skge.c 88 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/config.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <asm/irq.h>
  40. #include "skge.h"
  41. #define DRV_NAME "skge"
  42. #define DRV_VERSION "0.6"
  43. #define PFX DRV_NAME " "
  44. #define DEFAULT_TX_RING_SIZE 128
  45. #define DEFAULT_RX_RING_SIZE 512
  46. #define MAX_TX_RING_SIZE 1024
  47. #define MAX_RX_RING_SIZE 4096
  48. #define PHY_RETRIES 1000
  49. #define ETH_JUMBO_MTU 9000
  50. #define TX_WATCHDOG (5 * HZ)
  51. #define NAPI_WEIGHT 64
  52. #define BLINK_HZ (HZ/4)
  53. #define LINK_POLL_HZ (HZ/10)
  54. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  55. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  56. MODULE_LICENSE("GPL");
  57. MODULE_VERSION(DRV_VERSION);
  58. static const u32 default_msg
  59. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  60. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  61. static int debug = -1; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. static const struct pci_device_id skge_id_table[] = {
  65. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  66. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  67. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  68. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  69. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) }, /* SK-9Exx */
  70. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
  71. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  73. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  74. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1032) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  76. { 0 }
  77. };
  78. MODULE_DEVICE_TABLE(pci, skge_id_table);
  79. static int skge_up(struct net_device *dev);
  80. static int skge_down(struct net_device *dev);
  81. static void skge_tx_clean(struct skge_port *skge);
  82. static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  83. static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  84. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  85. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  86. static void yukon_init(struct skge_hw *hw, int port);
  87. static void yukon_reset(struct skge_hw *hw, int port);
  88. static void genesis_mac_init(struct skge_hw *hw, int port);
  89. static void genesis_reset(struct skge_hw *hw, int port);
  90. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  91. static const int rxqaddr[] = { Q_R1, Q_R2 };
  92. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  93. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  94. /* Don't need to look at whole 16K.
  95. * last interesting register is descriptor poll timer.
  96. */
  97. #define SKGE_REGS_LEN (29*128)
  98. static int skge_get_regs_len(struct net_device *dev)
  99. {
  100. return SKGE_REGS_LEN;
  101. }
  102. /*
  103. * Returns copy of control register region
  104. * I/O region is divided into banks and certain regions are unreadable
  105. */
  106. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  107. void *p)
  108. {
  109. const struct skge_port *skge = netdev_priv(dev);
  110. unsigned long offs;
  111. const void __iomem *io = skge->hw->regs;
  112. static const unsigned long bankmap
  113. = (1<<0) | (1<<2) | (1<<8) | (1<<9)
  114. | (1<<12) | (1<<13) | (1<<14) | (1<<15) | (1<<16)
  115. | (1<<17) | (1<<20) | (1<<21) | (1<<22) | (1<<23)
  116. | (1<<24) | (1<<25) | (1<<26) | (1<<27) | (1<<28);
  117. regs->version = 1;
  118. for (offs = 0; offs < regs->len; offs += 128) {
  119. u32 len = min_t(u32, 128, regs->len - offs);
  120. if (bankmap & (1<<(offs/128)))
  121. memcpy_fromio(p + offs, io + offs, len);
  122. else
  123. memset(p + offs, 0, len);
  124. }
  125. }
  126. /* Wake on Lan only supported on Yukon chps with rev 1 or above */
  127. static int wol_supported(const struct skge_hw *hw)
  128. {
  129. return !((hw->chip_id == CHIP_ID_GENESIS ||
  130. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
  131. }
  132. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  133. {
  134. struct skge_port *skge = netdev_priv(dev);
  135. wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
  136. wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
  137. }
  138. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  139. {
  140. struct skge_port *skge = netdev_priv(dev);
  141. struct skge_hw *hw = skge->hw;
  142. if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  143. return -EOPNOTSUPP;
  144. if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
  145. return -EOPNOTSUPP;
  146. skge->wol = wol->wolopts == WAKE_MAGIC;
  147. if (skge->wol) {
  148. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  149. skge_write16(hw, WOL_CTRL_STAT,
  150. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  151. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  152. } else
  153. skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  154. return 0;
  155. }
  156. static int skge_get_settings(struct net_device *dev,
  157. struct ethtool_cmd *ecmd)
  158. {
  159. struct skge_port *skge = netdev_priv(dev);
  160. struct skge_hw *hw = skge->hw;
  161. ecmd->transceiver = XCVR_INTERNAL;
  162. if (iscopper(hw)) {
  163. if (hw->chip_id == CHIP_ID_GENESIS)
  164. ecmd->supported = SUPPORTED_1000baseT_Full
  165. | SUPPORTED_1000baseT_Half
  166. | SUPPORTED_Autoneg | SUPPORTED_TP;
  167. else {
  168. ecmd->supported = SUPPORTED_10baseT_Half
  169. | SUPPORTED_10baseT_Full
  170. | SUPPORTED_100baseT_Half
  171. | SUPPORTED_100baseT_Full
  172. | SUPPORTED_1000baseT_Half
  173. | SUPPORTED_1000baseT_Full
  174. | SUPPORTED_Autoneg| SUPPORTED_TP;
  175. if (hw->chip_id == CHIP_ID_YUKON)
  176. ecmd->supported &= ~SUPPORTED_1000baseT_Half;
  177. else if (hw->chip_id == CHIP_ID_YUKON_FE)
  178. ecmd->supported &= ~(SUPPORTED_1000baseT_Half
  179. | SUPPORTED_1000baseT_Full);
  180. }
  181. ecmd->port = PORT_TP;
  182. ecmd->phy_address = hw->phy_addr;
  183. } else {
  184. ecmd->supported = SUPPORTED_1000baseT_Full
  185. | SUPPORTED_FIBRE
  186. | SUPPORTED_Autoneg;
  187. ecmd->port = PORT_FIBRE;
  188. }
  189. ecmd->advertising = skge->advertising;
  190. ecmd->autoneg = skge->autoneg;
  191. ecmd->speed = skge->speed;
  192. ecmd->duplex = skge->duplex;
  193. return 0;
  194. }
  195. static u32 skge_modes(const struct skge_hw *hw)
  196. {
  197. u32 modes = ADVERTISED_Autoneg
  198. | ADVERTISED_1000baseT_Full | ADVERTISED_1000baseT_Half
  199. | ADVERTISED_100baseT_Full | ADVERTISED_100baseT_Half
  200. | ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half;
  201. if (iscopper(hw)) {
  202. modes |= ADVERTISED_TP;
  203. switch (hw->chip_id) {
  204. case CHIP_ID_GENESIS:
  205. modes &= ~(ADVERTISED_100baseT_Full
  206. | ADVERTISED_100baseT_Half
  207. | ADVERTISED_10baseT_Full
  208. | ADVERTISED_10baseT_Half);
  209. break;
  210. case CHIP_ID_YUKON:
  211. modes &= ~ADVERTISED_1000baseT_Half;
  212. break;
  213. case CHIP_ID_YUKON_FE:
  214. modes &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
  215. break;
  216. }
  217. } else {
  218. modes |= ADVERTISED_FIBRE;
  219. modes &= ~ADVERTISED_1000baseT_Half;
  220. }
  221. return modes;
  222. }
  223. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  224. {
  225. struct skge_port *skge = netdev_priv(dev);
  226. const struct skge_hw *hw = skge->hw;
  227. if (ecmd->autoneg == AUTONEG_ENABLE) {
  228. if (ecmd->advertising & skge_modes(hw))
  229. return -EINVAL;
  230. } else {
  231. switch (ecmd->speed) {
  232. case SPEED_1000:
  233. if (hw->chip_id == CHIP_ID_YUKON_FE)
  234. return -EINVAL;
  235. break;
  236. case SPEED_100:
  237. case SPEED_10:
  238. if (iscopper(hw) || hw->chip_id == CHIP_ID_GENESIS)
  239. return -EINVAL;
  240. break;
  241. default:
  242. return -EINVAL;
  243. }
  244. }
  245. skge->autoneg = ecmd->autoneg;
  246. skge->speed = ecmd->speed;
  247. skge->duplex = ecmd->duplex;
  248. skge->advertising = ecmd->advertising;
  249. if (netif_running(dev)) {
  250. skge_down(dev);
  251. skge_up(dev);
  252. }
  253. return (0);
  254. }
  255. static void skge_get_drvinfo(struct net_device *dev,
  256. struct ethtool_drvinfo *info)
  257. {
  258. struct skge_port *skge = netdev_priv(dev);
  259. strcpy(info->driver, DRV_NAME);
  260. strcpy(info->version, DRV_VERSION);
  261. strcpy(info->fw_version, "N/A");
  262. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  263. }
  264. static const struct skge_stat {
  265. char name[ETH_GSTRING_LEN];
  266. u16 xmac_offset;
  267. u16 gma_offset;
  268. } skge_stats[] = {
  269. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  270. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  271. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  272. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  273. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  274. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  275. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  276. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  277. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  278. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  279. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  280. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  281. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  282. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  283. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  284. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  285. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  286. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  287. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  288. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  289. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  290. };
  291. static int skge_get_stats_count(struct net_device *dev)
  292. {
  293. return ARRAY_SIZE(skge_stats);
  294. }
  295. static void skge_get_ethtool_stats(struct net_device *dev,
  296. struct ethtool_stats *stats, u64 *data)
  297. {
  298. struct skge_port *skge = netdev_priv(dev);
  299. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  300. genesis_get_stats(skge, data);
  301. else
  302. yukon_get_stats(skge, data);
  303. }
  304. /* Use hardware MIB variables for critical path statistics and
  305. * transmit feedback not reported at interrupt.
  306. * Other errors are accounted for in interrupt handler.
