fsl_elbc_nand.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100
  1. /* Freescale Enhanced Local Bus Controller NAND driver
  2. *
  3. * Copyright (c) 2006-2007 Freescale Semiconductor
  4. *
  5. * Authors: Nick Spence <nick.spence@freescale.com>,
  6. * Scott Wood <scottwood@freescale.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. */
  22. #include <linux/module.h>
  23. #include <linux/types.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/string.h>
  27. #include <linux/ioport.h>
  28. #include <linux/of_platform.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/mtd/mtd.h>
  32. #include <linux/mtd/nand.h>
  33. #include <linux/mtd/nand_ecc.h>
  34. #include <linux/mtd/partitions.h>
  35. #include <asm/io.h>
  36. #include <asm/fsl_lbc.h>
  37. #define MAX_BANKS 8
  38. #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
  39. #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
  40. struct fsl_elbc_ctrl;
  41. /* mtd information per set */
  42. struct fsl_elbc_mtd {
  43. struct mtd_info mtd;
  44. struct nand_chip chip;
  45. struct fsl_elbc_ctrl *ctrl;
  46. struct device *dev;
  47. int bank; /* Chip select bank number */
  48. u8 __iomem *vbase; /* Chip select base virtual address */
  49. int page_size; /* NAND page size (0=512, 1=2048) */
  50. unsigned int fmr; /* FCM Flash Mode Register value */
  51. };
  52. /* overview of the fsl elbc controller */
  53. struct fsl_elbc_ctrl {
  54. struct nand_hw_control controller;
  55. struct fsl_elbc_mtd *chips[MAX_BANKS];
  56. /* device info */
  57. struct device *dev;
  58. struct fsl_lbc_regs __iomem *regs;
  59. int irq;
  60. wait_queue_head_t irq_wait;
  61. unsigned int irq_status; /* status read from LTESR by irq handler */
  62. u8 __iomem *addr; /* Address of assigned FCM buffer */
  63. unsigned int page; /* Last page written to / read from */
  64. unsigned int read_bytes; /* Number of bytes read during command */
  65. unsigned int column; /* Saved column from SEQIN */
  66. unsigned int index; /* Pointer to next byte to 'read' */
  67. unsigned int status; /* status read from LTESR after last op */
  68. unsigned int mdr; /* UPM/FCM Data Register value */
  69. unsigned int use_mdr; /* Non zero if the MDR is to be set */
  70. unsigned int oob; /* Non zero if operating on OOB data */
  71. char *oob_poi; /* Place to write ECC after read back */
  72. };
  73. /* These map to the positions used by the FCM hardware ECC generator */
  74. /* Small Page FLASH with FMR[ECCM] = 0 */
  75. static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
  76. .eccbytes = 3,
  77. .eccpos = {6, 7, 8},
  78. .oobfree = { {0, 5}, {9, 7} },
  79. };
  80. /* Small Page FLASH with FMR[ECCM] = 1 */
  81. static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
  82. .eccbytes = 3,
  83. .eccpos = {8, 9, 10},
  84. .oobfree = { {0, 5}, {6, 2}, {11, 5} },
  85. };
  86. /* Large Page FLASH with FMR[ECCM] = 0 */
  87. static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
  88. .eccbytes = 12,
  89. .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
  90. .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
  91. };
  92. /* Large Page FLASH with FMR[ECCM] = 1 */
  93. static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
  94. .eccbytes = 12,
  95. .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
  96. .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
  97. };
  98. /*
  99. * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
  100. * 1, so we have to adjust bad block pattern. This pattern should be used for
  101. * x8 chips only. So far hardware does not support x16 chips anyway.
  102. */
  103. static u8 scan_ff_pattern[] = { 0xff, };
  104. static struct nand_bbt_descr largepage_memorybased = {
  105. .options = 0,
  106. .offs = 0,
  107. .len = 1,
  108. .pattern = scan_ff_pattern,
  109. };
  110. /*
  111. * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
  112. * interfere with ECC positions, that's why we implement our own descriptors.
