raid10.c 129 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703
  1. /*
  2. * raid10.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 2000-2004 Neil Brown
  5. *
  6. * RAID-10 support for md.
  7. *
  8. * Base on code in raid1.c. See raid1.c for further copyright information.
  9. *
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2, or (at your option)
  14. * any later version.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * (for example /usr/src/linux/COPYING); if not, write to the Free
  18. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/slab.h>
  21. #include <linux/delay.h>
  22. #include <linux/blkdev.h>
  23. #include <linux/module.h>
  24. #include <linux/seq_file.h>
  25. #include <linux/ratelimit.h>
  26. #include <linux/kthread.h>
  27. #include "md.h"
  28. #include "raid10.h"
  29. #include "raid0.h"
  30. #include "bitmap.h"
  31. /*
  32. * RAID10 provides a combination of RAID0 and RAID1 functionality.
  33. * The layout of data is defined by
  34. * chunk_size
  35. * raid_disks
  36. * near_copies (stored in low byte of layout)
  37. * far_copies (stored in second byte of layout)
  38. * far_offset (stored in bit 16 of layout )
  39. * use_far_sets (stored in bit 17 of layout )
  40. *
  41. * The data to be stored is divided into chunks using chunksize. Each device
  42. * is divided into far_copies sections. In each section, chunks are laid out
  43. * in a style similar to raid0, but near_copies copies of each chunk is stored
  44. * (each on a different drive). The starting device for each section is offset
  45. * near_copies from the starting device of the previous section. Thus there
  46. * are (near_copies * far_copies) of each chunk, and each is on a different
  47. * drive. near_copies and far_copies must be at least one, and their product
  48. * is at most raid_disks.
  49. *
  50. * If far_offset is true, then the far_copies are handled a bit differently.
  51. * The copies are still in different stripes, but instead of being very far
  52. * apart on disk, there are adjacent stripes.
  53. *
  54. * The far and offset algorithms are handled slightly differently if
  55. * 'use_far_sets' is true. In this case, the array's devices are grouped into
  56. * sets that are (near_copies * far_copies) in size. The far copied stripes
  57. * are still shifted by 'near_copies' devices, but this shifting stays confined
  58. * to the set rather than the entire array. This is done to improve the number
  59. * of device combinations that can fail without causing the array to fail.
  60. * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  61. * on a device):
  62. * A B C D A B C D E
  63. * ... ...
  64. * D A B C E A B C D
  65. * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  66. * [A B] [C D] [A B] [C D E]
  67. * |...| |...| |...| | ... |
  68. * [B A] [D C] [B A] [E C D]
  69. */
  70. /*
  71. * Number of guaranteed r10bios in case of extreme VM load:
  72. */
  73. #define NR_RAID10_BIOS 256
  74. /* when we get a read error on a read-only array, we redirect to another
  75. * device without failing the first device, or trying to over-write to
  76. * correct the read error. To keep track of bad blocks on a per-bio
  77. * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  78. */
  79. #define IO_BLOCKED ((struct bio *)1)
  80. /* When we successfully write to a known bad-block, we need to remove the
  81. * bad-block marking which must be done from process context. So we record
  82. * the success by setting devs[n].bio to IO_MADE_GOOD
  83. */
  84. #define IO_MADE_GOOD ((struct bio *)2)
  85. #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  86. /* When there are this many requests queued to be written by
  87. * the raid10 thread, we become 'congested' to provide back-pressure
  88. * for writeback.
  89. */
  90. static int max_queued_requests = 1024;
  91. static void allow_barrier(struct r10conf *conf);
  92. static void lower_barrier(struct r10conf *conf);
  93. static int enough(struct r10conf *conf, int ignore);
  94. static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  95. int *skipped);
  96. static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  97. static void end_reshape_write(struct bio *bio, int error);
  98. static void end_reshape(struct r10conf *conf);
  99. static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  100. {
  101. struct r10conf *conf = data;
  102. int size = offsetof(struct r10bio, devs[conf->copies]);
  103. /* allocate a r10bio with room for raid_disks entries in the
  104. * bios array */
  105. return kzalloc(size, gfp_flags);
  106. }
  107. static void r10bio_pool_free(void *r10_bio, void *data)
  108. {
  109. kfree(r10_bio);
  110. }
  111. /* Maximum size of each resync request */
  112. #define RESYNC_BLOCK_SIZE (64*1024)
  113. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  114. /* amount of memory to reserve for resync requests */
  115. #define RESYNC_WINDOW (1024*1024)
  116. /* maximum number of concurrent requests, memory permitting */
  117. #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
  118. /*
  119. * When performing a resync, we need to read and compare, so
  120. * we need as many pages are there are copies.
  121. * When performing a recovery, we need 2 bios, one for read,
  122. * one for write (we recover only one drive per r10buf)
  123. *
  124. */
  125. static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
  126. {
  127. struct r10conf *conf = data;
  128. struct page *page;
  129. struct r10bio *r10_bio;
  130. struct bio *bio;
  131. int i, j;
  132. int nalloc;
  133. r10_bio = r10bio_pool_alloc(gfp_flags, conf);
  134. if (!r10_bio)
  135. return NULL;
  136. if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
  137. test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
  138. nalloc = conf->copies; /* resync */
  139. else
  140. nalloc = 2; /* recovery */
  141. /*
  142. * Allocate bios.
  143. */
  144. for (j = nalloc ; j-- ; ) {
  145. bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  146. if (!bio)
  147. goto out_free_bio;
  148. r10_bio->devs[j].bio = bio;
  149. if (!conf->have_replacement)
  150. continue;
  151. bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  152. if (!bio)
  153. goto out_free_bio;
  154. r10_bio->devs[j].repl_bio = bio;
  155. }
  156. /*
  157. * Allocate RESYNC_PAGES data pages and attach them
  158. * where needed.
  159. */
  160. for (j = 0 ; j < nalloc; j++) {
  161. struct bio *rbio = r10_bio->devs[j].repl_bio;
  162. bio = r10_bio->devs[j].bio;
  163. for (i = 0; i < RESYNC_PAGES; i++) {
  164. if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
  165. &conf->mddev->recovery)) {
  166. /* we can share bv_page's during recovery
  167. * and reshape */
  168. struct bio *rbio = r10_bio->devs[0].bio;
  169. page = rbio->bi_io_vec[i].bv_page;
  170. get_page(page);
  171. } else
  172. page = alloc_page(gfp_flags);
  173. if (unlikely(!page))
  174. goto out_free_pages;
  175. bio->bi_io_vec[i].bv_page = page;
  176. if (rbio)
  177. rbio->bi_io_vec[i].bv_page = page;
  178. }
  179. }
  180. return r10_bio;
  181. out_free_pages:
  182. for ( ; i > 0 ; i--)
  183. safe_put_page(bio->bi_io_vec[i-1].bv_page);
  184. while (j--)
  185. for (i = 0; i < RESYNC_PAGES ; i++)
  186. safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
  187. j = 0;
  188. out_free_bio:
  189. for ( ; j < nalloc; j++) {
  190. if (r10_bio->devs[j].bio)
  191. bio_put(r10_bio->devs[j].bio);
  192. if (r10_bio->devs[j].repl_bio)
  193. bio_put(r10_bio->devs[j].repl_bio);
  194. }
  195. r10bio_pool_free(r10_bio, conf);
  196. return NULL;
  197. }
  198. static void r10buf_pool_free(void *__r10_bio, void *data)
  199. {
  200. int i;
  201. struct r10conf *conf = data;
  202. struct r10bio *r10bio = __r10_bio;
  203. int j;
  204. for (j=0; j < conf->copies; j++) {
  205. struct bio *bio = r10bio->devs[j].bio;
  206. if (bio) {
  207. for (i = 0; i < RESYNC_PAGES; i++) {
  208. safe_put_page(bio->bi_io_vec[i].bv_page);
  209. bio->bi_io_vec[i].bv_page = NULL;
  210. }
  211. bio_put(bio);
  212. }
  213. bio = r10bio->devs[j].repl_bio;
  214. if (bio)
  215. bio_put(bio);
  216. }
  217. r10bio_pool_free(r10bio, conf);
  218. }
  219. static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
  220. {
  221. int i;
  222. for (i = 0; i < conf->copies; i++) {
  223. struct bio **bio = & r10_bio->devs[i].bio;
  224. if (!BIO_SPECIAL(*bio))
  225. bio_put(*bio);
  226. *bio = NULL;
  227. bio = &r10_bio->devs[i].repl_bio;
  228. if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
  229. bio_put(*bio);
  230. *bio = NULL;
  231. }
  232. }
  233. static void free_r10bio(struct r10bio *r10_bio)
  234. {
  235. struct r10conf *conf = r10_bio->mddev->private;
  236. put_all_bios(conf, r10_bio);
  237. mempool_free(r10_bio, conf->r10bio_pool);
  238. }
  239. static void put_buf(struct r10bio *r10_bio)
  240. {
  241. struct r10conf *conf = r10_bio->mddev->private;
  242. mempool_free(r10_bio, conf->r10buf_pool);
  243. lower_barrier(conf);
  244. }
  245. static void reschedule_retry(struct r10bio *r10_bio)
  246. {
  247. unsigned long flags;
  248. struct mddev *mddev = r10_bio->mddev;
  249. struct r10conf *conf = mddev->private;
  250. spin_lock_irqsave(&conf->device_lock, flags);
  251. list_add(&r10_bio->retry_list, &conf->retry_list);
  252. conf->nr_queued ++;
  253. spin_unlock_irqrestore(&conf->device_lock, flags);
  254. /* wake up frozen array... */
  255. wake_up(&conf->wait_barrier);
  256. md_wakeup_thread(mddev->thread);
  257. }
  258. /*
  259. * raid_end_bio_io() is called when we have finished servicing a mirrored
  260. * operation and are ready to return a success/failure code to the buffer
  261. * cache layer.
  262. */
  263. static void raid_end_bio_io(struct r10bio *r10_bio)
  264. {
  265. struct bio *bio = r10_bio->master_bio;
  266. int done;
  267. struct r10conf *conf = r10_bio->mddev->private;
  268. if (bio->bi_phys_segments) {
  269. unsigned long flags;
  270. spin_lock_irqsave(&conf->device_lock, flags);
  271. bio->bi_phys_segments--;
  272. done = (bio->bi_phys_segments == 0);
  273. spin_unlock_irqrestore(&conf->device_lock, flags);
  274. } else
  275. done = 1;
  276. if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
  277. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  278. if (done) {
  279. bio_endio(bio, 0);
  280. /*
  281. * Wake up any possible resync thread that waits for the device
  282. * to go idle.
  283. */
  284. allow_barrier(conf);
  285. }
  286. free_r10bio(r10_bio);
  287. }
  288. /*
  289. * Update disk head position estimator based on IRQ completion info.
  290. */
  291. static inline void update_head_pos(int slot, struct r10bio *r10_bio)
  292. {
  293. struct r10conf *conf = r10_bio->mddev->private;
  294. conf->mirrors[r10_bio->devs[slot].devnum].head_position =
  295. r10_bio->devs[slot].addr + (r10_bio->sectors);
  296. }
  297. /*
  298. * Find the disk number which triggered given bio
  299. */
  300. static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
  301. struct bio *bio, int *slotp, int *replp)
  302. {
  303. int slot;
  304. int repl = 0;
  305. for (slot = 0; slot < conf->copies; slot++) {
  306. if (r10_bio->devs[slot].bio == bio)
  307. break;
  308. if (r10_bio->devs[slot].repl_bio == bio) {
  309. repl = 1;
  310. break;
  311. }
  312. }
  313. BUG_ON(slot == conf->copies);
  314. update_head_pos(slot, r10_bio);
  315. if (slotp)
  316. *slotp = slot;
  317. if (replp)
  318. *replp = repl;
  319. return r10_bio->devs[slot].devnum;
  320. }
  321. static void raid10_end_read_request(struct bio *bio, int error)
  322. {
  323. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  324. struct r10bio *r10_bio = bio->bi_private;
  325. int slot, dev;
  326. struct md_rdev *rdev;
  327. struct r10conf *conf = r10_bio->mddev->private;
  328. slot = r10_bio->read_slot;
  329. dev = r10_bio->devs[slot].devnum;
  330. rdev = r10_bio->devs[slot].rdev;
  331. /*
  332. * this branch is our 'one mirror IO has finished' event handler:
  333. */
  334. update_head_pos(slot, r10_bio);
  335. if (uptodate) {
  336. /*
  337. * Set R10BIO_Uptodate in our master bio, so that
  338. * we will return a good error code to the higher
  339. * levels even if IO on some other mirrored buffer fails.
  340. *
  341. * The 'master' represents the composite IO operation to
  342. * user-side. So if something waits for IO, then it will
  343. * wait for the 'master' bio.
  344. */
  345. set_bit(R10BIO_Uptodate, &r10_bio->state);
  346. } else {
  347. /* If all other devices that store this block have
  348. * failed, we want to return the error upwards rather
  349. * than fail the last device. Here we redefine
  350. * "uptodate" to mean "Don't want to retry"
  351. */
  352. unsigned long flags;
  353. spin_lock_irqsave(&conf->device_lock, flags);
  354. if (!enough(conf, rdev->raid_disk))
  355. uptodate = 1;
  356. spin_unlock_irqrestore(&conf->device_lock, flags);
  357. }
  358. if (uptodate) {
  359. raid_end_bio_io(r10_bio);
  360. rdev_dec_pending(rdev, conf->mddev);
  361. } else {
  362. /*
  363. * oops, read error - keep the refcount on the rdev
  364. */
  365. char b[BDEVNAME_SIZE];
  366. printk_ratelimited(KERN_ERR
  367. "md/raid10:%s: %s: rescheduling sector %llu\n",
  368. mdname(conf->mddev),
  369. bdevname(rdev->bdev, b),
  370. (unsigned long long)r10_bio->sector);
  371. set_bit(R10BIO_ReadError, &r10_bio->state);
  372. reschedule_retry(r10_bio);
  373. }
  374. }
  375. static void close_write(struct r10bio *r10_bio)
  376. {
  377. /* clear the bitmap if all writes complete successfully */
  378. bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
  379. r10_bio->sectors,
  380. !test_bit(R10BIO_Degraded, &r10_bio->state),
  381. 0);
  382. md_write_end(r10_bio->mddev);
  383. }
  384. static void one_write_done(struct r10bio *r10_bio)
  385. {
  386. if (atomic_dec_and_test(&r10_bio->remaining)) {
  387. if (test_bit(R10BIO_WriteError, &r10_bio->state))
  388. reschedule_retry(r10_bio);
  389. else {
  390. close_write(r10_bio);
  391. if (test_bit(R10BIO_MadeGood, &r10_bio->state))
  392. reschedule_retry(r10_bio);
  393. else
  394. raid_end_bio_io(r10_bio);
  395. }
  396. }
  397. }
  398. static void raid10_end_write_request(struct bio *bio, int error)
  399. {
  400. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  401. struct r10bio *r10_bio = bio->bi_private;
  402. int dev;
  403. int dec_rdev = 1;
  404. struct r10conf *conf = r10_bio->mddev->private;
  405. int slot, repl;
  406. struct md_rdev *rdev = NULL;
  407. dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
  408. if (repl)
  409. rdev = conf->mirrors[dev].replacement;
  410. if (!rdev) {
  411. smp_rmb();
  412. repl = 0;
  413. rdev = conf->mirrors[dev].rdev;
  414. }
  415. /*
  416. * this branch is our 'one mirror IO has finished' event handler:
  417. */
  418. if (!uptodate) {
  419. if (repl)
  420. /* Never record new bad blocks to replacement,
  421. * just fail it.
  422. */
  423. md_error(rdev->mddev, rdev);
  424. else {
  425. set_bit(WriteErrorSeen, &rdev->flags);
  426. if (!test_and_set_bit(WantReplacement, &rdev->flags))
  427. set_bit(MD_RECOVERY_NEEDED,
  428. &rdev->mddev->recovery);
  429. set_bit(R10BIO_WriteError, &r10_bio->state);
  430. dec_rdev = 0;
  431. }
  432. } else {
  433. /*
  434. * Set R10BIO_Uptodate in our master bio, so that
  435. * we will return a good error code for to the higher
  436. * levels even if IO on some other mirrored buffer fails.
  437. *
  438. * The 'master' represents the composite IO operation to
  439. * user-side. So if something waits for IO, then it will
  440. * wait for the 'master' bio.
  441. */
  442. sector_t first_bad;
  443. int bad_sectors;
  444. set_bit(R10BIO_Uptodate, &r10_bio->state);
  445. /* Maybe we can clear some bad blocks. */
  446. if (is_badblock(rdev,
  447. r10_bio->devs[slot].addr,
  448. r10_bio->sectors,
  449. &first_bad, &bad_sectors)) {
  450. bio_put(bio);
  451. if (repl)
  452. r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
  453. else
  454. r10_bio->devs[slot].bio = IO_MADE_GOOD;
  455. dec_rdev = 0;
  456. set_bit(R10BIO_MadeGood, &r10_bio->state);
  457. }
  458. }
  459. /*
  460. *
  461. * Let's see if all mirrored write operations have finished
  462. * already.
  463. */
  464. one_write_done(r10_bio);
  465. if (dec_rdev)
  466. rdev_dec_pending(rdev, conf->mddev);
  467. }
  468. /*
  469. * RAID10 layout manager
  470. * As well as the chunksize and raid_disks count, there are two
  471. * parameters: near_copies and far_copies.
  472. * near_copies * far_copies must be <= raid_disks.
  473. * Normally one of these will be 1.
  474. * If both are 1, we get raid0.
  475. * If near_copies == raid_disks, we get raid1.
  476. *
  477. * Chunks are laid out in raid0 style with near_copies copies of the
  478. * first chunk, followed by near_copies copies of the next chunk and
  479. * so on.
  480. * If far_copies > 1, then after 1/far_copies of the array has been assigned
  481. * as described above, we start again with a device offset of near_copies.
  482. * So we effectively have another copy of the whole array further down all
  483. * the drives, but with blocks on different drives.
  484. * With this layout, and block is never stored twice on the one device.
  485. *
  486. * raid10_find_phys finds the sector offset of a given virtual sector
  487. * on each device that it is on.
  488. *
  489. * raid10_find_virt does the reverse mapping, from a device and a
  490. * sector offset to a virtual address
  491. */
  492. static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
  493. {
  494. int n,f;
  495. sector_t sector;
  496. sector_t chunk;
  497. sector_t stripe;
  498. int dev;
  499. int slot = 0;
  500. /* now calculate first sector/dev */
  501. chunk = r10bio->sector >> geo->chunk_shift;
  502. sector = r10bio->sector & geo->chunk_mask;
  503. chunk *= geo->near_copies;
  504. stripe = chunk;
  505. dev = sector_div(stripe, geo->raid_disks);
  506. if (geo->far_offset)
  507. stripe *= geo->far_copies;
  508. sector += stripe << geo->chunk_shift;
  509. /* and calculate all the others */
  510. for (n = 0; n < geo->near_copies; n++) {
  511. int d = dev;
  512. int set;
  513. sector_t s = sector;
  514. r10bio->devs[slot].devnum = d;
  515. r10bio->devs[slot].addr = s;
  516. slot++;
  517. for (f = 1; f < geo->far_copies; f++) {
  518. set = d / geo->far_set_size;
  519. d += geo->near_copies;
  520. d %= geo->far_set_size;
  521. d += geo->far_set_size * set;
  522. s += geo->stride;
  523. r10bio->devs[slot].devnum = d;
  524. r10bio->devs[slot].addr = s;
  525. slot++;
  526. }
  527. dev++;
  528. if (dev >= geo->raid_disks) {
  529. dev = 0;
  530. sector += (geo->chunk_mask + 1);
  531. }
  532. }
  533. }
  534. static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
  535. {
  536. struct geom *geo = &conf->geo;
  537. if (conf->reshape_progress != MaxSector &&
  538. ((r10bio->sector >= conf->reshape_progress) !=
  539. conf->mddev->reshape_backwards)) {
  540. set_bit(R10BIO_Previous, &r10bio->state);
  541. geo = &conf->prev;
  542. } else
  543. clear_bit(R10BIO_Previous, &r10bio->state);
  544. __raid10_find_phys(geo, r10bio);
  545. }
  546. static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
  547. {
  548. sector_t offset, chunk, vchunk;
  549. /* Never use conf->prev as this is only called during resync
  550. * or recovery, so reshape isn't happening
  551. */
  552. struct geom *geo = &conf->geo;
  553. int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
  554. int far_set_size = geo->far_set_size;
  555. offset = sector & geo->chunk_mask;
  556. if (geo->far_offset) {
  557. int fc;
  558. chunk = sector >> geo->chunk_shift;
  559. fc = sector_div(chunk, geo->far_copies);
  560. dev -= fc * geo->near_copies;
  561. if (dev < far_set_start)
  562. dev += far_set_size;
  563. } else {
  564. while (sector >= geo->stride) {
  565. sector -= geo->stride;
  566. if (dev < (geo->near_copies + far_set_start))
  567. dev += far_set_size - geo->near_copies;
  568. else
  569. dev -= geo->near_copies;
  570. }
  571. chunk = sector >> geo->chunk_shift;
  572. }
  573. vchunk = chunk * geo->raid_disks + dev;
  574. sector_div(vchunk, geo->near_copies);
  575. return (vchunk << geo->chunk_shift) + offset;
  576. }
  577. /**
  578. * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
  579. * @q: request queue
  580. * @bvm: properties of new bio
  581. * @biovec: the request that could be merged to it.