  307. */
  308. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  309. {
  310. struct skge_port *skge = netdev_priv(dev);
  311. u64 data[ARRAY_SIZE(skge_stats)];
  312. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  313. genesis_get_stats(skge, data);
  314. else
  315. yukon_get_stats(skge, data);
  316. skge->net_stats.tx_bytes = data[0];
  317. skge->net_stats.rx_bytes = data[1];
  318. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  319. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  320. skge->net_stats.multicast = data[5] + data[7];
  321. skge->net_stats.collisions = data[10];
  322. skge->net_stats.tx_aborted_errors = data[12];
  323. return &skge->net_stats;
  324. }
  325. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  326. {
  327. int i;
  328. switch (stringset) {
  329. case ETH_SS_STATS:
  330. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  331. memcpy(data + i * ETH_GSTRING_LEN,
  332. skge_stats[i].name, ETH_GSTRING_LEN);
  333. break;
  334. }
  335. }
  336. static void skge_get_ring_param(struct net_device *dev,
  337. struct ethtool_ringparam *p)
  338. {
  339. struct skge_port *skge = netdev_priv(dev);
  340. p->rx_max_pending = MAX_RX_RING_SIZE;
  341. p->tx_max_pending = MAX_TX_RING_SIZE;
  342. p->rx_mini_max_pending = 0;
  343. p->rx_jumbo_max_pending = 0;
  344. p->rx_pending = skge->rx_ring.count;
  345. p->tx_pending = skge->tx_ring.count;
  346. p->rx_mini_pending = 0;
  347. p->rx_jumbo_pending = 0;
  348. }
  349. static int skge_set_ring_param(struct net_device *dev,
  350. struct ethtool_ringparam *p)
  351. {
  352. struct skge_port *skge = netdev_priv(dev);
  353. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  354. p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
  355. return -EINVAL;
  356. skge->rx_ring.count = p->rx_pending;
  357. skge->tx_ring.count = p->tx_pending;
  358. if (netif_running(dev)) {
  359. skge_down(dev);
  360. skge_up(dev);
  361. }
  362. return 0;
  363. }
  364. static u32 skge_get_msglevel(struct net_device *netdev)
  365. {
  366. struct skge_port *skge = netdev_priv(netdev);
  367. return skge->msg_enable;
  368. }
  369. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  370. {
  371. struct skge_port *skge = netdev_priv(netdev);
  372. skge->msg_enable = value;
  373. }
  374. static int skge_nway_reset(struct net_device *dev)
  375. {
  376. struct skge_port *skge = netdev_priv(dev);
  377. struct skge_hw *hw = skge->hw;
  378. int port = skge->port;
  379. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  380. return -EINVAL;
  381. spin_lock_bh(&hw->phy_lock);
  382. if (hw->chip_id == CHIP_ID_GENESIS) {
  383. genesis_reset(hw, port);
  384. genesis_mac_init(hw, port);
  385. } else {
  386. yukon_reset(hw, port);
  387. yukon_init(hw, port);
  388. }
  389. spin_unlock_bh(&hw->phy_lock);
  390. return 0;
  391. }
  392. static int skge_set_sg(struct net_device *dev, u32 data)
  393. {
  394. struct skge_port *skge = netdev_priv(dev);
  395. struct skge_hw *hw = skge->hw;
  396. if (hw->chip_id == CHIP_ID_GENESIS && data)
  397. return -EOPNOTSUPP;
  398. return ethtool_op_set_sg(dev, data);
  399. }
  400. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  401. {
  402. struct skge_port *skge = netdev_priv(dev);
  403. struct skge_hw *hw = skge->hw;
  404. if (hw->chip_id == CHIP_ID_GENESIS && data)
  405. return -EOPNOTSUPP;
  406. return ethtool_op_set_tx_csum(dev, data);
  407. }
  408. static u32 skge_get_rx_csum(struct net_device *dev)
  409. {
  410. struct skge_port *skge = netdev_priv(dev);
  411. return skge->rx_csum;
  412. }
  413. /* Only Yukon supports checksum offload. */
  414. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  415. {
  416. struct skge_port *skge = netdev_priv(dev);
  417. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  418. return -EOPNOTSUPP;
  419. skge->rx_csum = data;
  420. return 0;
  421. }
  422. static void skge_get_pauseparam(struct net_device *dev,
  423. struct ethtool_pauseparam *ecmd)
  424. {
  425. struct skge_port *skge = netdev_priv(dev);
  426. ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
  427. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  428. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
  429. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  430. ecmd->autoneg = skge->autoneg;
  431. }
  432. static int skge_set_pauseparam(struct net_device *dev,
  433. struct ethtool_pauseparam *ecmd)
  434. {
  435. struct skge_port *skge = netdev_priv(dev);
  436. skge->autoneg = ecmd->autoneg;
  437. if (ecmd->rx_pause && ecmd->tx_pause)
  438. skge->flow_control = FLOW_MODE_SYMMETRIC;
  439. else if (ecmd->rx_pause && !ecmd->tx_pause)
  440. skge->flow_control = FLOW_MODE_REM_SEND;
  441. else if (!ecmd->rx_pause && ecmd->tx_pause)
  442. skge->flow_control = FLOW_MODE_LOC_SEND;
  443. else
  444. skge->flow_control = FLOW_MODE_NONE;
  445. if (netif_running(dev)) {
  446. skge_down(dev);
  447. skge_up(dev);
  448. }
  449. return 0;
  450. }
  451. /* Chip internal frequency for clock calculations */
  452. static inline u32 hwkhz(const struct skge_hw *hw)
  453. {
  454. if (hw->chip_id == CHIP_ID_GENESIS)
  455. return 53215; /* or: 53.125 MHz */
  456. else if (hw->chip_id == CHIP_ID_YUKON_EC)
  457. return 125000; /* or: 125.000 MHz */
  458. else
  459. return 78215; /* or: 78.125 MHz */
  460. }
  461. /* Chip hz to microseconds */
  462. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  463. {
  464. return (ticks * 1000) / hwkhz(hw);
  465. }
  466. /* Microseconds to chip hz */
  467. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  468. {
  469. return hwkhz(hw) * usec / 1000;
  470. }
  471. static int skge_get_coalesce(struct net_device *dev,
  472. struct ethtool_coalesce *ecmd)
  473. {
  474. struct skge_port *skge = netdev_priv(dev);
  475. struct skge_hw *hw = skge->hw;
  476. int port = skge->port;
  477. ecmd->rx_coalesce_usecs = 0;
  478. ecmd->tx_coalesce_usecs = 0;
  479. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  480. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  481. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  482. if (msk & rxirqmask[port])
  483. ecmd->rx_coalesce_usecs = delay;
  484. if (msk & txirqmask[port])
  485. ecmd->tx_coalesce_usecs = delay;
  486. }
  487. return 0;
  488. }
  489. /* Note: interrupt timer is per board, but can turn on/off per port */
  490. static int skge_set_coalesce(struct net_device *dev,
  491. struct ethtool_coalesce *ecmd)
  492. {
  493. struct skge_port *skge = netdev_priv(dev);
  494. struct skge_hw *hw = skge->hw;
  495. int port = skge->port;
  496. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  497. u32 delay = 25;
  498. if (ecmd->rx_coalesce_usecs == 0)
  499. msk &= ~rxirqmask[port];
  500. else if (ecmd->rx_coalesce_usecs < 25 ||
  501. ecmd->rx_coalesce_usecs > 33333)
  502. return -EINVAL;
  503. else {
  504. msk |= rxirqmask[port];
  505. delay = ecmd->rx_coalesce_usecs;
  506. }
  507. if (ecmd->tx_coalesce_usecs == 0)
  508. msk &= ~txirqmask[port];
  509. else if (ecmd->tx_coalesce_usecs < 25 ||
  510. ecmd->tx_coalesce_usecs > 33333)
  511. return -EINVAL;
  512. else {
  513. msk |= txirqmask[port];
  514. delay = min(delay, ecmd->rx_coalesce_usecs);
  515. }
  516. skge_write32(hw, B2_IRQM_MSK, msk);
  517. if (msk == 0)
  518. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  519. else {
  520. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  521. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  522. }
  523. return 0;
  524. }
  525. static void skge_led_on(struct skge_hw *hw, int port)
  526. {
  527. if (hw->chip_id == CHIP_ID_GENESIS) {
  528. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  529. skge_write8(hw, B0_LED, LED_STAT_ON);
  530. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  531. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  532. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  533. switch (hw->phy_type) {
  534. case SK_PHY_BCOM:
  535. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
  536. PHY_B_PEC_LED_ON);
  537. break;
  538. case SK_PHY_LONE:
  539. xm_phy_write(hw, port, PHY_LONE_LED_CFG,
  540. 0x0800);
  541. break;
  542. default:
  543. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  544. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  545. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  546. }
  547. } else {
  548. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  549. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  550. PHY_M_LED_MO_DUP(MO_LED_ON) |
  551. PHY_M_LED_MO_10(MO_LED_ON) |
  552. PHY_M_LED_MO_100(MO_LED_ON) |
  553. PHY_M_LED_MO_1000(MO_LED_ON) |
  554. PHY_M_LED_MO_RX(MO_LED_ON));
  555. }
  556. }
  557. static void skge_led_off(struct skge_hw *hw, int port)
  558. {
  559. if (hw->chip_id == CHIP_ID_GENESIS) {
  560. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  561. skge_write8(hw, B0_LED, LED_STAT_OFF);
  562. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  563. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  564. switch (hw->phy_type) {
  565. case SK_PHY_BCOM:
  566. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
  567. PHY_B_PEC_LED_OFF);
  568. break;
  569. case SK_PHY_LONE:
  570. xm_phy_write(hw, port, PHY_LONE_LED_CFG,
  571. PHY_L_LC_LEDT);
  572. break;
  573. default:
  574. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  575. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  576. }
  577. } else {
  578. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  579. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  580. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  581. PHY_M_LED_MO_10(MO_LED_OFF) |
  582. PHY_M_LED_MO_100(MO_LED_OFF) |
  583. PHY_M_LED_MO_1000(MO_LED_OFF) |
  584. PHY_M_LED_MO_RX(MO_LED_OFF));
  585. }
  586. }
  587. static void skge_blink_timer(unsigned long data)
  588. {
  589. struct skge_port *skge = (struct skge_port *) data;
  590. struct skge_hw *hw = skge->hw;
  591. unsigned long flags;
  592. spin_lock_irqsave(&hw->phy_lock, flags);
  593. if (skge->blink_on)
  594. skge_led_on(hw, skge->port);
  595. else
  596. skge_led_off(hw, skge->port);
  597. spin_unlock_irqrestore(&hw->phy_lock, flags);
  598. skge->blink_on = !skge->blink_on;
  599. mod_timer(&skge->led_blink, jiffies + BLINK_HZ);
  600. }
  601. /* blink LED's for finding board */
  602. static int skge_phys_id(struct net_device *dev, u32 data)
  603. {
  604. struct skge_port *skge = netdev_priv(dev);
  605. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  606. data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
  607. /* start blinking */
  608. skge->blink_on = 1;
  609. mod_timer(&skge->led_blink, jiffies+1);
  610. msleep_interruptible(data * 1000);
  611. del_timer_sync(&skge->led_blink);
  612. skge_led_off(skge->hw, skge->port);
  613. return 0;
  614. }
  615. static struct ethtool_ops skge_ethtool_ops = {
  616. .get_settings = skge_get_settings,
  617. .set_settings = skge_set_settings,
  618. .get_drvinfo = skge_get_drvinfo,
  619. .get_regs_len = skge_get_regs_len,
  620. .get_regs = skge_get_regs,
  621. .get_wol = skge_get_wol,
  622. .set_wol = skge_set_wol,
  623. .get_msglevel = skge_get_msglevel,
  624. .set_msglevel = skge_set_msglevel,
  625. .nway_reset = skge_nway_reset,
  626. .get_link = ethtool_op_get_link,
  627. .get_ringparam = skge_get_ring_param,
  628. .set_ringparam = skge_set_ring_param,
  629. .get_pauseparam = skge_get_pauseparam,
  630. .set_pauseparam = skge_set_pauseparam,
  631. .get_coalesce = skge_get_coalesce,
  632. .set_coalesce = skge_set_coalesce,
  633. .get_sg = ethtool_op_get_sg,
  634. .set_sg = skge_set_sg,
  635. .get_tx_csum = ethtool_op_get_tx_csum,
  636. .set_tx_csum = skge_set_tx_csum,
  637. .get_rx_csum = skge_get_rx_csum,
  638. .set_rx_csum = skge_set_rx_csum,
  639. .get_strings = skge_get_strings,
  640. .phys_id = skge_phys_id,
  641. .get_stats_count = skge_get_stats_count,
  642. .get_ethtool_stats = skge_get_ethtool_stats,
  643. };
  644. /*
  645. * Allocate ring elements and chain them together
  646. * One-to-one association of board descriptors with ring elements
  647. */
  648. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
  649. {
  650. struct skge_tx_desc *d;
  651. struct skge_element *e;
  652. int i;
  653. ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
  654. if (!ring->start)
  655. return -ENOMEM;
  656. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  657. e->desc = d;
  658. if (i == ring->count - 1) {
  659. e->next = ring->start;
  660. d->next_offset = base;
  661. } else {
  662. e->next = e + 1;
  663. d->next_offset = base + (i+1) * sizeof(*d);
  664. }
  665. }
  666. ring->to_use = ring->to_clean = ring->start;
  667. return 0;
  668. }
  669. /* Setup buffer for receiving */
  670. static inline int skge_rx_alloc(struct skge_port *skge,
  671. struct skge_element *e)
  672. {
  673. unsigned long bufsize = skge->netdev->mtu + ETH_HLEN; /* VLAN? */
  674. struct skge_rx_desc *rd = e->desc;
  675. struct sk_buff *skb;
  676. u64 map;
  677. skb = dev_alloc_skb(bufsize + NET_IP_ALIGN);
  678. if (unlikely(!skb)) {
  679. printk(KERN_DEBUG PFX "%s: out of memory for receive\n",
  680. skge->netdev->name);
  681. return -ENOMEM;
  682. }
  683. skb->dev = skge->netdev;
  684. skb_reserve(skb, NET_IP_ALIGN);
  685. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  686. PCI_DMA_FROMDEVICE);
  687. rd->dma_lo = map;
  688. rd->dma_hi = map >> 32;
  689. e->skb = skb;
  690. rd->csum1_start = ETH_HLEN;
  691. rd->csum2_start = ETH_HLEN;
  692. rd->csum1 = 0;
  693. rd->csum2 = 0;
  694. wmb();
  695. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  696. pci_unmap_addr_set(e, mapaddr, map);
  697. pci_unmap_len_set(e, maplen, bufsize);
  698. return 0;
  699. }
  700. /* Free all unused buffers in receive ring, assumes receiver stopped */
  701. static void skge_rx_clean(struct skge_port *skge)
  702. {
  703. struct skge_hw *hw = skge->hw;
  704. struct skge_ring *ring = &skge->rx_ring;
  705. struct skge_element *e;
  706. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  707. struct skge_rx_desc *rd = e->desc;
  708. rd->control = 0;
  709. pci_unmap_single(hw->pdev,
  710. pci_unmap_addr(e, mapaddr),
  711. pci_unmap_len(e, maplen),
  712. PCI_DMA_FROMDEVICE);
  713. dev_kfree_skb(e->skb);
  714. e->skb = NULL;
  715. }
  716. ring->to_clean = e;
  717. }
  718. /* Allocate buffers for receive ring
  719. * For receive: to_use is refill location
  720. * to_clean is next received frame.