  113. * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
  114. */
  115. static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
  116. static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
  117. static struct nand_bbt_descr bbt_main_descr = {
  118. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
  119. NAND_BBT_2BIT | NAND_BBT_VERSION,
  120. .offs = 11,
  121. .len = 4,
  122. .veroffs = 15,
  123. .maxblocks = 4,
  124. .pattern = bbt_pattern,
  125. };
  126. static struct nand_bbt_descr bbt_mirror_descr = {
  127. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
  128. NAND_BBT_2BIT | NAND_BBT_VERSION,
  129. .offs = 11,
  130. .len = 4,
  131. .veroffs = 15,
  132. .maxblocks = 4,
  133. .pattern = mirror_pattern,
  134. };
  135. /*=================================*/
  136. /*
  137. * Set up the FCM hardware block and page address fields, and the fcm
  138. * structure addr field to point to the correct FCM buffer in memory
  139. */
  140. static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
  141. {
  142. struct nand_chip *chip = mtd->priv;
  143. struct fsl_elbc_mtd *priv = chip->priv;
  144. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  145. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  146. int buf_num;
  147. ctrl->page = page_addr;
  148. out_be32(&lbc->fbar,
  149. page_addr >> (chip->phys_erase_shift - chip->page_shift));
  150. if (priv->page_size) {
  151. out_be32(&lbc->fpar,
  152. ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
  153. (oob ? FPAR_LP_MS : 0) | column);
  154. buf_num = (page_addr & 1) << 2;
  155. } else {
  156. out_be32(&lbc->fpar,
  157. ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
  158. (oob ? FPAR_SP_MS : 0) | column);
  159. buf_num = page_addr & 7;
  160. }
  161. ctrl->addr = priv->vbase + buf_num * 1024;
  162. ctrl->index = column;
  163. /* for OOB data point to the second half of the buffer */
  164. if (oob)
  165. ctrl->index += priv->page_size ? 2048 : 512;
  166. dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
  167. "index %x, pes %d ps %d\n",
  168. buf_num, ctrl->addr, priv->vbase, ctrl->index,
  169. chip->phys_erase_shift, chip->page_shift);
  170. }
  171. /*
  172. * execute FCM command and wait for it to complete
  173. */
  174. static int fsl_elbc_run_command(struct mtd_info *mtd)
  175. {
  176. struct nand_chip *chip = mtd->priv;
  177. struct fsl_elbc_mtd *priv = chip->priv;
  178. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  179. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  180. /* Setup the FMR[OP] to execute without write protection */
  181. out_be32(&lbc->fmr, priv->fmr | 3);
  182. if (ctrl->use_mdr)
  183. out_be32(&lbc->mdr, ctrl->mdr);
  184. dev_vdbg(ctrl->dev,
  185. "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
  186. in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
  187. dev_vdbg(ctrl->dev,
  188. "fsl_elbc_run_command: fbar=%08x fpar=%08x "
  189. "fbcr=%08x bank=%d\n",
  190. in_be32(&lbc->fbar), in_be32(&lbc->fpar),
  191. in_be32(&lbc->fbcr), priv->bank);
  192. ctrl->irq_status = 0;
  193. /* execute special operation */
  194. out_be32(&lbc->lsor, priv->bank);
  195. /* wait for FCM complete flag or timeout */
  196. wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
  197. FCM_TIMEOUT_MSECS * HZ/1000);
  198. ctrl->status = ctrl->irq_status;
  199. /* store mdr value in case it was needed */
  200. if (ctrl->use_mdr)
  201. ctrl->mdr = in_be32(&lbc->mdr);
  202. ctrl->use_mdr = 0;
  203. dev_vdbg(ctrl->dev,
  204. "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
  205. ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
  206. /* returns 0 on success otherwise non-zero) */
  207. return ctrl->status == LTESR_CC ? 0 : -EIO;
  208. }
  209. static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
  210. {
  211. struct fsl_elbc_mtd *priv = chip->priv;
  212. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  213. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  214. if (priv->page_size) {