  582. *
  583. * Return amount of bytes we can accept at this offset
  584. * This requires checking for end-of-chunk if near_copies != raid_disks,
  585. * and for subordinate merge_bvec_fns if merge_check_needed.
  586. */
  587. static int raid10_mergeable_bvec(struct request_queue *q,
  588. struct bvec_merge_data *bvm,
  589. struct bio_vec *biovec)
  590. {
  591. struct mddev *mddev = q->queuedata;
  592. struct r10conf *conf = mddev->private;
  593. sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
  594. int max;
  595. unsigned int chunk_sectors;
  596. unsigned int bio_sectors = bvm->bi_size >> 9;
  597. struct geom *geo = &conf->geo;
  598. chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
  599. if (conf->reshape_progress != MaxSector &&
  600. ((sector >= conf->reshape_progress) !=
  601. conf->mddev->reshape_backwards))
  602. geo = &conf->prev;
  603. if (geo->near_copies < geo->raid_disks) {
  604. max = (chunk_sectors - ((sector & (chunk_sectors - 1))
  605. + bio_sectors)) << 9;
  606. if (max < 0)
  607. /* bio_add cannot handle a negative return */
  608. max = 0;
  609. if (max <= biovec->bv_len && bio_sectors == 0)
  610. return biovec->bv_len;
  611. } else
  612. max = biovec->bv_len;
  613. if (mddev->merge_check_needed) {
  614. struct {
  615. struct r10bio r10_bio;
  616. struct r10dev devs[conf->copies];
  617. } on_stack;
  618. struct r10bio *r10_bio = &on_stack.r10_bio;
  619. int s;
  620. if (conf->reshape_progress != MaxSector) {
  621. /* Cannot give any guidance during reshape */
  622. if (max <= biovec->bv_len && bio_sectors == 0)
  623. return biovec->bv_len;
  624. return 0;
  625. }
  626. r10_bio->sector = sector;
  627. raid10_find_phys(conf, r10_bio);
  628. rcu_read_lock();
  629. for (s = 0; s < conf->copies; s++) {
  630. int disk = r10_bio->devs[s].devnum;
  631. struct md_rdev *rdev = rcu_dereference(
  632. conf->mirrors[disk].rdev);
  633. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  634. struct request_queue *q =
  635. bdev_get_queue(rdev->bdev);
  636. if (q->merge_bvec_fn) {
  637. bvm->bi_sector = r10_bio->devs[s].addr
  638. + rdev->data_offset;
  639. bvm->bi_bdev = rdev->bdev;
  640. max = min(max, q->merge_bvec_fn(
  641. q, bvm, biovec));
  642. }
  643. }
  644. rdev = rcu_dereference(conf->mirrors[disk].replacement);
  645. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  646. struct request_queue *q =
  647. bdev_get_queue(rdev->bdev);
  648. if (q->merge_bvec_fn) {
  649. bvm->bi_sector = r10_bio->devs[s].addr
  650. + rdev->data_offset;
  651. bvm->bi_bdev = rdev->bdev;
  652. max = min(max, q->merge_bvec_fn(
  653. q, bvm, biovec));
  654. }
  655. }
  656. }
  657. rcu_read_unlock();
  658. }
  659. return max;
  660. }
  661. /*
  662. * This routine returns the disk from which the requested read should
  663. * be done. There is a per-array 'next expected sequential IO' sector
  664. * number - if this matches on the next IO then we use the last disk.
  665. * There is also a per-disk 'last know head position' sector that is
  666. * maintained from IRQ contexts, both the normal and the resync IO
  667. * completion handlers update this position correctly. If there is no
  668. * perfect sequential match then we pick the disk whose head is closest.
  669. *
  670. * If there are 2 mirrors in the same 2 devices, performance degrades
  671. * because position is mirror, not device based.
  672. *
  673. * The rdev for the device selected will have nr_pending incremented.
  674. */
  675. /*
  676. * FIXME: possibly should rethink readbalancing and do it differently
  677. * depending on near_copies / far_copies geometry.
  678. */
  679. static struct md_rdev *read_balance(struct r10conf *conf,
  680. struct r10bio *r10_bio,
  681. int *max_sectors)
  682. {
  683. const sector_t this_sector = r10_bio->sector;
  684. int disk, slot;
  685. int sectors = r10_bio->sectors;
  686. int best_good_sectors;
  687. sector_t new_distance, best_dist;
  688. struct md_rdev *best_rdev, *rdev = NULL;
  689. int do_balance;
  690. int best_slot;
  691. struct geom *geo = &conf->geo;
  692. raid10_find_phys(conf, r10_bio);
  693. rcu_read_lock();
  694. retry:
  695. sectors = r10_bio->sectors;
  696. best_slot = -1;
  697. best_rdev = NULL;
  698. best_dist = MaxSector;
  699. best_good_sectors = 0;
  700. do_balance = 1;
  701. /*
  702. * Check if we can balance. We can balance on the whole
  703. * device if no resync is going on (recovery is ok), or below
  704. * the resync window. We take the first readable disk when
  705. * above the resync window.
  706. */
  707. if (conf->mddev->recovery_cp < MaxSector
  708. && (this_sector + sectors >= conf->next_resync))
  709. do_balance = 0;
  710. for (slot = 0; slot < conf->copies ; slot++) {
  711. sector_t first_bad;
  712. int bad_sectors;
  713. sector_t dev_sector;
  714. if (r10_bio->devs[slot].bio == IO_BLOCKED)
  715. continue;
  716. disk = r10_bio->devs[slot].devnum;
  717. rdev = rcu_dereference(conf->mirrors[disk].replacement);
  718. if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
  719. test_bit(Unmerged, &rdev->flags) ||
  720. r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
  721. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  722. if (rdev == NULL ||
  723. test_bit(Faulty, &rdev->flags) ||
  724. test_bit(Unmerged, &rdev->flags))
  725. continue;
  726. if (!test_bit(In_sync, &rdev->flags) &&
  727. r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
  728. continue;
  729. dev_sector = r10_bio->devs[slot].addr;
  730. if (is_badblock(rdev, dev_sector, sectors,
  731. &first_bad, &bad_sectors)) {
  732. if (best_dist < MaxSector)
  733. /* Already have a better slot */
  734. continue;
  735. if (first_bad <= dev_sector) {
  736. /* Cannot read here. If this is the
  737. * 'primary' device, then we must not read
  738. * beyond 'bad_sectors' from another device.
  739. */
  740. bad_sectors -= (dev_sector - first_bad);
  741. if (!do_balance && sectors > bad_sectors)
  742. sectors = bad_sectors;
  743. if (best_good_sectors > sectors)
  744. best_good_sectors = sectors;
  745. } else {
  746. sector_t good_sectors =
  747. first_bad - dev_sector;
  748. if (good_sectors > best_good_sectors) {
  749. best_good_sectors = good_sectors;
  750. best_slot = slot;
  751. best_rdev = rdev;
  752. }
  753. if (!do_balance)
  754. /* Must read from here */
  755. break;
  756. }
  757. continue;
  758. } else
  759. best_good_sectors = sectors;
  760. if (!do_balance)
  761. break;
  762. /* This optimisation is debatable, and completely destroys
  763. * sequential read speed for 'far copies' arrays. So only
  764. * keep it for 'near' arrays, and review those later.
  765. */
  766. if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
  767. break;
  768. /* for far > 1 always use the lowest address */
  769. if (geo->far_copies > 1)
  770. new_distance = r10_bio->devs[slot].addr;
  771. else
  772. new_distance = abs(r10_bio->devs[slot].addr -
  773. conf->mirrors[disk].head_position);
  774. if (new_distance < best_dist) {
  775. best_dist = new_distance;
  776. best_slot = slot;
  777. best_rdev = rdev;
  778. }
  779. }
  780. if (slot >= conf->copies) {
  781. slot = best_slot;
  782. rdev = best_rdev;
  783. }
  784. if (slot >= 0) {
  785. atomic_inc(&rdev->nr_pending);
  786. if (test_bit(Faulty, &rdev->flags)) {
  787. /* Cannot risk returning a device that failed
  788. * before we inc'ed nr_pending
  789. */
  790. rdev_dec_pending(rdev, conf->mddev);
  791. goto retry;
  792. }
  793. r10_bio->read_slot = slot;
  794. } else
  795. rdev = NULL;
  796. rcu_read_unlock();
  797. *max_sectors = best_good_sectors;
  798. return rdev;
  799. }
  800. int md_raid10_congested(struct mddev *mddev, int bits)
  801. {
  802. struct r10conf *conf = mddev->private;
  803. int i, ret = 0;
  804. if ((bits & (1 << BDI_async_congested)) &&
  805. conf->pending_count >= max_queued_requests)
  806. return 1;
  807. rcu_read_lock();
  808. for (i = 0;
  809. (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
  810. && ret == 0;
  811. i++) {
  812. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  813. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  814. struct request_queue *q = bdev_get_queue(rdev->bdev);
  815. ret |= bdi_congested(&q->backing_dev_info, bits);
  816. }
  817. }
  818. rcu_read_unlock();
  819. return ret;
  820. }
  821. EXPORT_SYMBOL_GPL(md_raid10_congested);
  822. static int raid10_congested(void *data, int bits)
  823. {
  824. struct mddev *mddev = data;
  825. return mddev_congested(mddev, bits) ||
  826. md_raid10_congested(mddev, bits);
  827. }
  828. static void flush_pending_writes(struct r10conf *conf)
  829. {
  830. /* Any writes that have been queued but are awaiting
  831. * bitmap updates get flushed here.
  832. */
  833. spin_lock_irq(&conf->device_lock);
  834. if (conf->pending_bio_list.head) {
  835. struct bio *bio;
  836. bio = bio_list_get(&conf->pending_bio_list);
  837. conf->pending_count = 0;
  838. spin_unlock_irq(&conf->device_lock);
  839. /* flush any pending bitmap writes to disk
  840. * before proceeding w/ I/O */
  841. bitmap_unplug(conf->mddev->bitmap);
  842. wake_up(&conf->wait_barrier);
  843. while (bio) { /* submit pending writes */
  844. struct bio *next = bio->bi_next;
  845. bio->bi_next = NULL;
  846. if (unlikely((bio->bi_rw & REQ_DISCARD) &&
  847. !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
  848. /* Just ignore it */
  849. bio_endio(bio, 0);
  850. else
  851. generic_make_request(bio);
  852. bio = next;
  853. }
  854. } else
  855. spin_unlock_irq(&conf->device_lock);
  856. }
  857. /* Barriers....
  858. * Sometimes we need to suspend IO while we do something else,
  859. * either some resync/recovery, or reconfigure the array.
  860. * To do this we raise a 'barrier'.
  861. * The 'barrier' is a counter that can be raised multiple times
  862. * to count how many activities are happening which preclude
  863. * normal IO.
  864. * We can only raise the barrier if there is no pending IO.
  865. * i.e. if nr_pending == 0.
  866. * We choose only to raise the barrier if no-one is waiting for the
  867. * barrier to go down. This means that as soon as an IO request
  868. * is ready, no other operations which require a barrier will start
  869. * until the IO request has had a chance.
  870. *
  871. * So: regular IO calls 'wait_barrier'. When that returns there
  872. * is no backgroup IO happening, It must arrange to call
  873. * allow_barrier when it has finished its IO.
  874. * backgroup IO calls must call raise_barrier. Once that returns
  875. * there is no normal IO happeing. It must arrange to call
  876. * lower_barrier when the particular background IO completes.
  877. */
  878. static void raise_barrier(struct r10conf *conf, int force)
  879. {
  880. BUG_ON(force && !conf->barrier);
  881. spin_lock_irq(&conf->resync_lock);
  882. /* Wait until no block IO is waiting (unless 'force') */
  883. wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
  884. conf->resync_lock);
  885. /* block any new IO from starting */
  886. conf->barrier++;
  887. /* Now wait for all pending IO to complete */
  888. wait_event_lock_irq(conf->wait_barrier,
  889. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  890. conf->resync_lock);
  891. spin_unlock_irq(&conf->resync_lock);
  892. }
  893. static void lower_barrier(struct r10conf *conf)
  894. {
  895. unsigned long flags;
  896. spin_lock_irqsave(&conf->resync_lock, flags);
  897. conf->barrier--;
  898. spin_unlock_irqrestore(&conf->resync_lock, flags);
  899. wake_up(&conf->wait_barrier);
  900. }
  901. static void wait_barrier(struct r10conf *conf)
  902. {
  903. spin_lock_irq(&conf->resync_lock);
  904. if (conf->barrier) {
  905. conf->nr_waiting++;
  906. /* Wait for the barrier to drop.
  907. * However if there are already pending
  908. * requests (preventing the barrier from
  909. * rising completely), and the
  910. * pre-process bio queue isn't empty,
  911. * then don't wait, as we need to empty
  912. * that queue to get the nr_pending
  913. * count down.
  914. */
  915. wait_event_lock_irq(conf->wait_barrier,
  916. !conf->barrier ||
  917. (conf->nr_pending &&
  918. current->bio_list &&
  919. !bio_list_empty(current->bio_list)),
  920. conf->resync_lock);
  921. conf->nr_waiting--;
  922. }
  923. conf->nr_pending++;
  924. spin_unlock_irq(&conf->resync_lock);
  925. }
  926. static void allow_barrier(struct r10conf *conf)
  927. {
  928. unsigned long flags;
  929. spin_lock_irqsave(&conf->resync_lock, flags);
  930. conf->nr_pending--;
  931. spin_unlock_irqrestore(&conf->resync_lock, flags);
  932. wake_up(&conf->wait_barrier);
  933. }
  934. static void freeze_array(struct r10conf *conf)
  935. {
  936. /* stop syncio and normal IO and wait for everything to
  937. * go quiet.
  938. * We increment barrier and nr_waiting, and then
  939. * wait until nr_pending match nr_queued+1
  940. * This is called in the context of one normal IO request
  941. * that has failed. Thus any sync request that might be pending
  942. * will be blocked by nr_pending, and we need to wait for
  943. * pending IO requests to complete or be queued for re-try.
  944. * Thus the number queued (nr_queued) plus this request (1)
  945. * must match the number of pending IOs (nr_pending) before
  946. * we continue.
  947. */
  948. spin_lock_irq(&conf->resync_lock);
  949. conf->barrier++;
  950. conf->nr_waiting++;
  951. wait_event_lock_irq_cmd(conf->wait_barrier,
  952. conf->nr_pending == conf->nr_queued+1,
  953. conf->resync_lock,
  954. flush_pending_writes(conf));
  955. spin_unlock_irq(&conf->resync_lock);
  956. }
  957. static void unfreeze_array(struct r10conf *conf)
  958. {
  959. /* reverse the effect of the freeze */
  960. spin_lock_irq(&conf->resync_lock);
  961. conf->barrier--;
  962. conf->nr_waiting--;
  963. wake_up(&conf->wait_barrier);
  964. spin_unlock_irq(&conf->resync_lock);
  965. }
  966. static sector_t choose_data_offset(struct r10bio *r10_bio,
  967. struct md_rdev *rdev)
  968. {
  969. if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
  970. test_bit(R10BIO_Previous, &r10_bio->state))
  971. return rdev->data_offset;
  972. else
  973. return rdev->new_data_offset;
  974. }
  975. struct raid10_plug_cb {
  976. struct blk_plug_cb cb;
  977. struct bio_list pending;
  978. int pending_cnt;
  979. };
  980. static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
  981. {
  982. struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
  983. cb);
  984. struct mddev *mddev = plug->cb.data;
  985. struct r10conf *conf = mddev->private;
  986. struct bio *bio;
  987. if (from_schedule || current->bio_list) {
  988. spin_lock_irq(&conf->device_lock);
  989. bio_list_merge(&conf->pending_bio_list, &plug->pending);
  990. conf->pending_count += plug->pending_cnt;
  991. spin_unlock_irq(&conf->device_lock);
  992. md_wakeup_thread(mddev->thread);
  993. kfree(plug);
  994. return;
  995. }
  996. /* we aren't scheduling, so we can do the write-out directly. */
  997. bio = bio_list_get(&plug->pending);
  998. bitmap_unplug(mddev->bitmap);
  999. wake_up(&conf->wait_barrier);
  1000. while (bio) { /* submit pending writes */
  1001. struct bio *next = bio->bi_next;
  1002. bio->bi_next = NULL;
  1003. generic_make_request(bio);
  1004. bio = next;
  1005. }
  1006. kfree(plug);
  1007. }
  1008. static void make_request(struct mddev *mddev, struct bio * bio)
  1009. {
  1010. struct r10conf *conf = mddev->private;
  1011. struct r10bio *r10_bio;
  1012. struct bio *read_bio;
  1013. int i;
  1014. sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
  1015. int chunk_sects = chunk_mask + 1;
  1016. const int rw = bio_data_dir(bio);
  1017. const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
  1018. const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
  1019. const unsigned long do_discard = (bio->bi_rw
  1020. & (REQ_DISCARD | REQ_SECURE));
  1021. const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
  1022. unsigned long flags;
  1023. struct md_rdev *blocked_rdev;
  1024. struct blk_plug_cb *cb;
  1025. struct raid10_plug_cb *plug = NULL;
  1026. int sectors_handled;
  1027. int max_sectors;
  1028. int sectors;
  1029. if (unlikely(bio->bi_rw & REQ_FLUSH)) {
  1030. md_flush_request(mddev, bio);
  1031. return;
  1032. }
  1033. /* If this request crosses a chunk boundary, we need to
  1034. * split it. This will only happen for 1 PAGE (or less) requests.
  1035. */
  1036. if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
  1037. > chunk_sects
  1038. && (conf->geo.near_copies < conf->geo.raid_disks
  1039. || conf->prev.near_copies < conf->prev.raid_disks))) {
  1040. struct bio_pair *bp;
  1041. /* Sanity check -- queue functions should prevent this happening */
  1042. if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
  1043. bio->bi_idx != 0)
  1044. goto bad_map;
  1045. /* This is a one page bio that upper layers
  1046. * refuse to split for us, so we need to split it.
  1047. */
  1048. bp = bio_split(bio,
  1049. chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
  1050. /* Each of these 'make_request' calls will call 'wait_barrier'.
  1051. * If the first succeeds but the second blocks due to the resync
  1052. * thread raising the barrier, we will deadlock because the
  1053. * IO to the underlying device will be queued in generic_make_request
  1054. * and will never complete, so will never reduce nr_pending.
  1055. * So increment nr_waiting here so no new raise_barriers will
  1056. * succeed, and so the second wait_barrier cannot block.
  1057. */
  1058. spin_lock_irq(&conf->resync_lock);
  1059. conf->nr_waiting++;
  1060. spin_unlock_irq(&conf->resync_lock);
  1061. make_request(mddev, &bp->bio1);
  1062. make_request(mddev, &bp->bio2);
  1063. spin_lock_irq(&conf->resync_lock);
  1064. conf->nr_waiting--;
  1065. wake_up(&conf->wait_barrier);
  1066. spin_unlock_irq(&conf->resync_lock);
  1067. bio_pair_release(bp);
  1068. return;
  1069. bad_map:
  1070. printk("md/raid10:%s: make_request bug: can't convert block across chunks"
  1071. " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
  1072. (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
  1073. bio_io_error(bio);
  1074. return;
  1075. }
  1076. md_write_start(mddev, bio);
  1077. /*
  1078. * Register the new request and wait if the reconstruction
  1079. * thread has put up a bar for new requests.
  1080. * Continue immediately if no resync is active currently.
  1081. */
  1082. wait_barrier(conf);
  1083. sectors = bio->bi_size >> 9;
  1084. while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  1085. bio->bi_sector < conf->reshape_progress &&
  1086. bio->bi_sector + sectors > conf->reshape_progress) {
  1087. /* IO spans the reshape position. Need to wait for
  1088. * reshape to pass
  1089. */
  1090. allow_barrier(conf);
  1091. wait_event(conf->wait_barrier,
  1092. conf->reshape_progress <= bio->bi_sector ||
  1093. conf->reshape_progress >= bio->bi_sector + sectors);
  1094. wait_barrier(conf);
  1095. }
  1096. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  1097. bio_data_dir(bio) == WRITE &&
  1098. (mddev->reshape_backwards
  1099. ? (bio->bi_sector < conf->reshape_safe &&
  1100. bio->bi_sector + sectors > conf->reshape_progress)
  1101. : (bio->bi_sector + sectors > conf->reshape_safe &&
  1102. bio->bi_sector < conf->reshape_progress))) {
  1103. /* Need to update reshape_position in metadata */
  1104. mddev->reshape_position = conf->reshape_progress;
  1105. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1106. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1107. md_wakeup_thread(mddev->thread);
  1108. wait_event(mddev->sb_wait,
  1109. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  1110. conf->reshape_safe = mddev->reshape_position;
  1111. }
  1112. r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
  1113. r10_bio->master_bio = bio;
  1114. r10_bio->sectors = sectors;
  1115. r10_bio->mddev = mddev;
  1116. r10_bio->sector = bio->bi_sector;
  1117. r10_bio->state = 0;
  1118. /* We might need to issue multiple reads to different
  1119. * devices if there are bad blocks around, so we keep
  1120. * track of the number of reads in bio->bi_phys_segments.