  721. *
  722. * if (to_use == to_clean)
  723. * then ring all frames in ring need buffers
  724. * if (to_use->next == to_clean)
  725. * then ring all frames in ring have buffers
  726. */
  727. static int skge_rx_fill(struct skge_port *skge)
  728. {
  729. struct skge_ring *ring = &skge->rx_ring;
  730. struct skge_element *e;
  731. int ret = 0;
  732. for (e = ring->to_use; e->next != ring->to_clean; e = e->next) {
  733. if (skge_rx_alloc(skge, e)) {
  734. ret = 1;
  735. break;
  736. }
  737. }
  738. ring->to_use = e;
  739. return ret;
  740. }
  741. static void skge_link_up(struct skge_port *skge)
  742. {
  743. netif_carrier_on(skge->netdev);
  744. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  745. netif_wake_queue(skge->netdev);
  746. if (netif_msg_link(skge))
  747. printk(KERN_INFO PFX
  748. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  749. skge->netdev->name, skge->speed,
  750. skge->duplex == DUPLEX_FULL ? "full" : "half",
  751. (skge->flow_control == FLOW_MODE_NONE) ? "none" :
  752. (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
  753. (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
  754. (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
  755. "unknown");
  756. }
  757. static void skge_link_down(struct skge_port *skge)
  758. {
  759. netif_carrier_off(skge->netdev);
  760. netif_stop_queue(skge->netdev);
  761. if (netif_msg_link(skge))
  762. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  763. }
  764. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  765. {
  766. int i;
  767. u16 v;
  768. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  769. v = xm_read16(hw, port, XM_PHY_DATA);
  770. if (hw->phy_type != SK_PHY_XMAC) {
  771. for (i = 0; i < PHY_RETRIES; i++) {
  772. udelay(1);
  773. if (xm_read16(hw, port, XM_MMU_CMD)
  774. & XM_MMU_PHY_RDY)
  775. goto ready;
  776. }
  777. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  778. hw->dev[port]->name);
  779. return 0;
  780. ready:
  781. v = xm_read16(hw, port, XM_PHY_DATA);
  782. }
  783. return v;
  784. }
  785. static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  786. {
  787. int i;
  788. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  789. for (i = 0; i < PHY_RETRIES; i++) {
  790. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  791. goto ready;
  792. cpu_relax();
  793. }
  794. printk(KERN_WARNING PFX "%s: phy write failed to come ready\n",
  795. hw->dev[port]->name);
  796. ready:
  797. xm_write16(hw, port, XM_PHY_DATA, val);
  798. for (i = 0; i < PHY_RETRIES; i++) {
  799. udelay(1);
  800. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  801. return;
  802. }
  803. printk(KERN_WARNING PFX "%s: phy write timed out\n",
  804. hw->dev[port]->name);
  805. }
  806. static void genesis_init(struct skge_hw *hw)
  807. {
  808. /* set blink source counter */
  809. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  810. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  811. /* configure mac arbiter */
  812. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  813. /* configure mac arbiter timeout values */
  814. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  815. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  816. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  817. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  818. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  819. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  820. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  821. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  822. /* configure packet arbiter timeout */
  823. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  824. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  825. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  826. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  827. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  828. }
  829. static void genesis_reset(struct skge_hw *hw, int port)
  830. {
  831. int i;
  832. u64 zero = 0;
  833. /* reset the statistics module */
  834. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  835. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  836. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  837. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  838. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  839. /* disable all PHY IRQs */
  840. if (hw->phy_type == SK_PHY_BCOM)
  841. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  842. xm_outhash(hw, port, XM_HSM, (u8 *) &zero);
  843. for (i = 0; i < 15; i++)
  844. xm_outaddr(hw, port, XM_EXM(i), (u8 *) &zero);
  845. xm_outhash(hw, port, XM_SRC_CHK, (u8 *) &zero);
  846. }
  847. static void genesis_mac_init(struct skge_hw *hw, int port)
  848. {
  849. struct skge_port *skge = netdev_priv(hw->dev[port]);
  850. int i;
  851. u32 r;
  852. u16 id1;
  853. u16 ctrl1, ctrl2, ctrl3, ctrl4, ctrl5;
  854. /* magic workaround patterns for Broadcom */
  855. static const struct {
  856. u16 reg;
  857. u16 val;
  858. } A1hack[] = {
  859. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  860. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  861. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  862. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  863. }, C0hack[] = {
  864. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  865. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  866. };
  867. /* initialize Rx, Tx and Link LED */
  868. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  869. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  870. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  871. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  872. /* Unreset the XMAC. */
  873. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  874. /*
  875. * Perform additional initialization for external PHYs,
  876. * namely for the 1000baseTX cards that use the XMAC's
  877. * GMII mode.
  878. */
  879. spin_lock_bh(&hw->phy_lock);
  880. if (hw->phy_type != SK_PHY_XMAC) {
  881. /* Take PHY out of reset. */
  882. r = skge_read32(hw, B2_GP_IO);
  883. if (port == 0)
  884. r |= GP_DIR_0|GP_IO_0;
  885. else
  886. r |= GP_DIR_2|GP_IO_2;
  887. skge_write32(hw, B2_GP_IO, r);
  888. skge_read32(hw, B2_GP_IO);
  889. /* Enable GMII mode on the XMAC. */
  890. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  891. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  892. /* Optimize MDIO transfer by suppressing preamble. */
  893. xm_write16(hw, port, XM_MMU_CMD,
  894. xm_read16(hw, port, XM_MMU_CMD)
  895. | XM_MMU_NO_PRE);
  896. if (id1 == PHY_BCOM_ID1_C0) {
  897. /*
  898. * Workaround BCOM Errata for the C0 type.
  899. * Write magic patterns to reserved registers.
  900. */
  901. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  902. xm_phy_write(hw, port,
  903. C0hack[i].reg, C0hack[i].val);
  904. } else if (id1 == PHY_BCOM_ID1_A1) {
  905. /*
  906. * Workaround BCOM Errata for the A1 type.
  907. * Write magic patterns to reserved registers.
  908. */
  909. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  910. xm_phy_write(hw, port,
  911. A1hack[i].reg, A1hack[i].val);
  912. }
  913. /*
  914. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  915. * Disable Power Management after reset.
  916. */
  917. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  918. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r | PHY_B_AC_DIS_PM);
  919. }
  920. /* Dummy read */
  921. xm_read16(hw, port, XM_ISRC);
  922. r = xm_read32(hw, port, XM_MODE);
  923. xm_write32(hw, port, XM_MODE, r|XM_MD_CSA);
  924. /* We don't need the FCS appended to the packet. */
  925. r = xm_read16(hw, port, XM_RX_CMD);
  926. xm_write16(hw, port, XM_RX_CMD, r | XM_RX_STRIP_FCS);
  927. /* We want short frames padded to 60 bytes. */
  928. r = xm_read16(hw, port, XM_TX_CMD);
  929. xm_write16(hw, port, XM_TX_CMD, r | XM_TX_AUTO_PAD);
  930. /*
  931. * Enable the reception of all error frames. This is is
  932. * a necessary evil due to the design of the XMAC. The
  933. * XMAC's receive FIFO is only 8K in size, however jumbo
  934. * frames can be up to 9000 bytes in length. When bad
  935. * frame filtering is enabled, the XMAC's RX FIFO operates
  936. * in 'store and forward' mode. For this to work, the
  937. * entire frame has to fit into the FIFO, but that means
  938. * that jumbo frames larger than 8192 bytes will be
  939. * truncated. Disabling all bad frame filtering causes
  940. * the RX FIFO to operate in streaming mode, in which
  941. * case the XMAC will start transfering frames out of the
  942. * RX FIFO as soon as the FIFO threshold is reached.
  943. */
  944. r = xm_read32(hw, port, XM_MODE);
  945. xm_write32(hw, port, XM_MODE,
  946. XM_MD_RX_CRCE|XM_MD_RX_LONG|XM_MD_RX_RUNT|
  947. XM_MD_RX_ERR|XM_MD_RX_IRLE);
  948. xm_outaddr(hw, port, XM_SA, hw->dev[port]->dev_addr);
  949. xm_outaddr(hw, port, XM_EXM(0), hw->dev[port]->dev_addr);
  950. /*
  951. * Bump up the transmit threshold. This helps hold off transmit
  952. * underruns when we're blasting traffic from both ports at once.
  953. */
  954. xm_write16(hw, port, XM_TX_THR, 512);
  955. /* Configure MAC arbiter */
  956. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  957. /* configure timeout values */
  958. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  959. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  960. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  961. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  962. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  963. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  964. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  965. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  966. /* Configure Rx MAC FIFO */
  967. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  968. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  969. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  970. /* Configure Tx MAC FIFO */
  971. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  972. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  973. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  974. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  975. /* Enable frame flushing if jumbo frames used */
  976. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  977. } else {
  978. /* enable timeout timers if normal frames */
  979. skge_write16(hw, B3_PA_CTRL,
  980. port == 0 ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  981. }
  982. r = xm_read16(hw, port, XM_RX_CMD);
  983. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  984. xm_write16(hw, port, XM_RX_CMD, r | XM_RX_BIG_PK_OK);
  985. else
  986. xm_write16(hw, port, XM_RX_CMD, r & ~(XM_RX_BIG_PK_OK));
  987. switch (hw->phy_type) {
  988. case SK_PHY_XMAC:
  989. if (skge->autoneg == AUTONEG_ENABLE) {
  990. ctrl1 = PHY_X_AN_FD | PHY_X_AN_HD;
  991. switch (skge->flow_control) {
  992. case FLOW_MODE_NONE:
  993. ctrl1 |= PHY_X_P_NO_PAUSE;
  994. break;
  995. case FLOW_MODE_LOC_SEND:
  996. ctrl1 |= PHY_X_P_ASYM_MD;
  997. break;
  998. case FLOW_MODE_SYMMETRIC:
  999. ctrl1 |= PHY_X_P_SYM_MD;
  1000. break;
  1001. case FLOW_MODE_REM_SEND:
  1002. ctrl1 |= PHY_X_P_BOTH_MD;
  1003. break;
  1004. }
  1005. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl1);
  1006. ctrl2 = PHY_CT_ANE | PHY_CT_RE_CFG;
  1007. } else {
  1008. ctrl2 = 0;
  1009. if (skge->duplex == DUPLEX_FULL)
  1010. ctrl2 |= PHY_CT_DUP_MD;
  1011. }
  1012. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl2);
  1013. break;
  1014. case SK_PHY_BCOM:
  1015. ctrl1 = PHY_CT_SP1000;
  1016. ctrl2 = 0;
  1017. ctrl3 = PHY_SEL_TYPE;
  1018. ctrl4 = PHY_B_PEC_EN_LTR;
  1019. ctrl5 = PHY_B_AC_TX_TST;
  1020. if (skge->autoneg == AUTONEG_ENABLE) {
  1021. /*
  1022. * Workaround BCOM Errata #1 for the C5 type.
  1023. * 1000Base-T Link Acquisition Failure in Slave Mode
  1024. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1025. */
  1026. ctrl2 |= PHY_B_1000C_RD;
  1027. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1028. ctrl2 |= PHY_B_1000C_AHD;
  1029. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1030. ctrl2 |= PHY_B_1000C_AFD;
  1031. /* Set Flow-control capabilities */
  1032. switch (skge->flow_control) {
  1033. case FLOW_MODE_NONE:
  1034. ctrl3 |= PHY_B_P_NO_PAUSE;
  1035. break;
  1036. case FLOW_MODE_LOC_SEND:
  1037. ctrl3 |= PHY_B_P_ASYM_MD;
  1038. break;
  1039. case FLOW_MODE_SYMMETRIC:
  1040. ctrl3 |= PHY_B_P_SYM_MD;
  1041. break;
  1042. case FLOW_MODE_REM_SEND:
  1043. ctrl3 |= PHY_B_P_BOTH_MD;
  1044. break;
  1045. }
  1046. /* Restart Auto-negotiation */
  1047. ctrl1 |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1048. } else {
  1049. if (skge->duplex == DUPLEX_FULL)
  1050. ctrl1 |= PHY_CT_DUP_MD;
  1051. ctrl2 |= PHY_B_1000C_MSE; /* set it to Slave */
  1052. }
  1053. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, ctrl2);
  1054. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, ctrl3);
  1055. if (skge->netdev->mtu > ETH_DATA_LEN) {
  1056. ctrl4 |= PHY_B_PEC_HIGH_LA;
  1057. ctrl5 |= PHY_B_AC_LONG_PACK;
  1058. xm_phy_write(hw, port,PHY_BCOM_AUX_CTRL, ctrl5);
  1059. }
  1060. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ctrl4);
  1061. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctrl1);
  1062. break;
  1063. }
  1064. spin_unlock_bh(&hw->phy_lock);
  1065. /* Clear MIB counters */
  1066. xm_write16(hw, port, XM_STAT_CMD,
  1067. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1068. /* Clear two times according to Errata #3 */
  1069. xm_write16(hw, port, XM_STAT_CMD,
  1070. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1071. /* Start polling for link status */
  1072. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1073. }
  1074. static void genesis_stop(struct skge_port *skge)
  1075. {
  1076. struct skge_hw *hw = skge->hw;
  1077. int port = skge->port;
  1078. /* Clear Tx packet arbiter timeout IRQ */
  1079. skge_write16(hw, B3_PA_CTRL,
  1080. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1081. /*
  1082. * If the transfer stucks at the MAC the STOP command will not
  1083. * terminate if we don't flush the XMAC's transmit FIFO !