  215. out_be32(&lbc->fir,
  216. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  217. (FIR_OP_CA << FIR_OP1_SHIFT) |
  218. (FIR_OP_PA << FIR_OP2_SHIFT) |
  219. (FIR_OP_CM1 << FIR_OP3_SHIFT) |
  220. (FIR_OP_RBW << FIR_OP4_SHIFT));
  221. out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
  222. (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
  223. } else {
  224. out_be32(&lbc->fir,
  225. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  226. (FIR_OP_CA << FIR_OP1_SHIFT) |
  227. (FIR_OP_PA << FIR_OP2_SHIFT) |
  228. (FIR_OP_RBW << FIR_OP3_SHIFT));
  229. if (oob)
  230. out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
  231. else
  232. out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
  233. }
  234. }
  235. /* cmdfunc send commands to the FCM */
  236. static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
  237. int column, int page_addr)
  238. {
  239. struct nand_chip *chip = mtd->priv;
  240. struct fsl_elbc_mtd *priv = chip->priv;
  241. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  242. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  243. ctrl->use_mdr = 0;
  244. /* clear the read buffer */
  245. ctrl->read_bytes = 0;
  246. if (command != NAND_CMD_PAGEPROG)
  247. ctrl->index = 0;
  248. switch (command) {
  249. /* READ0 and READ1 read the entire buffer to use hardware ECC. */
  250. case NAND_CMD_READ1:
  251. column += 256;
  252. /* fall-through */
  253. case NAND_CMD_READ0:
  254. dev_dbg(ctrl->dev,
  255. "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
  256. " 0x%x, column: 0x%x.\n", page_addr, column);
  257. out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
  258. set_addr(mtd, 0, page_addr, 0);
  259. ctrl->read_bytes = mtd->writesize + mtd->oobsize;
  260. ctrl->index += column;
  261. fsl_elbc_do_read(chip, 0);
  262. fsl_elbc_run_command(mtd);
  263. return;
  264. /* READOOB reads only the OOB because no ECC is performed. */
  265. case NAND_CMD_READOOB:
  266. dev_vdbg(ctrl->dev,
  267. "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
  268. " 0x%x, column: 0x%x.\n", page_addr, column);
  269. out_be32(&lbc->fbcr, mtd->oobsize - column);
  270. set_addr(mtd, column, page_addr, 1);
  271. ctrl->read_bytes = mtd->writesize + mtd->oobsize;
  272. fsl_elbc_do_read(chip, 1);
  273. fsl_elbc_run_command(mtd);
  274. return;
  275. /* READID must read all 5 possible bytes while CEB is active */
  276. case NAND_CMD_READID:
  277. dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
  278. out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  279. (FIR_OP_UA << FIR_OP1_SHIFT) |
  280. (FIR_OP_RBW << FIR_OP2_SHIFT));
  281. out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
  282. /* 5 bytes for manuf, device and exts */
  283. out_be32(&lbc->fbcr, 5);
  284. ctrl->read_bytes = 5;
  285. ctrl->use_mdr = 1;
  286. ctrl->mdr = 0;
  287. set_addr(mtd, 0, 0, 0);
  288. fsl_elbc_run_command(mtd);
  289. return;
  290. /* ERASE1 stores the block and page address */
  291. case NAND_CMD_ERASE1:
  292. dev_vdbg(ctrl->dev,
  293. "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
  294. "page_addr: 0x%x.\n", page_addr);
  295. set_addr(mtd, 0, page_addr, 0);
  296. return;
  297. /* ERASE2 uses the block and page address from ERASE1 */
  298. case NAND_CMD_ERASE2:
  299. dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
  300. out_be32(&lbc->fir,
  301. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  302. (FIR_OP_PA << FIR_OP1_SHIFT) |
  303. (FIR_OP_CM2 << FIR_OP2_SHIFT) |
  304. (FIR_OP_CW1 << FIR_OP3_SHIFT) |
  305. (FIR_OP_RS << FIR_OP4_SHIFT));
  306. out_be32(&lbc->fcr,
  307. (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
  308. (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
  309. (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
  310. out_be32(&lbc->fbcr, 0);
  311. ctrl->read_bytes = 0;
  312. ctrl->use_mdr = 1;
  313. fsl_elbc_run_command(mtd);
  314. return;
  315. /* SEQIN sets up the addr buffer and all registers except the length */
  316. case NAND_CMD_SEQIN: {
