2594. {
  2595. unsigned long save_flags;
  2596. void *objp;
  2597. cache_alloc_debugcheck_before(cachep, flags);
  2598. local_irq_save(save_flags);
  2599. objp = ____cache_alloc(cachep, flags);
  2600. local_irq_restore(save_flags);
  2601. objp = cache_alloc_debugcheck_after(cachep, flags, objp,
  2602. caller);
  2603. prefetchw(objp);
  2604. return objp;
  2605. }
  2606. #ifdef CONFIG_NUMA
  2607. /*
  2608. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2609. *
  2610. * If we are in_interrupt, then process context, including cpusets and
  2611. * mempolicy, may not apply and should not be used for allocation policy.
  2612. */
  2613. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2614. {
  2615. int nid_alloc, nid_here;
  2616. if (in_interrupt())
  2617. return NULL;
  2618. nid_alloc = nid_here = numa_node_id();
  2619. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2620. nid_alloc = cpuset_mem_spread_node();
  2621. else if (current->mempolicy)
  2622. nid_alloc = slab_node(current->mempolicy);
  2623. if (nid_alloc != nid_here)
  2624. return __cache_alloc_node(cachep, flags, nid_alloc);
  2625. return NULL;
  2626. }
  2627. /*
  2628. * A interface to enable slab creation on nodeid
  2629. */
  2630. static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2631. int nodeid)
  2632. {
  2633. struct list_head *entry;
  2634. struct slab *slabp;
  2635. struct kmem_list3 *l3;
  2636. void *obj;
  2637. int x;
  2638. l3 = cachep->nodelists[nodeid];
  2639. BUG_ON(!l3);
  2640. retry:
  2641. check_irq_off();
  2642. spin_lock(&l3->list_lock);
  2643. entry = l3->slabs_partial.next;
  2644. if (entry == &l3->slabs_partial) {
  2645. l3->free_touched = 1;
  2646. entry = l3->slabs_free.next;
  2647. if (entry == &l3->slabs_free)
  2648. goto must_grow;
  2649. }
  2650. slabp = list_entry(entry, struct slab, list);
  2651. check_spinlock_acquired_node(cachep, nodeid);
  2652. check_slabp(cachep, slabp);
  2653. STATS_INC_NODEALLOCS(cachep);
  2654. STATS_INC_ACTIVE(cachep);
  2655. STATS_SET_HIGH(cachep);
  2656. BUG_ON(slabp->inuse == cachep->num);
  2657. obj = slab_get_obj(cachep, slabp, nodeid);
  2658. check_slabp(cachep, slabp);
  2659. l3->free_objects--;
  2660. /* move slabp to correct slabp list: */
  2661. list_del(&slabp->list);
  2662. if (slabp->free == BUFCTL_END)
  2663. list_add(&slabp->list, &l3->slabs_full);
  2664. else
  2665. list_add(&slabp->list, &l3->slabs_partial);
  2666. spin_unlock(&l3->list_lock);
  2667. goto done;
  2668. must_grow:
  2669. spin_unlock(&l3->list_lock);
  2670. x = cache_grow(cachep, flags, nodeid);
  2671. if (!x)
  2672. return NULL;
  2673. goto retry;
  2674. done:
  2675. return obj;
  2676. }
  2677. #endif
  2678. /*
  2679. * Caller needs to acquire correct kmem_list's list_lock
  2680. */
  2681. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2682. int node)
  2683. {
  2684. int i;
  2685. struct kmem_list3 *l3;
  2686. for (i = 0; i < nr_objects; i++) {
  2687. void *objp = objpp[i];
  2688. struct slab *slabp;
  2689. slabp = virt_to_slab(objp);
  2690. l3 = cachep->nodelists[node];
  2691. list_del(&slabp->list);
  2692. check_spinlock_acquired_node(cachep, node);
  2693. check_slabp(cachep, slabp);
  2694. slab_put_obj(cachep, slabp, objp, node);
  2695. STATS_DEC_ACTIVE(cachep);
  2696. l3->free_objects++;
  2697. check_slabp(cachep, slabp);
  2698. /* fixup slab chains */
  2699. if (slabp->inuse == 0) {
  2700. if (l3->free_objects > l3->free_limit) {
  2701. l3->free_objects -= cachep->num;
  2702. slab_destroy(cachep, slabp);
  2703. } else {
  2704. list_add(&slabp->list, &l3->slabs_free);
  2705. }
  2706. } else {
  2707. /* Unconditionally move a slab to the end of the
  2708. * partial list on free - maximum time for the
  2709. * other objects to be freed, too.