  1084. */
  1085. xm_write32(hw, port, XM_MODE,
  1086. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1087. /* Reset the MAC */
  1088. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1089. /* For external PHYs there must be special handling */
  1090. if (hw->phy_type != SK_PHY_XMAC) {
  1091. u32 reg = skge_read32(hw, B2_GP_IO);
  1092. if (port == 0) {
  1093. reg |= GP_DIR_0;
  1094. reg &= ~GP_IO_0;
  1095. } else {
  1096. reg |= GP_DIR_2;
  1097. reg &= ~GP_IO_2;
  1098. }
  1099. skge_write32(hw, B2_GP_IO, reg);
  1100. skge_read32(hw, B2_GP_IO);
  1101. }
  1102. xm_write16(hw, port, XM_MMU_CMD,
  1103. xm_read16(hw, port, XM_MMU_CMD)
  1104. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1105. xm_read16(hw, port, XM_MMU_CMD);
  1106. }
  1107. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1108. {
  1109. struct skge_hw *hw = skge->hw;
  1110. int port = skge->port;
  1111. int i;
  1112. unsigned long timeout = jiffies + HZ;
  1113. xm_write16(hw, port,
  1114. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1115. /* wait for update to complete */
  1116. while (xm_read16(hw, port, XM_STAT_CMD)
  1117. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1118. if (time_after(jiffies, timeout))
  1119. break;
  1120. udelay(10);
  1121. }
  1122. /* special case for 64 bit octet counter */
  1123. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1124. | xm_read32(hw, port, XM_TXO_OK_LO);
  1125. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1126. | xm_read32(hw, port, XM_RXO_OK_LO);
  1127. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1128. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1129. }
  1130. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1131. {
  1132. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1133. u16 status = xm_read16(hw, port, XM_ISRC);
  1134. pr_debug("genesis_intr status %x\n", status);
  1135. if (hw->phy_type == SK_PHY_XMAC) {
  1136. /* LInk down, start polling for state change */
  1137. if (status & XM_IS_INP_ASS) {
  1138. xm_write16(hw, port, XM_IMSK,
  1139. xm_read16(hw, port, XM_IMSK) | XM_IS_INP_ASS);
  1140. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1141. }
  1142. else if (status & XM_IS_AND)
  1143. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1144. }
  1145. if (status & XM_IS_TXF_UR) {
  1146. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1147. ++skge->net_stats.tx_fifo_errors;
  1148. }
  1149. if (status & XM_IS_RXF_OV) {
  1150. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1151. ++skge->net_stats.rx_fifo_errors;
  1152. }
  1153. }
  1154. static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1155. {
  1156. int i;
  1157. gma_write16(hw, port, GM_SMI_DATA, val);
  1158. gma_write16(hw, port, GM_SMI_CTRL,
  1159. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1160. for (i = 0; i < PHY_RETRIES; i++) {
  1161. udelay(1);
  1162. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1163. break;
  1164. }
  1165. }
  1166. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1167. {
  1168. int i;
  1169. gma_write16(hw, port, GM_SMI_CTRL,
  1170. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1171. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1172. for (i = 0; i < PHY_RETRIES; i++) {
  1173. udelay(1);
  1174. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1175. goto ready;
  1176. }
  1177. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1178. hw->dev[port]->name);
  1179. return 0;
  1180. ready:
  1181. return gma_read16(hw, port, GM_SMI_DATA);
  1182. }
  1183. static void genesis_link_down(struct skge_port *skge)
  1184. {
  1185. struct skge_hw *hw = skge->hw;
  1186. int port = skge->port;
  1187. pr_debug("genesis_link_down\n");
  1188. xm_write16(hw, port, XM_MMU_CMD,
  1189. xm_read16(hw, port, XM_MMU_CMD)
  1190. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1191. /* dummy read to ensure writing */
  1192. (void) xm_read16(hw, port, XM_MMU_CMD);
  1193. skge_link_down(skge);
  1194. }
  1195. static void genesis_link_up(struct skge_port *skge)
  1196. {
  1197. struct skge_hw *hw = skge->hw;
  1198. int port = skge->port;
  1199. u16 cmd;
  1200. u32 mode, msk;
  1201. pr_debug("genesis_link_up\n");
  1202. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1203. /*
  1204. * enabling pause frame reception is required for 1000BT
  1205. * because the XMAC is not reset if the link is going down
  1206. */
  1207. if (skge->flow_control == FLOW_MODE_NONE ||
  1208. skge->flow_control == FLOW_MODE_LOC_SEND)
  1209. cmd |= XM_MMU_IGN_PF;
  1210. else
  1211. /* Enable Pause Frame Reception */
  1212. cmd &= ~XM_MMU_IGN_PF;
  1213. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1214. mode = xm_read32(hw, port, XM_MODE);
  1215. if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1216. skge->flow_control == FLOW_MODE_LOC_SEND) {
  1217. /*
  1218. * Configure Pause Frame Generation
  1219. * Use internal and external Pause Frame Generation.
  1220. * Sending pause frames is edge triggered.
  1221. * Send a Pause frame with the maximum pause time if
  1222. * internal oder external FIFO full condition occurs.
  1223. * Send a zero pause time frame to re-start transmission.
  1224. */
  1225. /* XM_PAUSE_DA = '010000C28001' (default) */
  1226. /* XM_MAC_PTIME = 0xffff (maximum) */
  1227. /* remember this value is defined in big endian (!) */
  1228. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1229. mode |= XM_PAUSE_MODE;
  1230. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1231. } else {
  1232. /*
  1233. * disable pause frame generation is required for 1000BT
  1234. * because the XMAC is not reset if the link is going down
  1235. */
  1236. /* Disable Pause Mode in Mode Register */
  1237. mode &= ~XM_PAUSE_MODE;
  1238. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1239. }
  1240. xm_write32(hw, port, XM_MODE, mode);
  1241. msk = XM_DEF_MSK;
  1242. if (hw->phy_type != SK_PHY_XMAC)
  1243. msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
  1244. xm_write16(hw, port, XM_IMSK, msk);
  1245. xm_read16(hw, port, XM_ISRC);
  1246. /* get MMU Command Reg. */
  1247. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1248. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1249. cmd |= XM_MMU_GMII_FD;
  1250. if (hw->phy_type == SK_PHY_BCOM) {
  1251. /*
  1252. * Workaround BCOM Errata (#10523) for all BCom Phys
  1253. * Enable Power Management after link up
  1254. */
  1255. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1256. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1257. & ~PHY_B_AC_DIS_PM);
  1258. xm_phy_write(hw, port, PHY_BCOM_INT_MASK,
  1259. PHY_B_DEF_MSK);
  1260. }
  1261. /* enable Rx/Tx */
  1262. xm_write16(hw, port, XM_MMU_CMD,
  1263. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1264. skge_link_up(skge);
  1265. }
  1266. static void genesis_bcom_intr(struct skge_port *skge)
  1267. {
  1268. struct skge_hw *hw = skge->hw;
  1269. int port = skge->port;
  1270. u16 stat = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1271. pr_debug("genesis_bcom intr stat=%x\n", stat);
  1272. /* Workaround BCom Errata:
  1273. * enable and disable loopback mode if "NO HCD" occurs.
  1274. */
  1275. if (stat & PHY_B_IS_NO_HDCL) {
  1276. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1277. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1278. ctrl | PHY_CT_LOOP);
  1279. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1280. ctrl & ~PHY_CT_LOOP);
  1281. }
  1282. stat = xm_phy_read(hw, port, PHY_BCOM_STAT);
  1283. if (stat & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) {
  1284. u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1285. if ( !(aux & PHY_B_AS_LS) && netif_carrier_ok(skge->netdev))
  1286. genesis_link_down(skge);
  1287. else if (stat & PHY_B_IS_LST_CHANGE) {
  1288. if (aux & PHY_B_AS_AN_C) {
  1289. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1290. case PHY_B_RES_1000FD:
  1291. skge->duplex = DUPLEX_FULL;
  1292. break;
  1293. case PHY_B_RES_1000HD:
  1294. skge->duplex = DUPLEX_HALF;
  1295. break;
  1296. }
  1297. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1298. case PHY_B_AS_PAUSE_MSK:
  1299. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1300. break;
  1301. case PHY_B_AS_PRR:
  1302. skge->flow_control = FLOW_MODE_REM_SEND;
  1303. break;
  1304. case PHY_B_AS_PRT:
  1305. skge->flow_control = FLOW_MODE_LOC_SEND;
  1306. break;
  1307. default:
  1308. skge->flow_control = FLOW_MODE_NONE;
  1309. }
  1310. skge->speed = SPEED_1000;
  1311. }
  1312. genesis_link_up(skge);
  1313. }
  1314. else
  1315. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1316. }
  1317. }
  1318. /* Perodic poll of phy status to check for link transistion */
  1319. static void skge_link_timer(unsigned long __arg)
  1320. {
  1321. struct skge_port *skge = (struct skge_port *) __arg;
  1322. struct skge_hw *hw = skge->hw;
  1323. int port = skge->port;
  1324. if (hw->chip_id != CHIP_ID_GENESIS || !netif_running(skge->netdev))
  1325. return;
  1326. spin_lock_bh(&hw->phy_lock);
  1327. if (hw->phy_type == SK_PHY_BCOM)
  1328. genesis_bcom_intr(skge);
  1329. else {
  1330. int i;
  1331. for (i = 0; i < 3; i++)
  1332. if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
  1333. break;
  1334. if (i == 3)
  1335. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1336. else
  1337. genesis_link_up(skge);
  1338. }
  1339. spin_unlock_bh(&hw->phy_lock);
  1340. }
  1341. /* Marvell Phy Initailization */
  1342. static void yukon_init(struct skge_hw *hw, int port)
  1343. {
  1344. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1345. u16 ctrl, ct1000, adv;
  1346. u16 ledctrl, ledover;
  1347. pr_debug("yukon_init\n");
  1348. if (skge->autoneg == AUTONEG_ENABLE) {
  1349. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1350. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1351. PHY_M_EC_MAC_S_MSK);
  1352. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1353. /* on PHY 88E1111 there is a change for downshift control */
  1354. if (hw->chip_id == CHIP_ID_YUKON_EC)
  1355. ectrl |= PHY_M_EC_M_DSC_2(0) | PHY_M_EC_DOWN_S_ENA;
  1356. else
  1357. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1358. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1359. }
  1360. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1361. if (skge->autoneg == AUTONEG_DISABLE)
  1362. ctrl &= ~PHY_CT_ANE;
  1363. ctrl |= PHY_CT_RESET;
  1364. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1365. ctrl = 0;
  1366. ct1000 = 0;
  1367. adv = PHY_SEL_TYPE;
  1368. if (skge->autoneg == AUTONEG_ENABLE) {
  1369. if (iscopper(hw)) {
  1370. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1371. ct1000 |= PHY_M_1000C_AFD;
  1372. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1373. ct1000 |= PHY_M_1000C_AHD;
  1374. if (skge->advertising & ADVERTISED_100baseT_Full)
  1375. adv |= PHY_M_AN_100_FD;
  1376. if (skge->advertising & ADVERTISED_100baseT_Half)
  1377. adv |= PHY_M_AN_100_HD;
  1378. if (skge->advertising & ADVERTISED_10baseT_Full)
  1379. adv |= PHY_M_AN_10_FD;
  1380. if (skge->advertising & ADVERTISED_10baseT_Half)
  1381. adv |= PHY_M_AN_10_HD;
  1382. /* Set Flow-control capabilities */
  1383. switch (skge->flow_control) {
  1384. case FLOW_MODE_NONE:
  1385. adv |= PHY_B_P_NO_PAUSE;
  1386. break;
  1387. case FLOW_MODE_LOC_SEND:
  1388. adv |= PHY_B_P_ASYM_MD;
  1389. break;
  1390. case FLOW_MODE_SYMMETRIC:
  1391. adv |= PHY_B_P_SYM_MD;
  1392. break;
  1393. case FLOW_MODE_REM_SEND:
  1394. adv |= PHY_B_P_BOTH_MD;
  1395. break;
  1396. }
  1397. } else { /* special defines for FIBER (88E1011S only) */
  1398. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  1399. /* Set Flow-control capabilities */
  1400. switch (skge->flow_control) {
  1401. case FLOW_MODE_NONE:
  1402. adv |= PHY_M_P_NO_PAUSE_X;
  1403. break;
  1404. case FLOW_MODE_LOC_SEND:
  1405. adv |= PHY_M_P_ASYM_MD_X;
  1406. break;
  1407. case FLOW_MODE_SYMMETRIC:
  1408. adv |= PHY_M_P_SYM_MD_X;
  1409. break;
  1410. case FLOW_MODE_REM_SEND:
  1411. adv |= PHY_M_P_BOTH_MD_X;
  1412. break;
  1413. }
  1414. }
  1415. /* Restart Auto-negotiation */
  1416. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1417. } else {
  1418. /* forced speed/duplex settings */
  1419. ct1000 = PHY_M_1000C_MSE;
  1420. if (skge->duplex == DUPLEX_FULL)
  1421. ctrl |= PHY_CT_DUP_MD;
  1422. switch (skge->speed) {
  1423. case SPEED_1000:
  1424. ctrl |= PHY_CT_SP1000;
  1425. break;
  1426. case SPEED_100:
  1427. ctrl |= PHY_CT_SP100;
  1428. break;
  1429. }
  1430. ctrl |= PHY_CT_RESET;
  1431. }
  1432. if (hw->chip_id != CHIP_ID_YUKON_FE)
