intelfbhw.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/config.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/errno.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/tty.h>
  27. #include <linux/slab.h>
  28. #include <linux/delay.h>
  29. #include <linux/fb.h>
  30. #include <linux/ioport.h>
  31. #include <linux/init.h>
  32. #include <linux/pci.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/pagemap.h>
  35. #include <asm/io.h>
  36. #include "intelfb.h"
  37. #include "intelfbhw.h"
  38. struct pll_min_max {
  39. int min_m, max_m;
  40. int min_m1, max_m1;
  41. int min_m2, max_m2;
  42. int min_n, max_n;
  43. int min_p, max_p;
  44. int min_p1, max_p1;
  45. int min_vco_freq, max_vco_freq;
  46. int p_transition_clock;
  47. int p_inc_lo, p_inc_hi;
  48. };
  49. #define PLLS_I8xx 0
  50. #define PLLS_I9xx 1
  51. #define PLLS_MAX 2
  52. static struct pll_min_max plls[PLLS_MAX] = {
  53. { 108, 140, 18, 26, 6, 16, 3, 16, 4, 128, 0, 31, 930000, 1400000, 165000, 4, 22 }, //I8xx
  54. { 75, 120, 10, 20, 5, 9, 4, 7, 5, 80, 1, 8, 930000, 2800000, 200000, 10, 5 } //I9xx
  55. };
  56. int
  57. intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  58. {
  59. u32 tmp;
  60. if (!pdev || !dinfo)
  61. return 1;
  62. switch (pdev->device) {
  63. case PCI_DEVICE_ID_INTEL_830M:
  64. dinfo->name = "Intel(R) 830M";
  65. dinfo->chipset = INTEL_830M;
  66. dinfo->mobile = 1;
  67. dinfo->pll_index = PLLS_I8xx;
  68. return 0;
  69. case PCI_DEVICE_ID_INTEL_845G:
  70. dinfo->name = "Intel(R) 845G";
  71. dinfo->chipset = INTEL_845G;
  72. dinfo->mobile = 0;
  73. dinfo->pll_index = PLLS_I8xx;
  74. return 0;
  75. case PCI_DEVICE_ID_INTEL_85XGM:
  76. tmp = 0;
  77. dinfo->mobile = 1;
  78. dinfo->pll_index = PLLS_I8xx;
  79. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  80. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  81. INTEL_85X_VARIANT_MASK) {
  82. case INTEL_VAR_855GME:
  83. dinfo->name = "Intel(R) 855GME";
  84. dinfo->chipset = INTEL_855GME;
  85. return 0;
  86. case INTEL_VAR_855GM:
  87. dinfo->name = "Intel(R) 855GM";
  88. dinfo->chipset = INTEL_855GM;
  89. return 0;
  90. case INTEL_VAR_852GME:
  91. dinfo->name = "Intel(R) 852GME";
  92. dinfo->chipset = INTEL_852GME;
  93. return 0;
  94. case INTEL_VAR_852GM:
  95. dinfo->name = "Intel(R) 852GM";
  96. dinfo->chipset = INTEL_852GM;
  97. return 0;
  98. default:
  99. dinfo->name = "Intel(R) 852GM/855GM";
  100. dinfo->chipset = INTEL_85XGM;
  101. return 0;
  102. }
  103. break;
  104. case PCI_DEVICE_ID_INTEL_865G:
  105. dinfo->name = "Intel(R) 865G";
  106. dinfo->chipset = INTEL_865G;
  107. dinfo->mobile = 0;
  108. dinfo->pll_index = PLLS_I8xx;
  109. return 0;
  110. case PCI_DEVICE_ID_INTEL_915G:
  111. dinfo->name = "Intel(R) 915G";
  112. dinfo->chipset = INTEL_915G;
  113. dinfo->mobile = 0;
  114. dinfo->pll_index = PLLS_I9xx;
  115. return 0;
  116. case PCI_DEVICE_ID_INTEL_915GM:
  117. dinfo->name = "Intel(R) 915GM";
  118. dinfo->chipset = INTEL_915GM;
  119. dinfo->mobile = 1;
  120. dinfo->pll_index = PLLS_I9xx;
  121. return 0;
  122. case PCI_DEVICE_ID_INTEL_945G:
  123. dinfo->name = "Intel(R) 945G";
  124. dinfo->chipset = INTEL_945G;
  125. dinfo->mobile = 0;
  126. dinfo->pll_index = PLLS_I9xx;
  127. return 0;
  128. case PCI_DEVICE_ID_INTEL_945GM:
  129. dinfo->name = "Intel(R) 945GM";
  130. dinfo->chipset = INTEL_945GM;
  131. dinfo->mobile = 1;
  132. dinfo->pll_index = PLLS_I9xx;
  133. return 0;
  134. default:
  135. return 1;
  136. }
  137. }
  138. int
  139. intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  140. int *stolen_size)
  141. {
  142. struct pci_dev *bridge_dev;
  143. u16 tmp;
  144. if (!pdev || !aperture_size || !stolen_size)
  145. return 1;
  146. /* Find the bridge device. It is always 0:0.0 */
  147. if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
  148. ERR_MSG("cannot find bridge device\n");