  2710. */
  2711. list_add_tail(&slabp->list, &l3->slabs_partial);
  2712. }
  2713. }
  2714. }
  2715. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2716. {
  2717. int batchcount;
  2718. struct kmem_list3 *l3;
  2719. int node = numa_node_id();
  2720. batchcount = ac->batchcount;
  2721. #if DEBUG
  2722. BUG_ON(!batchcount || batchcount > ac->avail);
  2723. #endif
  2724. check_irq_off();
  2725. l3 = cachep->nodelists[node];
  2726. spin_lock(&l3->list_lock);
  2727. if (l3->shared) {
  2728. struct array_cache *shared_array = l3->shared;
  2729. int max = shared_array->limit - shared_array->avail;
  2730. if (max) {
  2731. if (batchcount > max)
  2732. batchcount = max;
  2733. memcpy(&(shared_array->entry[shared_array->avail]),
  2734. ac->entry, sizeof(void *) * batchcount);
  2735. shared_array->avail += batchcount;
  2736. goto free_done;
  2737. }
  2738. }
  2739. free_block(cachep, ac->entry, batchcount, node);
  2740. free_done:
  2741. #if STATS
  2742. {
  2743. int i = 0;
  2744. struct list_head *p;
  2745. p = l3->slabs_free.next;
  2746. while (p != &(l3->slabs_free)) {
  2747. struct slab *slabp;
  2748. slabp = list_entry(p, struct slab, list);
  2749. BUG_ON(slabp->inuse);
  2750. i++;
  2751. p = p->next;
  2752. }
  2753. STATS_SET_FREEABLE(cachep, i);
  2754. }
  2755. #endif
  2756. spin_unlock(&l3->list_lock);
  2757. ac->avail -= batchcount;
  2758. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2759. }
  2760. /*
  2761. * Release an obj back to its cache. If the obj has a constructed state, it must
  2762. * be in this state _before_ it is released. Called with disabled ints.
  2763. */
  2764. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  2765. {
  2766. struct array_cache *ac = cpu_cache_get(cachep);
  2767. check_irq_off();
  2768. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  2769. if (cache_free_alien(cachep, objp))
  2770. return;
  2771. if (likely(ac->avail < ac->limit)) {
  2772. STATS_INC_FREEHIT(cachep);
  2773. ac->entry[ac->avail++] = objp;
  2774. return;
  2775. } else {
  2776. STATS_INC_FREEMISS(cachep);
  2777. cache_flusharray(cachep, ac);
  2778. ac->entry[ac->avail++] = objp;
  2779. }
  2780. }
  2781. /**
  2782. * kmem_cache_alloc - Allocate an object
  2783. * @cachep: The cache to allocate from.
  2784. * @flags: See kmalloc().
  2785. *
  2786. * Allocate an object from this cache. The flags are only relevant
  2787. * if the cache has no available objects.
  2788. */
  2789. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2790. {
  2791. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  2792. }
  2793. EXPORT_SYMBOL(kmem_cache_alloc);
  2794. /**
  2795. * kmem_cache_alloc - Allocate an object. The memory is set to zero.
  2796. * @cache: The cache to allocate from.
  2797. * @flags: See kmalloc().
  2798. *
  2799. * Allocate an object from this cache and set the allocated memory to zero.
  2800. * The flags are only relevant if the cache has no available objects.
  2801. */
  2802. void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
  2803. {
  2804. void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
  2805. if (ret)
  2806. memset(ret, 0, obj_size(cache));
  2807. return ret;
  2808. }
  2809. EXPORT_SYMBOL(kmem_cache_zalloc);
  2810. /**
  2811. * kmem_ptr_validate - check if an untrusted pointer might
  2812. * be a slab entry.
  2813. * @cachep: the cache we're checking against
  2814. * @ptr: pointer to validate
  2815. *
  2816. * This verifies that the untrusted pointer looks sane:
  2817. * it is _not_ a guarantee that the pointer is actually
  2818. * part of the slab cache in question, but it at least
  2819. * validates that the pointer can be dereferenced and
  2820. * looks half-way sane.
  2821. *
  2822. * Currently only used for dentry validation.
  2823. */
  2824. int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
  2825. {
  2826. unsigned long addr = (unsigned long)ptr;
  2827. unsigned long min_addr = PAGE_OFFSET;
  2828. unsigned long align_mask = BYTES_PER_WORD - 1;
  2829. unsigned long size = cachep->buffer_size;
  2830. struct page *page;
  2831. if (unlikely(addr < min_addr))
  2832. goto out;
  2833. if (unlikely(addr > (unsigned long)high_memory - size))
  2834. goto out;
  2835. if (unlikely(addr & align_mask))
  2836. goto out;
  2837. if (unlikely(!kern_addr_valid(addr)))
  2838. goto out;
  2839. if (unlikely(!kern_addr_valid(addr + size - 1)))
  2840. goto out;
  2841. page = virt_to_page(ptr);
  2842. if (unlikely(!PageSlab(page)))
  2843. goto out;
  2844. if (unlikely(page_get_cache(page) != cachep))
  2845. goto out;
  2846. return 1;
  2847. out:
  2848. return 0;
  2849. }
  2850. #ifdef CONFIG_NUMA
  2851. /**
  2852. * kmem_cache_alloc_node - Allocate an object on the specified node
  2853. * @cachep: The cache to allocate from.
  2854. * @flags: See kmalloc().
  2855. * @nodeid: node number of the target node.