  317. __be32 fcr;
  318. dev_vdbg(ctrl->dev,
  319. "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
  320. "page_addr: 0x%x, column: 0x%x.\n",
  321. page_addr, column);
  322. ctrl->column = column;
  323. ctrl->oob = 0;
  324. ctrl->use_mdr = 1;
  325. fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
  326. (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) |
  327. (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
  328. if (priv->page_size) {
  329. out_be32(&lbc->fir,
  330. (FIR_OP_CM2 << FIR_OP0_SHIFT) |
  331. (FIR_OP_CA << FIR_OP1_SHIFT) |
  332. (FIR_OP_PA << FIR_OP2_SHIFT) |
  333. (FIR_OP_WB << FIR_OP3_SHIFT) |
  334. (FIR_OP_CM3 << FIR_OP4_SHIFT) |
  335. (FIR_OP_CW1 << FIR_OP5_SHIFT) |
  336. (FIR_OP_RS << FIR_OP6_SHIFT));
  337. } else {
  338. out_be32(&lbc->fir,
  339. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  340. (FIR_OP_CM2 << FIR_OP1_SHIFT) |
  341. (FIR_OP_CA << FIR_OP2_SHIFT) |
  342. (FIR_OP_PA << FIR_OP3_SHIFT) |
  343. (FIR_OP_WB << FIR_OP4_SHIFT) |
  344. (FIR_OP_CM3 << FIR_OP5_SHIFT) |
  345. (FIR_OP_CW1 << FIR_OP6_SHIFT) |
  346. (FIR_OP_RS << FIR_OP7_SHIFT));
  347. if (column >= mtd->writesize) {
  348. /* OOB area --> READOOB */
  349. column -= mtd->writesize;
  350. fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
  351. ctrl->oob = 1;
  352. } else {
  353. WARN_ON(column != 0);
  354. /* First 256 bytes --> READ0 */
  355. fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
  356. }
  357. }
  358. out_be32(&lbc->fcr, fcr);
  359. set_addr(mtd, column, page_addr, ctrl->oob);
  360. return;
  361. }
  362. /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
  363. case NAND_CMD_PAGEPROG: {
  364. int full_page;
  365. dev_vdbg(ctrl->dev,
  366. "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
  367. "writing %d bytes.\n", ctrl->index);
  368. /* if the write did not start at 0 or is not a full page
  369. * then set the exact length, otherwise use a full page
  370. * write so the HW generates the ECC.
  371. */
  372. if (ctrl->oob || ctrl->column != 0 ||
  373. ctrl->index != mtd->writesize + mtd->oobsize) {
  374. out_be32(&lbc->fbcr, ctrl->index);
  375. full_page = 0;
  376. } else {
  377. out_be32(&lbc->fbcr, 0);
  378. full_page = 1;
  379. }
  380. fsl_elbc_run_command(mtd);
  381. /* Read back the page in order to fill in the ECC for the
  382. * caller. Is this really needed?
  383. */
  384. if (full_page && ctrl->oob_poi) {
  385. out_be32(&lbc->fbcr, 3);
  386. set_addr(mtd, 6, page_addr, 1);
  387. ctrl->read_bytes = mtd->writesize + 9;
  388. fsl_elbc_do_read(chip, 1);
  389. fsl_elbc_run_command(mtd);
  390. memcpy_fromio(ctrl->oob_poi + 6,
  391. &ctrl->addr[ctrl->index], 3);
  392. ctrl->index += 3;
  393. }
  394. ctrl->oob_poi = NULL;
  395. return;
  396. }
  397. /* CMD_STATUS must read the status byte while CEB is active */
  398. /* Note - it does not wait for the ready line */
  399. case NAND_CMD_STATUS:
  400. out_be32(&lbc->fir,
  401. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  402. (FIR_OP_RBW << FIR_OP1_SHIFT));
  403. out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
  404. out_be32(&lbc->fbcr, 1);
  405. set_addr(mtd, 0, 0, 0);
  406. ctrl->read_bytes = 1;
  407. fsl_elbc_run_command(mtd);
  408. /* The chip always seems to report that it is
  409. * write-protected, even when it is not.
  410. */
  411. setbits8(ctrl->addr, NAND_STATUS_WP);
  412. return;
  413. /* RESET without waiting for the ready line */
  414. case NAND_CMD_RESET:
  415. dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
  416. out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
  417. out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
  418. fsl_elbc_run_command(mtd);
  419. return;
  420. default:
  421. dev_err(ctrl->dev,
  422. "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
  423. command);
  424. }
  425. }
  426. static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
  427. {
  428. /* The hardware does not seem to support multiple
  429. * chips per bank.