  1121. * If this is 0, there is only one r10_bio and no locking
  1122. * will be needed when the request completes. If it is
  1123. * non-zero, then it is the number of not-completed requests.
  1124. */
  1125. bio->bi_phys_segments = 0;
  1126. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  1127. if (rw == READ) {
  1128. /*
  1129. * read balancing logic:
  1130. */
  1131. struct md_rdev *rdev;
  1132. int slot;
  1133. read_again:
  1134. rdev = read_balance(conf, r10_bio, &max_sectors);
  1135. if (!rdev) {
  1136. raid_end_bio_io(r10_bio);
  1137. return;
  1138. }
  1139. slot = r10_bio->read_slot;
  1140. read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  1141. md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
  1142. max_sectors);
  1143. r10_bio->devs[slot].bio = read_bio;
  1144. r10_bio->devs[slot].rdev = rdev;
  1145. read_bio->bi_sector = r10_bio->devs[slot].addr +
  1146. choose_data_offset(r10_bio, rdev);
  1147. read_bio->bi_bdev = rdev->bdev;
  1148. read_bio->bi_end_io = raid10_end_read_request;
  1149. read_bio->bi_rw = READ | do_sync;
  1150. read_bio->bi_private = r10_bio;
  1151. if (max_sectors < r10_bio->sectors) {
  1152. /* Could not read all from this device, so we will
  1153. * need another r10_bio.
  1154. */
  1155. sectors_handled = (r10_bio->sectors + max_sectors
  1156. - bio->bi_sector);
  1157. r10_bio->sectors = max_sectors;
  1158. spin_lock_irq(&conf->device_lock);
  1159. if (bio->bi_phys_segments == 0)
  1160. bio->bi_phys_segments = 2;
  1161. else
  1162. bio->bi_phys_segments++;
  1163. spin_unlock(&conf->device_lock);
  1164. /* Cannot call generic_make_request directly
  1165. * as that will be queued in __generic_make_request
  1166. * and subsequent mempool_alloc might block
  1167. * waiting for it. so hand bio over to raid10d.
  1168. */
  1169. reschedule_retry(r10_bio);
  1170. r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
  1171. r10_bio->master_bio = bio;
  1172. r10_bio->sectors = ((bio->bi_size >> 9)
  1173. - sectors_handled);
  1174. r10_bio->state = 0;
  1175. r10_bio->mddev = mddev;
  1176. r10_bio->sector = bio->bi_sector + sectors_handled;
  1177. goto read_again;
  1178. } else
  1179. generic_make_request(read_bio);
  1180. return;
  1181. }
  1182. /*
  1183. * WRITE:
  1184. */
  1185. if (conf->pending_count >= max_queued_requests) {
  1186. md_wakeup_thread(mddev->thread);
  1187. wait_event(conf->wait_barrier,
  1188. conf->pending_count < max_queued_requests);
  1189. }
  1190. /* first select target devices under rcu_lock and
  1191. * inc refcount on their rdev. Record them by setting
  1192. * bios[x] to bio
  1193. * If there are known/acknowledged bad blocks on any device
  1194. * on which we have seen a write error, we want to avoid
  1195. * writing to those blocks. This potentially requires several
  1196. * writes to write around the bad blocks. Each set of writes
  1197. * gets its own r10_bio with a set of bios attached. The number
  1198. * of r10_bios is recored in bio->bi_phys_segments just as with
  1199. * the read case.
  1200. */
  1201. r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
  1202. raid10_find_phys(conf, r10_bio);
  1203. retry_write:
  1204. blocked_rdev = NULL;
  1205. rcu_read_lock();
  1206. max_sectors = r10_bio->sectors;
  1207. for (i = 0; i < conf->copies; i++) {
  1208. int d = r10_bio->devs[i].devnum;
  1209. struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
  1210. struct md_rdev *rrdev = rcu_dereference(
  1211. conf->mirrors[d].replacement);
  1212. if (rdev == rrdev)
  1213. rrdev = NULL;
  1214. if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
  1215. atomic_inc(&rdev->nr_pending);
  1216. blocked_rdev = rdev;
  1217. break;
  1218. }
  1219. if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
  1220. atomic_inc(&rrdev->nr_pending);
  1221. blocked_rdev = rrdev;
  1222. break;
  1223. }
  1224. if (rdev && (test_bit(Faulty, &rdev->flags)
  1225. || test_bit(Unmerged, &rdev->flags)))
  1226. rdev = NULL;
  1227. if (rrdev && (test_bit(Faulty, &rrdev->flags)
  1228. || test_bit(Unmerged, &rrdev->flags)))
  1229. rrdev = NULL;
  1230. r10_bio->devs[i].bio = NULL;
  1231. r10_bio->devs[i].repl_bio = NULL;
  1232. if (!rdev && !rrdev) {
  1233. set_bit(R10BIO_Degraded, &r10_bio->state);
  1234. continue;
  1235. }
  1236. if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
  1237. sector_t first_bad;
  1238. sector_t dev_sector = r10_bio->devs[i].addr;
  1239. int bad_sectors;
  1240. int is_bad;
  1241. is_bad = is_badblock(rdev, dev_sector,
  1242. max_sectors,
  1243. &first_bad, &bad_sectors);
  1244. if (is_bad < 0) {
  1245. /* Mustn't write here until the bad block
  1246. * is acknowledged
  1247. */
  1248. atomic_inc(&rdev->nr_pending);
  1249. set_bit(BlockedBadBlocks, &rdev->flags);
  1250. blocked_rdev = rdev;
  1251. break;
  1252. }
  1253. if (is_bad && first_bad <= dev_sector) {
  1254. /* Cannot write here at all */
  1255. bad_sectors -= (dev_sector - first_bad);
  1256. if (bad_sectors < max_sectors)
  1257. /* Mustn't write more than bad_sectors
  1258. * to other devices yet
  1259. */
  1260. max_sectors = bad_sectors;
  1261. /* We don't set R10BIO_Degraded as that
  1262. * only applies if the disk is missing,
  1263. * so it might be re-added, and we want to
  1264. * know to recover this chunk.
  1265. * In this case the device is here, and the
  1266. * fact that this chunk is not in-sync is
  1267. * recorded in the bad block log.
  1268. */
  1269. continue;
  1270. }
  1271. if (is_bad) {
  1272. int good_sectors = first_bad - dev_sector;
  1273. if (good_sectors < max_sectors)
  1274. max_sectors = good_sectors;
  1275. }
  1276. }
  1277. if (rdev) {
  1278. r10_bio->devs[i].bio = bio;
  1279. atomic_inc(&rdev->nr_pending);
  1280. }
  1281. if (rrdev) {
  1282. r10_bio->devs[i].repl_bio = bio;
  1283. atomic_inc(&rrdev->nr_pending);
  1284. }
  1285. }
  1286. rcu_read_unlock();
  1287. if (unlikely(blocked_rdev)) {
  1288. /* Have to wait for this device to get unblocked, then retry */
  1289. int j;
  1290. int d;
  1291. for (j = 0; j < i; j++) {
  1292. if (r10_bio->devs[j].bio) {
  1293. d = r10_bio->devs[j].devnum;
  1294. rdev_dec_pending(conf->mirrors[d].rdev, mddev);
  1295. }
  1296. if (r10_bio->devs[j].repl_bio) {
  1297. struct md_rdev *rdev;
  1298. d = r10_bio->devs[j].devnum;
  1299. rdev = conf->mirrors[d].replacement;
  1300. if (!rdev) {
  1301. /* Race with remove_disk */
  1302. smp_mb();
  1303. rdev = conf->mirrors[d].rdev;
  1304. }
  1305. rdev_dec_pending(rdev, mddev);
  1306. }
  1307. }
  1308. allow_barrier(conf);
  1309. md_wait_for_blocked_rdev(blocked_rdev, mddev);
  1310. wait_barrier(conf);
  1311. goto retry_write;
  1312. }
  1313. if (max_sectors < r10_bio->sectors) {
  1314. /* We are splitting this into multiple parts, so
  1315. * we need to prepare for allocating another r10_bio.
  1316. */
  1317. r10_bio->sectors = max_sectors;
  1318. spin_lock_irq(&conf->device_lock);
  1319. if (bio->bi_phys_segments == 0)
  1320. bio->bi_phys_segments = 2;
  1321. else
  1322. bio->bi_phys_segments++;
  1323. spin_unlock_irq(&conf->device_lock);
  1324. }
  1325. sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
  1326. atomic_set(&r10_bio->remaining, 1);
  1327. bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
  1328. for (i = 0; i < conf->copies; i++) {
  1329. struct bio *mbio;
  1330. int d = r10_bio->devs[i].devnum;
  1331. if (r10_bio->devs[i].bio) {
  1332. struct md_rdev *rdev = conf->mirrors[d].rdev;
  1333. mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  1334. md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
  1335. max_sectors);
  1336. r10_bio->devs[i].bio = mbio;
  1337. mbio->bi_sector = (r10_bio->devs[i].addr+
  1338. choose_data_offset(r10_bio,
  1339. rdev));
  1340. mbio->bi_bdev = rdev->bdev;
  1341. mbio->bi_end_io = raid10_end_write_request;
  1342. mbio->bi_rw =
  1343. WRITE | do_sync | do_fua | do_discard | do_same;
  1344. mbio->bi_private = r10_bio;
  1345. atomic_inc(&r10_bio->remaining);
  1346. cb = blk_check_plugged(raid10_unplug, mddev,
  1347. sizeof(*plug));
  1348. if (cb)
  1349. plug = container_of(cb, struct raid10_plug_cb,
  1350. cb);
  1351. else
  1352. plug = NULL;
  1353. spin_lock_irqsave(&conf->device_lock, flags);
  1354. if (plug) {
  1355. bio_list_add(&plug->pending, mbio);
  1356. plug->pending_cnt++;
  1357. } else {
  1358. bio_list_add(&conf->pending_bio_list, mbio);
  1359. conf->pending_count++;
  1360. }
  1361. spin_unlock_irqrestore(&conf->device_lock, flags);
  1362. if (!plug)
  1363. md_wakeup_thread(mddev->thread);
  1364. }
  1365. if (r10_bio->devs[i].repl_bio) {
  1366. struct md_rdev *rdev = conf->mirrors[d].replacement;
  1367. if (rdev == NULL) {
  1368. /* Replacement just got moved to main 'rdev' */
  1369. smp_mb();
  1370. rdev = conf->mirrors[d].rdev;
  1371. }
  1372. mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  1373. md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
  1374. max_sectors);
  1375. r10_bio->devs[i].repl_bio = mbio;
  1376. mbio->bi_sector = (r10_bio->devs[i].addr +
  1377. choose_data_offset(
  1378. r10_bio, rdev));
  1379. mbio->bi_bdev = rdev->bdev;
  1380. mbio->bi_end_io = raid10_end_write_request;
  1381. mbio->bi_rw =
  1382. WRITE | do_sync | do_fua | do_discard | do_same;
  1383. mbio->bi_private = r10_bio;
  1384. atomic_inc(&r10_bio->remaining);
  1385. spin_lock_irqsave(&conf->device_lock, flags);
  1386. bio_list_add(&conf->pending_bio_list, mbio);
  1387. conf->pending_count++;
  1388. spin_unlock_irqrestore(&conf->device_lock, flags);
  1389. if (!mddev_check_plugged(mddev))
  1390. md_wakeup_thread(mddev->thread);
  1391. }
  1392. }
  1393. /* Don't remove the bias on 'remaining' (one_write_done) until
  1394. * after checking if we need to go around again.
  1395. */
  1396. if (sectors_handled < (bio->bi_size >> 9)) {
  1397. one_write_done(r10_bio);
  1398. /* We need another r10_bio. It has already been counted
  1399. * in bio->bi_phys_segments.
  1400. */
  1401. r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
  1402. r10_bio->master_bio = bio;
  1403. r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
  1404. r10_bio->mddev = mddev;
  1405. r10_bio->sector = bio->bi_sector + sectors_handled;
  1406. r10_bio->state = 0;
  1407. goto retry_write;
  1408. }
  1409. one_write_done(r10_bio);
  1410. /* In case raid10d snuck in to freeze_array */
  1411. wake_up(&conf->wait_barrier);
  1412. }
  1413. static void status(struct seq_file *seq, struct mddev *mddev)
  1414. {
  1415. struct r10conf *conf = mddev->private;
  1416. int i;
  1417. if (conf->geo.near_copies < conf->geo.raid_disks)
  1418. seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
  1419. if (conf->geo.near_copies > 1)
  1420. seq_printf(seq, " %d near-copies", conf->geo.near_copies);
  1421. if (conf->geo.far_copies > 1) {
  1422. if (conf->geo.far_offset)
  1423. seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
  1424. else
  1425. seq_printf(seq, " %d far-copies", conf->geo.far_copies);
  1426. }
  1427. seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
  1428. conf->geo.raid_disks - mddev->degraded);
  1429. for (i = 0; i < conf->geo.raid_disks; i++)
  1430. seq_printf(seq, "%s",
  1431. conf->mirrors[i].rdev &&
  1432. test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
  1433. seq_printf(seq, "]");
  1434. }
  1435. /* check if there are enough drives for
  1436. * every block to appear on atleast one.
  1437. * Don't consider the device numbered 'ignore'
  1438. * as we might be about to remove it.
  1439. */
  1440. static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
  1441. {
  1442. int first = 0;
  1443. do {
  1444. int n = conf->copies;
  1445. int cnt = 0;
  1446. int this = first;
  1447. while (n--) {
  1448. if (conf->mirrors[this].rdev &&
  1449. this != ignore)
  1450. cnt++;
  1451. this = (this+1) % geo->raid_disks;
  1452. }
  1453. if (cnt == 0)
  1454. return 0;
  1455. first = (first + geo->near_copies) % geo->raid_disks;
  1456. } while (first != 0);
  1457. return 1;
  1458. }
  1459. static int enough(struct r10conf *conf, int ignore)
  1460. {
  1461. return _enough(conf, &conf->geo, ignore) &&
  1462. _enough(conf, &conf->prev, ignore);
  1463. }
  1464. static void error(struct mddev *mddev, struct md_rdev *rdev)
  1465. {
  1466. char b[BDEVNAME_SIZE];
  1467. struct r10conf *conf = mddev->private;
  1468. /*
  1469. * If it is not operational, then we have already marked it as dead
  1470. * else if it is the last working disks, ignore the error, let the
  1471. * next level up know.
  1472. * else mark the drive as failed
  1473. */
  1474. if (test_bit(In_sync, &rdev->flags)
  1475. && !enough(conf, rdev->raid_disk))
  1476. /*
  1477. * Don't fail the drive, just return an IO error.
  1478. */
  1479. return;
  1480. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  1481. unsigned long flags;
  1482. spin_lock_irqsave(&conf->device_lock, flags);
  1483. mddev->degraded++;
  1484. spin_unlock_irqrestore(&conf->device_lock, flags);
  1485. /*
  1486. * if recovery is running, make sure it aborts.
  1487. */
  1488. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1489. }
  1490. set_bit(Blocked, &rdev->flags);
  1491. set_bit(Faulty, &rdev->flags);
  1492. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1493. printk(KERN_ALERT
  1494. "md/raid10:%s: Disk failure on %s, disabling device.\n"
  1495. "md/raid10:%s: Operation continuing on %d devices.\n",
  1496. mdname(mddev), bdevname(rdev->bdev, b),
  1497. mdname(mddev), conf->geo.raid_disks - mddev->degraded);
  1498. }
  1499. static void print_conf(struct r10conf *conf)
  1500. {
  1501. int i;
  1502. struct raid10_info *tmp;
  1503. printk(KERN_DEBUG "RAID10 conf printout:\n");
  1504. if (!conf) {
  1505. printk(KERN_DEBUG "(!conf)\n");
  1506. return;
  1507. }
  1508. printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
  1509. conf->geo.raid_disks);
  1510. for (i = 0; i < conf->geo.raid_disks; i++) {
  1511. char b[BDEVNAME_SIZE];
  1512. tmp = conf->mirrors + i;
  1513. if (tmp->rdev)
  1514. printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
  1515. i, !test_bit(In_sync, &tmp->rdev->flags),
  1516. !test_bit(Faulty, &tmp->rdev->flags),
  1517. bdevname(tmp->rdev->bdev,b));
  1518. }
  1519. }
  1520. static void close_sync(struct r10conf *conf)
  1521. {
  1522. wait_barrier(conf);
  1523. allow_barrier(conf);
  1524. mempool_destroy(conf->r10buf_pool);
  1525. conf->r10buf_pool = NULL;
  1526. }
  1527. static int raid10_spare_active(struct mddev *mddev)
  1528. {
  1529. int i;
  1530. struct r10conf *conf = mddev->private;
  1531. struct raid10_info *tmp;
  1532. int count = 0;
  1533. unsigned long flags;
  1534. /*
  1535. * Find all non-in_sync disks within the RAID10 configuration
  1536. * and mark them in_sync
  1537. */
  1538. for (i = 0; i < conf->geo.raid_disks; i++) {
  1539. tmp = conf->mirrors + i;
  1540. if (tmp->replacement
  1541. && tmp->replacement->recovery_offset == MaxSector
  1542. && !test_bit(Faulty, &tmp->replacement->flags)
  1543. && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
  1544. /* Replacement has just become active */
  1545. if (!tmp->rdev
  1546. || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
  1547. count++;
  1548. if (tmp->rdev) {
  1549. /* Replaced device not technically faulty,
  1550. * but we need to be sure it gets removed
  1551. * and never re-added.
  1552. */
  1553. set_bit(Faulty, &tmp->rdev->flags);
  1554. sysfs_notify_dirent_safe(
  1555. tmp->rdev->sysfs_state);
  1556. }
  1557. sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
  1558. } else if (tmp->rdev
  1559. && !test_bit(Faulty, &tmp->rdev->flags)
  1560. && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
  1561. count++;
  1562. sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
  1563. }
  1564. }
  1565. spin_lock_irqsave(&conf->device_lock, flags);
  1566. mddev->degraded -= count;
  1567. spin_unlock_irqrestore(&conf->device_lock, flags);
  1568. print_conf(conf);
  1569. return count;
  1570. }
  1571. static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
  1572. {
  1573. struct r10conf *conf = mddev->private;
  1574. int err = -EEXIST;
  1575. int mirror;
  1576. int first = 0;
  1577. int last = conf->geo.raid_disks - 1;
  1578. struct request_queue *q = bdev_get_queue(rdev->bdev);
  1579. if (mddev->recovery_cp < MaxSector)
  1580. /* only hot-add to in-sync arrays, as recovery is
  1581. * very different from resync
  1582. */
  1583. return -EBUSY;
  1584. if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
  1585. return -EINVAL;
  1586. if (rdev->raid_disk >= 0)
  1587. first = last = rdev->raid_disk;
  1588. if (q->merge_bvec_fn) {
  1589. set_bit(Unmerged, &rdev->flags);
  1590. mddev->merge_check_needed = 1;
  1591. }
  1592. if (rdev->saved_raid_disk >= first &&
  1593. conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
  1594. mirror = rdev->saved_raid_disk;
  1595. else
  1596. mirror = first;
  1597. for ( ; mirror <= last ; mirror++) {
  1598. struct raid10_info *p = &conf->mirrors[mirror];
  1599. if (p->recovery_disabled == mddev->recovery_disabled)
  1600. continue;
  1601. if (p->rdev) {
  1602. if (!test_bit(WantReplacement, &p->rdev->flags) ||
  1603. p->replacement != NULL)
  1604. continue;
  1605. clear_bit(In_sync, &rdev->flags);
  1606. set_bit(Replacement, &rdev->flags);
  1607. rdev->raid_disk = mirror;
  1608. err = 0;
  1609. disk_stack_limits(mddev->gendisk, rdev->bdev,
  1610. rdev->data_offset << 9);
  1611. conf->fullsync = 1;
  1612. rcu_assign_pointer(p->replacement, rdev);
  1613. break;
  1614. }
  1615. disk_stack_limits(mddev->gendisk, rdev->bdev,
  1616. rdev->data_offset << 9);
  1617. p->head_position = 0;
  1618. p->recovery_disabled = mddev->recovery_disabled - 1;
  1619. rdev->raid_disk = mirror;
  1620. err = 0;
  1621. if (rdev->saved_raid_disk != mirror)
  1622. conf->fullsync = 1;
  1623. rcu_assign_pointer(p->rdev, rdev);
  1624. break;
  1625. }
  1626. if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
  1627. /* Some requests might not have seen this new
  1628. * merge_bvec_fn. We must wait for them to complete
  1629. * before merging the device fully.