  2856. *
  2857. * Identical to kmem_cache_alloc, except that this function is slow
  2858. * and can sleep. And it will allocate memory on the given node, which
  2859. * can improve the performance for cpu bound structures.
  2860. * New and improved: it will now make sure that the object gets
  2861. * put on the correct node list so that there is no false sharing.
  2862. */
  2863. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2864. {
  2865. unsigned long save_flags;
  2866. void *ptr;
  2867. cache_alloc_debugcheck_before(cachep, flags);
  2868. local_irq_save(save_flags);
  2869. if (nodeid == -1 || nodeid == numa_node_id() ||
  2870. !cachep->nodelists[nodeid])
  2871. ptr = ____cache_alloc(cachep, flags);
  2872. else
  2873. ptr = __cache_alloc_node(cachep, flags, nodeid);
  2874. local_irq_restore(save_flags);
  2875. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
  2876. __builtin_return_address(0));
  2877. return ptr;
  2878. }
  2879. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2880. void *kmalloc_node(size_t size, gfp_t flags, int node)
  2881. {
  2882. struct kmem_cache *cachep;
  2883. cachep = kmem_find_general_cachep(size, flags);
  2884. if (unlikely(cachep == NULL))
  2885. return NULL;
  2886. return kmem_cache_alloc_node(cachep, flags, node);
  2887. }
  2888. EXPORT_SYMBOL(kmalloc_node);
  2889. #endif
  2890. /**
  2891. * kmalloc - allocate memory
  2892. * @size: how many bytes of memory are required.
  2893. * @flags: the type of memory to allocate.
  2894. * @caller: function caller for debug tracking of the caller
  2895. *
  2896. * kmalloc is the normal method of allocating memory
  2897. * in the kernel.
  2898. *
  2899. * The @flags argument may be one of:
  2900. *
  2901. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  2902. *
  2903. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  2904. *
  2905. * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
  2906. *
  2907. * Additionally, the %GFP_DMA flag may be set to indicate the memory
  2908. * must be suitable for DMA. This can mean different things on different
  2909. * platforms. For example, on i386, it means that the memory must come
  2910. * from the first 16MB.
  2911. */
  2912. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  2913. void *caller)
  2914. {
  2915. struct kmem_cache *cachep;
  2916. /* If you want to save a few bytes .text space: replace
  2917. * __ with kmem_.
  2918. * Then kmalloc uses the uninlined functions instead of the inline
  2919. * functions.
  2920. */
  2921. cachep = __find_general_cachep(size, flags);
  2922. if (unlikely(cachep == NULL))
  2923. return NULL;
  2924. return __cache_alloc(cachep, flags, caller);
  2925. }
  2926. void *__kmalloc(size_t size, gfp_t flags)
  2927. {
  2928. #ifndef CONFIG_DEBUG_SLAB
  2929. return __do_kmalloc(size, flags, NULL);
  2930. #else
  2931. return __do_kmalloc(size, flags, __builtin_return_address(0));
  2932. #endif
  2933. }
  2934. EXPORT_SYMBOL(__kmalloc);
  2935. #ifdef CONFIG_DEBUG_SLAB
  2936. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  2937. {
  2938. return __do_kmalloc(size, flags, caller);
  2939. }
  2940. EXPORT_SYMBOL(__kmalloc_track_caller);
  2941. #endif
  2942. #ifdef CONFIG_SMP
  2943. /**
  2944. * __alloc_percpu - allocate one copy of the object for every present
  2945. * cpu in the system, zeroing them.
  2946. * Objects should be dereferenced using the per_cpu_ptr macro only.
  2947. *
  2948. * @size: how many bytes of memory are required.
  2949. */
  2950. void *__alloc_percpu(size_t size)
  2951. {
  2952. int i;
  2953. struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  2954. if (!pdata)
  2955. return NULL;
  2956. /*
  2957. * Cannot use for_each_online_cpu since a cpu may come online
  2958. * and we have no way of figuring out how to fix the array
  2959. * that we have allocated then....
  2960. */
  2961. for_each_possible_cpu(i) {
  2962. int node = cpu_to_node(i);
  2963. if (node_online(node))
  2964. pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
  2965. else
  2966. pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
  2967. if (!pdata->ptrs[i])
  2968. goto unwind_oom;
  2969. memset(pdata->ptrs[i], 0, size);
  2970. }
  2971. /* Catch derefs w/o wrappers */
  2972. return (void *)(~(unsigned long)pdata);
  2973. unwind_oom:
  2974. while (--i >= 0) {
  2975. if (!cpu_possible(i))
  2976. continue;
  2977. kfree(pdata->ptrs[i]);
  2978. }
  2979. kfree(pdata);
  2980. return NULL;
  2981. }
  2982. EXPORT_SYMBOL(__alloc_percpu);
  2983. #endif
  2984. /**
  2985. * kmem_cache_free - Deallocate an object
  2986. * @cachep: The cache the allocation was from.
  2987. * @objp: The previously allocated object.
  2988. *
  2989. * Free an object which was previously allocated from this
  2990. * cache.