  1433. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1434. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1435. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1436. /* Setup Phy LED's */
  1437. ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
  1438. ledover = 0;
  1439. if (hw->chip_id == CHIP_ID_YUKON_FE) {
  1440. /* on 88E3082 these bits are at 11..9 (shifted left) */
  1441. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
  1442. gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR,
  1443. ((gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR)
  1444. & ~PHY_M_FELP_LED1_MSK)
  1445. | PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL)));
  1446. } else {
  1447. /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
  1448. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
  1449. /* turn off the Rx LED (LED_RX) */
  1450. ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
  1451. }
  1452. /* disable blink mode (LED_DUPLEX) on collisions */
  1453. ctrl |= PHY_M_LEDC_DP_CTRL;
  1454. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  1455. if (skge->autoneg == AUTONEG_DISABLE || skge->speed == SPEED_100) {
  1456. /* turn on 100 Mbps LED (LED_LINK100) */
  1457. ledover |= PHY_M_LED_MO_100(MO_LED_ON);
  1458. }
  1459. if (ledover)
  1460. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  1461. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1462. if (skge->autoneg == AUTONEG_ENABLE)
  1463. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
  1464. else
  1465. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1466. }
  1467. static void yukon_reset(struct skge_hw *hw, int port)
  1468. {
  1469. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1470. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1471. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1472. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1473. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1474. gma_write16(hw, port, GM_RX_CTRL,
  1475. gma_read16(hw, port, GM_RX_CTRL)
  1476. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1477. }
  1478. static void yukon_mac_init(struct skge_hw *hw, int port)
  1479. {
  1480. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1481. int i;
  1482. u32 reg;
  1483. const u8 *addr = hw->dev[port]->dev_addr;
  1484. /* WA code for COMA mode -- set PHY reset */
  1485. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1486. hw->chip_rev == CHIP_REV_YU_LITE_A3)
  1487. skge_write32(hw, B2_GP_IO,
  1488. (skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9));
  1489. /* hard reset */
  1490. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1491. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1492. /* WA code for COMA mode -- clear PHY reset */
  1493. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1494. hw->chip_rev == CHIP_REV_YU_LITE_A3)
  1495. skge_write32(hw, B2_GP_IO,
  1496. (skge_read32(hw, B2_GP_IO) | GP_DIR_9)
  1497. & ~GP_IO_9);
  1498. /* Set hardware config mode */
  1499. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1500. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1501. reg |= iscopper(hw) ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1502. /* Clear GMC reset */
  1503. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1504. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1505. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1506. if (skge->autoneg == AUTONEG_DISABLE) {
  1507. reg = GM_GPCR_AU_ALL_DIS;
  1508. gma_write16(hw, port, GM_GP_CTRL,
  1509. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1510. switch (skge->speed) {
  1511. case SPEED_1000:
  1512. reg |= GM_GPCR_SPEED_1000;
  1513. /* fallthru */
  1514. case SPEED_100:
  1515. reg |= GM_GPCR_SPEED_100;
  1516. }
  1517. if (skge->duplex == DUPLEX_FULL)
  1518. reg |= GM_GPCR_DUP_FULL;
  1519. } else
  1520. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1521. switch (skge->flow_control) {
  1522. case FLOW_MODE_NONE:
  1523. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1524. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1525. break;
  1526. case FLOW_MODE_LOC_SEND:
  1527. /* disable Rx flow-control */
  1528. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1529. }
  1530. gma_write16(hw, port, GM_GP_CTRL, reg);
  1531. skge_read16(hw, GMAC_IRQ_SRC);
  1532. spin_lock_bh(&hw->phy_lock);
  1533. yukon_init(hw, port);
  1534. spin_unlock_bh(&hw->phy_lock);
  1535. /* MIB clear */
  1536. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1537. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1538. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1539. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1540. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1541. /* transmit control */
  1542. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1543. /* receive control reg: unicast + multicast + no FCS */
  1544. gma_write16(hw, port, GM_RX_CTRL,
  1545. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1546. /* transmit flow control */
  1547. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1548. /* transmit parameter */
  1549. gma_write16(hw, port, GM_TX_PARAM,
  1550. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1551. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1552. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1553. /* serial mode register */
  1554. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1555. if (hw->dev[port]->mtu > 1500)
  1556. reg |= GM_SMOD_JUMBO_ENA;
  1557. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1558. /* physical address: used for pause frames */
  1559. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1560. /* virtual address for data */
  1561. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1562. /* enable interrupt mask for counter overflows */
  1563. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1564. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1565. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1566. /* Initialize Mac Fifo */
  1567. /* Configure Rx MAC FIFO */
  1568. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1569. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1570. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1571. hw->chip_rev == CHIP_REV_YU_LITE_A3)
  1572. reg &= ~GMF_RX_F_FL_ON;
  1573. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1574. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1575. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
  1576. /* Configure Tx MAC FIFO */
  1577. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1578. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1579. }
  1580. static void yukon_stop(struct skge_port *skge)
  1581. {
  1582. struct skge_hw *hw = skge->hw;
  1583. int port = skge->port;
  1584. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1585. hw->chip_rev == CHIP_REV_YU_LITE_A3) {
  1586. skge_write32(hw, B2_GP_IO,
  1587. skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9);
  1588. }
  1589. gma_write16(hw, port, GM_GP_CTRL,
  1590. gma_read16(hw, port, GM_GP_CTRL)
  1591. & ~(GM_GPCR_RX_ENA|GM_GPCR_RX_ENA));
  1592. gma_read16(hw, port, GM_GP_CTRL);
  1593. /* set GPHY Control reset */
  1594. gma_write32(hw, port, GPHY_CTRL, GPC_RST_SET);
  1595. gma_write32(hw, port, GMAC_CTRL, GMC_RST_SET);
  1596. }
  1597. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1598. {
  1599. struct skge_hw *hw = skge->hw;
  1600. int port = skge->port;
  1601. int i;
  1602. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1603. | gma_read32(hw, port, GM_TXO_OK_LO);
  1604. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1605. | gma_read32(hw, port, GM_RXO_OK_LO);
  1606. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1607. data[i] = gma_read32(hw, port,
  1608. skge_stats[i].gma_offset);
  1609. }
  1610. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1611. {
  1612. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1613. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1614. pr_debug("yukon_intr status %x\n", status);
  1615. if (status & GM_IS_RX_FF_OR) {
  1616. ++skge->net_stats.rx_fifo_errors;
  1617. gma_write8(hw, port, RX_GMF_CTRL_T, GMF_CLI_RX_FO);
  1618. }
  1619. if (status & GM_IS_TX_FF_UR) {
  1620. ++skge->net_stats.tx_fifo_errors;
  1621. gma_write8(hw, port, TX_GMF_CTRL_T, GMF_CLI_TX_FU);
  1622. }
  1623. }
  1624. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1625. {
  1626. if (hw->chip_id == CHIP_ID_YUKON_FE)
  1627. return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
  1628. switch (aux & PHY_M_PS_SPEED_MSK) {
  1629. case PHY_M_PS_SPEED_1000:
  1630. return SPEED_1000;
  1631. case PHY_M_PS_SPEED_100:
  1632. return SPEED_100;
  1633. default:
  1634. return SPEED_10;
  1635. }
  1636. }
  1637. static void yukon_link_up(struct skge_port *skge)
  1638. {
  1639. struct skge_hw *hw = skge->hw;
  1640. int port = skge->port;
  1641. u16 reg;
  1642. pr_debug("yukon_link_up\n");
  1643. /* Enable Transmit FIFO Underrun */
  1644. skge_write8(hw, GMAC_IRQ_MSK, GMAC_DEF_MSK);
  1645. reg = gma_read16(hw, port, GM_GP_CTRL);
  1646. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1647. reg |= GM_GPCR_DUP_FULL;
  1648. /* enable Rx/Tx */
  1649. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1650. gma_write16(hw, port, GM_GP_CTRL, reg);
  1651. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1652. skge_link_up(skge);
  1653. }
  1654. static void yukon_link_down(struct skge_port *skge)
  1655. {
  1656. struct skge_hw *hw = skge->hw;
  1657. int port = skge->port;
  1658. pr_debug("yukon_link_down\n");
  1659. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1660. gm_phy_write(hw, port, GM_GP_CTRL,
  1661. gm_phy_read(hw, port, GM_GP_CTRL)
  1662. & ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA));
  1663. if (hw->chip_id != CHIP_ID_YUKON_FE &&
  1664. skge->flow_control == FLOW_MODE_REM_SEND) {
  1665. /* restore Asymmetric Pause bit */
  1666. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1667. gm_phy_read(hw, port,
  1668. PHY_MARV_AUNE_ADV)
  1669. | PHY_M_AN_ASP);
  1670. }
  1671. yukon_reset(hw, port);
  1672. skge_link_down(skge);
  1673. yukon_init(hw, port);
  1674. }
  1675. static void yukon_phy_intr(struct skge_port *skge)
  1676. {
  1677. struct skge_hw *hw = skge->hw;
  1678. int port = skge->port;
  1679. const char *reason = NULL;
  1680. u16 istatus, phystat;
  1681. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1682. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1683. pr_debug("yukon phy intr istat=%x phy_stat=%x\n", istatus, phystat);
  1684. if (istatus & PHY_M_IS_AN_COMPL) {
  1685. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1686. & PHY_M_AN_RF) {
  1687. reason = "remote fault";
  1688. goto failed;
  1689. }
  1690. if (!(hw->chip_id == CHIP_ID_YUKON_FE || hw->chip_id == CHIP_ID_YUKON_EC)
  1691. && (gm_phy_read(hw, port, PHY_MARV_1000T_STAT)
  1692. & PHY_B_1000S_MSF)) {
  1693. reason = "master/slave fault";
  1694. goto failed;
  1695. }
  1696. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1697. reason = "speed/duplex";
  1698. goto failed;
  1699. }
  1700. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1701. ? DUPLEX_FULL : DUPLEX_HALF;
  1702. skge->speed = yukon_speed(hw, phystat);
  1703. /* Tx & Rx Pause Enabled bits are at 9..8 */
  1704. if (hw->chip_id == CHIP_ID_YUKON_XL)
  1705. phystat >>= 6;
  1706. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1707. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1708. case PHY_M_PS_PAUSE_MSK:
  1709. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1710. break;
  1711. case PHY_M_PS_RX_P_EN:
  1712. skge->flow_control = FLOW_MODE_REM_SEND;
  1713. break;
  1714. case PHY_M_PS_TX_P_EN:
  1715. skge->flow_control = FLOW_MODE_LOC_SEND;
  1716. break;
  1717. default:
  1718. skge->flow_control = FLOW_MODE_NONE;
  1719. }
  1720. if (skge->flow_control == FLOW_MODE_NONE ||
  1721. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1722. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1723. else
  1724. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1725. yukon_link_up(skge);
  1726. return;
  1727. }
  1728. if (istatus & PHY_M_IS_LSP_CHANGE)
  1729. skge->speed = yukon_speed(hw, phystat);
  1730. if (istatus & PHY_M_IS_DUP_CHANGE)
  1731. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1732. if (istatus & PHY_M_IS_LST_CHANGE) {
  1733. if (phystat & PHY_M_PS_LINK_UP)
  1734. yukon_link_up(skge);
  1735. else
  1736. yukon_link_down(skge);
  1737. }
  1738. return;
  1739. failed:
  1740. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1741. skge->netdev->name, reason);
  1742. /* XXX restart autonegotiation? */
  1743. }
  1744. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1745. {
  1746. u32 end;