  1630. * First we make sure any code which has tested
  1631. * our function has submitted the request, then
  1632. * we wait for all outstanding requests to complete.
  1633. */
  1634. synchronize_sched();
  1635. raise_barrier(conf, 0);
  1636. lower_barrier(conf);
  1637. clear_bit(Unmerged, &rdev->flags);
  1638. }
  1639. md_integrity_add_rdev(rdev, mddev);
  1640. if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
  1641. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
  1642. print_conf(conf);
  1643. return err;
  1644. }
  1645. static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
  1646. {
  1647. struct r10conf *conf = mddev->private;
  1648. int err = 0;
  1649. int number = rdev->raid_disk;
  1650. struct md_rdev **rdevp;
  1651. struct raid10_info *p = conf->mirrors + number;
  1652. print_conf(conf);
  1653. if (rdev == p->rdev)
  1654. rdevp = &p->rdev;
  1655. else if (rdev == p->replacement)
  1656. rdevp = &p->replacement;
  1657. else
  1658. return 0;
  1659. if (test_bit(In_sync, &rdev->flags) ||
  1660. atomic_read(&rdev->nr_pending)) {
  1661. err = -EBUSY;
  1662. goto abort;
  1663. }
  1664. /* Only remove faulty devices if recovery
  1665. * is not possible.
  1666. */
  1667. if (!test_bit(Faulty, &rdev->flags) &&
  1668. mddev->recovery_disabled != p->recovery_disabled &&
  1669. (!p->replacement || p->replacement == rdev) &&
  1670. number < conf->geo.raid_disks &&
  1671. enough(conf, -1)) {
  1672. err = -EBUSY;
  1673. goto abort;
  1674. }
  1675. *rdevp = NULL;
  1676. synchronize_rcu();
  1677. if (atomic_read(&rdev->nr_pending)) {
  1678. /* lost the race, try later */
  1679. err = -EBUSY;
  1680. *rdevp = rdev;
  1681. goto abort;
  1682. } else if (p->replacement) {
  1683. /* We must have just cleared 'rdev' */
  1684. p->rdev = p->replacement;
  1685. clear_bit(Replacement, &p->replacement->flags);
  1686. smp_mb(); /* Make sure other CPUs may see both as identical
  1687. * but will never see neither -- if they are careful.
  1688. */
  1689. p->replacement = NULL;
  1690. clear_bit(WantReplacement, &rdev->flags);
  1691. } else
  1692. /* We might have just remove the Replacement as faulty
  1693. * Clear the flag just in case
  1694. */
  1695. clear_bit(WantReplacement, &rdev->flags);
  1696. err = md_integrity_register(mddev);
  1697. abort:
  1698. print_conf(conf);
  1699. return err;
  1700. }
  1701. static void end_sync_read(struct bio *bio, int error)
  1702. {
  1703. struct r10bio *r10_bio = bio->bi_private;
  1704. struct r10conf *conf = r10_bio->mddev->private;
  1705. int d;
  1706. if (bio == r10_bio->master_bio) {
  1707. /* this is a reshape read */
  1708. d = r10_bio->read_slot; /* really the read dev */
  1709. } else
  1710. d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
  1711. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  1712. set_bit(R10BIO_Uptodate, &r10_bio->state);
  1713. else
  1714. /* The write handler will notice the lack of
  1715. * R10BIO_Uptodate and record any errors etc
  1716. */
  1717. atomic_add(r10_bio->sectors,
  1718. &conf->mirrors[d].rdev->corrected_errors);
  1719. /* for reconstruct, we always reschedule after a read.
  1720. * for resync, only after all reads
  1721. */
  1722. rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
  1723. if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
  1724. atomic_dec_and_test(&r10_bio->remaining)) {
  1725. /* we have read all the blocks,
  1726. * do the comparison in process context in raid10d
  1727. */
  1728. reschedule_retry(r10_bio);
  1729. }
  1730. }
  1731. static void end_sync_request(struct r10bio *r10_bio)
  1732. {
  1733. struct mddev *mddev = r10_bio->mddev;
  1734. while (atomic_dec_and_test(&r10_bio->remaining)) {
  1735. if (r10_bio->master_bio == NULL) {
  1736. /* the primary of several recovery bios */
  1737. sector_t s = r10_bio->sectors;
  1738. if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
  1739. test_bit(R10BIO_WriteError, &r10_bio->state))
  1740. reschedule_retry(r10_bio);
  1741. else
  1742. put_buf(r10_bio);
  1743. md_done_sync(mddev, s, 1);
  1744. break;
  1745. } else {
  1746. struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
  1747. if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
  1748. test_bit(R10BIO_WriteError, &r10_bio->state))
  1749. reschedule_retry(r10_bio);
  1750. else
  1751. put_buf(r10_bio);
  1752. r10_bio = r10_bio2;
  1753. }
  1754. }
  1755. }
  1756. static void end_sync_write(struct bio *bio, int error)
  1757. {
  1758. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  1759. struct r10bio *r10_bio = bio->bi_private;
  1760. struct mddev *mddev = r10_bio->mddev;
  1761. struct r10conf *conf = mddev->private;
  1762. int d;
  1763. sector_t first_bad;
  1764. int bad_sectors;
  1765. int slot;
  1766. int repl;
  1767. struct md_rdev *rdev = NULL;
  1768. d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
  1769. if (repl)
  1770. rdev = conf->mirrors[d].replacement;
  1771. else
  1772. rdev = conf->mirrors[d].rdev;
  1773. if (!uptodate) {
  1774. if (repl)
  1775. md_error(mddev, rdev);
  1776. else {
  1777. set_bit(WriteErrorSeen, &rdev->flags);
  1778. if (!test_and_set_bit(WantReplacement, &rdev->flags))
  1779. set_bit(MD_RECOVERY_NEEDED,
  1780. &rdev->mddev->recovery);
  1781. set_bit(R10BIO_WriteError, &r10_bio->state);
  1782. }
  1783. } else if (is_badblock(rdev,
  1784. r10_bio->devs[slot].addr,
  1785. r10_bio->sectors,
  1786. &first_bad, &bad_sectors))
  1787. set_bit(R10BIO_MadeGood, &r10_bio->state);
  1788. rdev_dec_pending(rdev, mddev);
  1789. end_sync_request(r10_bio);
  1790. }
  1791. /*
  1792. * Note: sync and recover and handled very differently for raid10
  1793. * This code is for resync.
  1794. * For resync, we read through virtual addresses and read all blocks.
  1795. * If there is any error, we schedule a write. The lowest numbered
  1796. * drive is authoritative.
  1797. * However requests come for physical address, so we need to map.
  1798. * For every physical address there are raid_disks/copies virtual addresses,
  1799. * which is always are least one, but is not necessarly an integer.
  1800. * This means that a physical address can span multiple chunks, so we may
  1801. * have to submit multiple io requests for a single sync request.
  1802. */
  1803. /*
  1804. * We check if all blocks are in-sync and only write to blocks that
  1805. * aren't in sync
  1806. */
  1807. static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
  1808. {
  1809. struct r10conf *conf = mddev->private;
  1810. int i, first;
  1811. struct bio *tbio, *fbio;
  1812. int vcnt;
  1813. atomic_set(&r10_bio->remaining, 1);
  1814. /* find the first device with a block */
  1815. for (i=0; i<conf->copies; i++)
  1816. if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
  1817. break;
  1818. if (i == conf->copies)
  1819. goto done;
  1820. first = i;
  1821. fbio = r10_bio->devs[i].bio;
  1822. vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
  1823. /* now find blocks with errors */
  1824. for (i=0 ; i < conf->copies ; i++) {
  1825. int j, d;
  1826. tbio = r10_bio->devs[i].bio;
  1827. if (tbio->bi_end_io != end_sync_read)
  1828. continue;
  1829. if (i == first)
  1830. continue;
  1831. if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
  1832. /* We know that the bi_io_vec layout is the same for
  1833. * both 'first' and 'i', so we just compare them.
  1834. * All vec entries are PAGE_SIZE;
  1835. */
  1836. for (j = 0; j < vcnt; j++)
  1837. if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
  1838. page_address(tbio->bi_io_vec[j].bv_page),
  1839. fbio->bi_io_vec[j].bv_len))
  1840. break;
  1841. if (j == vcnt)
  1842. continue;
  1843. atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
  1844. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  1845. /* Don't fix anything. */
  1846. continue;
  1847. }
  1848. /* Ok, we need to write this bio, either to correct an
  1849. * inconsistency or to correct an unreadable block.
  1850. * First we need to fixup bv_offset, bv_len and
  1851. * bi_vecs, as the read request might have corrupted these
  1852. */
  1853. tbio->bi_vcnt = vcnt;
  1854. tbio->bi_size = r10_bio->sectors << 9;
  1855. tbio->bi_idx = 0;
  1856. tbio->bi_phys_segments = 0;
  1857. tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1858. tbio->bi_flags |= 1 << BIO_UPTODATE;
  1859. tbio->bi_next = NULL;
  1860. tbio->bi_rw = WRITE;
  1861. tbio->bi_private = r10_bio;
  1862. tbio->bi_sector = r10_bio->devs[i].addr;
  1863. for (j=0; j < vcnt ; j++) {
  1864. tbio->bi_io_vec[j].bv_offset = 0;
  1865. tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
  1866. memcpy(page_address(tbio->bi_io_vec[j].bv_page),
  1867. page_address(fbio->bi_io_vec[j].bv_page),
  1868. PAGE_SIZE);
  1869. }
  1870. tbio->bi_end_io = end_sync_write;
  1871. d = r10_bio->devs[i].devnum;
  1872. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  1873. atomic_inc(&r10_bio->remaining);
  1874. md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
  1875. tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
  1876. tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
  1877. generic_make_request(tbio);
  1878. }
  1879. /* Now write out to any replacement devices
  1880. * that are active
  1881. */
  1882. for (i = 0; i < conf->copies; i++) {
  1883. int j, d;
  1884. tbio = r10_bio->devs[i].repl_bio;
  1885. if (!tbio || !tbio->bi_end_io)
  1886. continue;
  1887. if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
  1888. && r10_bio->devs[i].bio != fbio)
  1889. for (j = 0; j < vcnt; j++)
  1890. memcpy(page_address(tbio->bi_io_vec[j].bv_page),
  1891. page_address(fbio->bi_io_vec[j].bv_page),
  1892. PAGE_SIZE);
  1893. d = r10_bio->devs[i].devnum;
  1894. atomic_inc(&r10_bio->remaining);
  1895. md_sync_acct(conf->mirrors[d].replacement->bdev,
  1896. tbio->bi_size >> 9);
  1897. generic_make_request(tbio);
  1898. }
  1899. done:
  1900. if (atomic_dec_and_test(&r10_bio->remaining)) {
  1901. md_done_sync(mddev, r10_bio->sectors, 1);
  1902. put_buf(r10_bio);
  1903. }
  1904. }
  1905. /*
  1906. * Now for the recovery code.
  1907. * Recovery happens across physical sectors.
  1908. * We recover all non-is_sync drives by finding the virtual address of
  1909. * each, and then choose a working drive that also has that virt address.
  1910. * There is a separate r10_bio for each non-in_sync drive.
  1911. * Only the first two slots are in use. The first for reading,
  1912. * The second for writing.
  1913. *
  1914. */
  1915. static void fix_recovery_read_error(struct r10bio *r10_bio)
  1916. {
  1917. /* We got a read error during recovery.
  1918. * We repeat the read in smaller page-sized sections.
  1919. * If a read succeeds, write it to the new device or record
  1920. * a bad block if we cannot.
  1921. * If a read fails, record a bad block on both old and
  1922. * new devices.
  1923. */
  1924. struct mddev *mddev = r10_bio->mddev;
  1925. struct r10conf *conf = mddev->private;
  1926. struct bio *bio = r10_bio->devs[0].bio;
  1927. sector_t sect = 0;
  1928. int sectors = r10_bio->sectors;
  1929. int idx = 0;
  1930. int dr = r10_bio->devs[0].devnum;
  1931. int dw = r10_bio->devs[1].devnum;
  1932. while (sectors) {
  1933. int s = sectors;
  1934. struct md_rdev *rdev;
  1935. sector_t addr;
  1936. int ok;
  1937. if (s > (PAGE_SIZE>>9))
  1938. s = PAGE_SIZE >> 9;
  1939. rdev = conf->mirrors[dr].rdev;
  1940. addr = r10_bio->devs[0].addr + sect,
  1941. ok = sync_page_io(rdev,
  1942. addr,
  1943. s << 9,
  1944. bio->bi_io_vec[idx].bv_page,
  1945. READ, false);
  1946. if (ok) {
  1947. rdev = conf->mirrors[dw].rdev;
  1948. addr = r10_bio->devs[1].addr + sect;
  1949. ok = sync_page_io(rdev,
  1950. addr,
  1951. s << 9,
  1952. bio->bi_io_vec[idx].bv_page,
  1953. WRITE, false);
  1954. if (!ok) {
  1955. set_bit(WriteErrorSeen, &rdev->flags);
  1956. if (!test_and_set_bit(WantReplacement,
  1957. &rdev->flags))
  1958. set_bit(MD_RECOVERY_NEEDED,
  1959. &rdev->mddev->recovery);
  1960. }
  1961. }
  1962. if (!ok) {
  1963. /* We don't worry if we cannot set a bad block -
  1964. * it really is bad so there is no loss in not
  1965. * recording it yet
  1966. */
  1967. rdev_set_badblocks(rdev, addr, s, 0);
  1968. if (rdev != conf->mirrors[dw].rdev) {
  1969. /* need bad block on destination too */
  1970. struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
  1971. addr = r10_bio->devs[1].addr + sect;
  1972. ok = rdev_set_badblocks(rdev2, addr, s, 0);
  1973. if (!ok) {
  1974. /* just abort the recovery */
  1975. printk(KERN_NOTICE
  1976. "md/raid10:%s: recovery aborted"
  1977. " due to read error\n",
  1978. mdname(mddev));
  1979. conf->mirrors[dw].recovery_disabled
  1980. = mddev->recovery_disabled;
  1981. set_bit(MD_RECOVERY_INTR,
  1982. &mddev->recovery);
  1983. break;
  1984. }
  1985. }
  1986. }
  1987. sectors -= s;
  1988. sect += s;
  1989. idx++;
  1990. }
  1991. }
  1992. static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
  1993. {
  1994. struct r10conf *conf = mddev->private;
  1995. int d;
  1996. struct bio *wbio, *wbio2;
  1997. if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
  1998. fix_recovery_read_error(r10_bio);
  1999. end_sync_request(r10_bio);
  2000. return;
  2001. }
  2002. /*
  2003. * share the pages with the first bio
  2004. * and submit the write request
  2005. */
  2006. d = r10_bio->devs[1].devnum;
  2007. wbio = r10_bio->devs[1].bio;
  2008. wbio2 = r10_bio->devs[1].repl_bio;
  2009. if (wbio->bi_end_io) {
  2010. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  2011. md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
  2012. generic_make_request(wbio);
  2013. }
  2014. if (wbio2 && wbio2->bi_end_io) {
  2015. atomic_inc(&conf->mirrors[d].replacement->nr_pending);
  2016. md_sync_acct(conf->mirrors[d].replacement->bdev,
  2017. wbio2->bi_size >> 9);
  2018. generic_make_request(wbio2);
  2019. }
  2020. }
  2021. /*
  2022. * Used by fix_read_error() to decay the per rdev read_errors.
  2023. * We halve the read error count for every hour that has elapsed
  2024. * since the last recorded read error.
  2025. *
  2026. */
  2027. static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
  2028. {
  2029. struct timespec cur_time_mon;
  2030. unsigned long hours_since_last;
  2031. unsigned int read_errors = atomic_read(&rdev->read_errors);
  2032. ktime_get_ts(&cur_time_mon);
  2033. if (rdev->last_read_error.tv_sec == 0 &&
  2034. rdev->last_read_error.tv_nsec == 0) {
  2035. /* first time we've seen a read error */
  2036. rdev->last_read_error = cur_time_mon;
  2037. return;
  2038. }
  2039. hours_since_last = (cur_time_mon.tv_sec -
  2040. rdev->last_read_error.tv_sec) / 3600;
  2041. rdev->last_read_error = cur_time_mon;
  2042. /*
  2043. * if hours_since_last is > the number of bits in read_errors
  2044. * just set read errors to 0. We do this to avoid
  2045. * overflowing the shift of read_errors by hours_since_last.
  2046. */
  2047. if (hours_since_last >= 8 * sizeof(read_errors))
  2048. atomic_set(&rdev->read_errors, 0);
  2049. else
  2050. atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
  2051. }
  2052. static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
  2053. int sectors, struct page *page, int rw)
  2054. {
  2055. sector_t first_bad;
  2056. int bad_sectors;
  2057. if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
  2058. && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
  2059. return -1;
  2060. if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
  2061. /* success */
  2062. return 1;
  2063. if (rw == WRITE) {
  2064. set_bit(WriteErrorSeen, &rdev->flags);
  2065. if (!test_and_set_bit(WantReplacement, &rdev->flags))
  2066. set_bit(MD_RECOVERY_NEEDED,
  2067. &rdev->mddev->recovery);
  2068. }
  2069. /* need to record an error - either for the block or the device */
  2070. if (!rdev_set_badblocks(rdev, sector, sectors, 0))
  2071. md_error(rdev->mddev, rdev);
  2072. return 0;
  2073. }
  2074. /*
  2075. * This is a kernel thread which:
  2076. *
  2077. * 1. Retries failed read operations on working mirrors.
  2078. * 2. Updates the raid superblock when problems encounter.
  2079. * 3. Performs writes following reads for array synchronising.
  2080. */
  2081. static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
  2082. {
  2083. int sect = 0; /* Offset from r10_bio->sector */
  2084. int sectors = r10_bio->sectors;
  2085. struct md_rdev*rdev;
  2086. int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
  2087. int d = r10_bio->devs[r10_bio->read_slot].devnum;
  2088. /* still own a reference to this rdev, so it cannot
  2089. * have been cleared recently.
  2090. */
  2091. rdev = conf->mirrors[d].rdev;
  2092. if (test_bit(Faulty, &rdev->flags))
  2093. /* drive has already been failed, just ignore any
  2094. more fix_read_error() attempts */
  2095. return;
  2096. check_decay_read_errors(mddev, rdev);
  2097. atomic_inc(&rdev->read_errors);
  2098. if (atomic_read(&rdev->read_errors) > max_read_errors) {
  2099. char b[BDEVNAME_SIZE];
  2100. bdevname(rdev->bdev, b);
  2101. printk(KERN_NOTICE
  2102. "md/raid10:%s: %s: Raid device exceeded "
  2103. "read_error threshold [cur %d:max %d]\n",
  2104. mdname(mddev), b,
  2105. atomic_read(&rdev->read_errors), max_read_errors);
  2106. printk(KERN_NOTICE
  2107. "md/raid10:%s: %s: Failing raid device\n",
  2108. mdname(mddev), b);
  2109. md_error(mddev, conf->mirrors[d].rdev);
  2110. r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
  2111. return;
  2112. }
  2113. while(sectors) {
  2114. int s = sectors;
  2115. int sl = r10_bio->read_slot;
  2116. int success = 0;
  2117. int start;
  2118. if (s > (PAGE_SIZE>>9))
  2119. s = PAGE_SIZE >> 9;
  2120. rcu_read_lock();
  2121. do {
  2122. sector_t first_bad;
  2123. int bad_sectors;
  2124. d = r10_bio->devs[sl].devnum;
  2125. rdev = rcu_dereference(conf->mirrors[d].rdev);
  2126. if (rdev &&
  2127. !test_bit(Unmerged, &rdev->flags) &&
  2128. test_bit(In_sync, &rdev->flags) &&
  2129. is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
  2130. &first_bad, &bad_sectors) == 0) {
  2131. atomic_inc(&rdev->nr_pending);
  2132. rcu_read_unlock();
  2133. success = sync_page_io(rdev,
  2134. r10_bio->devs[sl].addr +
  2135. sect,
  2136. s<<9,
  2137. conf->tmppage, READ, false);
  2138. rdev_dec_pending(rdev, mddev);
  2139. rcu_read_lock();
  2140. if (success)
  2141. break;
  2142. }
  2143. sl++;
  2144. if (sl == conf->copies)
  2145. sl = 0;
  2146. } while (!success && sl != r10_bio->read_slot);
  2147. rcu_read_unlock();
  2148. if (!success) {
  2149. /* Cannot read from anywhere, just mark the block
  2150. * as bad on the first device to discourage future
  2151. * reads.