  2991. */
  2992. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  2993. {
  2994. unsigned long flags;
  2995. local_irq_save(flags);
  2996. __cache_free(cachep, objp);
  2997. local_irq_restore(flags);
  2998. }
  2999. EXPORT_SYMBOL(kmem_cache_free);
  3000. /**
  3001. * kfree - free previously allocated memory
  3002. * @objp: pointer returned by kmalloc.
  3003. *
  3004. * If @objp is NULL, no operation is performed.
  3005. *
  3006. * Don't free memory not originally allocated by kmalloc()
  3007. * or you will run into trouble.
  3008. */
  3009. void kfree(const void *objp)
  3010. {
  3011. struct kmem_cache *c;
  3012. unsigned long flags;
  3013. if (unlikely(!objp))
  3014. return;
  3015. local_irq_save(flags);
  3016. kfree_debugcheck(objp);
  3017. c = virt_to_cache(objp);
  3018. mutex_debug_check_no_locks_freed(objp, obj_size(c));
  3019. __cache_free(c, (void *)objp);
  3020. local_irq_restore(flags);
  3021. }
  3022. EXPORT_SYMBOL(kfree);
  3023. #ifdef CONFIG_SMP
  3024. /**
  3025. * free_percpu - free previously allocated percpu memory
  3026. * @objp: pointer returned by alloc_percpu.
  3027. *
  3028. * Don't free memory not originally allocated by alloc_percpu()
  3029. * The complemented objp is to check for that.
  3030. */
  3031. void free_percpu(const void *objp)
  3032. {
  3033. int i;
  3034. struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
  3035. /*
  3036. * We allocate for all cpus so we cannot use for online cpu here.
  3037. */
  3038. for_each_possible_cpu(i)
  3039. kfree(p->ptrs[i]);
  3040. kfree(p);
  3041. }
  3042. EXPORT_SYMBOL(free_percpu);
  3043. #endif
  3044. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3045. {
  3046. return obj_size(cachep);
  3047. }
  3048. EXPORT_SYMBOL(kmem_cache_size);
  3049. const char *kmem_cache_name(struct kmem_cache *cachep)
  3050. {
  3051. return cachep->name;
  3052. }
  3053. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3054. /*
  3055. * This initializes kmem_list3 or resizes varioius caches for all nodes.
  3056. */
  3057. static int alloc_kmemlist(struct kmem_cache *cachep)
  3058. {
  3059. int node;
  3060. struct kmem_list3 *l3;
  3061. struct array_cache *new_shared;
  3062. struct array_cache **new_alien;
  3063. for_each_online_node(node) {
  3064. new_alien = alloc_alien_cache(node, cachep->limit);
  3065. if (!new_alien)
  3066. goto fail;
  3067. new_shared = alloc_arraycache(node,
  3068. cachep->shared*cachep->batchcount,
  3069. 0xbaadf00d);
  3070. if (!new_shared) {
  3071. free_alien_cache(new_alien);
  3072. goto fail;
  3073. }
  3074. l3 = cachep->nodelists[node];
  3075. if (l3) {
  3076. struct array_cache *shared = l3->shared;
  3077. spin_lock_irq(&l3->list_lock);
  3078. if (shared)
  3079. free_block(cachep, shared->entry,
  3080. shared->avail, node);
  3081. l3->shared = new_shared;
  3082. if (!l3->alien) {
  3083. l3->alien = new_alien;
  3084. new_alien = NULL;
  3085. }
  3086. l3->free_limit = (1 + nr_cpus_node(node)) *
  3087. cachep->batchcount + cachep->num;
  3088. spin_unlock_irq(&l3->list_lock);
  3089. kfree(shared);
  3090. free_alien_cache(new_alien);
  3091. continue;
  3092. }
  3093. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3094. if (!l3) {
  3095. free_alien_cache(new_alien);
  3096. kfree(new_shared);
  3097. goto fail;
  3098. }
  3099. kmem_list3_init(l3);
  3100. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3101. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3102. l3->shared = new_shared;
  3103. l3->alien = new_alien;
  3104. l3->free_limit = (1 + nr_cpus_node(node)) *
  3105. cachep->batchcount + cachep->num;
  3106. cachep->nodelists[node] = l3;
  3107. }
  3108. return 0;
  3109. fail:
  3110. if (!cachep->next.next) {
  3111. /* Cache is not active yet. Roll back what we did */
  3112. node--;
  3113. while (node >= 0) {
  3114. if (cachep->nodelists[node]) {
  3115. l3 = cachep->nodelists[node];
  3116. kfree(l3->shared);
  3117. free_alien_cache(l3->alien);
  3118. kfree(l3);
  3119. cachep->nodelists[node] = NULL;
  3120. }
  3121. node--;
  3122. }
  3123. }
  3124. return -ENOMEM;
  3125. }
  3126. struct ccupdate_struct {
  3127. struct kmem_cache *cachep;
  3128. struct array_cache *new[NR_CPUS];
  3129. };
  3130. static void do_ccupdate_local(void *info)
  3131. {
  3132. struct ccupdate_struct *new = info;
  3133. struct array_cache *old;
  3134. check_irq_off();
  3135. old = cpu_cache_get(new->cachep);
  3136. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3137. new->new[smp_processor_id()] = old;