  1747. start /= 8;
  1748. len /= 8;
  1749. end = start + len - 1;
  1750. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1751. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1752. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1753. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1754. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1755. if (q == Q_R1 || q == Q_R2) {
  1756. /* Set thresholds on receive queue's */
  1757. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1758. start + (2*len)/3);
  1759. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1760. start + (len/3));
  1761. } else {
  1762. /* Enable store & forward on Tx queue's because
  1763. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1764. */
  1765. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1766. }
  1767. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1768. }
  1769. /* Setup Bus Memory Interface */
  1770. static void skge_qset(struct skge_port *skge, u16 q,
  1771. const struct skge_element *e)
  1772. {
  1773. struct skge_hw *hw = skge->hw;
  1774. u32 watermark = 0x600;
  1775. u64 base = skge->dma + (e->desc - skge->mem);
  1776. /* optimization to reduce window on 32bit/33mhz */
  1777. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1778. watermark /= 2;
  1779. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1780. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1781. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1782. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1783. }
  1784. static int skge_up(struct net_device *dev)
  1785. {
  1786. struct skge_port *skge = netdev_priv(dev);
  1787. struct skge_hw *hw = skge->hw;
  1788. int port = skge->port;
  1789. u32 chunk, ram_addr;
  1790. size_t rx_size, tx_size;
  1791. int err;
  1792. if (netif_msg_ifup(skge))
  1793. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  1794. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  1795. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  1796. skge->mem_size = tx_size + rx_size;
  1797. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  1798. if (!skge->mem)
  1799. return -ENOMEM;
  1800. memset(skge->mem, 0, skge->mem_size);
  1801. if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
  1802. goto free_pci_mem;
  1803. if (skge_rx_fill(skge))
  1804. goto free_rx_ring;
  1805. if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  1806. skge->dma + rx_size)))
  1807. goto free_rx_ring;
  1808. skge->tx_avail = skge->tx_ring.count - 1;
  1809. /* Initialze MAC */
  1810. if (hw->chip_id == CHIP_ID_GENESIS)
  1811. genesis_mac_init(hw, port);
  1812. else
  1813. yukon_mac_init(hw, port);
  1814. /* Configure RAMbuffers */
  1815. chunk = hw->ram_size / ((hw->ports + 1)*2);
  1816. ram_addr = hw->ram_offset + 2 * chunk * port;
  1817. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  1818. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  1819. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  1820. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  1821. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  1822. /* Start receiver BMU */
  1823. wmb();
  1824. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  1825. pr_debug("skge_up completed\n");
  1826. return 0;
  1827. free_rx_ring:
  1828. skge_rx_clean(skge);
  1829. kfree(skge->rx_ring.start);
  1830. free_pci_mem:
  1831. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1832. return err;
  1833. }
  1834. static int skge_down(struct net_device *dev)
  1835. {
  1836. struct skge_port *skge = netdev_priv(dev);
  1837. struct skge_hw *hw = skge->hw;
  1838. int port = skge->port;
  1839. if (netif_msg_ifdown(skge))
  1840. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1841. netif_stop_queue(dev);
  1842. del_timer_sync(&skge->led_blink);
  1843. del_timer_sync(&skge->link_check);
  1844. /* Stop transmitter */
  1845. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  1846. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1847. RB_RST_SET|RB_DIS_OP_MD);
  1848. if (hw->chip_id == CHIP_ID_GENESIS)
  1849. genesis_stop(skge);
  1850. else
  1851. yukon_stop(skge);
  1852. /* Disable Force Sync bit and Enable Alloc bit */
  1853. skge_write8(hw, SK_REG(port, TXA_CTRL),
  1854. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1855. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1856. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1857. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1858. /* Reset PCI FIFO */
  1859. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  1860. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1861. /* Reset the RAM Buffer async Tx queue */
  1862. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  1863. /* stop receiver */
  1864. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  1865. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  1866. RB_RST_SET|RB_DIS_OP_MD);
  1867. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  1868. if (hw->chip_id == CHIP_ID_GENESIS) {
  1869. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  1870. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  1871. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_STOP);
  1872. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_STOP);
  1873. } else {
  1874. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1875. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1876. }
  1877. /* turn off led's */
  1878. skge_write16(hw, B0_LED, LED_STAT_OFF);
  1879. skge_tx_clean(skge);
  1880. skge_rx_clean(skge);
  1881. kfree(skge->rx_ring.start);
  1882. kfree(skge->tx_ring.start);
  1883. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1884. return 0;
  1885. }
  1886. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  1887. {
  1888. struct skge_port *skge = netdev_priv(dev);
  1889. struct skge_hw *hw = skge->hw;
  1890. struct skge_ring *ring = &skge->tx_ring;
  1891. struct skge_element *e;
  1892. struct skge_tx_desc *td;
  1893. int i;
  1894. u32 control, len;
  1895. u64 map;
  1896. unsigned long flags;
  1897. skb = skb_padto(skb, ETH_ZLEN);
  1898. if (!skb)
  1899. return NETDEV_TX_OK;
  1900. local_irq_save(flags);
  1901. if (!spin_trylock(&skge->tx_lock)) {
  1902. /* Collision - tell upper layer to requeue */
  1903. local_irq_restore(flags);
  1904. return NETDEV_TX_LOCKED;
  1905. }
  1906. if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
  1907. netif_stop_queue(dev);
  1908. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1909. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  1910. dev->name);
  1911. return NETDEV_TX_BUSY;
  1912. }
  1913. e = ring->to_use;
  1914. td = e->desc;
  1915. e->skb = skb;
  1916. len = skb_headlen(skb);
  1917. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1918. pci_unmap_addr_set(e, mapaddr, map);
  1919. pci_unmap_len_set(e, maplen, len);
  1920. td->dma_lo = map;
  1921. td->dma_hi = map >> 32;
  1922. if (skb->ip_summed == CHECKSUM_HW) {
  1923. const struct iphdr *ip
  1924. = (const struct iphdr *) (skb->data + ETH_HLEN);
  1925. int offset = skb->h.raw - skb->data;
  1926. /* This seems backwards, but it is what the sk98lin
  1927. * does. Looks like hardware is wrong?
  1928. */
  1929. if (ip->protocol == IPPROTO_UDP
  1930. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  1931. control = BMU_TCP_CHECK;
  1932. else
  1933. control = BMU_UDP_CHECK;
  1934. td->csum_offs = 0;
  1935. td->csum_start = offset;
  1936. td->csum_write = offset + skb->csum;
  1937. } else
  1938. control = BMU_CHECK;
  1939. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  1940. control |= BMU_EOF| BMU_IRQ_EOF;
  1941. else {
  1942. struct skge_tx_desc *tf = td;
  1943. control |= BMU_STFWD;
  1944. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1945. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1946. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1947. frag->size, PCI_DMA_TODEVICE);
  1948. e = e->next;
  1949. e->skb = NULL;
  1950. tf = e->desc;
  1951. tf->dma_lo = map;
  1952. tf->dma_hi = (u64) map >> 32;
  1953. pci_unmap_addr_set(e, mapaddr, map);
  1954. pci_unmap_len_set(e, maplen, frag->size);
  1955. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  1956. }
  1957. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  1958. }
  1959. /* Make sure all the descriptors written */
  1960. wmb();
  1961. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  1962. wmb();
  1963. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  1964. if (netif_msg_tx_queued(skge))
  1965. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  1966. dev->name, e - ring->start, skb->len);
  1967. ring->to_use = e->next;
  1968. skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
  1969. if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
  1970. pr_debug("%s: transmit queue full\n", dev->name);
  1971. netif_stop_queue(dev);
  1972. }
  1973. dev->trans_start = jiffies;
  1974. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1975. return NETDEV_TX_OK;
  1976. }
  1977. static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
  1978. {
  1979. if (e->skb) {
  1980. pci_unmap_single(hw->pdev,
  1981. pci_unmap_addr(e, mapaddr),
  1982. pci_unmap_len(e, maplen),
  1983. PCI_DMA_TODEVICE);
  1984. dev_kfree_skb_any(e->skb);
  1985. e->skb = NULL;
  1986. } else {
  1987. pci_unmap_page(hw->pdev,
  1988. pci_unmap_addr(e, mapaddr),
  1989. pci_unmap_len(e, maplen),
  1990. PCI_DMA_TODEVICE);
  1991. }
  1992. }
  1993. static void skge_tx_clean(struct skge_port *skge)
  1994. {
  1995. struct skge_ring *ring = &skge->tx_ring;
  1996. struct skge_element *e;
  1997. unsigned long flags;
  1998. spin_lock_irqsave(&skge->tx_lock, flags);
  1999. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2000. ++skge->tx_avail;
  2001. skge_tx_free(skge->hw, e);
  2002. }
  2003. ring->to_clean = e;
  2004. spin_unlock_irqrestore(&skge->tx_lock, flags);
  2005. }
  2006. static void skge_tx_timeout(struct net_device *dev)
  2007. {
  2008. struct skge_port *skge = netdev_priv(dev);
  2009. if (netif_msg_timer(skge))
  2010. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2011. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2012. skge_tx_clean(skge);
  2013. }
  2014. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2015. {
  2016. int err = 0;
  2017. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2018. return -EINVAL;
  2019. dev->mtu = new_mtu;
  2020. if (netif_running(dev)) {
  2021. skge_down(dev);
  2022. skge_up(dev);
  2023. }
  2024. return err;
  2025. }
  2026. static void genesis_set_multicast(struct net_device *dev)
  2027. {
  2028. struct skge_port *skge = netdev_priv(dev);
  2029. struct skge_hw *hw = skge->hw;
  2030. int port = skge->port;
  2031. int i, count = dev->mc_count;
  2032. struct dev_mc_list *list = dev->mc_list;
  2033. u32 mode;
  2034. u8 filter[8];
  2035. mode = xm_read32(hw, port, XM_MODE);
  2036. mode |= XM_MD_ENA_HASH;
  2037. if (dev->flags & IFF_PROMISC)
  2038. mode |= XM_MD_ENA_PROM;
  2039. else
  2040. mode &= ~XM_MD_ENA_PROM;
  2041. if (dev->flags & IFF_ALLMULTI)
  2042. memset(filter, 0xff, sizeof(filter));
  2043. else {
  2044. memset(filter, 0, sizeof(filter));
  2045. for (i = 0; list && i < count; i++, list = list->next) {
  2046. u32 crc = crc32_le(~0, list->dmi_addr, ETH_ALEN);
  2047. u8 bit = 63 - (crc & 63);
  2048. filter[bit/8] |= 1 << (bit%8);
  2049. }
  2050. }
  2051. xm_outhash(hw, port, XM_HSM, filter);
  2052. xm_write32(hw, port, XM_MODE, mode);
  2053. }
  2054. static void yukon_set_multicast(struct net_device *dev)
  2055. {
  2056. struct skge_port *skge = netdev_priv(dev);
  2057. struct skge_hw *hw = skge->hw;
  2058. int port = skge->port;
  2059. struct dev_mc_list *list = dev->mc_list;
  2060. u16 reg;
  2061. u8 filter[8];
  2062. memset(filter, 0, sizeof(filter));
  2063. reg = gma_read16(hw, port, GM_RX_CTRL);
  2064. reg |= GM_RXCR_UCF_ENA;
  2065. if (dev->flags & IFF_PROMISC) /* promiscious */
  2066. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2067. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2068. memset(filter, 0xff, sizeof(filter));
  2069. else if (dev->mc_count == 0) /* no multicast */
  2070. reg &= ~GM_RXCR_MCF_ENA;
  2071. else {
  2072. int i;
  2073. reg |= GM_RXCR_MCF_ENA;
  2074. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2075. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2076. filter[bit/8] |= 1 << (bit%8);
  2077. }
  2078. }
  2079. gma_write16(hw, port, GM_MC_ADDR_H1,
  2080. (u16)filter[0] | ((u16)filter[1] << 8));
  2081. gma_write16(hw, port, GM_MC_ADDR_H2,
  2082. (u16)filter[2] | ((u16)filter[3] << 8));
  2083. gma_write16(hw, port, GM_MC_ADDR_H3,
  2084. (u16)filter[4] | ((u16)filter[5] << 8));