  149. return 1;
  150. }
  151. /* Get the fb aperture size and "stolen" memory amount. */
  152. tmp = 0;
  153. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  154. switch (pdev->device) {
  155. case PCI_DEVICE_ID_INTEL_830M:
  156. case PCI_DEVICE_ID_INTEL_845G:
  157. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  158. *aperture_size = MB(64);
  159. else
  160. *aperture_size = MB(128);
  161. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  162. case INTEL_830_GMCH_GMS_STOLEN_512:
  163. *stolen_size = KB(512) - KB(132);
  164. return 0;
  165. case INTEL_830_GMCH_GMS_STOLEN_1024:
  166. *stolen_size = MB(1) - KB(132);
  167. return 0;
  168. case INTEL_830_GMCH_GMS_STOLEN_8192:
  169. *stolen_size = MB(8) - KB(132);
  170. return 0;
  171. case INTEL_830_GMCH_GMS_LOCAL:
  172. ERR_MSG("only local memory found\n");
  173. return 1;
  174. case INTEL_830_GMCH_GMS_DISABLED:
  175. ERR_MSG("video memory is disabled\n");
  176. return 1;
  177. default:
  178. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  179. tmp & INTEL_830_GMCH_GMS_MASK);
  180. return 1;
  181. }
  182. break;
  183. default:
  184. *aperture_size = MB(128);
  185. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  186. case INTEL_855_GMCH_GMS_STOLEN_1M:
  187. *stolen_size = MB(1) - KB(132);
  188. return 0;
  189. case INTEL_855_GMCH_GMS_STOLEN_4M:
  190. *stolen_size = MB(4) - KB(132);
  191. return 0;
  192. case INTEL_855_GMCH_GMS_STOLEN_8M:
  193. *stolen_size = MB(8) - KB(132);
  194. return 0;
  195. case INTEL_855_GMCH_GMS_STOLEN_16M:
  196. *stolen_size = MB(16) - KB(132);
  197. return 0;
  198. case INTEL_855_GMCH_GMS_STOLEN_32M:
  199. *stolen_size = MB(32) - KB(132);
  200. return 0;
  201. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  202. *stolen_size = MB(48) - KB(132);
  203. return 0;
  204. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  205. *stolen_size = MB(64) - KB(132);
  206. return 0;
  207. case INTEL_855_GMCH_GMS_DISABLED:
  208. ERR_MSG("video memory is disabled\n");
  209. return 0;
  210. default:
  211. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  212. tmp & INTEL_855_GMCH_GMS_MASK);
  213. return 1;
  214. }
  215. }
  216. }
  217. int
  218. intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  219. {
  220. int dvo = 0;
  221. if (INREG(LVDS) & PORT_ENABLE)
  222. dvo |= LVDS_PORT;
  223. if (INREG(DVOA) & PORT_ENABLE)
  224. dvo |= DVOA_PORT;
  225. if (INREG(DVOB) & PORT_ENABLE)
  226. dvo |= DVOB_PORT;
  227. if (INREG(DVOC) & PORT_ENABLE)
  228. dvo |= DVOC_PORT;
  229. return dvo;
  230. }
  231. const char *
  232. intelfbhw_dvo_to_string(int dvo)
  233. {
  234. if (dvo & DVOA_PORT)
  235. return "DVO port A";
  236. else if (dvo & DVOB_PORT)
  237. return "DVO port B";
  238. else if (dvo & DVOC_PORT)
  239. return "DVO port C";
  240. else if (dvo & LVDS_PORT)
  241. return "LVDS port";
  242. else
  243. return NULL;
  244. }
  245. int
  246. intelfbhw_validate_mode(struct intelfb_info *dinfo,
  247. struct fb_var_screeninfo *var)
  248. {
  249. int bytes_per_pixel;
  250. int tmp;
  251. #if VERBOSE > 0
  252. DBG_MSG("intelfbhw_validate_mode\n");
  253. #endif
  254. bytes_per_pixel = var->bits_per_pixel / 8;
  255. if (bytes_per_pixel == 3)
  256. bytes_per_pixel = 4;
  257. /* Check if enough video memory. */
  258. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  259. if (tmp > dinfo->fb.size) {
  260. WRN_MSG("Not enough video ram for mode "
  261. "(%d KByte vs %d KByte).\n",
  262. BtoKB(tmp), BtoKB(dinfo->fb.size));
  263. return 1;
  264. }
  265. /* Check if x/y limits are OK. */
  266. if (var->xres - 1 > HACTIVE_MASK) {
  267. WRN_MSG("X resolution too large (%d vs %d).\n",
  268. var->xres, HACTIVE_MASK + 1);
  269. return 1;
  270. }
  271. if (var->yres - 1 > VACTIVE_MASK) {
  272. WRN_MSG("Y resolution too large (%d vs %d).\n",
  273. var->yres, VACTIVE_MASK + 1);