  2152. */
  2153. int dn = r10_bio->devs[r10_bio->read_slot].devnum;
  2154. rdev = conf->mirrors[dn].rdev;
  2155. if (!rdev_set_badblocks(
  2156. rdev,
  2157. r10_bio->devs[r10_bio->read_slot].addr
  2158. + sect,
  2159. s, 0)) {
  2160. md_error(mddev, rdev);
  2161. r10_bio->devs[r10_bio->read_slot].bio
  2162. = IO_BLOCKED;
  2163. }
  2164. break;
  2165. }
  2166. start = sl;
  2167. /* write it back and re-read */
  2168. rcu_read_lock();
  2169. while (sl != r10_bio->read_slot) {
  2170. char b[BDEVNAME_SIZE];
  2171. if (sl==0)
  2172. sl = conf->copies;
  2173. sl--;
  2174. d = r10_bio->devs[sl].devnum;
  2175. rdev = rcu_dereference(conf->mirrors[d].rdev);
  2176. if (!rdev ||
  2177. test_bit(Unmerged, &rdev->flags) ||
  2178. !test_bit(In_sync, &rdev->flags))
  2179. continue;
  2180. atomic_inc(&rdev->nr_pending);
  2181. rcu_read_unlock();
  2182. if (r10_sync_page_io(rdev,
  2183. r10_bio->devs[sl].addr +
  2184. sect,
  2185. s, conf->tmppage, WRITE)
  2186. == 0) {
  2187. /* Well, this device is dead */
  2188. printk(KERN_NOTICE
  2189. "md/raid10:%s: read correction "
  2190. "write failed"
  2191. " (%d sectors at %llu on %s)\n",
  2192. mdname(mddev), s,
  2193. (unsigned long long)(
  2194. sect +
  2195. choose_data_offset(r10_bio,
  2196. rdev)),
  2197. bdevname(rdev->bdev, b));
  2198. printk(KERN_NOTICE "md/raid10:%s: %s: failing "
  2199. "drive\n",
  2200. mdname(mddev),
  2201. bdevname(rdev->bdev, b));
  2202. }
  2203. rdev_dec_pending(rdev, mddev);
  2204. rcu_read_lock();
  2205. }
  2206. sl = start;
  2207. while (sl != r10_bio->read_slot) {
  2208. char b[BDEVNAME_SIZE];
  2209. if (sl==0)
  2210. sl = conf->copies;
  2211. sl--;
  2212. d = r10_bio->devs[sl].devnum;
  2213. rdev = rcu_dereference(conf->mirrors[d].rdev);
  2214. if (!rdev ||
  2215. !test_bit(In_sync, &rdev->flags))
  2216. continue;
  2217. atomic_inc(&rdev->nr_pending);
  2218. rcu_read_unlock();
  2219. switch (r10_sync_page_io(rdev,
  2220. r10_bio->devs[sl].addr +
  2221. sect,
  2222. s, conf->tmppage,
  2223. READ)) {
  2224. case 0:
  2225. /* Well, this device is dead */
  2226. printk(KERN_NOTICE
  2227. "md/raid10:%s: unable to read back "
  2228. "corrected sectors"
  2229. " (%d sectors at %llu on %s)\n",
  2230. mdname(mddev), s,
  2231. (unsigned long long)(
  2232. sect +
  2233. choose_data_offset(r10_bio, rdev)),
  2234. bdevname(rdev->bdev, b));
  2235. printk(KERN_NOTICE "md/raid10:%s: %s: failing "
  2236. "drive\n",
  2237. mdname(mddev),
  2238. bdevname(rdev->bdev, b));
  2239. break;
  2240. case 1:
  2241. printk(KERN_INFO
  2242. "md/raid10:%s: read error corrected"
  2243. " (%d sectors at %llu on %s)\n",
  2244. mdname(mddev), s,
  2245. (unsigned long long)(
  2246. sect +
  2247. choose_data_offset(r10_bio, rdev)),
  2248. bdevname(rdev->bdev, b));
  2249. atomic_add(s, &rdev->corrected_errors);
  2250. }
  2251. rdev_dec_pending(rdev, mddev);
  2252. rcu_read_lock();
  2253. }
  2254. rcu_read_unlock();
  2255. sectors -= s;
  2256. sect += s;
  2257. }
  2258. }
  2259. static void bi_complete(struct bio *bio, int error)
  2260. {
  2261. complete((struct completion *)bio->bi_private);
  2262. }
  2263. static int submit_bio_wait(int rw, struct bio *bio)
  2264. {
  2265. struct completion event;
  2266. rw |= REQ_SYNC;
  2267. init_completion(&event);
  2268. bio->bi_private = &event;
  2269. bio->bi_end_io = bi_complete;
  2270. submit_bio(rw, bio);
  2271. wait_for_completion(&event);
  2272. return test_bit(BIO_UPTODATE, &bio->bi_flags);
  2273. }
  2274. static int narrow_write_error(struct r10bio *r10_bio, int i)
  2275. {
  2276. struct bio *bio = r10_bio->master_bio;
  2277. struct mddev *mddev = r10_bio->mddev;
  2278. struct r10conf *conf = mddev->private;
  2279. struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
  2280. /* bio has the data to be written to slot 'i' where
  2281. * we just recently had a write error.
  2282. * We repeatedly clone the bio and trim down to one block,
  2283. * then try the write. Where the write fails we record
  2284. * a bad block.
  2285. * It is conceivable that the bio doesn't exactly align with
  2286. * blocks. We must handle this.
  2287. *
  2288. * We currently own a reference to the rdev.
  2289. */
  2290. int block_sectors;
  2291. sector_t sector;
  2292. int sectors;
  2293. int sect_to_write = r10_bio->sectors;
  2294. int ok = 1;
  2295. if (rdev->badblocks.shift < 0)
  2296. return 0;
  2297. block_sectors = 1 << rdev->badblocks.shift;
  2298. sector = r10_bio->sector;
  2299. sectors = ((r10_bio->sector + block_sectors)
  2300. & ~(sector_t)(block_sectors - 1))
  2301. - sector;
  2302. while (sect_to_write) {
  2303. struct bio *wbio;
  2304. if (sectors > sect_to_write)
  2305. sectors = sect_to_write;
  2306. /* Write at 'sector' for 'sectors' */
  2307. wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  2308. md_trim_bio(wbio, sector - bio->bi_sector, sectors);
  2309. wbio->bi_sector = (r10_bio->devs[i].addr+
  2310. choose_data_offset(r10_bio, rdev) +
  2311. (sector - r10_bio->sector));
  2312. wbio->bi_bdev = rdev->bdev;
  2313. if (submit_bio_wait(WRITE, wbio) == 0)
  2314. /* Failure! */
  2315. ok = rdev_set_badblocks(rdev, sector,
  2316. sectors, 0)
  2317. && ok;
  2318. bio_put(wbio);
  2319. sect_to_write -= sectors;
  2320. sector += sectors;
  2321. sectors = block_sectors;
  2322. }
  2323. return ok;
  2324. }
  2325. static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
  2326. {
  2327. int slot = r10_bio->read_slot;
  2328. struct bio *bio;
  2329. struct r10conf *conf = mddev->private;
  2330. struct md_rdev *rdev = r10_bio->devs[slot].rdev;
  2331. char b[BDEVNAME_SIZE];
  2332. unsigned long do_sync;
  2333. int max_sectors;
  2334. /* we got a read error. Maybe the drive is bad. Maybe just
  2335. * the block and we can fix it.
  2336. * We freeze all other IO, and try reading the block from
  2337. * other devices. When we find one, we re-write
  2338. * and check it that fixes the read error.
  2339. * This is all done synchronously while the array is
  2340. * frozen.
  2341. */
  2342. bio = r10_bio->devs[slot].bio;
  2343. bdevname(bio->bi_bdev, b);
  2344. bio_put(bio);
  2345. r10_bio->devs[slot].bio = NULL;
  2346. if (mddev->ro == 0) {
  2347. freeze_array(conf);
  2348. fix_read_error(conf, mddev, r10_bio);
  2349. unfreeze_array(conf);
  2350. } else
  2351. r10_bio->devs[slot].bio = IO_BLOCKED;
  2352. rdev_dec_pending(rdev, mddev);
  2353. read_more:
  2354. rdev = read_balance(conf, r10_bio, &max_sectors);
  2355. if (rdev == NULL) {
  2356. printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
  2357. " read error for block %llu\n",
  2358. mdname(mddev), b,
  2359. (unsigned long long)r10_bio->sector);
  2360. raid_end_bio_io(r10_bio);
  2361. return;
  2362. }
  2363. do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
  2364. slot = r10_bio->read_slot;
  2365. printk_ratelimited(
  2366. KERN_ERR
  2367. "md/raid10:%s: %s: redirecting "
  2368. "sector %llu to another mirror\n",
  2369. mdname(mddev),
  2370. bdevname(rdev->bdev, b),
  2371. (unsigned long long)r10_bio->sector);
  2372. bio = bio_clone_mddev(r10_bio->master_bio,
  2373. GFP_NOIO, mddev);
  2374. md_trim_bio(bio,
  2375. r10_bio->sector - bio->bi_sector,
  2376. max_sectors);
  2377. r10_bio->devs[slot].bio = bio;
  2378. r10_bio->devs[slot].rdev = rdev;
  2379. bio->bi_sector = r10_bio->devs[slot].addr
  2380. + choose_data_offset(r10_bio, rdev);
  2381. bio->bi_bdev = rdev->bdev;
  2382. bio->bi_rw = READ | do_sync;
  2383. bio->bi_private = r10_bio;
  2384. bio->bi_end_io = raid10_end_read_request;
  2385. if (max_sectors < r10_bio->sectors) {
  2386. /* Drat - have to split this up more */
  2387. struct bio *mbio = r10_bio->master_bio;
  2388. int sectors_handled =
  2389. r10_bio->sector + max_sectors
  2390. - mbio->bi_sector;
  2391. r10_bio->sectors = max_sectors;
  2392. spin_lock_irq(&conf->device_lock);
  2393. if (mbio->bi_phys_segments == 0)
  2394. mbio->bi_phys_segments = 2;
  2395. else
  2396. mbio->bi_phys_segments++;
  2397. spin_unlock_irq(&conf->device_lock);
  2398. generic_make_request(bio);
  2399. r10_bio = mempool_alloc(conf->r10bio_pool,
  2400. GFP_NOIO);
  2401. r10_bio->master_bio = mbio;
  2402. r10_bio->sectors = (mbio->bi_size >> 9)
  2403. - sectors_handled;
  2404. r10_bio->state = 0;
  2405. set_bit(R10BIO_ReadError,
  2406. &r10_bio->state);
  2407. r10_bio->mddev = mddev;
  2408. r10_bio->sector = mbio->bi_sector
  2409. + sectors_handled;
  2410. goto read_more;
  2411. } else
  2412. generic_make_request(bio);
  2413. }
  2414. static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
  2415. {
  2416. /* Some sort of write request has finished and it
  2417. * succeeded in writing where we thought there was a
  2418. * bad block. So forget the bad block.
  2419. * Or possibly if failed and we need to record
  2420. * a bad block.
  2421. */
  2422. int m;
  2423. struct md_rdev *rdev;
  2424. if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
  2425. test_bit(R10BIO_IsRecover, &r10_bio->state)) {
  2426. for (m = 0; m < conf->copies; m++) {
  2427. int dev = r10_bio->devs[m].devnum;
  2428. rdev = conf->mirrors[dev].rdev;
  2429. if (r10_bio->devs[m].bio == NULL)
  2430. continue;
  2431. if (test_bit(BIO_UPTODATE,
  2432. &r10_bio->devs[m].bio->bi_flags)) {
  2433. rdev_clear_badblocks(
  2434. rdev,
  2435. r10_bio->devs[m].addr,
  2436. r10_bio->sectors, 0);
  2437. } else {
  2438. if (!rdev_set_badblocks(
  2439. rdev,
  2440. r10_bio->devs[m].addr,
  2441. r10_bio->sectors, 0))
  2442. md_error(conf->mddev, rdev);
  2443. }
  2444. rdev = conf->mirrors[dev].replacement;
  2445. if (r10_bio->devs[m].repl_bio == NULL)
  2446. continue;
  2447. if (test_bit(BIO_UPTODATE,
  2448. &r10_bio->devs[m].repl_bio->bi_flags)) {
  2449. rdev_clear_badblocks(
  2450. rdev,
  2451. r10_bio->devs[m].addr,
  2452. r10_bio->sectors, 0);
  2453. } else {
  2454. if (!rdev_set_badblocks(
  2455. rdev,
  2456. r10_bio->devs[m].addr,
  2457. r10_bio->sectors, 0))
  2458. md_error(conf->mddev, rdev);
  2459. }
  2460. }
  2461. put_buf(r10_bio);
  2462. } else {
  2463. for (m = 0; m < conf->copies; m++) {
  2464. int dev = r10_bio->devs[m].devnum;
  2465. struct bio *bio = r10_bio->devs[m].bio;
  2466. rdev = conf->mirrors[dev].rdev;
  2467. if (bio == IO_MADE_GOOD) {
  2468. rdev_clear_badblocks(
  2469. rdev,
  2470. r10_bio->devs[m].addr,
  2471. r10_bio->sectors, 0);
  2472. rdev_dec_pending(rdev, conf->mddev);
  2473. } else if (bio != NULL &&
  2474. !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  2475. if (!narrow_write_error(r10_bio, m)) {
  2476. md_error(conf->mddev, rdev);
  2477. set_bit(R10BIO_Degraded,
  2478. &r10_bio->state);
  2479. }
  2480. rdev_dec_pending(rdev, conf->mddev);
  2481. }
  2482. bio = r10_bio->devs[m].repl_bio;
  2483. rdev = conf->mirrors[dev].replacement;
  2484. if (rdev && bio == IO_MADE_GOOD) {
  2485. rdev_clear_badblocks(
  2486. rdev,
  2487. r10_bio->devs[m].addr,
  2488. r10_bio->sectors, 0);
  2489. rdev_dec_pending(rdev, conf->mddev);
  2490. }
  2491. }
  2492. if (test_bit(R10BIO_WriteError,
  2493. &r10_bio->state))
  2494. close_write(r10_bio);
  2495. raid_end_bio_io(r10_bio);
  2496. }
  2497. }
  2498. static void raid10d(struct md_thread *thread)
  2499. {
  2500. struct mddev *mddev = thread->mddev;
  2501. struct r10bio *r10_bio;
  2502. unsigned long flags;
  2503. struct r10conf *conf = mddev->private;
  2504. struct list_head *head = &conf->retry_list;
  2505. struct blk_plug plug;
  2506. md_check_recovery(mddev);
  2507. blk_start_plug(&plug);
  2508. for (;;) {
  2509. flush_pending_writes(conf);
  2510. spin_lock_irqsave(&conf->device_lock, flags);
  2511. if (list_empty(head)) {
  2512. spin_unlock_irqrestore(&conf->device_lock, flags);
  2513. break;
  2514. }
  2515. r10_bio = list_entry(head->prev, struct r10bio, retry_list);
  2516. list_del(head->prev);
  2517. conf->nr_queued--;
  2518. spin_unlock_irqrestore(&conf->device_lock, flags);
  2519. mddev = r10_bio->mddev;
  2520. conf = mddev->private;
  2521. if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
  2522. test_bit(R10BIO_WriteError, &r10_bio->state))
  2523. handle_write_completed(conf, r10_bio);
  2524. else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
  2525. reshape_request_write(mddev, r10_bio);
  2526. else if (test_bit(R10BIO_IsSync, &r10_bio->state))
  2527. sync_request_write(mddev, r10_bio);
  2528. else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
  2529. recovery_request_write(mddev, r10_bio);
  2530. else if (test_bit(R10BIO_ReadError, &r10_bio->state))
  2531. handle_read_error(mddev, r10_bio);
  2532. else {
  2533. /* just a partial read to be scheduled from a
  2534. * separate context
  2535. */
  2536. int slot = r10_bio->read_slot;
  2537. generic_make_request(r10_bio->devs[slot].bio);
  2538. }
  2539. cond_resched();
  2540. if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
  2541. md_check_recovery(mddev);
  2542. }
  2543. blk_finish_plug(&plug);
  2544. }
  2545. static int init_resync(struct r10conf *conf)
  2546. {
  2547. int buffs;
  2548. int i;
  2549. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  2550. BUG_ON(conf->r10buf_pool);
  2551. conf->have_replacement = 0;
  2552. for (i = 0; i < conf->geo.raid_disks; i++)
  2553. if (conf->mirrors[i].replacement)
  2554. conf->have_replacement = 1;
  2555. conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
  2556. if (!conf->r10buf_pool)
  2557. return -ENOMEM;
  2558. conf->next_resync = 0;
  2559. return 0;
  2560. }
  2561. /*
  2562. * perform a "sync" on one "block"
  2563. *
  2564. * We need to make sure that no normal I/O request - particularly write
  2565. * requests - conflict with active sync requests.
  2566. *
  2567. * This is achieved by tracking pending requests and a 'barrier' concept
  2568. * that can be installed to exclude normal IO requests.
  2569. *
  2570. * Resync and recovery are handled very differently.
  2571. * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
  2572. *
  2573. * For resync, we iterate over virtual addresses, read all copies,
  2574. * and update if there are differences. If only one copy is live,
  2575. * skip it.
  2576. * For recovery, we iterate over physical addresses, read a good
  2577. * value for each non-in_sync drive, and over-write.
  2578. *
  2579. * So, for recovery we may have several outstanding complex requests for a
  2580. * given address, one for each out-of-sync device. We model this by allocating
  2581. * a number of r10_bio structures, one for each out-of-sync device.
  2582. * As we setup these structures, we collect all bio's together into a list
  2583. * which we then process collectively to add pages, and then process again
  2584. * to pass to generic_make_request.
  2585. *
  2586. * The r10_bio structures are linked using a borrowed master_bio pointer.
  2587. * This link is counted in ->remaining. When the r10_bio that points to NULL
  2588. * has its remaining count decremented to 0, the whole complex operation
  2589. * is complete.
  2590. *
  2591. */
  2592. static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
  2593. int *skipped, int go_faster)
  2594. {
  2595. struct r10conf *conf = mddev->private;
  2596. struct r10bio *r10_bio;
  2597. struct bio *biolist = NULL, *bio;
  2598. sector_t max_sector, nr_sectors;
  2599. int i;
  2600. int max_sync;
  2601. sector_t sync_blocks;
  2602. sector_t sectors_skipped = 0;
  2603. int chunks_skipped = 0;
  2604. sector_t chunk_mask = conf->geo.chunk_mask;
  2605. if (!conf->r10buf_pool)
  2606. if (init_resync(conf))
  2607. return 0;
  2608. skipped:
  2609. max_sector = mddev->dev_sectors;
  2610. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  2611. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2612. max_sector = mddev->resync_max_sectors;
  2613. if (sector_nr >= max_sector) {
  2614. /* If we aborted, we need to abort the
  2615. * sync on the 'current' bitmap chucks (there can
  2616. * be several when recovering multiple devices).
  2617. * as we may have started syncing it but not finished.
  2618. * We can find the current address in
  2619. * mddev->curr_resync, but for recovery,
  2620. * we need to convert that to several
  2621. * virtual addresses.
  2622. */
  2623. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
  2624. end_reshape(conf);
  2625. return 0;
  2626. }
  2627. if (mddev->curr_resync < max_sector) { /* aborted */
  2628. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2629. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  2630. &sync_blocks, 1);
  2631. else for (i = 0; i < conf->geo.raid_disks; i++) {
  2632. sector_t sect =
  2633. raid10_find_virt(conf, mddev->curr_resync, i);
  2634. bitmap_end_sync(mddev->bitmap, sect,
  2635. &sync_blocks, 1);
  2636. }
  2637. } else {
  2638. /* completed sync */
  2639. if ((!mddev->bitmap || conf->fullsync)
  2640. && conf->have_replacement
  2641. && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2642. /* Completed a full sync so the replacements
  2643. * are now fully recovered.
  2644. */
  2645. for (i = 0; i < conf->geo.raid_disks; i++)
  2646. if (conf->mirrors[i].replacement)
  2647. conf->mirrors[i].replacement
  2648. ->recovery_offset
  2649. = MaxSector;
  2650. }
  2651. conf->fullsync = 0;
  2652. }
  2653. bitmap_close_sync(mddev->bitmap);
  2654. close_sync(conf);
  2655. *skipped = 1;
  2656. return sectors_skipped;
  2657. }
  2658. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2659. return reshape_request(mddev, sector_nr, skipped);
  2660. if (chunks_skipped >= conf->geo.raid_disks) {
  2661. /* if there has been nothing to do on any drive,
  2662. * then there is nothing to do at all..
  2663. */
  2664. *skipped = 1;
  2665. return (max_sector - sector_nr) + sectors_skipped;
  2666. }
  2667. if (max_sector > mddev->resync_max)
  2668. max_sector = mddev->resync_max; /* Don't do IO beyond here */
  2669. /* make sure whole request will fit in a chunk - if chunks
  2670. * are meaningful
  2671. */
  2672. if (conf->geo.near_copies < conf->geo.raid_disks &&
  2673. max_sector > (sector_nr | chunk_mask))
  2674. max_sector = (sector_nr | chunk_mask) + 1;
  2675. /*
  2676. * If there is non-resync activity waiting for us then
  2677. * put in a delay to throttle resync.