  2085. gma_write16(hw, port, GM_MC_ADDR_H4,
  2086. (u16)filter[6] | ((u16)filter[7] << 8));
  2087. gma_write16(hw, port, GM_RX_CTRL, reg);
  2088. }
  2089. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2090. {
  2091. if (hw->chip_id == CHIP_ID_GENESIS)
  2092. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2093. else
  2094. return (status & GMR_FS_ANY_ERR) ||
  2095. (status & GMR_FS_RX_OK) == 0;
  2096. }
  2097. static void skge_rx_error(struct skge_port *skge, int slot,
  2098. u32 control, u32 status)
  2099. {
  2100. if (netif_msg_rx_err(skge))
  2101. printk(KERN_DEBUG PFX "%s: rx err, slot %d control 0x%x status 0x%x\n",
  2102. skge->netdev->name, slot, control, status);
  2103. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
  2104. || (control & BMU_BBC) > skge->netdev->mtu + VLAN_ETH_HLEN)
  2105. skge->net_stats.rx_length_errors++;
  2106. else {
  2107. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2108. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2109. skge->net_stats.rx_length_errors++;
  2110. if (status & XMR_FS_FRA_ERR)
  2111. skge->net_stats.rx_frame_errors++;
  2112. if (status & XMR_FS_FCS_ERR)
  2113. skge->net_stats.rx_crc_errors++;
  2114. } else {
  2115. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2116. skge->net_stats.rx_length_errors++;
  2117. if (status & GMR_FS_FRAGMENT)
  2118. skge->net_stats.rx_frame_errors++;
  2119. if (status & GMR_FS_CRC_ERR)
  2120. skge->net_stats.rx_crc_errors++;
  2121. }
  2122. }
  2123. }
  2124. static int skge_poll(struct net_device *dev, int *budget)
  2125. {
  2126. struct skge_port *skge = netdev_priv(dev);
  2127. struct skge_hw *hw = skge->hw;
  2128. struct skge_ring *ring = &skge->rx_ring;
  2129. struct skge_element *e;
  2130. unsigned int to_do = min(dev->quota, *budget);
  2131. unsigned int work_done = 0;
  2132. int done;
  2133. static const u32 irqmask[] = { IS_PORT_1, IS_PORT_2 };
  2134. for (e = ring->to_clean; e != ring->to_use && work_done < to_do;
  2135. e = e->next) {
  2136. struct skge_rx_desc *rd = e->desc;
  2137. struct sk_buff *skb = e->skb;
  2138. u32 control, len, status;
  2139. rmb();
  2140. control = rd->control;
  2141. if (control & BMU_OWN)
  2142. break;
  2143. len = control & BMU_BBC;
  2144. e->skb = NULL;
  2145. pci_unmap_single(hw->pdev,
  2146. pci_unmap_addr(e, mapaddr),
  2147. pci_unmap_len(e, maplen),
  2148. PCI_DMA_FROMDEVICE);
  2149. status = rd->status;
  2150. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
  2151. || len > dev->mtu + VLAN_ETH_HLEN
  2152. || bad_phy_status(hw, status)) {
  2153. skge_rx_error(skge, e - ring->start, control, status);
  2154. dev_kfree_skb(skb);
  2155. continue;
  2156. }
  2157. if (netif_msg_rx_status(skge))
  2158. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2159. dev->name, e - ring->start, rd->status, len);
  2160. skb_put(skb, len);
  2161. skb->protocol = eth_type_trans(skb, dev);
  2162. if (skge->rx_csum) {
  2163. skb->csum = le16_to_cpu(rd->csum2);
  2164. skb->ip_summed = CHECKSUM_HW;
  2165. }
  2166. dev->last_rx = jiffies;
  2167. netif_receive_skb(skb);
  2168. ++work_done;
  2169. }
  2170. ring->to_clean = e;
  2171. *budget -= work_done;
  2172. dev->quota -= work_done;
  2173. done = work_done < to_do;
  2174. if (skge_rx_fill(skge))
  2175. done = 0;
  2176. /* restart receiver */
  2177. wmb();
  2178. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
  2179. CSR_START | CSR_IRQ_CL_F);
  2180. if (done) {
  2181. local_irq_disable();
  2182. hw->intr_mask |= irqmask[skge->port];
  2183. /* Order is important since data can get interrupted */
  2184. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2185. __netif_rx_complete(dev);
  2186. local_irq_enable();
  2187. }
  2188. return !done;
  2189. }
  2190. static inline void skge_tx_intr(struct net_device *dev)
  2191. {
  2192. struct skge_port *skge = netdev_priv(dev);
  2193. struct skge_hw *hw = skge->hw;
  2194. struct skge_ring *ring = &skge->tx_ring;
  2195. struct skge_element *e;
  2196. spin_lock(&skge->tx_lock);
  2197. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2198. struct skge_tx_desc *td = e->desc;
  2199. u32 control;
  2200. rmb();
  2201. control = td->control;
  2202. if (control & BMU_OWN)
  2203. break;
  2204. if (unlikely(netif_msg_tx_done(skge)))
  2205. printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n",
  2206. dev->name, e - ring->start, td->status);
  2207. skge_tx_free(hw, e);
  2208. e->skb = NULL;
  2209. ++skge->tx_avail;
  2210. }
  2211. ring->to_clean = e;
  2212. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2213. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  2214. netif_wake_queue(dev);
  2215. spin_unlock(&skge->tx_lock);
  2216. }
  2217. static void skge_mac_parity(struct skge_hw *hw, int port)
  2218. {
  2219. printk(KERN_ERR PFX "%s: mac data parity error\n",
  2220. hw->dev[port] ? hw->dev[port]->name
  2221. : (port == 0 ? "(port A)": "(port B"));
  2222. if (hw->chip_id == CHIP_ID_GENESIS)
  2223. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2224. MFF_CLR_PERR);
  2225. else
  2226. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2227. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2228. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2229. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2230. }
  2231. static void skge_pci_clear(struct skge_hw *hw)
  2232. {
  2233. u16 status;
  2234. pci_read_config_word(hw->pdev, PCI_STATUS, &status);
  2235. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2236. pci_write_config_word(hw->pdev, PCI_STATUS,
  2237. status | PCI_STATUS_ERROR_BITS);
  2238. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2239. }
  2240. static void skge_mac_intr(struct skge_hw *hw, int port)
  2241. {
  2242. if (hw->chip_id == CHIP_ID_GENESIS)
  2243. genesis_mac_intr(hw, port);
  2244. else
  2245. yukon_mac_intr(hw, port);
  2246. }
  2247. /* Handle device specific framing and timeout interrupts */
  2248. static void skge_error_irq(struct skge_hw *hw)
  2249. {
  2250. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2251. if (hw->chip_id == CHIP_ID_GENESIS) {
  2252. /* clear xmac errors */
  2253. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2254. skge_write16(hw, SK_REG(0, RX_MFF_CTRL1), MFF_CLR_INSTAT);
  2255. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2256. skge_write16(hw, SK_REG(0, RX_MFF_CTRL2), MFF_CLR_INSTAT);
  2257. } else {
  2258. /* Timestamp (unused) overflow */
  2259. if (hwstatus & IS_IRQ_TIST_OV)
  2260. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2261. if (hwstatus & IS_IRQ_SENSOR) {
  2262. /* no sensors on 32-bit Yukon */
  2263. if (!(skge_read16(hw, B0_CTST) & CS_BUS_SLOT_SZ)) {
  2264. printk(KERN_ERR PFX "ignoring bogus sensor interrups\n");
  2265. skge_write32(hw, B0_HWE_IMSK,
  2266. IS_ERR_MSK & ~IS_IRQ_SENSOR);
  2267. } else
  2268. printk(KERN_WARNING PFX "sensor interrupt\n");
  2269. }
  2270. }
  2271. if (hwstatus & IS_RAM_RD_PAR) {
  2272. printk(KERN_ERR PFX "Ram read data parity error\n");
  2273. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2274. }
  2275. if (hwstatus & IS_RAM_WR_PAR) {
  2276. printk(KERN_ERR PFX "Ram write data parity error\n");
  2277. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2278. }
  2279. if (hwstatus & IS_M1_PAR_ERR)
  2280. skge_mac_parity(hw, 0);
  2281. if (hwstatus & IS_M2_PAR_ERR)
  2282. skge_mac_parity(hw, 1);
  2283. if (hwstatus & IS_R1_PAR_ERR)
  2284. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2285. if (hwstatus & IS_R2_PAR_ERR)
  2286. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2287. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2288. printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
  2289. hwstatus);
  2290. skge_pci_clear(hw);
  2291. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2292. if (hwstatus & IS_IRQ_STAT) {
  2293. printk(KERN_WARNING PFX "IRQ status %x: still set ignoring hardware errors\n",
  2294. hwstatus);
  2295. hw->intr_mask &= ~IS_HW_ERR;
  2296. }
  2297. }
  2298. }
  2299. /*
  2300. * Interrrupt from PHY are handled in tasklet (soft irq)
  2301. * because accessing phy registers requires spin wait which might
  2302. * cause excess interrupt latency.
  2303. */
  2304. static void skge_extirq(unsigned long data)
  2305. {
  2306. struct skge_hw *hw = (struct skge_hw *) data;
  2307. int port;
  2308. spin_lock(&hw->phy_lock);
  2309. for (port = 0; port < 2; port++) {
  2310. struct net_device *dev = hw->dev[port];
  2311. if (dev && netif_running(dev)) {
  2312. struct skge_port *skge = netdev_priv(dev);
  2313. if (hw->chip_id != CHIP_ID_GENESIS)
  2314. yukon_phy_intr(skge);
  2315. else if (hw->phy_type == SK_PHY_BCOM)
  2316. genesis_bcom_intr(skge);
  2317. }
  2318. }
  2319. spin_unlock(&hw->phy_lock);
  2320. local_irq_disable();
  2321. hw->intr_mask |= IS_EXT_REG;
  2322. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2323. local_irq_enable();
  2324. }
  2325. static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
  2326. {
  2327. struct skge_hw *hw = dev_id;
  2328. u32 status = skge_read32(hw, B0_SP_ISRC);
  2329. if (status == 0 || status == ~0) /* hotplug or shared irq */
  2330. return IRQ_NONE;
  2331. status &= hw->intr_mask;
  2332. if ((status & IS_R1_F) && netif_rx_schedule_prep(hw->dev[0])) {
  2333. status &= ~IS_R1_F;
  2334. hw->intr_mask &= ~IS_R1_F;
  2335. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2336. __netif_rx_schedule(hw->dev[0]);
  2337. }
  2338. if ((status & IS_R2_F) && netif_rx_schedule_prep(hw->dev[1])) {
  2339. status &= ~IS_R2_F;
  2340. hw->intr_mask &= ~IS_R2_F;
  2341. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2342. __netif_rx_schedule(hw->dev[1]);
  2343. }
  2344. if (status & IS_XA1_F)
  2345. skge_tx_intr(hw->dev[0]);
  2346. if (status & IS_XA2_F)
  2347. skge_tx_intr(hw->dev[1]);
  2348. if (status & IS_MAC1)
  2349. skge_mac_intr(hw, 0);
  2350. if (status & IS_MAC2)
  2351. skge_mac_intr(hw, 1);
  2352. if (status & IS_HW_ERR)
  2353. skge_error_irq(hw);
  2354. if (status & IS_EXT_REG) {
  2355. hw->intr_mask &= ~IS_EXT_REG;
  2356. tasklet_schedule(&hw->ext_tasklet);
  2357. }
  2358. if (status)
  2359. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2360. return IRQ_HANDLED;
  2361. }
  2362. #ifdef CONFIG_NET_POLL_CONTROLLER
  2363. static void skge_netpoll(struct net_device *dev)
  2364. {
  2365. struct skge_port *skge = netdev_priv(dev);
  2366. disable_irq(dev->irq);
  2367. skge_intr(dev->irq, skge->hw, NULL);
  2368. enable_irq(dev->irq);
  2369. }
  2370. #endif
  2371. static int skge_set_mac_address(struct net_device *dev, void *p)
  2372. {
  2373. struct skge_port *skge = netdev_priv(dev);
  2374. struct sockaddr *addr = p;
  2375. int err = 0;
  2376. if (!is_valid_ether_addr(addr->sa_data))
  2377. return -EADDRNOTAVAIL;
  2378. skge_down(dev);
  2379. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2380. memcpy_toio(skge->hw->regs + B2_MAC_1 + skge->port*8,
  2381. dev->dev_addr, ETH_ALEN);
  2382. memcpy_toio(skge->hw->regs + B2_MAC_2 + skge->port*8,
  2383. dev->dev_addr, ETH_ALEN);
  2384. if (dev->flags & IFF_UP)
  2385. err = skge_up(dev);
  2386. return err;
  2387. }
  2388. static const struct {
  2389. u8 id;
  2390. const char *name;
  2391. } skge_chips[] = {
  2392. { CHIP_ID_GENESIS, "Genesis" },
  2393. { CHIP_ID_YUKON, "Yukon" },
  2394. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2395. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2396. { CHIP_ID_YUKON_XL, "Yukon-2 XL"},
  2397. { CHIP_ID_YUKON_EC, "YUKON-2 EC"},
  2398. { CHIP_ID_YUKON_FE, "YUKON-2 FE"},
  2399. };
  2400. static const char *skge_board_name(const struct skge_hw *hw)
  2401. {
  2402. int i;
  2403. static char buf[16];
  2404. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2405. if (skge_chips[i].id == hw->chip_id)
  2406. return skge_chips[i].name;
  2407. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2408. return buf;
  2409. }
  2410. /*
  2411. * Setup the board data structure, but don't bring up
  2412. * the port(s)
  2413. */
  2414. static int skge_reset(struct skge_hw *hw)
  2415. {
  2416. u16 ctst;
  2417. u8 t8, mac_cfg;
  2418. int i;
  2419. ctst = skge_read16(hw, B0_CTST);
  2420. /* do a SW reset */
  2421. skge_write8(hw, B0_CTST, CS_RST_SET);
  2422. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2423. /* clear PCI errors, if any */
  2424. skge_pci_clear(hw);
  2425. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2426. /* restore CLK_RUN bits (for Yukon-Lite) */
  2427. skge_write16(hw, B0_CTST,
  2428. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2429. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2430. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2431. hw->pmd_type = skge_read8(hw, B2_PMD_TYP);