  3138. }
  3139. /* Always called with the cache_chain_mutex held */
  3140. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3141. int batchcount, int shared)
  3142. {
  3143. struct ccupdate_struct new;
  3144. int i, err;
  3145. memset(&new.new, 0, sizeof(new.new));
  3146. for_each_online_cpu(i) {
  3147. new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3148. batchcount);
  3149. if (!new.new[i]) {
  3150. for (i--; i >= 0; i--)
  3151. kfree(new.new[i]);
  3152. return -ENOMEM;
  3153. }
  3154. }
  3155. new.cachep = cachep;
  3156. on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
  3157. check_irq_on();
  3158. cachep->batchcount = batchcount;
  3159. cachep->limit = limit;
  3160. cachep->shared = shared;
  3161. for_each_online_cpu(i) {
  3162. struct array_cache *ccold = new.new[i];
  3163. if (!ccold)
  3164. continue;
  3165. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3166. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3167. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3168. kfree(ccold);
  3169. }
  3170. err = alloc_kmemlist(cachep);
  3171. if (err) {
  3172. printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
  3173. cachep->name, -err);
  3174. BUG();
  3175. }
  3176. return 0;
  3177. }
  3178. /* Called with cache_chain_mutex held always */
  3179. static void enable_cpucache(struct kmem_cache *cachep)
  3180. {
  3181. int err;
  3182. int limit, shared;
  3183. /*
  3184. * The head array serves three purposes:
  3185. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3186. * - reduce the number of spinlock operations.
  3187. * - reduce the number of linked list operations on the slab and
  3188. * bufctl chains: array operations are cheaper.
  3189. * The numbers are guessed, we should auto-tune as described by
  3190. * Bonwick.
  3191. */
  3192. if (cachep->buffer_size > 131072)
  3193. limit = 1;
  3194. else if (cachep->buffer_size > PAGE_SIZE)
  3195. limit = 8;
  3196. else if (cachep->buffer_size > 1024)
  3197. limit = 24;
  3198. else if (cachep->buffer_size > 256)
  3199. limit = 54;
  3200. else
  3201. limit = 120;
  3202. /*
  3203. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3204. * allocation behaviour: Most allocs on one cpu, most free operations
  3205. * on another cpu. For these cases, an efficient object passing between
  3206. * cpus is necessary. This is provided by a shared array. The array
  3207. * replaces Bonwick's magazine layer.
  3208. * On uniprocessor, it's functionally equivalent (but less efficient)
  3209. * to a larger limit. Thus disabled by default.
  3210. */
  3211. shared = 0;
  3212. #ifdef CONFIG_SMP
  3213. if (cachep->buffer_size <= PAGE_SIZE)
  3214. shared = 8;
  3215. #endif
  3216. #if DEBUG
  3217. /*
  3218. * With debugging enabled, large batchcount lead to excessively long
  3219. * periods with disabled local interrupts. Limit the batchcount
  3220. */
  3221. if (limit > 32)
  3222. limit = 32;
  3223. #endif
  3224. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3225. if (err)
  3226. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3227. cachep->name, -err);
  3228. }
  3229. /*
  3230. * Drain an array if it contains any elements taking the l3 lock only if
  3231. * necessary. Note that the l3 listlock also protects the array_cache
  3232. * if drain_array() is used on the shared array.
  3233. */
  3234. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3235. struct array_cache *ac, int force, int node)
  3236. {
  3237. int tofree;
  3238. if (!ac || !ac->avail)
  3239. return;
  3240. if (ac->touched && !force) {
  3241. ac->touched = 0;
  3242. } else {
  3243. spin_lock_irq(&l3->list_lock);
  3244. if (ac->avail) {
  3245. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3246. if (tofree > ac->avail)
  3247. tofree = (ac->avail + 1) / 2;
  3248. free_block(cachep, ac->entry, tofree, node);
  3249. ac->avail -= tofree;
  3250. memmove(ac->entry, &(ac->entry[tofree]),
  3251. sizeof(void *) * ac->avail);
  3252. }
  3253. spin_unlock_irq(&l3->list_lock);
  3254. }
  3255. }
  3256. /**
  3257. * cache_reap - Reclaim memory from caches.
  3258. * @unused: unused parameter
  3259. *
  3260. * Called from workqueue/eventd every few seconds.
  3261. * Purpose:
  3262. * - clear the per-cpu caches for this CPU.
  3263. * - return freeable pages to the main free memory pool.
  3264. *
  3265. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3266. * again on the next iteration.