  2678. */
  2679. if (!go_faster && conf->nr_waiting)
  2680. msleep_interruptible(1000);
  2681. /* Again, very different code for resync and recovery.
  2682. * Both must result in an r10bio with a list of bios that
  2683. * have bi_end_io, bi_sector, bi_bdev set,
  2684. * and bi_private set to the r10bio.
  2685. * For recovery, we may actually create several r10bios
  2686. * with 2 bios in each, that correspond to the bios in the main one.
  2687. * In this case, the subordinate r10bios link back through a
  2688. * borrowed master_bio pointer, and the counter in the master
  2689. * includes a ref from each subordinate.
  2690. */
  2691. /* First, we decide what to do and set ->bi_end_io
  2692. * To end_sync_read if we want to read, and
  2693. * end_sync_write if we will want to write.
  2694. */
  2695. max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
  2696. if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2697. /* recovery... the complicated one */
  2698. int j;
  2699. r10_bio = NULL;
  2700. for (i = 0 ; i < conf->geo.raid_disks; i++) {
  2701. int still_degraded;
  2702. struct r10bio *rb2;
  2703. sector_t sect;
  2704. int must_sync;
  2705. int any_working;
  2706. struct raid10_info *mirror = &conf->mirrors[i];
  2707. if ((mirror->rdev == NULL ||
  2708. test_bit(In_sync, &mirror->rdev->flags))
  2709. &&
  2710. (mirror->replacement == NULL ||
  2711. test_bit(Faulty,
  2712. &mirror->replacement->flags)))
  2713. continue;
  2714. still_degraded = 0;
  2715. /* want to reconstruct this device */
  2716. rb2 = r10_bio;
  2717. sect = raid10_find_virt(conf, sector_nr, i);
  2718. if (sect >= mddev->resync_max_sectors) {
  2719. /* last stripe is not complete - don't
  2720. * try to recover this sector.
  2721. */
  2722. continue;
  2723. }
  2724. /* Unless we are doing a full sync, or a replacement
  2725. * we only need to recover the block if it is set in
  2726. * the bitmap
  2727. */
  2728. must_sync = bitmap_start_sync(mddev->bitmap, sect,
  2729. &sync_blocks, 1);
  2730. if (sync_blocks < max_sync)
  2731. max_sync = sync_blocks;
  2732. if (!must_sync &&
  2733. mirror->replacement == NULL &&
  2734. !conf->fullsync) {
  2735. /* yep, skip the sync_blocks here, but don't assume
  2736. * that there will never be anything to do here
  2737. */
  2738. chunks_skipped = -1;
  2739. continue;
  2740. }
  2741. r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
  2742. raise_barrier(conf, rb2 != NULL);
  2743. atomic_set(&r10_bio->remaining, 0);
  2744. r10_bio->master_bio = (struct bio*)rb2;
  2745. if (rb2)
  2746. atomic_inc(&rb2->remaining);
  2747. r10_bio->mddev = mddev;
  2748. set_bit(R10BIO_IsRecover, &r10_bio->state);
  2749. r10_bio->sector = sect;
  2750. raid10_find_phys(conf, r10_bio);
  2751. /* Need to check if the array will still be
  2752. * degraded
  2753. */
  2754. for (j = 0; j < conf->geo.raid_disks; j++)
  2755. if (conf->mirrors[j].rdev == NULL ||
  2756. test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
  2757. still_degraded = 1;
  2758. break;
  2759. }
  2760. must_sync = bitmap_start_sync(mddev->bitmap, sect,
  2761. &sync_blocks, still_degraded);
  2762. any_working = 0;
  2763. for (j=0; j<conf->copies;j++) {
  2764. int k;
  2765. int d = r10_bio->devs[j].devnum;
  2766. sector_t from_addr, to_addr;
  2767. struct md_rdev *rdev;
  2768. sector_t sector, first_bad;
  2769. int bad_sectors;
  2770. if (!conf->mirrors[d].rdev ||
  2771. !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
  2772. continue;
  2773. /* This is where we read from */
  2774. any_working = 1;
  2775. rdev = conf->mirrors[d].rdev;
  2776. sector = r10_bio->devs[j].addr;
  2777. if (is_badblock(rdev, sector, max_sync,
  2778. &first_bad, &bad_sectors)) {
  2779. if (first_bad > sector)
  2780. max_sync = first_bad - sector;
  2781. else {
  2782. bad_sectors -= (sector
  2783. - first_bad);
  2784. if (max_sync > bad_sectors)
  2785. max_sync = bad_sectors;
  2786. continue;
  2787. }
  2788. }
  2789. bio = r10_bio->devs[0].bio;
  2790. bio->bi_next = biolist;
  2791. biolist = bio;
  2792. bio->bi_private = r10_bio;
  2793. bio->bi_end_io = end_sync_read;
  2794. bio->bi_rw = READ;
  2795. from_addr = r10_bio->devs[j].addr;
  2796. bio->bi_sector = from_addr + rdev->data_offset;
  2797. bio->bi_bdev = rdev->bdev;
  2798. atomic_inc(&rdev->nr_pending);
  2799. /* and we write to 'i' (if not in_sync) */
  2800. for (k=0; k<conf->copies; k++)
  2801. if (r10_bio->devs[k].devnum == i)
  2802. break;
  2803. BUG_ON(k == conf->copies);
  2804. to_addr = r10_bio->devs[k].addr;
  2805. r10_bio->devs[0].devnum = d;
  2806. r10_bio->devs[0].addr = from_addr;
  2807. r10_bio->devs[1].devnum = i;
  2808. r10_bio->devs[1].addr = to_addr;
  2809. rdev = mirror->rdev;
  2810. if (!test_bit(In_sync, &rdev->flags)) {
  2811. bio = r10_bio->devs[1].bio;
  2812. bio->bi_next = biolist;
  2813. biolist = bio;
  2814. bio->bi_private = r10_bio;
  2815. bio->bi_end_io = end_sync_write;
  2816. bio->bi_rw = WRITE;
  2817. bio->bi_sector = to_addr
  2818. + rdev->data_offset;
  2819. bio->bi_bdev = rdev->bdev;
  2820. atomic_inc(&r10_bio->remaining);
  2821. } else
  2822. r10_bio->devs[1].bio->bi_end_io = NULL;
  2823. /* and maybe write to replacement */
  2824. bio = r10_bio->devs[1].repl_bio;
  2825. if (bio)
  2826. bio->bi_end_io = NULL;
  2827. rdev = mirror->replacement;
  2828. /* Note: if rdev != NULL, then bio
  2829. * cannot be NULL as r10buf_pool_alloc will
  2830. * have allocated it.
  2831. * So the second test here is pointless.
  2832. * But it keeps semantic-checkers happy, and
  2833. * this comment keeps human reviewers
  2834. * happy.
  2835. */
  2836. if (rdev == NULL || bio == NULL ||
  2837. test_bit(Faulty, &rdev->flags))
  2838. break;
  2839. bio->bi_next = biolist;
  2840. biolist = bio;
  2841. bio->bi_private = r10_bio;
  2842. bio->bi_end_io = end_sync_write;
  2843. bio->bi_rw = WRITE;
  2844. bio->bi_sector = to_addr + rdev->data_offset;
  2845. bio->bi_bdev = rdev->bdev;
  2846. atomic_inc(&r10_bio->remaining);
  2847. break;
  2848. }
  2849. if (j == conf->copies) {
  2850. /* Cannot recover, so abort the recovery or
  2851. * record a bad block */
  2852. put_buf(r10_bio);
  2853. if (rb2)
  2854. atomic_dec(&rb2->remaining);
  2855. r10_bio = rb2;
  2856. if (any_working) {
  2857. /* problem is that there are bad blocks
  2858. * on other device(s)
  2859. */
  2860. int k;
  2861. for (k = 0; k < conf->copies; k++)
  2862. if (r10_bio->devs[k].devnum == i)
  2863. break;
  2864. if (!test_bit(In_sync,
  2865. &mirror->rdev->flags)
  2866. && !rdev_set_badblocks(
  2867. mirror->rdev,
  2868. r10_bio->devs[k].addr,
  2869. max_sync, 0))
  2870. any_working = 0;
  2871. if (mirror->replacement &&
  2872. !rdev_set_badblocks(
  2873. mirror->replacement,
  2874. r10_bio->devs[k].addr,
  2875. max_sync, 0))
  2876. any_working = 0;
  2877. }
  2878. if (!any_working) {
  2879. if (!test_and_set_bit(MD_RECOVERY_INTR,
  2880. &mddev->recovery))
  2881. printk(KERN_INFO "md/raid10:%s: insufficient "
  2882. "working devices for recovery.\n",
  2883. mdname(mddev));
  2884. mirror->recovery_disabled
  2885. = mddev->recovery_disabled;
  2886. }
  2887. break;
  2888. }
  2889. }
  2890. if (biolist == NULL) {
  2891. while (r10_bio) {
  2892. struct r10bio *rb2 = r10_bio;
  2893. r10_bio = (struct r10bio*) rb2->master_bio;
  2894. rb2->master_bio = NULL;
  2895. put_buf(rb2);
  2896. }
  2897. goto giveup;
  2898. }
  2899. } else {
  2900. /* resync. Schedule a read for every block at this virt offset */
  2901. int count = 0;
  2902. bitmap_cond_end_sync(mddev->bitmap, sector_nr);
  2903. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  2904. &sync_blocks, mddev->degraded) &&
  2905. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
  2906. &mddev->recovery)) {
  2907. /* We can skip this block */
  2908. *skipped = 1;
  2909. return sync_blocks + sectors_skipped;
  2910. }
  2911. if (sync_blocks < max_sync)
  2912. max_sync = sync_blocks;
  2913. r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
  2914. r10_bio->mddev = mddev;
  2915. atomic_set(&r10_bio->remaining, 0);
  2916. raise_barrier(conf, 0);
  2917. conf->next_resync = sector_nr;
  2918. r10_bio->master_bio = NULL;
  2919. r10_bio->sector = sector_nr;
  2920. set_bit(R10BIO_IsSync, &r10_bio->state);
  2921. raid10_find_phys(conf, r10_bio);
  2922. r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
  2923. for (i = 0; i < conf->copies; i++) {
  2924. int d = r10_bio->devs[i].devnum;
  2925. sector_t first_bad, sector;
  2926. int bad_sectors;
  2927. if (r10_bio->devs[i].repl_bio)
  2928. r10_bio->devs[i].repl_bio->bi_end_io = NULL;
  2929. bio = r10_bio->devs[i].bio;
  2930. bio->bi_end_io = NULL;
  2931. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2932. if (conf->mirrors[d].rdev == NULL ||
  2933. test_bit(Faulty, &conf->mirrors[d].rdev->flags))
  2934. continue;
  2935. sector = r10_bio->devs[i].addr;
  2936. if (is_badblock(conf->mirrors[d].rdev,
  2937. sector, max_sync,
  2938. &first_bad, &bad_sectors)) {
  2939. if (first_bad > sector)
  2940. max_sync = first_bad - sector;
  2941. else {
  2942. bad_sectors -= (sector - first_bad);
  2943. if (max_sync > bad_sectors)
  2944. max_sync = bad_sectors;
  2945. continue;
  2946. }
  2947. }
  2948. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  2949. atomic_inc(&r10_bio->remaining);
  2950. bio->bi_next = biolist;
  2951. biolist = bio;
  2952. bio->bi_private = r10_bio;
  2953. bio->bi_end_io = end_sync_read;
  2954. bio->bi_rw = READ;
  2955. bio->bi_sector = sector +
  2956. conf->mirrors[d].rdev->data_offset;
  2957. bio->bi_bdev = conf->mirrors[d].rdev->bdev;
  2958. count++;
  2959. if (conf->mirrors[d].replacement == NULL ||
  2960. test_bit(Faulty,
  2961. &conf->mirrors[d].replacement->flags))
  2962. continue;
  2963. /* Need to set up for writing to the replacement */
  2964. bio = r10_bio->devs[i].repl_bio;
  2965. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2966. sector = r10_bio->devs[i].addr;
  2967. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  2968. bio->bi_next = biolist;
  2969. biolist = bio;
  2970. bio->bi_private = r10_bio;
  2971. bio->bi_end_io = end_sync_write;
  2972. bio->bi_rw = WRITE;
  2973. bio->bi_sector = sector +
  2974. conf->mirrors[d].replacement->data_offset;
  2975. bio->bi_bdev = conf->mirrors[d].replacement->bdev;
  2976. count++;
  2977. }
  2978. if (count < 2) {
  2979. for (i=0; i<conf->copies; i++) {
  2980. int d = r10_bio->devs[i].devnum;
  2981. if (r10_bio->devs[i].bio->bi_end_io)
  2982. rdev_dec_pending(conf->mirrors[d].rdev,
  2983. mddev);
  2984. if (r10_bio->devs[i].repl_bio &&
  2985. r10_bio->devs[i].repl_bio->bi_end_io)
  2986. rdev_dec_pending(
  2987. conf->mirrors[d].replacement,
  2988. mddev);
  2989. }
  2990. put_buf(r10_bio);
  2991. biolist = NULL;
  2992. goto giveup;
  2993. }
  2994. }
  2995. for (bio = biolist; bio ; bio=bio->bi_next) {
  2996. bio->bi_flags &= ~(BIO_POOL_MASK - 1);
  2997. if (bio->bi_end_io)
  2998. bio->bi_flags |= 1 << BIO_UPTODATE;
  2999. bio->bi_vcnt = 0;
  3000. bio->bi_idx = 0;
  3001. bio->bi_phys_segments = 0;
  3002. bio->bi_size = 0;
  3003. }
  3004. nr_sectors = 0;
  3005. if (sector_nr + max_sync < max_sector)
  3006. max_sector = sector_nr + max_sync;
  3007. do {
  3008. struct page *page;
  3009. int len = PAGE_SIZE;
  3010. if (sector_nr + (len>>9) > max_sector)
  3011. len = (max_sector - sector_nr) << 9;
  3012. if (len == 0)
  3013. break;
  3014. for (bio= biolist ; bio ; bio=bio->bi_next) {
  3015. struct bio *bio2;
  3016. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  3017. if (bio_add_page(bio, page, len, 0))
  3018. continue;
  3019. /* stop here */
  3020. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  3021. for (bio2 = biolist;
  3022. bio2 && bio2 != bio;
  3023. bio2 = bio2->bi_next) {
  3024. /* remove last page from this bio */
  3025. bio2->bi_vcnt--;
  3026. bio2->bi_size -= len;
  3027. bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
  3028. }
  3029. goto bio_full;
  3030. }
  3031. nr_sectors += len>>9;
  3032. sector_nr += len>>9;
  3033. } while (biolist->bi_vcnt < RESYNC_PAGES);
  3034. bio_full:
  3035. r10_bio->sectors = nr_sectors;
  3036. while (biolist) {
  3037. bio = biolist;
  3038. biolist = biolist->bi_next;
  3039. bio->bi_next = NULL;
  3040. r10_bio = bio->bi_private;
  3041. r10_bio->sectors = nr_sectors;
  3042. if (bio->bi_end_io == end_sync_read) {
  3043. md_sync_acct(bio->bi_bdev, nr_sectors);
  3044. generic_make_request(bio);
  3045. }
  3046. }
  3047. if (sectors_skipped)
  3048. /* pretend they weren't skipped, it makes
  3049. * no important difference in this case
  3050. */
  3051. md_done_sync(mddev, sectors_skipped, 1);
  3052. return sectors_skipped + nr_sectors;
  3053. giveup:
  3054. /* There is nowhere to write, so all non-sync
  3055. * drives must be failed or in resync, all drives
  3056. * have a bad block, so try the next chunk...
  3057. */
  3058. if (sector_nr + max_sync < max_sector)
  3059. max_sector = sector_nr + max_sync;
  3060. sectors_skipped += (max_sector - sector_nr);
  3061. chunks_skipped ++;
  3062. sector_nr = max_sector;
  3063. goto skipped;
  3064. }
  3065. static sector_t
  3066. raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
  3067. {
  3068. sector_t size;
  3069. struct r10conf *conf = mddev->private;
  3070. if (!raid_disks)
  3071. raid_disks = min(conf->geo.raid_disks,
  3072. conf->prev.raid_disks);
  3073. if (!sectors)
  3074. sectors = conf->dev_sectors;
  3075. size = sectors >> conf->geo.chunk_shift;
  3076. sector_div(size, conf->geo.far_copies);
  3077. size = size * raid_disks;
  3078. sector_div(size, conf->geo.near_copies);
  3079. return size << conf->geo.chunk_shift;
  3080. }
  3081. static void calc_sectors(struct r10conf *conf, sector_t size)
  3082. {
  3083. /* Calculate the number of sectors-per-device that will
  3084. * actually be used, and set conf->dev_sectors and
  3085. * conf->stride
  3086. */
  3087. size = size >> conf->geo.chunk_shift;
  3088. sector_div(size, conf->geo.far_copies);
  3089. size = size * conf->geo.raid_disks;
  3090. sector_div(size, conf->geo.near_copies);
  3091. /* 'size' is now the number of chunks in the array */
  3092. /* calculate "used chunks per device" */
  3093. size = size * conf->copies;
  3094. /* We need to round up when dividing by raid_disks to
  3095. * get the stride size.