  430. */
  431. }
  432. /*
  433. * Write buf to the FCM Controller Data Buffer
  434. */
  435. static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
  436. {
  437. struct nand_chip *chip = mtd->priv;
  438. struct fsl_elbc_mtd *priv = chip->priv;
  439. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  440. unsigned int bufsize = mtd->writesize + mtd->oobsize;
  441. if (len <= 0) {
  442. dev_err(ctrl->dev, "write_buf of %d bytes", len);
  443. ctrl->status = 0;
  444. return;
  445. }
  446. if ((unsigned int)len > bufsize - ctrl->index) {
  447. dev_err(ctrl->dev,
  448. "write_buf beyond end of buffer "
  449. "(%d requested, %u available)\n",
  450. len, bufsize - ctrl->index);
  451. len = bufsize - ctrl->index;
  452. }
  453. memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
  454. /*
  455. * This is workaround for the weird elbc hangs during nand write,
  456. * Scott Wood says: "...perhaps difference in how long it takes a
  457. * write to make it through the localbus compared to a write to IMMR
  458. * is causing problems, and sync isn't helping for some reason."
  459. * Reading back the last byte helps though.
  460. */
  461. in_8(&ctrl->addr[ctrl->index] + len - 1);
  462. ctrl->index += len;
  463. }
  464. /*
  465. * read a byte from either the FCM hardware buffer if it has any data left
  466. * otherwise issue a command to read a single byte.
  467. */
  468. static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
  469. {
  470. struct nand_chip *chip = mtd->priv;
  471. struct fsl_elbc_mtd *priv = chip->priv;
  472. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  473. /* If there are still bytes in the FCM, then use the next byte. */
  474. if (ctrl->index < ctrl->read_bytes)
  475. return in_8(&ctrl->addr[ctrl->index++]);
  476. dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
  477. return ERR_BYTE;
  478. }
  479. /*
  480. * Read from the FCM Controller Data Buffer
  481. */
  482. static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
  483. {
  484. struct nand_chip *chip = mtd->priv;
  485. struct fsl_elbc_mtd *priv = chip->priv;
  486. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  487. int avail;
  488. if (len < 0)
  489. return;
  490. avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
  491. memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
  492. ctrl->index += avail;
  493. if (len > avail)
  494. dev_err(ctrl->dev,
  495. "read_buf beyond end of buffer "
  496. "(%d requested, %d available)\n",
  497. len, avail);
  498. }
  499. /*
  500. * Verify buffer against the FCM Controller Data Buffer
  501. */
  502. static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
  503. {
  504. struct nand_chip *chip = mtd->priv;
  505. struct fsl_elbc_mtd *priv = chip->priv;
  506. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  507. int i;
  508. if (len < 0) {
  509. dev_err(ctrl->dev, "write_buf of %d bytes", len);
  510. return -EINVAL;
  511. }
  512. if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
  513. dev_err(ctrl->dev,
  514. "verify_buf beyond end of buffer "
  515. "(%d requested, %u available)\n",
  516. len, ctrl->read_bytes - ctrl->index);
  517. ctrl->index = ctrl->read_bytes;
  518. return -EINVAL;
  519. }
  520. for (i = 0; i < len; i++)
  521. if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
  522. break;
  523. ctrl->index += len;
  524. return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
  525. }
  526. /* This function is called after Program and Erase Operations to
  527. * check for success or failure.
  528. */
  529. static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
  530. {
  531. struct fsl_elbc_mtd *priv = chip->priv;
  532. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  533. if (ctrl->status != LTESR_CC)
  534. return NAND_STATUS_FAIL;
  535. /* The chip always seems to report that it is
  536. * write-protected, even when it is not.