  274. return 1;
  275. }
  276. /* Check for interlaced/doublescan modes. */
  277. if (var->vmode & FB_VMODE_INTERLACED) {
  278. WRN_MSG("Mode is interlaced.\n");
  279. return 1;
  280. }
  281. if (var->vmode & FB_VMODE_DOUBLE) {
  282. WRN_MSG("Mode is double-scan.\n");
  283. return 1;
  284. }
  285. /* Check if clock is OK. */
  286. tmp = 1000000000 / var->pixclock;
  287. if (tmp < MIN_CLOCK) {
  288. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  289. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  290. return 1;
  291. }
  292. if (tmp > MAX_CLOCK) {
  293. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  294. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  295. return 1;
  296. }
  297. return 0;
  298. }
  299. int
  300. intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  301. {
  302. struct intelfb_info *dinfo = GET_DINFO(info);
  303. u32 offset, xoffset, yoffset;
  304. #if VERBOSE > 0
  305. DBG_MSG("intelfbhw_pan_display\n");
  306. #endif
  307. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  308. yoffset = var->yoffset;
  309. if ((xoffset + var->xres > var->xres_virtual) ||
  310. (yoffset + var->yres > var->yres_virtual))
  311. return -EINVAL;
  312. offset = (yoffset * dinfo->pitch) +
  313. (xoffset * var->bits_per_pixel) / 8;
  314. offset += dinfo->fb.offset << 12;
  315. OUTREG(DSPABASE, offset);
  316. return 0;
  317. }
  318. /* Blank the screen. */
  319. void
  320. intelfbhw_do_blank(int blank, struct fb_info *info)
  321. {
  322. struct intelfb_info *dinfo = GET_DINFO(info);
  323. u32 tmp;
  324. #if VERBOSE > 0
  325. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  326. #endif
  327. /* Turn plane A on or off */
  328. tmp = INREG(DSPACNTR);
  329. if (blank)
  330. tmp &= ~DISPPLANE_PLANE_ENABLE;
  331. else
  332. tmp |= DISPPLANE_PLANE_ENABLE;
  333. OUTREG(DSPACNTR, tmp);
  334. /* Flush */
  335. tmp = INREG(DSPABASE);
  336. OUTREG(DSPABASE, tmp);
  337. /* Turn off/on the HW cursor */
  338. #if VERBOSE > 0
  339. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  340. #endif
  341. if (dinfo->cursor_on) {
  342. if (blank) {
  343. intelfbhw_cursor_hide(dinfo);
  344. } else {
  345. intelfbhw_cursor_show(dinfo);
  346. }
  347. dinfo->cursor_on = 1;
  348. }
  349. dinfo->cursor_blanked = blank;
  350. /* Set DPMS level */
  351. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  352. switch (blank) {
  353. case FB_BLANK_UNBLANK:
  354. case FB_BLANK_NORMAL:
  355. tmp |= ADPA_DPMS_D0;
  356. break;
  357. case FB_BLANK_VSYNC_SUSPEND:
  358. tmp |= ADPA_DPMS_D1;
  359. break;
  360. case FB_BLANK_HSYNC_SUSPEND:
  361. tmp |= ADPA_DPMS_D2;
  362. break;
  363. case FB_BLANK_POWERDOWN:
  364. tmp |= ADPA_DPMS_D3;
  365. break;
  366. }
  367. OUTREG(ADPA, tmp);
  368. return;
  369. }
  370. void
  371. intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  372. unsigned red, unsigned green, unsigned blue,
  373. unsigned transp)
  374. {
  375. #if VERBOSE > 0
  376. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  377. regno, red, green, blue);
  378. #endif
  379. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  380. PALETTE_A : PALETTE_B;
  381. OUTREG(palette_reg + (regno << 2),
  382. (red << PALETTE_8_RED_SHIFT) |
  383. (green << PALETTE_8_GREEN_SHIFT) |
  384. (blue << PALETTE_8_BLUE_SHIFT));
  385. }
  386. int
  387. intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  388. int flag)
  389. {
  390. int i;
  391. #if VERBOSE > 0
  392. DBG_MSG("intelfbhw_read_hw_state\n");
  393. #endif
  394. if (!hw || !dinfo)
  395. return -1;
  396. /* Read in as much of the HW state as possible. */
  397. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  398. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  399. hw->vga_pd = INREG(VGAPD);
  400. hw->dpll_a = INREG(DPLL_A);
  401. hw->dpll_b = INREG(DPLL_B);
  402. hw->fpa0 = INREG(FPA0);