  3096. */
  3097. size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
  3098. conf->dev_sectors = size << conf->geo.chunk_shift;
  3099. if (conf->geo.far_offset)
  3100. conf->geo.stride = 1 << conf->geo.chunk_shift;
  3101. else {
  3102. sector_div(size, conf->geo.far_copies);
  3103. conf->geo.stride = size << conf->geo.chunk_shift;
  3104. }
  3105. }
  3106. enum geo_type {geo_new, geo_old, geo_start};
  3107. static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
  3108. {
  3109. int nc, fc, fo;
  3110. int layout, chunk, disks;
  3111. switch (new) {
  3112. case geo_old:
  3113. layout = mddev->layout;
  3114. chunk = mddev->chunk_sectors;
  3115. disks = mddev->raid_disks - mddev->delta_disks;
  3116. break;
  3117. case geo_new:
  3118. layout = mddev->new_layout;
  3119. chunk = mddev->new_chunk_sectors;
  3120. disks = mddev->raid_disks;
  3121. break;
  3122. default: /* avoid 'may be unused' warnings */
  3123. case geo_start: /* new when starting reshape - raid_disks not
  3124. * updated yet. */
  3125. layout = mddev->new_layout;
  3126. chunk = mddev->new_chunk_sectors;
  3127. disks = mddev->raid_disks + mddev->delta_disks;
  3128. break;
  3129. }
  3130. if (layout >> 18)
  3131. return -1;
  3132. if (chunk < (PAGE_SIZE >> 9) ||
  3133. !is_power_of_2(chunk))
  3134. return -2;
  3135. nc = layout & 255;
  3136. fc = (layout >> 8) & 255;
  3137. fo = layout & (1<<16);
  3138. geo->raid_disks = disks;
  3139. geo->near_copies = nc;
  3140. geo->far_copies = fc;
  3141. geo->far_offset = fo;
  3142. geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
  3143. geo->chunk_mask = chunk - 1;
  3144. geo->chunk_shift = ffz(~chunk);
  3145. return nc*fc;
  3146. }
  3147. static struct r10conf *setup_conf(struct mddev *mddev)
  3148. {
  3149. struct r10conf *conf = NULL;
  3150. int err = -EINVAL;
  3151. struct geom geo;
  3152. int copies;
  3153. copies = setup_geo(&geo, mddev, geo_new);
  3154. if (copies == -2) {
  3155. printk(KERN_ERR "md/raid10:%s: chunk size must be "
  3156. "at least PAGE_SIZE(%ld) and be a power of 2.\n",
  3157. mdname(mddev), PAGE_SIZE);
  3158. goto out;
  3159. }
  3160. if (copies < 2 || copies > mddev->raid_disks) {
  3161. printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
  3162. mdname(mddev), mddev->new_layout);
  3163. goto out;
  3164. }
  3165. err = -ENOMEM;
  3166. conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
  3167. if (!conf)
  3168. goto out;
  3169. /* FIXME calc properly */
  3170. conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
  3171. max(0,mddev->delta_disks)),
  3172. GFP_KERNEL);
  3173. if (!conf->mirrors)
  3174. goto out;
  3175. conf->tmppage = alloc_page(GFP_KERNEL);
  3176. if (!conf->tmppage)
  3177. goto out;
  3178. conf->geo = geo;
  3179. conf->copies = copies;
  3180. conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
  3181. r10bio_pool_free, conf);
  3182. if (!conf->r10bio_pool)
  3183. goto out;
  3184. calc_sectors(conf, mddev->dev_sectors);
  3185. if (mddev->reshape_position == MaxSector) {
  3186. conf->prev = conf->geo;
  3187. conf->reshape_progress = MaxSector;
  3188. } else {
  3189. if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
  3190. err = -EINVAL;
  3191. goto out;
  3192. }
  3193. conf->reshape_progress = mddev->reshape_position;
  3194. if (conf->prev.far_offset)
  3195. conf->prev.stride = 1 << conf->prev.chunk_shift;
  3196. else
  3197. /* far_copies must be 1 */
  3198. conf->prev.stride = conf->dev_sectors;
  3199. }
  3200. spin_lock_init(&conf->device_lock);
  3201. INIT_LIST_HEAD(&conf->retry_list);
  3202. spin_lock_init(&conf->resync_lock);
  3203. init_waitqueue_head(&conf->wait_barrier);
  3204. conf->thread = md_register_thread(raid10d, mddev, "raid10");
  3205. if (!conf->thread)
  3206. goto out;
  3207. conf->mddev = mddev;
  3208. return conf;
  3209. out:
  3210. if (err == -ENOMEM)
  3211. printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
  3212. mdname(mddev));
  3213. if (conf) {
  3214. if (conf->r10bio_pool)
  3215. mempool_destroy(conf->r10bio_pool);
  3216. kfree(conf->mirrors);
  3217. safe_put_page(conf->tmppage);
  3218. kfree(conf);
  3219. }
  3220. return ERR_PTR(err);
  3221. }
  3222. static int run(struct mddev *mddev)
  3223. {
  3224. struct r10conf *conf;
  3225. int i, disk_idx, chunk_size;
  3226. struct raid10_info *disk;
  3227. struct md_rdev *rdev;
  3228. sector_t size;
  3229. sector_t min_offset_diff = 0;
  3230. int first = 1;
  3231. bool discard_supported = false;
  3232. if (mddev->private == NULL) {
  3233. conf = setup_conf(mddev);
  3234. if (IS_ERR(conf))
  3235. return PTR_ERR(conf);
  3236. mddev->private = conf;
  3237. }
  3238. conf = mddev->private;
  3239. if (!conf)
  3240. goto out;
  3241. mddev->thread = conf->thread;
  3242. conf->thread = NULL;
  3243. chunk_size = mddev->chunk_sectors << 9;
  3244. if (mddev->queue) {
  3245. blk_queue_max_discard_sectors(mddev->queue,
  3246. mddev->chunk_sectors);
  3247. blk_queue_max_write_same_sectors(mddev->queue,
  3248. mddev->chunk_sectors);
  3249. blk_queue_io_min(mddev->queue, chunk_size);
  3250. if (conf->geo.raid_disks % conf->geo.near_copies)
  3251. blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
  3252. else
  3253. blk_queue_io_opt(mddev->queue, chunk_size *
  3254. (conf->geo.raid_disks / conf->geo.near_copies));
  3255. }
  3256. rdev_for_each(rdev, mddev) {
  3257. long long diff;
  3258. struct request_queue *q;
  3259. disk_idx = rdev->raid_disk;
  3260. if (disk_idx < 0)
  3261. continue;
  3262. if (disk_idx >= conf->geo.raid_disks &&
  3263. disk_idx >= conf->prev.raid_disks)
  3264. continue;
  3265. disk = conf->mirrors + disk_idx;
  3266. if (test_bit(Replacement, &rdev->flags)) {
  3267. if (disk->replacement)
  3268. goto out_free_conf;
  3269. disk->replacement = rdev;
  3270. } else {
  3271. if (disk->rdev)
  3272. goto out_free_conf;
  3273. disk->rdev = rdev;
  3274. }
  3275. q = bdev_get_queue(rdev->bdev);
  3276. if (q->merge_bvec_fn)
  3277. mddev->merge_check_needed = 1;
  3278. diff = (rdev->new_data_offset - rdev->data_offset);
  3279. if (!mddev->reshape_backwards)
  3280. diff = -diff;
  3281. if (diff < 0)
  3282. diff = 0;
  3283. if (first || diff < min_offset_diff)
  3284. min_offset_diff = diff;
  3285. if (mddev->gendisk)
  3286. disk_stack_limits(mddev->gendisk, rdev->bdev,
  3287. rdev->data_offset << 9);
  3288. disk->head_position = 0;
  3289. if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
  3290. discard_supported = true;
  3291. }
  3292. if (mddev->queue) {
  3293. if (discard_supported)
  3294. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
  3295. mddev->queue);
  3296. else
  3297. queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
  3298. mddev->queue);
  3299. }
  3300. /* need to check that every block has at least one working mirror */
  3301. if (!enough(conf, -1)) {
  3302. printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
  3303. mdname(mddev));
  3304. goto out_free_conf;
  3305. }
  3306. if (conf->reshape_progress != MaxSector) {
  3307. /* must ensure that shape change is supported */
  3308. if (conf->geo.far_copies != 1 &&
  3309. conf->geo.far_offset == 0)
  3310. goto out_free_conf;
  3311. if (conf->prev.far_copies != 1 &&
  3312. conf->geo.far_offset == 0)
  3313. goto out_free_conf;
  3314. }
  3315. mddev->degraded = 0;
  3316. for (i = 0;
  3317. i < conf->geo.raid_disks
  3318. || i < conf->prev.raid_disks;
  3319. i++) {
  3320. disk = conf->mirrors + i;
  3321. if (!disk->rdev && disk->replacement) {
  3322. /* The replacement is all we have - use it */
  3323. disk->rdev = disk->replacement;
  3324. disk->replacement = NULL;
  3325. clear_bit(Replacement, &disk->rdev->flags);
  3326. }
  3327. if (!disk->rdev ||
  3328. !test_bit(In_sync, &disk->rdev->flags)) {
  3329. disk->head_position = 0;
  3330. mddev->degraded++;
  3331. if (disk->rdev)
  3332. conf->fullsync = 1;
  3333. }
  3334. disk->recovery_disabled = mddev->recovery_disabled - 1;
  3335. }
  3336. if (mddev->recovery_cp != MaxSector)
  3337. printk(KERN_NOTICE "md/raid10:%s: not clean"
  3338. " -- starting background reconstruction\n",
  3339. mdname(mddev));
  3340. printk(KERN_INFO
  3341. "md/raid10:%s: active with %d out of %d devices\n",
  3342. mdname(mddev), conf->geo.raid_disks - mddev->degraded,
  3343. conf->geo.raid_disks);
  3344. /*
  3345. * Ok, everything is just fine now
  3346. */
  3347. mddev->dev_sectors = conf->dev_sectors;
  3348. size = raid10_size(mddev, 0, 0);
  3349. md_set_array_sectors(mddev, size);
  3350. mddev->resync_max_sectors = size;
  3351. if (mddev->queue) {
  3352. int stripe = conf->geo.raid_disks *
  3353. ((mddev->chunk_sectors << 9) / PAGE_SIZE);
  3354. mddev->queue->backing_dev_info.congested_fn = raid10_congested;
  3355. mddev->queue->backing_dev_info.congested_data = mddev;
  3356. /* Calculate max read-ahead size.
  3357. * We need to readahead at least twice a whole stripe....
  3358. * maybe...
  3359. */
  3360. stripe /= conf->geo.near_copies;
  3361. if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
  3362. mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
  3363. blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
  3364. }
  3365. if (md_integrity_register(mddev))
  3366. goto out_free_conf;
  3367. if (conf->reshape_progress != MaxSector) {
  3368. unsigned long before_length, after_length;
  3369. before_length = ((1 << conf->prev.chunk_shift) *
  3370. conf->prev.far_copies);
  3371. after_length = ((1 << conf->geo.chunk_shift) *
  3372. conf->geo.far_copies);
  3373. if (max(before_length, after_length) > min_offset_diff) {
  3374. /* This cannot work */
  3375. printk("md/raid10: offset difference not enough to continue reshape\n");
  3376. goto out_free_conf;
  3377. }
  3378. conf->offset_diff = min_offset_diff;
  3379. conf->reshape_safe = conf->reshape_progress;
  3380. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3381. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3382. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  3383. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3384. mddev->sync_thread = md_register_thread(md_do_sync, mddev,
  3385. "reshape");
  3386. }
  3387. return 0;
  3388. out_free_conf:
  3389. md_unregister_thread(&mddev->thread);
  3390. if (conf->r10bio_pool)
  3391. mempool_destroy(conf->r10bio_pool);
  3392. safe_put_page(conf->tmppage);
  3393. kfree(conf->mirrors);
  3394. kfree(conf);
  3395. mddev->private = NULL;
  3396. out:
  3397. return -EIO;
  3398. }
  3399. static int stop(struct mddev *mddev)
  3400. {
  3401. struct r10conf *conf = mddev->private;
  3402. raise_barrier(conf, 0);
  3403. lower_barrier(conf);
  3404. md_unregister_thread(&mddev->thread);
  3405. if (mddev->queue)
  3406. /* the unplug fn references 'conf'*/
  3407. blk_sync_queue(mddev->queue);
  3408. if (conf->r10bio_pool)
  3409. mempool_destroy(conf->r10bio_pool);
  3410. kfree(conf->mirrors);
  3411. kfree(conf);
  3412. mddev->private = NULL;
  3413. return 0;
  3414. }
  3415. static void raid10_quiesce(struct mddev *mddev, int state)
  3416. {
  3417. struct r10conf *conf = mddev->private;
  3418. switch(state) {
  3419. case 1:
  3420. raise_barrier(conf, 0);
  3421. break;
  3422. case 0:
  3423. lower_barrier(conf);
  3424. break;
  3425. }
  3426. }
  3427. static int raid10_resize(struct mddev *mddev, sector_t sectors)
  3428. {
  3429. /* Resize of 'far' arrays is not supported.
  3430. * For 'near' and 'offset' arrays we can set the
  3431. * number of sectors used to be an appropriate multiple
  3432. * of the chunk size.
  3433. * For 'offset', this is far_copies*chunksize.
  3434. * For 'near' the multiplier is the LCM of
  3435. * near_copies and raid_disks.
  3436. * So if far_copies > 1 && !far_offset, fail.
  3437. * Else find LCM(raid_disks, near_copy)*far_copies and
  3438. * multiply by chunk_size. Then round to this number.
  3439. * This is mostly done by raid10_size()
  3440. */
  3441. struct r10conf *conf = mddev->private;
  3442. sector_t oldsize, size;
  3443. if (mddev->reshape_position != MaxSector)
  3444. return -EBUSY;
  3445. if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
  3446. return -EINVAL;
  3447. oldsize = raid10_size(mddev, 0, 0);
  3448. size = raid10_size(mddev, sectors, 0);
  3449. if (mddev->external_size &&
  3450. mddev->array_sectors > size)
  3451. return -EINVAL;
  3452. if (mddev->bitmap) {
  3453. int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
  3454. if (ret)
  3455. return ret;
  3456. }
  3457. md_set_array_sectors(mddev, size);
  3458. set_capacity(mddev->gendisk, mddev->array_sectors);
  3459. revalidate_disk(mddev->gendisk);
  3460. if (sectors > mddev->dev_sectors &&
  3461. mddev->recovery_cp > oldsize) {
  3462. mddev->recovery_cp = oldsize;
  3463. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3464. }
  3465. calc_sectors(conf, sectors);
  3466. mddev->dev_sectors = conf->dev_sectors;
  3467. mddev->resync_max_sectors = size;
  3468. return 0;
  3469. }
  3470. static void *raid10_takeover_raid0(struct mddev *mddev)
  3471. {
  3472. struct md_rdev *rdev;
  3473. struct r10conf *conf;
  3474. if (mddev->degraded > 0) {
  3475. printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
  3476. mdname(mddev));
  3477. return ERR_PTR(-EINVAL);
  3478. }
  3479. /* Set new parameters */
  3480. mddev->new_level = 10;
  3481. /* new layout: far_copies = 1, near_copies = 2 */
  3482. mddev->new_layout = (1<<8) + 2;
  3483. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3484. mddev->delta_disks = mddev->raid_disks;
  3485. mddev->raid_disks *= 2;
  3486. /* make sure it will be not marked as dirty */
  3487. mddev->recovery_cp = MaxSector;
  3488. conf = setup_conf(mddev);
  3489. if (!IS_ERR(conf)) {
  3490. rdev_for_each(rdev, mddev)
  3491. if (rdev->raid_disk >= 0)
  3492. rdev->new_raid_disk = rdev->raid_disk * 2;
  3493. conf->barrier = 1;
  3494. }
  3495. return conf;
  3496. }
  3497. static void *raid10_takeover(struct mddev *mddev)
  3498. {
  3499. struct r0conf *raid0_conf;
  3500. /* raid10 can take over:
  3501. * raid0 - providing it has only two drives
  3502. */
  3503. if (mddev->level == 0) {
  3504. /* for raid0 takeover only one zone is supported */
  3505. raid0_conf = mddev->private;
  3506. if (raid0_conf->nr_strip_zones > 1) {
  3507. printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
  3508. " with more than one zone.\n",
  3509. mdname(mddev));
  3510. return ERR_PTR(-EINVAL);
  3511. }
  3512. return raid10_takeover_raid0(mddev);
  3513. }
  3514. return ERR_PTR(-EINVAL);
  3515. }
  3516. static int raid10_check_reshape(struct mddev *mddev)
  3517. {
  3518. /* Called when there is a request to change
  3519. * - layout (to ->new_layout)
  3520. * - chunk size (to ->new_chunk_sectors)
  3521. * - raid_disks (by delta_disks)
  3522. * or when trying to restart a reshape that was ongoing.
  3523. *
  3524. * We need to validate the request and possibly allocate
  3525. * space if that might be an issue later.
  3526. *
  3527. * Currently we reject any reshape of a 'far' mode array,
  3528. * allow chunk size to change if new is generally acceptable,
  3529. * allow raid_disks to increase, and allow
  3530. * a switch between 'near' mode and 'offset' mode.
  3531. */
  3532. struct r10conf *conf = mddev->private;
  3533. struct geom geo;
  3534. if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
  3535. return -EINVAL;
  3536. if (setup_geo(&geo, mddev, geo_start) != conf->copies)
  3537. /* mustn't change number of copies */
  3538. return -EINVAL;
  3539. if (geo.far_copies > 1 && !geo.far_offset)
  3540. /* Cannot switch to 'far' mode */
  3541. return -EINVAL;
  3542. if (mddev->array_sectors & geo.chunk_mask)
  3543. /* not factor of array size */
  3544. return -EINVAL;
  3545. if (!enough(conf, -1))
  3546. return -EINVAL;
  3547. kfree(conf->mirrors_new);
  3548. conf->mirrors_new = NULL;
  3549. if (mddev->delta_disks > 0) {
  3550. /* allocate new 'mirrors' list */
  3551. conf->mirrors_new = kzalloc(
  3552. sizeof(struct raid10_info)
  3553. *(mddev->raid_disks +
  3554. mddev->delta_disks),
  3555. GFP_KERNEL);
  3556. if (!conf->mirrors_new)
  3557. return -ENOMEM;
  3558. }
  3559. return 0;
  3560. }
  3561. /*
  3562. * Need to check if array has failed when deciding whether to:
  3563. * - start an array
  3564. * - remove non-faulty devices
  3565. * - add a spare
  3566. * - allow a reshape
  3567. * This determination is simple when no reshape is happening.
  3568. * However if there is a reshape, we need to carefully check
  3569. * both the before and after sections.
  3570. * This is because some failed devices may only affect one
  3571. * of the two sections, and some non-in_sync devices may
  3572. * be insync in the section most affected by failed devices.
  3573. */
  3574. static int calc_degraded(struct r10conf *conf)
  3575. {
  3576. int degraded, degraded2;
  3577. int i;
  3578. rcu_read_lock();
  3579. degraded = 0;
  3580. /* 'prev' section first */
  3581. for (i = 0; i < conf->prev.raid_disks; i++) {
  3582. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  3583. if (!rdev || test_bit(Faulty, &rdev->flags))
  3584. degraded++;
  3585. else if (!test_bit(In_sync, &rdev->flags))
  3586. /* When we can reduce the number of devices in
  3587. * an array, this might not contribute to
  3588. * 'degraded'. It does now.
  3589. */
  3590. degraded++;
  3591. }
  3592. rcu_read_unlock();
  3593. if (conf->geo.raid_disks == conf->prev.raid_disks)
  3594. return degraded;
  3595. rcu_read_lock();
  3596. degraded2 = 0;
  3597. for (i = 0; i < conf->geo.raid_disks; i++) {
  3598. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  3599. if (!rdev || test_bit(Faulty, &rdev->flags))
  3600. degraded2++;
  3601. else if (!test_bit(In_sync, &rdev->flags)) {
  3602. /* If reshape is increasing the number of devices,
  3603. * this section has already been recovered, so
  3604. * it doesn't contribute to degraded.
  3605. * else it does.
  3606. */
  3607. if (conf->geo.raid_disks <= conf->prev.raid_disks)
  3608. degraded2++;
  3609. }
  3610. }
  3611. rcu_read_unlock();
  3612. if (degraded2 > degraded)
  3613. return degraded2;
  3614. return degraded;
  3615. }
  3616. static int raid10_start_reshape(struct mddev *mddev)
  3617. {
  3618. /* A 'reshape' has been requested. This commits
  3619. * the various 'new' fields and sets MD_RECOVER_RESHAPE
  3620. * This also checks if there are enough spares and adds them
  3621. * to the array.
  3622. * We currently require enough spares to make the final
  3623. * array non-degraded. We also require that the difference
  3624. * between old and new data_offset - on each device - is
  3625. * enough that we never risk over-writing.
  3626. */
  3627. unsigned long before_length, after_length;
  3628. sector_t min_offset_diff = 0;
  3629. int first = 1;
  3630. struct geom new;
  3631. struct r10conf *conf = mddev->private;
  3632. struct md_rdev *rdev;
  3633. int spares = 0;
  3634. int ret;
  3635. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3636. return -EBUSY;
  3637. if (setup_geo(&new, mddev, geo_start) != conf->copies)
  3638. return -EINVAL;
  3639. before_length = ((1 << conf->prev.chunk_shift) *
  3640. conf->prev.far_copies);
  3641. after_length = ((1 << conf->geo.chunk_shift) *
  3642. conf->geo.far_copies);
  3643. rdev_for_each(rdev, mddev) {
  3644. if (!test_bit(In_sync, &rdev->flags)
  3645. && !test_bit(Faulty, &rdev->flags))
  3646. spares++;
  3647. if (rdev->raid_disk >= 0) {
  3648. long long diff = (rdev->new_data_offset
  3649. - rdev->data_offset);
  3650. if (!mddev->reshape_backwards)
  3651. diff = -diff;
  3652. if (diff < 0)
  3653. diff = 0;
  3654. if (first || diff < min_offset_diff)
  3655. min_offset_diff = diff;
  3656. }
  3657. }
  3658. if (max(before_length, after_length) > min_offset_diff)
  3659. return -EINVAL;
  3660. if (spares < mddev->delta_disks)
  3661. return -EINVAL;
  3662. conf->offset_diff = min_offset_diff;
  3663. spin_lock_irq(&conf->device_lock);
  3664. if (conf->mirrors_new) {
  3665. memcpy(conf->mirrors_new, conf->mirrors,
  3666. sizeof(struct raid10_info)*conf->prev.raid_disks);
  3667. smp_mb();
  3668. kfree(conf->mirrors_old); /* FIXME and elsewhere */
  3669. conf->mirrors_old = conf->mirrors;
  3670. conf->mirrors = conf->mirrors_new;
  3671. conf->mirrors_new = NULL;
  3672. }
  3673. setup_geo(&conf->geo, mddev, geo_start);
  3674. smp_mb();
  3675. if (mddev->reshape_backwards) {
  3676. sector_t size = raid10_size(mddev, 0, 0);
  3677. if (size < mddev->array_sectors) {
  3678. spin_unlock_irq(&conf->device_lock);
  3679. printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
  3680. mdname(mddev));
  3681. return -EINVAL;
  3682. }
  3683. mddev->resync_max_sectors = size;
  3684. conf->reshape_progress = size;
  3685. } else
  3686. conf->reshape_progress = 0;
  3687. spin_unlock_irq(&conf->device_lock);
  3688. if (mddev->delta_disks && mddev->bitmap) {
  3689. ret = bitmap_resize(mddev->bitmap,
  3690. raid10_size(mddev, 0,
  3691. conf->geo.raid_disks),
  3692. 0, 0);
  3693. if (ret)
  3694. goto abort;
  3695. }
  3696. if (mddev->delta_disks > 0) {
  3697. rdev_for_each(rdev, mddev)
  3698. if (rdev->raid_disk < 0 &&
  3699. !test_bit(Faulty, &rdev->flags)) {
  3700. if (raid10_add_disk(mddev, rdev) == 0) {
  3701. if (rdev->raid_disk >=
  3702. conf->prev.raid_disks)
  3703. set_bit(In_sync, &rdev->flags);
  3704. else
  3705. rdev->recovery_offset = 0;
  3706. if (sysfs_link_rdev(mddev, rdev))
  3707. /* Failure here is OK */;
  3708. }
  3709. } else if (rdev->raid_disk >= conf->prev.raid_disks
  3710. && !test_bit(Faulty, &rdev->flags)) {
  3711. /* This is a spare that was manually added */
  3712. set_bit(In_sync, &rdev->flags);
  3713. }
  3714. }
  3715. /* When a reshape changes the number of devices,
  3716. * ->degraded is measured against the larger of the
  3717. * pre and post numbers.