  537. */
  538. return (ctrl->mdr & 0xff) | NAND_STATUS_WP;
  539. }
  540. static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
  541. {
  542. struct nand_chip *chip = mtd->priv;
  543. struct fsl_elbc_mtd *priv = chip->priv;
  544. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  545. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  546. unsigned int al;
  547. /* calculate FMR Address Length field */
  548. al = 0;
  549. if (chip->pagemask & 0xffff0000)
  550. al++;
  551. if (chip->pagemask & 0xff000000)
  552. al++;
  553. /* add to ECCM mode set in fsl_elbc_init */
  554. priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
  555. (al << FMR_AL_SHIFT);
  556. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
  557. chip->numchips);
  558. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
  559. chip->chipsize);
  560. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
  561. chip->pagemask);
  562. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
  563. chip->chip_delay);
  564. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
  565. chip->badblockpos);
  566. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
  567. chip->chip_shift);
  568. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
  569. chip->page_shift);
  570. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
  571. chip->phys_erase_shift);
  572. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
  573. chip->ecclayout);
  574. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
  575. chip->ecc.mode);
  576. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
  577. chip->ecc.steps);
  578. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
  579. chip->ecc.bytes);
  580. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
  581. chip->ecc.total);
  582. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
  583. chip->ecc.layout);
  584. dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
  585. dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
  586. dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
  587. mtd->erasesize);
  588. dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
  589. mtd->writesize);
  590. dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
  591. mtd->oobsize);
  592. /* adjust Option Register and ECC to match Flash page size */
  593. if (mtd->writesize == 512) {
  594. priv->page_size = 0;
  595. clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
  596. } else if (mtd->writesize == 2048) {
  597. priv->page_size = 1;
  598. setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
  599. /* adjust ecc setup if needed */
  600. if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
  601. BR_DECC_CHK_GEN) {
  602. chip->ecc.size = 512;
  603. chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
  604. &fsl_elbc_oob_lp_eccm1 :
  605. &fsl_elbc_oob_lp_eccm0;
  606. chip->badblock_pattern = &largepage_memorybased;
  607. }
  608. } else {
  609. dev_err(ctrl->dev,
  610. "fsl_elbc_init: page size %d is not supported\n",
  611. mtd->writesize);
  612. return -1;
  613. }
  614. return 0;
  615. }
  616. static int fsl_elbc_read_page(struct mtd_info *mtd,
  617. struct nand_chip *chip,
  618. uint8_t *buf,
  619. int page)
  620. {
  621. fsl_elbc_read_buf(mtd, buf, mtd->writesize);
  622. fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
  623. if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
  624. mtd->ecc_stats.failed++;
  625. return 0;
  626. }
  627. /* ECC will be calculated automatically, and errors will be detected in
  628. * waitfunc.
  629. */
  630. static void fsl_elbc_write_page(struct mtd_info *mtd,
  631. struct nand_chip *chip,
  632. const uint8_t *buf)
  633. {
  634. struct fsl_elbc_mtd *priv = chip->priv;
  635. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  636. fsl_elbc_write_buf(mtd, buf, mtd->writesize);
  637. fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
  638. ctrl->oob_poi = chip->oob_poi;
  639. }
  640. static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
  641. {
  642. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  643. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  644. struct nand_chip *chip = &priv->chip;
  645. dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
  646. /* Fill in fsl_elbc_mtd structure */
  647. priv->mtd.priv = chip;
  648. priv->mtd.owner = THIS_MODULE;
  649. /* Set the ECCM according to the settings in bootloader.*/
  650. priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
  651. /* fill in nand_chip structure */
  652. /* set up function call table */
  653. chip->read_byte = fsl_elbc_read_byte;
  654. chip->write_buf = fsl_elbc_write_buf;