  2432. switch (hw->chip_id) {
  2433. case CHIP_ID_GENESIS:
  2434. switch (hw->phy_type) {
  2435. case SK_PHY_XMAC:
  2436. hw->phy_addr = PHY_ADDR_XMAC;
  2437. break;
  2438. case SK_PHY_BCOM:
  2439. hw->phy_addr = PHY_ADDR_BCOM;
  2440. break;
  2441. default:
  2442. printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
  2443. pci_name(hw->pdev), hw->phy_type);
  2444. return -EOPNOTSUPP;
  2445. }
  2446. break;
  2447. case CHIP_ID_YUKON:
  2448. case CHIP_ID_YUKON_LITE:
  2449. case CHIP_ID_YUKON_LP:
  2450. if (hw->phy_type < SK_PHY_MARV_COPPER && hw->pmd_type != 'S')
  2451. hw->phy_type = SK_PHY_MARV_COPPER;
  2452. hw->phy_addr = PHY_ADDR_MARV;
  2453. if (!iscopper(hw))
  2454. hw->phy_type = SK_PHY_MARV_FIBER;
  2455. break;
  2456. default:
  2457. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  2458. pci_name(hw->pdev), hw->chip_id);
  2459. return -EOPNOTSUPP;
  2460. }
  2461. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2462. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2463. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2464. /* read the adapters RAM size */
  2465. t8 = skge_read8(hw, B2_E_0);
  2466. if (hw->chip_id == CHIP_ID_GENESIS) {
  2467. if (t8 == 3) {
  2468. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2469. hw->ram_size = 0x100000;
  2470. hw->ram_offset = 0x80000;
  2471. } else
  2472. hw->ram_size = t8 * 512;
  2473. }
  2474. else if (t8 == 0)
  2475. hw->ram_size = 0x20000;
  2476. else
  2477. hw->ram_size = t8 * 4096;
  2478. if (hw->chip_id == CHIP_ID_GENESIS)
  2479. genesis_init(hw);
  2480. else {
  2481. /* switch power to VCC (WA for VAUX problem) */
  2482. skge_write8(hw, B0_POWER_CTRL,
  2483. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2484. for (i = 0; i < hw->ports; i++) {
  2485. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2486. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2487. }
  2488. }
  2489. /* turn off hardware timer (unused) */
  2490. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2491. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2492. skge_write8(hw, B0_LED, LED_STAT_ON);
  2493. /* enable the Tx Arbiters */
  2494. for (i = 0; i < hw->ports; i++)
  2495. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2496. /* Initialize ram interface */
  2497. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2498. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2499. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2500. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2501. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2502. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2503. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2504. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2505. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2506. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2507. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2508. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2509. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2510. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2511. /* Set interrupt moderation for Transmit only
  2512. * Receive interrupts avoided by NAPI
  2513. */
  2514. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2515. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2516. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2517. hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
  2518. if (hw->ports > 1)
  2519. hw->intr_mask |= IS_PORT_2;
  2520. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2521. if (hw->chip_id != CHIP_ID_GENESIS)
  2522. skge_write8(hw, GMAC_IRQ_MSK, 0);
  2523. spin_lock_bh(&hw->phy_lock);
  2524. for (i = 0; i < hw->ports; i++) {
  2525. if (hw->chip_id == CHIP_ID_GENESIS)
  2526. genesis_reset(hw, i);
  2527. else
  2528. yukon_reset(hw, i);
  2529. }
  2530. spin_unlock_bh(&hw->phy_lock);
  2531. return 0;
  2532. }
  2533. /* Initialize network device */
  2534. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2535. int highmem)
  2536. {
  2537. struct skge_port *skge;
  2538. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2539. if (!dev) {
  2540. printk(KERN_ERR "skge etherdev alloc failed");
  2541. return NULL;
  2542. }
  2543. SET_MODULE_OWNER(dev);
  2544. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2545. dev->open = skge_up;
  2546. dev->stop = skge_down;
  2547. dev->hard_start_xmit = skge_xmit_frame;
  2548. dev->get_stats = skge_get_stats;
  2549. if (hw->chip_id == CHIP_ID_GENESIS)
  2550. dev->set_multicast_list = genesis_set_multicast;
  2551. else
  2552. dev->set_multicast_list = yukon_set_multicast;
  2553. dev->set_mac_address = skge_set_mac_address;
  2554. dev->change_mtu = skge_change_mtu;
  2555. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2556. dev->tx_timeout = skge_tx_timeout;
  2557. dev->watchdog_timeo = TX_WATCHDOG;
  2558. dev->poll = skge_poll;
  2559. dev->weight = NAPI_WEIGHT;
  2560. #ifdef CONFIG_NET_POLL_CONTROLLER
  2561. dev->poll_controller = skge_netpoll;
  2562. #endif
  2563. dev->irq = hw->pdev->irq;
  2564. dev->features = NETIF_F_LLTX;
  2565. if (highmem)
  2566. dev->features |= NETIF_F_HIGHDMA;
  2567. skge = netdev_priv(dev);
  2568. skge->netdev = dev;
  2569. skge->hw = hw;
  2570. skge->msg_enable = netif_msg_init(debug, default_msg);
  2571. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2572. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2573. /* Auto speed and flow control */
  2574. skge->autoneg = AUTONEG_ENABLE;
  2575. skge->flow_control = FLOW_MODE_SYMMETRIC;
  2576. skge->duplex = -1;
  2577. skge->speed = -1;
  2578. skge->advertising = skge_modes(hw);
  2579. hw->dev[port] = dev;
  2580. skge->port = port;
  2581. spin_lock_init(&skge->tx_lock);
  2582. init_timer(&skge->link_check);
  2583. skge->link_check.function = skge_link_timer;
  2584. skge->link_check.data = (unsigned long) skge;
  2585. init_timer(&skge->led_blink);
  2586. skge->led_blink.function = skge_blink_timer;
  2587. skge->led_blink.data = (unsigned long) skge;
  2588. if (hw->chip_id != CHIP_ID_GENESIS) {
  2589. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2590. skge->rx_csum = 1;
  2591. }
  2592. /* read the mac address */
  2593. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2594. /* device is off until link detection */
  2595. netif_carrier_off(dev);
  2596. netif_stop_queue(dev);
  2597. return dev;
  2598. }
  2599. static void __devinit skge_show_addr(struct net_device *dev)
  2600. {
  2601. const struct skge_port *skge = netdev_priv(dev);
  2602. if (netif_msg_probe(skge))
  2603. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2604. dev->name,
  2605. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2606. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2607. }
  2608. static int __devinit skge_probe(struct pci_dev *pdev,
  2609. const struct pci_device_id *ent)
  2610. {
  2611. struct net_device *dev, *dev1;
  2612. struct skge_hw *hw;
  2613. int err, using_dac = 0;
  2614. if ((err = pci_enable_device(pdev))) {
  2615. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2616. pci_name(pdev));
  2617. goto err_out;
  2618. }
  2619. if ((err = pci_request_regions(pdev, DRV_NAME))) {
  2620. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2621. pci_name(pdev));
  2622. goto err_out_disable_pdev;
  2623. }
  2624. pci_set_master(pdev);
  2625. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)))
  2626. using_dac = 1;
  2627. else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2628. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2629. pci_name(pdev));
  2630. goto err_out_free_regions;
  2631. }
  2632. #ifdef __BIG_ENDIAN
  2633. /* byte swap decriptors in hardware */
  2634. {
  2635. u32 reg;
  2636. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2637. reg |= PCI_REV_DESC;
  2638. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2639. }
  2640. #endif
  2641. err = -ENOMEM;
  2642. hw = kmalloc(sizeof(*hw), GFP_KERNEL);
  2643. if (!hw) {
  2644. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2645. pci_name(pdev));
  2646. goto err_out_free_regions;
  2647. }
  2648. memset(hw, 0, sizeof(*hw));
  2649. hw->pdev = pdev;
  2650. spin_lock_init(&hw->phy_lock);
  2651. tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
  2652. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2653. if (!hw->regs) {
  2654. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2655. pci_name(pdev));
  2656. goto err_out_free_hw;
  2657. }
  2658. if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
  2659. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2660. pci_name(pdev), pdev->irq);
  2661. goto err_out_iounmap;
  2662. }
  2663. pci_set_drvdata(pdev, hw);
  2664. err = skge_reset(hw);
  2665. if (err)
  2666. goto err_out_free_irq;
  2667. printk(KERN_INFO PFX "addr 0x%lx irq %d chip %s rev %d\n",
  2668. pci_resource_start(pdev, 0), pdev->irq,
  2669. skge_board_name(hw), hw->chip_rev);
  2670. if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
  2671. goto err_out_led_off;
  2672. if ((err = register_netdev(dev))) {
  2673. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2674. pci_name(pdev));
  2675. goto err_out_free_netdev;
  2676. }
  2677. skge_show_addr(dev);
  2678. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  2679. if (register_netdev(dev1) == 0)
  2680. skge_show_addr(dev1);
  2681. else {
  2682. /* Failure to register second port need not be fatal */
  2683. printk(KERN_WARNING PFX "register of second port failed\n");
  2684. hw->dev[1] = NULL;
  2685. free_netdev(dev1);
  2686. }
  2687. }
  2688. return 0;
  2689. err_out_free_netdev:
  2690. free_netdev(dev);
  2691. err_out_led_off:
  2692. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2693. err_out_free_irq:
  2694. free_irq(pdev->irq, hw);
  2695. err_out_iounmap:
  2696. iounmap(hw->regs);
  2697. err_out_free_hw:
  2698. kfree(hw);
  2699. err_out_free_regions:
  2700. pci_release_regions(pdev);
  2701. err_out_disable_pdev:
  2702. pci_disable_device(pdev);
  2703. pci_set_drvdata(pdev, NULL);
  2704. err_out:
  2705. return err;
  2706. }
  2707. static void __devexit skge_remove(struct pci_dev *pdev)
  2708. {
  2709. struct skge_hw *hw = pci_get_drvdata(pdev);
  2710. struct net_device *dev0, *dev1;
  2711. if (!hw)
  2712. return;
  2713. if ((dev1 = hw->dev[1]))
  2714. unregister_netdev(dev1);
  2715. dev0 = hw->dev[0];
  2716. unregister_netdev(dev0);
  2717. tasklet_kill(&hw->ext_tasklet);
  2718. free_irq(pdev->irq, hw);
  2719. pci_release_regions(pdev);
  2720. pci_disable_device(pdev);
  2721. if (dev1)
  2722. free_netdev(dev1);
  2723. free_netdev(dev0);
  2724. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2725. iounmap(hw->regs);
  2726. kfree(hw);
  2727. pci_set_drvdata(pdev, NULL);
  2728. }
  2729. #ifdef CONFIG_PM
  2730. static int skge_suspend(struct pci_dev *pdev, u32 state)
  2731. {
  2732. struct skge_hw *hw = pci_get_drvdata(pdev);
  2733. int i, wol = 0;
  2734. for (i = 0; i < 2; i++) {
  2735. struct net_device *dev = hw->dev[i];
  2736. if (dev) {
  2737. struct skge_port *skge = netdev_priv(dev);
  2738. if (netif_running(dev)) {
  2739. netif_carrier_off(dev);
  2740. skge_down(dev);
  2741. }
  2742. netif_device_detach(dev);
  2743. wol |= skge->wol;
  2744. }
  2745. }
  2746. pci_save_state(pdev);
  2747. pci_enable_wake(pdev, state, wol);
  2748. pci_disable_device(pdev);
  2749. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2750. return 0;
  2751. }
  2752. static int skge_resume(struct pci_dev *pdev)
  2753. {
  2754. struct skge_hw *hw = pci_get_drvdata(pdev);
  2755. int i;
  2756. pci_set_power_state(pdev, PCI_D0);
  2757. pci_restore_state(pdev);
  2758. pci_enable_wake(pdev, PCI_D0, 0);
  2759. skge_reset(hw);
  2760. for (i = 0; i < 2; i++) {
  2761. struct net_device *dev = hw->dev[i];
  2762. if (dev) {
  2763. netif_device_attach(dev);
  2764. if (netif_running(dev))
  2765. skge_up(dev);
  2766. }
  2767. }
  2768. return 0;
  2769. }
  2770. #endif
  2771. static struct pci_driver skge_driver = {
  2772. .name = DRV_NAME,
  2773. .id_table = skge_id_table,
  2774. .probe = skge_probe,
  2775. .remove = __devexit_p(skge_remove),
  2776. #ifdef CONFIG_PM
  2777. .suspend = skge_suspend,
  2778. .resume = skge_resume,
  2779. #endif
  2780. };
  2781. static int __init skge_init_module(void)
  2782. {
  2783. return pci_module_init(&skge_driver);
  2784. }
  2785. static void __exit skge_cleanup_module(void)
  2786. {
  2787. pci_unregister_driver(&skge_driver);
  2788. }
  2789. module_init(skge_init_module);
  2790. module_exit(skge_cleanup_module);