  3267. */
  3268. static void cache_reap(void *unused)
  3269. {
  3270. struct list_head *walk;
  3271. struct kmem_list3 *l3;
  3272. int node = numa_node_id();
  3273. if (!mutex_trylock(&cache_chain_mutex)) {
  3274. /* Give up. Setup the next iteration. */
  3275. schedule_delayed_work(&__get_cpu_var(reap_work),
  3276. REAPTIMEOUT_CPUC);
  3277. return;
  3278. }
  3279. list_for_each(walk, &cache_chain) {
  3280. struct kmem_cache *searchp;
  3281. struct list_head *p;
  3282. int tofree;
  3283. struct slab *slabp;
  3284. searchp = list_entry(walk, struct kmem_cache, next);
  3285. check_irq_on();
  3286. /*
  3287. * We only take the l3 lock if absolutely necessary and we
  3288. * have established with reasonable certainty that
  3289. * we can do some work if the lock was obtained.
  3290. */
  3291. l3 = searchp->nodelists[node];
  3292. reap_alien(searchp, l3);
  3293. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3294. /*
  3295. * These are racy checks but it does not matter
  3296. * if we skip one check or scan twice.
  3297. */
  3298. if (time_after(l3->next_reap, jiffies))
  3299. goto next;
  3300. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3301. drain_array(searchp, l3, l3->shared, 0, node);
  3302. if (l3->free_touched) {
  3303. l3->free_touched = 0;
  3304. goto next;
  3305. }
  3306. tofree = (l3->free_limit + 5 * searchp->num - 1) /
  3307. (5 * searchp->num);
  3308. do {
  3309. /*
  3310. * Do not lock if there are no free blocks.
  3311. */
  3312. if (list_empty(&l3->slabs_free))
  3313. break;
  3314. spin_lock_irq(&l3->list_lock);
  3315. p = l3->slabs_free.next;
  3316. if (p == &(l3->slabs_free)) {
  3317. spin_unlock_irq(&l3->list_lock);
  3318. break;
  3319. }
  3320. slabp = list_entry(p, struct slab, list);
  3321. BUG_ON(slabp->inuse);
  3322. list_del(&slabp->list);
  3323. STATS_INC_REAPED(searchp);
  3324. /*
  3325. * Safe to drop the lock. The slab is no longer linked
  3326. * to the cache. searchp cannot disappear, we hold
  3327. * cache_chain_lock
  3328. */
  3329. l3->free_objects -= searchp->num;
  3330. spin_unlock_irq(&l3->list_lock);
  3331. slab_destroy(searchp, slabp);
  3332. } while (--tofree > 0);
  3333. next:
  3334. cond_resched();
  3335. }
  3336. check_irq_on();
  3337. mutex_unlock(&cache_chain_mutex);
  3338. next_reap_node();
  3339. /* Set up the next iteration */
  3340. schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
  3341. }
  3342. #ifdef CONFIG_PROC_FS
  3343. static void print_slabinfo_header(struct seq_file *m)
  3344. {
  3345. /*
  3346. * Output format version, so at least we can change it
  3347. * without _too_ many complaints.
  3348. */
  3349. #if STATS
  3350. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3351. #else
  3352. seq_puts(m, "slabinfo - version: 2.1\n");
  3353. #endif
  3354. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3355. "<objperslab> <pagesperslab>");
  3356. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3357. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3358. #if STATS
  3359. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3360. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3361. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3362. #endif
  3363. seq_putc(m, '\n');
  3364. }
  3365. static void *s_start(struct seq_file *m, loff_t *pos)
  3366. {
  3367. loff_t n = *pos;
  3368. struct list_head *p;
  3369. mutex_lock(&cache_chain_mutex);
  3370. if (!n)
  3371. print_slabinfo_header(m);
  3372. p = cache_chain.next;
  3373. while (n--) {
  3374. p = p->next;
  3375. if (p == &cache_chain)
  3376. return NULL;
  3377. }
  3378. return list_entry(p, struct kmem_cache, next);
  3379. }
  3380. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3381. {
  3382. struct kmem_cache *cachep = p;
  3383. ++*pos;
  3384. return cachep->next.next == &cache_chain ?