  655. chip->read_buf = fsl_elbc_read_buf;
  656. chip->verify_buf = fsl_elbc_verify_buf;
  657. chip->select_chip = fsl_elbc_select_chip;
  658. chip->cmdfunc = fsl_elbc_cmdfunc;
  659. chip->waitfunc = fsl_elbc_wait;
  660. chip->bbt_td = &bbt_main_descr;
  661. chip->bbt_md = &bbt_mirror_descr;
  662. /* set up nand options */
  663. chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
  664. NAND_USE_FLASH_BBT;
  665. chip->controller = &ctrl->controller;
  666. chip->priv = priv;
  667. chip->ecc.read_page = fsl_elbc_read_page;
  668. chip->ecc.write_page = fsl_elbc_write_page;
  669. /* If CS Base Register selects full hardware ECC then use it */
  670. if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
  671. BR_DECC_CHK_GEN) {
  672. chip->ecc.mode = NAND_ECC_HW;
  673. /* put in small page settings and adjust later if needed */
  674. chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
  675. &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
  676. chip->ecc.size = 512;
  677. chip->ecc.bytes = 3;
  678. } else {
  679. /* otherwise fall back to default software ECC */
  680. chip->ecc.mode = NAND_ECC_SOFT;
  681. }
  682. return 0;
  683. }
  684. static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
  685. {
  686. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  687. nand_release(&priv->mtd);
  688. kfree(priv->mtd.name);
  689. if (priv->vbase)
  690. iounmap(priv->vbase);
  691. ctrl->chips[priv->bank] = NULL;
  692. kfree(priv);
  693. return 0;
  694. }
  695. static int __devinit fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
  696. struct device_node *node)
  697. {
  698. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  699. struct fsl_elbc_mtd *priv;
  700. struct resource res;
  701. #ifdef CONFIG_MTD_PARTITIONS
  702. static const char *part_probe_types[]
  703. = { "cmdlinepart", "RedBoot", NULL };
  704. struct mtd_partition *parts;
  705. #endif
  706. int ret;
  707. int bank;
  708. /* get, allocate and map the memory resource */
  709. ret = of_address_to_resource(node, 0, &res);
  710. if (ret) {
  711. dev_err(ctrl->dev, "failed to get resource\n");
  712. return ret;
  713. }
  714. /* find which chip select it is connected to */
  715. for (bank = 0; bank < MAX_BANKS; bank++)
  716. if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
  717. (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
  718. (in_be32(&lbc->bank[bank].br) &
  719. in_be32(&lbc->bank[bank].or) & BR_BA)
  720. == res.start)
  721. break;
  722. if (bank >= MAX_BANKS) {
  723. dev_err(ctrl->dev, "address did not match any chip selects\n");
  724. return -ENODEV;
  725. }
  726. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  727. if (!priv)
  728. return -ENOMEM;
  729. ctrl->chips[bank] = priv;
  730. priv->bank = bank;
  731. priv->ctrl = ctrl;
  732. priv->dev = ctrl->dev;
  733. priv->vbase = ioremap(res.start, res.end - res.start + 1);
  734. if (!priv->vbase) {
  735. dev_err(ctrl->dev, "failed to map chip region\n");
  736. ret = -ENOMEM;
  737. goto err;
  738. }
  739. priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
  740. if (!priv->mtd.name) {
  741. ret = -ENOMEM;
  742. goto err;
  743. }
  744. ret = fsl_elbc_chip_init(priv);
  745. if (ret)
  746. goto err;
  747. ret = nand_scan_ident(&priv->mtd, 1);
  748. if (ret)
  749. goto err;
  750. ret = fsl_elbc_chip_init_tail(&priv->mtd);
  751. if (ret)
  752. goto err;
  753. ret = nand_scan_tail(&priv->mtd);
  754. if (ret)
  755. goto err;
  756. #ifdef CONFIG_MTD_PARTITIONS
  757. /* First look for RedBoot table or partitions on the command
  758. * line, these take precedence over device tree information */
  759. ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
  760. if (ret < 0)
  761. goto err;
  762. #ifdef CONFIG_MTD_OF_PARTS
  763. if (ret == 0) {
  764. ret = of_mtd_parse_partitions(priv->dev, node, &parts);
  765. if (ret < 0)
  766. goto err;
  767. }
  768. #endif
  769. if (ret > 0)
  770. add_mtd_partitions(&priv->mtd, parts, ret);
  771. else
  772. #endif
  773. add_mtd_device(&priv->mtd);
  774. printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
  775. (unsigned long long)res.start, priv->bank);
  776. return 0;
  777. err:
  778. fsl_elbc_chip_remove(priv);
  779. return ret;
  780. }
  781. static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
  782. {
  783. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  784. /*
  785. * NAND transactions can tie up the bus for a long time, so set the
  786. * bus timeout to max by clearing LBCR[BMT] (highest base counter
  787. * value) and setting LBCR[BMTPS] to the highest prescaler value.