  3718. */
  3719. spin_lock_irq(&conf->device_lock);
  3720. mddev->degraded = calc_degraded(conf);
  3721. spin_unlock_irq(&conf->device_lock);
  3722. mddev->raid_disks = conf->geo.raid_disks;
  3723. mddev->reshape_position = conf->reshape_progress;
  3724. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3725. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3726. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3727. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  3728. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3729. mddev->sync_thread = md_register_thread(md_do_sync, mddev,
  3730. "reshape");
  3731. if (!mddev->sync_thread) {
  3732. ret = -EAGAIN;
  3733. goto abort;
  3734. }
  3735. conf->reshape_checkpoint = jiffies;
  3736. md_wakeup_thread(mddev->sync_thread);
  3737. md_new_event(mddev);
  3738. return 0;
  3739. abort:
  3740. mddev->recovery = 0;
  3741. spin_lock_irq(&conf->device_lock);
  3742. conf->geo = conf->prev;
  3743. mddev->raid_disks = conf->geo.raid_disks;
  3744. rdev_for_each(rdev, mddev)
  3745. rdev->new_data_offset = rdev->data_offset;
  3746. smp_wmb();
  3747. conf->reshape_progress = MaxSector;
  3748. mddev->reshape_position = MaxSector;
  3749. spin_unlock_irq(&conf->device_lock);
  3750. return ret;
  3751. }
  3752. /* Calculate the last device-address that could contain
  3753. * any block from the chunk that includes the array-address 's'
  3754. * and report the next address.
  3755. * i.e. the address returned will be chunk-aligned and after
  3756. * any data that is in the chunk containing 's'.
  3757. */
  3758. static sector_t last_dev_address(sector_t s, struct geom *geo)
  3759. {
  3760. s = (s | geo->chunk_mask) + 1;
  3761. s >>= geo->chunk_shift;
  3762. s *= geo->near_copies;
  3763. s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
  3764. s *= geo->far_copies;
  3765. s <<= geo->chunk_shift;
  3766. return s;
  3767. }
  3768. /* Calculate the first device-address that could contain
  3769. * any block from the chunk that includes the array-address 's'.
  3770. * This too will be the start of a chunk
  3771. */
  3772. static sector_t first_dev_address(sector_t s, struct geom *geo)
  3773. {
  3774. s >>= geo->chunk_shift;
  3775. s *= geo->near_copies;
  3776. sector_div(s, geo->raid_disks);
  3777. s *= geo->far_copies;
  3778. s <<= geo->chunk_shift;
  3779. return s;
  3780. }
  3781. static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  3782. int *skipped)
  3783. {
  3784. /* We simply copy at most one chunk (smallest of old and new)
  3785. * at a time, possibly less if that exceeds RESYNC_PAGES,
  3786. * or we hit a bad block or something.
  3787. * This might mean we pause for normal IO in the middle of
  3788. * a chunk, but that is not a problem was mddev->reshape_position
  3789. * can record any location.
  3790. *
  3791. * If we will want to write to a location that isn't
  3792. * yet recorded as 'safe' (i.e. in metadata on disk) then
  3793. * we need to flush all reshape requests and update the metadata.
  3794. *
  3795. * When reshaping forwards (e.g. to more devices), we interpret
  3796. * 'safe' as the earliest block which might not have been copied
  3797. * down yet. We divide this by previous stripe size and multiply
  3798. * by previous stripe length to get lowest device offset that we
  3799. * cannot write to yet.
  3800. * We interpret 'sector_nr' as an address that we want to write to.
  3801. * From this we use last_device_address() to find where we might
  3802. * write to, and first_device_address on the 'safe' position.
  3803. * If this 'next' write position is after the 'safe' position,
  3804. * we must update the metadata to increase the 'safe' position.
  3805. *
  3806. * When reshaping backwards, we round in the opposite direction
  3807. * and perform the reverse test: next write position must not be
  3808. * less than current safe position.
  3809. *
  3810. * In all this the minimum difference in data offsets
  3811. * (conf->offset_diff - always positive) allows a bit of slack,
  3812. * so next can be after 'safe', but not by more than offset_disk
  3813. *
  3814. * We need to prepare all the bios here before we start any IO
  3815. * to ensure the size we choose is acceptable to all devices.
  3816. * The means one for each copy for write-out and an extra one for
  3817. * read-in.
  3818. * We store the read-in bio in ->master_bio and the others in
  3819. * ->devs[x].bio and ->devs[x].repl_bio.
  3820. */
  3821. struct r10conf *conf = mddev->private;
  3822. struct r10bio *r10_bio;
  3823. sector_t next, safe, last;
  3824. int max_sectors;
  3825. int nr_sectors;
  3826. int s;
  3827. struct md_rdev *rdev;
  3828. int need_flush = 0;
  3829. struct bio *blist;
  3830. struct bio *bio, *read_bio;
  3831. int sectors_done = 0;
  3832. if (sector_nr == 0) {
  3833. /* If restarting in the middle, skip the initial sectors */
  3834. if (mddev->reshape_backwards &&
  3835. conf->reshape_progress < raid10_size(mddev, 0, 0)) {
  3836. sector_nr = (raid10_size(mddev, 0, 0)
  3837. - conf->reshape_progress);
  3838. } else if (!mddev->reshape_backwards &&
  3839. conf->reshape_progress > 0)
  3840. sector_nr = conf->reshape_progress;
  3841. if (sector_nr) {
  3842. mddev->curr_resync_completed = sector_nr;
  3843. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  3844. *skipped = 1;
  3845. return sector_nr;
  3846. }
  3847. }
  3848. /* We don't use sector_nr to track where we are up to
  3849. * as that doesn't work well for ->reshape_backwards.
  3850. * So just use ->reshape_progress.
  3851. */
  3852. if (mddev->reshape_backwards) {
  3853. /* 'next' is the earliest device address that we might
  3854. * write to for this chunk in the new layout
  3855. */
  3856. next = first_dev_address(conf->reshape_progress - 1,
  3857. &conf->geo);
  3858. /* 'safe' is the last device address that we might read from
  3859. * in the old layout after a restart
  3860. */
  3861. safe = last_dev_address(conf->reshape_safe - 1,
  3862. &conf->prev);
  3863. if (next + conf->offset_diff < safe)
  3864. need_flush = 1;
  3865. last = conf->reshape_progress - 1;
  3866. sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
  3867. & conf->prev.chunk_mask);
  3868. if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
  3869. sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
  3870. } else {
  3871. /* 'next' is after the last device address that we
  3872. * might write to for this chunk in the new layout
  3873. */
  3874. next = last_dev_address(conf->reshape_progress, &conf->geo);
  3875. /* 'safe' is the earliest device address that we might
  3876. * read from in the old layout after a restart
  3877. */
  3878. safe = first_dev_address(conf->reshape_safe, &conf->prev);
  3879. /* Need to update metadata if 'next' might be beyond 'safe'
  3880. * as that would possibly corrupt data
  3881. */
  3882. if (next > safe + conf->offset_diff)
  3883. need_flush = 1;
  3884. sector_nr = conf->reshape_progress;
  3885. last = sector_nr | (conf->geo.chunk_mask
  3886. & conf->prev.chunk_mask);
  3887. if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
  3888. last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
  3889. }
  3890. if (need_flush ||
  3891. time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
  3892. /* Need to update reshape_position in metadata */
  3893. wait_barrier(conf);
  3894. mddev->reshape_position = conf->reshape_progress;
  3895. if (mddev->reshape_backwards)
  3896. mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
  3897. - conf->reshape_progress;
  3898. else
  3899. mddev->curr_resync_completed = conf->reshape_progress;
  3900. conf->reshape_checkpoint = jiffies;
  3901. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3902. md_wakeup_thread(mddev->thread);
  3903. wait_event(mddev->sb_wait, mddev->flags == 0 ||
  3904. kthread_should_stop());
  3905. conf->reshape_safe = mddev->reshape_position;
  3906. allow_barrier(conf);
  3907. }
  3908. read_more:
  3909. /* Now schedule reads for blocks from sector_nr to last */
  3910. r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
  3911. raise_barrier(conf, sectors_done != 0);
  3912. atomic_set(&r10_bio->remaining, 0);
  3913. r10_bio->mddev = mddev;
  3914. r10_bio->sector = sector_nr;
  3915. set_bit(R10BIO_IsReshape, &r10_bio->state);
  3916. r10_bio->sectors = last - sector_nr + 1;
  3917. rdev = read_balance(conf, r10_bio, &max_sectors);
  3918. BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
  3919. if (!rdev) {
  3920. /* Cannot read from here, so need to record bad blocks
  3921. * on all the target devices.
  3922. */
  3923. // FIXME
  3924. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3925. return sectors_done;
  3926. }
  3927. read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
  3928. read_bio->bi_bdev = rdev->bdev;
  3929. read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
  3930. + rdev->data_offset);
  3931. read_bio->bi_private = r10_bio;
  3932. read_bio->bi_end_io = end_sync_read;
  3933. read_bio->bi_rw = READ;
  3934. read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
  3935. read_bio->bi_flags |= 1 << BIO_UPTODATE;
  3936. read_bio->bi_vcnt = 0;
  3937. read_bio->bi_idx = 0;
  3938. read_bio->bi_size = 0;
  3939. r10_bio->master_bio = read_bio;
  3940. r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
  3941. /* Now find the locations in the new layout */
  3942. __raid10_find_phys(&conf->geo, r10_bio);
  3943. blist = read_bio;
  3944. read_bio->bi_next = NULL;
  3945. for (s = 0; s < conf->copies*2; s++) {
  3946. struct bio *b;
  3947. int d = r10_bio->devs[s/2].devnum;
  3948. struct md_rdev *rdev2;
  3949. if (s&1) {
  3950. rdev2 = conf->mirrors[d].replacement;
  3951. b = r10_bio->devs[s/2].repl_bio;
  3952. } else {
  3953. rdev2 = conf->mirrors[d].rdev;
  3954. b = r10_bio->devs[s/2].bio;
  3955. }
  3956. if (!rdev2 || test_bit(Faulty, &rdev2->flags))
  3957. continue;
  3958. b->bi_bdev = rdev2->bdev;
  3959. b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
  3960. b->bi_private = r10_bio;
  3961. b->bi_end_io = end_reshape_write;
  3962. b->bi_rw = WRITE;
  3963. b->bi_flags &= ~(BIO_POOL_MASK - 1);
  3964. b->bi_flags |= 1 << BIO_UPTODATE;
  3965. b->bi_next = blist;
  3966. b->bi_vcnt = 0;
  3967. b->bi_idx = 0;
  3968. b->bi_size = 0;
  3969. blist = b;
  3970. }
  3971. /* Now add as many pages as possible to all of these bios. */
  3972. nr_sectors = 0;
  3973. for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
  3974. struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
  3975. int len = (max_sectors - s) << 9;
  3976. if (len > PAGE_SIZE)
  3977. len = PAGE_SIZE;
  3978. for (bio = blist; bio ; bio = bio->bi_next) {
  3979. struct bio *bio2;
  3980. if (bio_add_page(bio, page, len, 0))
  3981. continue;
  3982. /* Didn't fit, must stop */
  3983. for (bio2 = blist;
  3984. bio2 && bio2 != bio;
  3985. bio2 = bio2->bi_next) {
  3986. /* Remove last page from this bio */
  3987. bio2->bi_vcnt--;
  3988. bio2->bi_size -= len;
  3989. bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
  3990. }
  3991. goto bio_full;
  3992. }
  3993. sector_nr += len >> 9;
  3994. nr_sectors += len >> 9;
  3995. }
  3996. bio_full:
  3997. r10_bio->sectors = nr_sectors;
  3998. /* Now submit the read */
  3999. md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
  4000. atomic_inc(&r10_bio->remaining);
  4001. read_bio->bi_next = NULL;
  4002. generic_make_request(read_bio);
  4003. sector_nr += nr_sectors;
  4004. sectors_done += nr_sectors;
  4005. if (sector_nr <= last)
  4006. goto read_more;
  4007. /* Now that we have done the whole section we can
  4008. * update reshape_progress
  4009. */
  4010. if (mddev->reshape_backwards)
  4011. conf->reshape_progress -= sectors_done;
  4012. else
  4013. conf->reshape_progress += sectors_done;
  4014. return sectors_done;
  4015. }
  4016. static void end_reshape_request(struct r10bio *r10_bio);
  4017. static int handle_reshape_read_error(struct mddev *mddev,
  4018. struct r10bio *r10_bio);
  4019. static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
  4020. {
  4021. /* Reshape read completed. Hopefully we have a block
  4022. * to write out.
  4023. * If we got a read error then we do sync 1-page reads from
  4024. * elsewhere until we find the data - or give up.
  4025. */
  4026. struct r10conf *conf = mddev->private;
  4027. int s;
  4028. if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
  4029. if (handle_reshape_read_error(mddev, r10_bio) < 0) {
  4030. /* Reshape has been aborted */
  4031. md_done_sync(mddev, r10_bio->sectors, 0);
  4032. return;
  4033. }
  4034. /* We definitely have the data in the pages, schedule the
  4035. * writes.
  4036. */
  4037. atomic_set(&r10_bio->remaining, 1);
  4038. for (s = 0; s < conf->copies*2; s++) {
  4039. struct bio *b;
  4040. int d = r10_bio->devs[s/2].devnum;
  4041. struct md_rdev *rdev;
  4042. if (s&1) {
  4043. rdev = conf->mirrors[d].replacement;
  4044. b = r10_bio->devs[s/2].repl_bio;
  4045. } else {
  4046. rdev = conf->mirrors[d].rdev;
  4047. b = r10_bio->devs[s/2].bio;
  4048. }
  4049. if (!rdev || test_bit(Faulty, &rdev->flags))
  4050. continue;
  4051. atomic_inc(&rdev->nr_pending);
  4052. md_sync_acct(b->bi_bdev, r10_bio->sectors);
  4053. atomic_inc(&r10_bio->remaining);
  4054. b->bi_next = NULL;
  4055. generic_make_request(b);
  4056. }
  4057. end_reshape_request(r10_bio);
  4058. }
  4059. static void end_reshape(struct r10conf *conf)
  4060. {
  4061. if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
  4062. return;
  4063. spin_lock_irq(&conf->device_lock);
  4064. conf->prev = conf->geo;
  4065. md_finish_reshape(conf->mddev);
  4066. smp_wmb();
  4067. conf->reshape_progress = MaxSector;
  4068. spin_unlock_irq(&conf->device_lock);
  4069. /* read-ahead size must cover two whole stripes, which is
  4070. * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
  4071. */
  4072. if (conf->mddev->queue) {
  4073. int stripe = conf->geo.raid_disks *
  4074. ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
  4075. stripe /= conf->geo.near_copies;
  4076. if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
  4077. conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
  4078. }
  4079. conf->fullsync = 0;
  4080. }
  4081. static int handle_reshape_read_error(struct mddev *mddev,
  4082. struct r10bio *r10_bio)
  4083. {
  4084. /* Use sync reads to get the blocks from somewhere else */
  4085. int sectors = r10_bio->sectors;
  4086. struct r10conf *conf = mddev->private;
  4087. struct {
  4088. struct r10bio r10_bio;
  4089. struct r10dev devs[conf->copies];
  4090. } on_stack;
  4091. struct r10bio *r10b = &on_stack.r10_bio;
  4092. int slot = 0;
  4093. int idx = 0;
  4094. struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
  4095. r10b->sector = r10_bio->sector;
  4096. __raid10_find_phys(&conf->prev, r10b);
  4097. while (sectors) {
  4098. int s = sectors;
  4099. int success = 0;
  4100. int first_slot = slot;
  4101. if (s > (PAGE_SIZE >> 9))
  4102. s = PAGE_SIZE >> 9;
  4103. while (!success) {
  4104. int d = r10b->devs[slot].devnum;
  4105. struct md_rdev *rdev = conf->mirrors[d].rdev;
  4106. sector_t addr;
  4107. if (rdev == NULL ||
  4108. test_bit(Faulty, &rdev->flags) ||
  4109. !test_bit(In_sync, &rdev->flags))
  4110. goto failed;
  4111. addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
  4112. success = sync_page_io(rdev,
  4113. addr,
  4114. s << 9,
  4115. bvec[idx].bv_page,
  4116. READ, false);
  4117. if (success)
  4118. break;
  4119. failed:
  4120. slot++;
  4121. if (slot >= conf->copies)
  4122. slot = 0;
  4123. if (slot == first_slot)
  4124. break;
  4125. }
  4126. if (!success) {
  4127. /* couldn't read this block, must give up */
  4128. set_bit(MD_RECOVERY_INTR,
  4129. &mddev->recovery);
  4130. return -EIO;
  4131. }
  4132. sectors -= s;
  4133. idx++;
  4134. }
  4135. return 0;
  4136. }
  4137. static void end_reshape_write(struct bio *bio, int error)
  4138. {
  4139. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  4140. struct r10bio *r10_bio = bio->bi_private;
  4141. struct mddev *mddev = r10_bio->mddev;
  4142. struct r10conf *conf = mddev->private;
  4143. int d;
  4144. int slot;
  4145. int repl;
  4146. struct md_rdev *rdev = NULL;
  4147. d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
  4148. if (repl)
  4149. rdev = conf->mirrors[d].replacement;
  4150. if (!rdev) {
  4151. smp_mb();
  4152. rdev = conf->mirrors[d].rdev;
  4153. }
  4154. if (!uptodate) {
  4155. /* FIXME should record badblock */
  4156. md_error(mddev, rdev);
  4157. }
  4158. rdev_dec_pending(rdev, mddev);
  4159. end_reshape_request(r10_bio);
  4160. }
  4161. static void end_reshape_request(struct r10bio *r10_bio)
  4162. {
  4163. if (!atomic_dec_and_test(&r10_bio->remaining))
  4164. return;
  4165. md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
  4166. bio_put(r10_bio->master_bio);
  4167. put_buf(r10_bio);
  4168. }
  4169. static void raid10_finish_reshape(struct mddev *mddev)
  4170. {
  4171. struct r10conf *conf = mddev->private;
  4172. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  4173. return;
  4174. if (mddev->delta_disks > 0) {
  4175. sector_t size = raid10_size(mddev, 0, 0);
  4176. md_set_array_sectors(mddev, size);
  4177. if (mddev->recovery_cp > mddev->resync_max_sectors) {
  4178. mddev->recovery_cp = mddev->resync_max_sectors;
  4179. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4180. }
  4181. mddev->resync_max_sectors = size;
  4182. set_capacity(mddev->gendisk, mddev->array_sectors);
  4183. revalidate_disk(mddev->gendisk);
  4184. } else {
  4185. int d;
  4186. for (d = conf->geo.raid_disks ;
  4187. d < conf->geo.raid_disks - mddev->delta_disks;
  4188. d++) {
  4189. struct md_rdev *rdev = conf->mirrors[d].rdev;
  4190. if (rdev)
  4191. clear_bit(In_sync, &rdev->flags);
  4192. rdev = conf->mirrors[d].replacement;
  4193. if (rdev)
  4194. clear_bit(In_sync, &rdev->flags);
  4195. }
  4196. }
  4197. mddev->layout = mddev->new_layout;
  4198. mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
  4199. mddev->reshape_position = MaxSector;
  4200. mddev->delta_disks = 0;
  4201. mddev->reshape_backwards = 0;
  4202. }
  4203. static struct md_personality raid10_personality =
  4204. {
  4205. .name = "raid10",
  4206. .level = 10,
  4207. .owner = THIS_MODULE,
  4208. .make_request = make_request,
  4209. .run = run,
  4210. .stop = stop,
  4211. .status = status,
  4212. .error_handler = error,
  4213. .hot_add_disk = raid10_add_disk,
  4214. .hot_remove_disk= raid10_remove_disk,
  4215. .spare_active = raid10_spare_active,
  4216. .sync_request = sync_request,
  4217. .quiesce = raid10_quiesce,
  4218. .size = raid10_size,
  4219. .resize = raid10_resize,
  4220. .takeover = raid10_takeover,
  4221. .check_reshape = raid10_check_reshape,
  4222. .start_reshape = raid10_start_reshape,
  4223. .finish_reshape = raid10_finish_reshape,
  4224. };
  4225. static int __init raid_init(void)
  4226. {
  4227. return register_md_personality(&raid10_personality);
  4228. }
  4229. static void raid_exit(void)
  4230. {
  4231. unregister_md_personality(&raid10_personality);
  4232. }
  4233. module_init(raid_init);
  4234. module_exit(raid_exit);
  4235. MODULE_LICENSE("GPL");
  4236. MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
  4237. MODULE_ALIAS("md-personality-9"); /* RAID10 */
  4238. MODULE_ALIAS("md-raid10");
  4239. MODULE_ALIAS("md-level-10");
  4240. module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);