  3385. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3386. }
  3387. static void s_stop(struct seq_file *m, void *p)
  3388. {
  3389. mutex_unlock(&cache_chain_mutex);
  3390. }
  3391. static int s_show(struct seq_file *m, void *p)
  3392. {
  3393. struct kmem_cache *cachep = p;
  3394. struct list_head *q;
  3395. struct slab *slabp;
  3396. unsigned long active_objs;
  3397. unsigned long num_objs;
  3398. unsigned long active_slabs = 0;
  3399. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3400. const char *name;
  3401. char *error = NULL;
  3402. int node;
  3403. struct kmem_list3 *l3;
  3404. active_objs = 0;
  3405. num_slabs = 0;
  3406. for_each_online_node(node) {
  3407. l3 = cachep->nodelists[node];
  3408. if (!l3)
  3409. continue;
  3410. check_irq_on();
  3411. spin_lock_irq(&l3->list_lock);
  3412. list_for_each(q, &l3->slabs_full) {
  3413. slabp = list_entry(q, struct slab, list);
  3414. if (slabp->inuse != cachep->num && !error)
  3415. error = "slabs_full accounting error";
  3416. active_objs += cachep->num;
  3417. active_slabs++;
  3418. }
  3419. list_for_each(q, &l3->slabs_partial) {
  3420. slabp = list_entry(q, struct slab, list);
  3421. if (slabp->inuse == cachep->num && !error)
  3422. error = "slabs_partial inuse accounting error";
  3423. if (!slabp->inuse && !error)
  3424. error = "slabs_partial/inuse accounting error";
  3425. active_objs += slabp->inuse;
  3426. active_slabs++;
  3427. }
  3428. list_for_each(q, &l3->slabs_free) {
  3429. slabp = list_entry(q, struct slab, list);
  3430. if (slabp->inuse && !error)
  3431. error = "slabs_free/inuse accounting error";
  3432. num_slabs++;
  3433. }
  3434. free_objects += l3->free_objects;
  3435. if (l3->shared)
  3436. shared_avail += l3->shared->avail;
  3437. spin_unlock_irq(&l3->list_lock);
  3438. }
  3439. num_slabs += active_slabs;
  3440. num_objs = num_slabs * cachep->num;
  3441. if (num_objs - active_objs != free_objects && !error)
  3442. error = "free_objects accounting error";
  3443. name = cachep->name;
  3444. if (error)
  3445. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3446. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3447. name, active_objs, num_objs, cachep->buffer_size,
  3448. cachep->num, (1 << cachep->gfporder));
  3449. seq_printf(m, " : tunables %4u %4u %4u",
  3450. cachep->limit, cachep->batchcount, cachep->shared);
  3451. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3452. active_slabs, num_slabs, shared_avail);
  3453. #if STATS
  3454. { /* list3 stats */
  3455. unsigned long high = cachep->high_mark;
  3456. unsigned long allocs = cachep->num_allocations;
  3457. unsigned long grown = cachep->grown;
  3458. unsigned long reaped = cachep->reaped;
  3459. unsigned long errors = cachep->errors;
  3460. unsigned long max_freeable = cachep->max_freeable;
  3461. unsigned long node_allocs = cachep->node_allocs;
  3462. unsigned long node_frees = cachep->node_frees;
  3463. unsigned long overflows = cachep->node_overflow;
  3464. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3465. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3466. reaped, errors, max_freeable, node_allocs,
  3467. node_frees, overflows);
  3468. }
  3469. /* cpu stats */
  3470. {
  3471. unsigned long allochit = atomic_read(&cachep->allochit);
  3472. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3473. unsigned long freehit = atomic_read(&cachep->freehit);
  3474. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3475. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3476. allochit, allocmiss, freehit, freemiss);
  3477. }
  3478. #endif
  3479. seq_putc(m, '\n');
  3480. return 0;
  3481. }
  3482. /*
  3483. * slabinfo_op - iterator that generates /proc/slabinfo
  3484. *
  3485. * Output layout:
  3486. * cache-name
  3487. * num-active-objs
  3488. * total-objs
  3489. * object size
  3490. * num-active-slabs
  3491. * total-slabs
  3492. * num-pages-per-slab
  3493. * + further values on SMP and with statistics enabled
  3494. */
  3495. struct seq_operations slabinfo_op = {
  3496. .start = s_start,
  3497. .next = s_next,
  3498. .stop = s_stop,
  3499. .show = s_show,
  3500. };
  3501. #define MAX_SLABINFO_WRITE 128
  3502. /**
  3503. * slabinfo_write - Tuning for the slab allocator
  3504. * @file: unused
  3505. * @buffer: user buffer
  3506. * @count: data length
  3507. * @ppos: unused
  3508. */
  3509. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3510. size_t count, loff_t *ppos)
  3511. {
  3512. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3513. int limit, batchcount, shared, res;
  3514. struct list_head *p;
  3515. if (count > MAX_SLABINFO_WRITE)
  3516. return -EINVAL;
  3517. if (copy_from_user(&kbuf, buffer, count))
  3518. return -EFAULT;
  3519. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3520. tmp = strchr(kbuf, ' ');
  3521. if (!tmp)
  3522. return -EINVAL;
  3523. *tmp = '\0';
  3524. tmp++;
  3525. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3526. return -EINVAL;
  3527. /* Find the cache in the chain of caches. */
  3528. mutex_lock(&cache_chain_mutex);
  3529. res = -EINVAL;
  3530. list_for_each(p, &cache_chain) {