  788. */
  789. clrsetbits_be32(&lbc->lbcr, LBCR_BMT, 15);
  790. /* clear event registers */
  791. setbits32(&lbc->ltesr, LTESR_NAND_MASK);
  792. out_be32(&lbc->lteatr, 0);
  793. /* Enable interrupts for any detected events */
  794. out_be32(&lbc->lteir, LTESR_NAND_MASK);
  795. ctrl->read_bytes = 0;
  796. ctrl->index = 0;
  797. ctrl->addr = NULL;
  798. return 0;
  799. }
  800. static int fsl_elbc_ctrl_remove(struct of_device *ofdev)
  801. {
  802. struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
  803. int i;
  804. for (i = 0; i < MAX_BANKS; i++)
  805. if (ctrl->chips[i])
  806. fsl_elbc_chip_remove(ctrl->chips[i]);
  807. if (ctrl->irq)
  808. free_irq(ctrl->irq, ctrl);
  809. if (ctrl->regs)
  810. iounmap(ctrl->regs);
  811. dev_set_drvdata(&ofdev->dev, NULL);
  812. kfree(ctrl);
  813. return 0;
  814. }
  815. /* NOTE: This interrupt is also used to report other localbus events,
  816. * such as transaction errors on other chipselects. If we want to
  817. * capture those, we'll need to move the IRQ code into a shared
  818. * LBC driver.
  819. */
  820. static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
  821. {
  822. struct fsl_elbc_ctrl *ctrl = data;
  823. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  824. __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
  825. if (status) {
  826. out_be32(&lbc->ltesr, status);
  827. out_be32(&lbc->lteatr, 0);
  828. ctrl->irq_status = status;
  829. smp_wmb();
  830. wake_up(&ctrl->irq_wait);
  831. return IRQ_HANDLED;
  832. }
  833. return IRQ_NONE;
  834. }
  835. /* fsl_elbc_ctrl_probe
  836. *
  837. * called by device layer when it finds a device matching
  838. * one our driver can handled. This code allocates all of
  839. * the resources needed for the controller only. The
  840. * resources for the NAND banks themselves are allocated
  841. * in the chip probe function.
  842. */
  843. static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
  844. const struct of_device_id *match)
  845. {
  846. struct device_node *child;
  847. struct fsl_elbc_ctrl *ctrl;
  848. int ret;
  849. ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
  850. if (!ctrl)
  851. return -ENOMEM;
  852. dev_set_drvdata(&ofdev->dev, ctrl);
  853. spin_lock_init(&ctrl->controller.lock);
  854. init_waitqueue_head(&ctrl->controller.wq);
  855. init_waitqueue_head(&ctrl->irq_wait);
  856. ctrl->regs = of_iomap(ofdev->node, 0);
  857. if (!ctrl->regs) {
  858. dev_err(&ofdev->dev, "failed to get memory region\n");
  859. ret = -ENODEV;
  860. goto err;
  861. }
  862. ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
  863. if (ctrl->irq == NO_IRQ) {
  864. dev_err(&ofdev->dev, "failed to get irq resource\n");
  865. ret = -ENODEV;
  866. goto err;
  867. }
  868. ctrl->dev = &ofdev->dev;
  869. ret = fsl_elbc_ctrl_init(ctrl);
  870. if (ret < 0)
  871. goto err;
  872. ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
  873. if (ret != 0) {
  874. dev_err(&ofdev->dev, "failed to install irq (%d)\n",
  875. ctrl->irq);
  876. ret = ctrl->irq;
  877. goto err;
  878. }
  879. for_each_child_of_node(ofdev->node, child)
  880. if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
  881. fsl_elbc_chip_probe(ctrl, child);
  882. return 0;
  883. err:
  884. fsl_elbc_ctrl_remove(ofdev);
  885. return ret;
  886. }
  887. static const struct of_device_id fsl_elbc_match[] = {
  888. {
  889. .compatible = "fsl,elbc",
  890. },
  891. {}
  892. };
  893. static struct of_platform_driver fsl_elbc_ctrl_driver = {
  894. .driver = {
  895. .name = "fsl-elbc",
  896. },
  897. .match_table = fsl_elbc_match,
  898. .probe = fsl_elbc_ctrl_probe,
  899. .remove = fsl_elbc_ctrl_remove,
  900. };
  901. static int __init fsl_elbc_init(void)
  902. {
  903. return of_register_platform_driver(&fsl_elbc_ctrl_driver);
  904. }
  905. static void __exit fsl_elbc_exit(void)
  906. {
  907. of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
  908. }
  909. module_init(fsl_elbc_init);
  910. module_exit(fsl_elbc_exit);
  911. MODULE_LICENSE("GPL");
  912. MODULE_AUTHOR("Freescale");
  913. MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");