  3531. struct kmem_cache *cachep;
  3532. cachep = list_entry(p, struct kmem_cache, next);
  3533. if (!strcmp(cachep->name, kbuf)) {
  3534. if (limit < 1 || batchcount < 1 ||
  3535. batchcount > limit || shared < 0) {
  3536. res = 0;
  3537. } else {
  3538. res = do_tune_cpucache(cachep, limit,
  3539. batchcount, shared);
  3540. }
  3541. break;
  3542. }
  3543. }
  3544. mutex_unlock(&cache_chain_mutex);
  3545. if (res >= 0)
  3546. res = count;
  3547. return res;
  3548. }
  3549. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3550. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3551. {
  3552. loff_t n = *pos;
  3553. struct list_head *p;
  3554. mutex_lock(&cache_chain_mutex);
  3555. p = cache_chain.next;
  3556. while (n--) {
  3557. p = p->next;
  3558. if (p == &cache_chain)
  3559. return NULL;
  3560. }
  3561. return list_entry(p, struct kmem_cache, next);
  3562. }
  3563. static inline int add_caller(unsigned long *n, unsigned long v)
  3564. {
  3565. unsigned long *p;
  3566. int l;
  3567. if (!v)
  3568. return 1;
  3569. l = n[1];
  3570. p = n + 2;
  3571. while (l) {
  3572. int i = l/2;
  3573. unsigned long *q = p + 2 * i;
  3574. if (*q == v) {
  3575. q[1]++;
  3576. return 1;
  3577. }
  3578. if (*q > v) {
  3579. l = i;
  3580. } else {
  3581. p = q + 2;
  3582. l -= i + 1;
  3583. }
  3584. }
  3585. if (++n[1] == n[0])
  3586. return 0;
  3587. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3588. p[0] = v;
  3589. p[1] = 1;
  3590. return 1;
  3591. }
  3592. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3593. {
  3594. void *p;
  3595. int i;
  3596. if (n[0] == n[1])
  3597. return;
  3598. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3599. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3600. continue;
  3601. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3602. return;
  3603. }
  3604. }
  3605. static void show_symbol(struct seq_file *m, unsigned long address)
  3606. {
  3607. #ifdef CONFIG_KALLSYMS
  3608. char *modname;
  3609. const char *name;
  3610. unsigned long offset, size;
  3611. char namebuf[KSYM_NAME_LEN+1];
  3612. name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
  3613. if (name) {
  3614. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3615. if (modname)
  3616. seq_printf(m, " [%s]", modname);
  3617. return;
  3618. }
  3619. #endif
  3620. seq_printf(m, "%p", (void *)address);
  3621. }
  3622. static int leaks_show(struct seq_file *m, void *p)
  3623. {
  3624. struct kmem_cache *cachep = p;
  3625. struct list_head *q;
  3626. struct slab *slabp;
  3627. struct kmem_list3 *l3;
  3628. const char *name;
  3629. unsigned long *n = m->private;
  3630. int node;
  3631. int i;
  3632. if (!(cachep->flags & SLAB_STORE_USER))
  3633. return 0;
  3634. if (!(cachep->flags & SLAB_RED_ZONE))
  3635. return 0;
  3636. /* OK, we can do it */
  3637. n[1] = 0;
  3638. for_each_online_node(node) {
  3639. l3 = cachep->nodelists[node];
  3640. if (!l3)
  3641. continue;
  3642. check_irq_on();
  3643. spin_lock_irq(&l3->list_lock);
  3644. list_for_each(q, &l3->slabs_full) {
  3645. slabp = list_entry(q, struct slab, list);
  3646. handle_slab(n, cachep, slabp);
  3647. }
  3648. list_for_each(q, &l3->slabs_partial) {
  3649. slabp = list_entry(q, struct slab, list);
  3650. handle_slab(n, cachep, slabp);
  3651. }
  3652. spin_unlock_irq(&l3->list_lock);
  3653. }
  3654. name = cachep->name;
  3655. if (n[0] == n[1]) {
  3656. /* Increase the buffer size */
  3657. mutex_unlock(&cache_chain_mutex);
  3658. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3659. if (!m->private) {
  3660. /* Too bad, we are really out */
  3661. m->private = n;
  3662. mutex_lock(&cache_chain_mutex);
  3663. return -ENOMEM;
  3664. }
  3665. *(unsigned long *)m->private = n[0] * 2;
  3666. kfree(n);
  3667. mutex_lock(&cache_chain_mutex);
  3668. /* Now make sure this entry will be retried */
  3669. m->count = m->size;
  3670. return 0;
  3671. }
  3672. for (i = 0; i < n[1]; i++) {
  3673. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3674. show_symbol(m, n[2*i+2]);
  3675. seq_putc(m, '\n');
  3676. }
  3677. return 0;
  3678. }
  3679. struct seq_operations slabstats_op = {
  3680. .start = leaks_start,
  3681. .next = s_next,
  3682. .stop = s_stop,
  3683. .show = leaks_show,
  3684. };
  3685. #endif
  3686. #endif
  3687. /**
  3688. * ksize - get the actual amount of memory allocated for a given object
  3689. * @objp: Pointer to the object
  3690. *
  3691. * kmalloc may internally round up allocations and return more memory
  3692. * than requested. ksize() can be used to determine the actual amount of
  3693. * memory allocated. The caller may use this additional memory, even though
  3694. * a smaller amount of memory was initially specified with the kmalloc call.
  3695. * The caller must guarantee that objp points to a valid object previously
  3696. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3697. * must not be freed during the duration of the call.
  3698. */
  3699. unsigned int ksize(const void *objp)
  3700. {
  3701. if (unlikely(objp == NULL))
  3702. return 0;
  3703. return obj_size(virt_to_cache(objp));
  3704. }