  403. hw->fpa1 = INREG(FPA1);
  404. hw->fpb0 = INREG(FPB0);
  405. hw->fpb1 = INREG(FPB1);
  406. if (flag == 1)
  407. return flag;
  408. #if 0
  409. /* This seems to be a problem with the 852GM/855GM */
  410. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  411. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  412. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  413. }
  414. #endif
  415. if (flag == 2)
  416. return flag;
  417. hw->htotal_a = INREG(HTOTAL_A);
  418. hw->hblank_a = INREG(HBLANK_A);
  419. hw->hsync_a = INREG(HSYNC_A);
  420. hw->vtotal_a = INREG(VTOTAL_A);
  421. hw->vblank_a = INREG(VBLANK_A);
  422. hw->vsync_a = INREG(VSYNC_A);
  423. hw->src_size_a = INREG(SRC_SIZE_A);
  424. hw->bclrpat_a = INREG(BCLRPAT_A);
  425. hw->htotal_b = INREG(HTOTAL_B);
  426. hw->hblank_b = INREG(HBLANK_B);
  427. hw->hsync_b = INREG(HSYNC_B);
  428. hw->vtotal_b = INREG(VTOTAL_B);
  429. hw->vblank_b = INREG(VBLANK_B);
  430. hw->vsync_b = INREG(VSYNC_B);
  431. hw->src_size_b = INREG(SRC_SIZE_B);
  432. hw->bclrpat_b = INREG(BCLRPAT_B);
  433. if (flag == 3)
  434. return flag;
  435. hw->adpa = INREG(ADPA);
  436. hw->dvoa = INREG(DVOA);
  437. hw->dvob = INREG(DVOB);
  438. hw->dvoc = INREG(DVOC);
  439. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  440. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  441. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  442. hw->lvds = INREG(LVDS);
  443. if (flag == 4)
  444. return flag;
  445. hw->pipe_a_conf = INREG(PIPEACONF);
  446. hw->pipe_b_conf = INREG(PIPEBCONF);
  447. hw->disp_arb = INREG(DISPARB);
  448. if (flag == 5)
  449. return flag;
  450. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  451. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  452. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  453. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  454. if (flag == 6)
  455. return flag;
  456. for (i = 0; i < 4; i++) {
  457. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  458. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  459. }
  460. if (flag == 7)
  461. return flag;
  462. hw->cursor_size = INREG(CURSOR_SIZE);
  463. if (flag == 8)
  464. return flag;
  465. hw->disp_a_ctrl = INREG(DSPACNTR);
  466. hw->disp_b_ctrl = INREG(DSPBCNTR);
  467. hw->disp_a_base = INREG(DSPABASE);
  468. hw->disp_b_base = INREG(DSPBBASE);
  469. hw->disp_a_stride = INREG(DSPASTRIDE);
  470. hw->disp_b_stride = INREG(DSPBSTRIDE);
  471. if (flag == 9)
  472. return flag;
  473. hw->vgacntrl = INREG(VGACNTRL);
  474. if (flag == 10)
  475. return flag;
  476. hw->add_id = INREG(ADD_ID);
  477. if (flag == 11)
  478. return flag;
  479. for (i = 0; i < 7; i++) {
  480. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  481. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  482. if (i < 3)
  483. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  484. }
  485. for (i = 0; i < 8; i++)
  486. hw->fence[i] = INREG(FENCE + (i << 2));
  487. hw->instpm = INREG(INSTPM);
  488. hw->mem_mode = INREG(MEM_MODE);
  489. hw->fw_blc_0 = INREG(FW_BLC_0);
  490. hw->fw_blc_1 = INREG(FW_BLC_1);
  491. return 0;
  492. }
  493. static int calc_vclock3(int index, int m, int n, int p)
  494. {
  495. if (p == 0 || n == 0)
  496. return 0;
  497. return PLL_REFCLK * m / n / p;
  498. }
  499. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2)
  500. {
  501. switch(index)
  502. {
  503. case PLLS_I9xx:
  504. if (p1 == 0)
  505. return 0;
  506. return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
  507. ((p1)) * (p2 ? 10 : 5)));
  508. case PLLS_I8xx:
  509. default:
  510. return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
  511. ((p1+2) * (1 << (p2 + 1)))));
  512. }
  513. }
  514. void
  515. intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
  516. {
  517. #if REGDUMP
  518. int i, m1, m2, n, p1, p2;
  519. int index = dinfo->pll_index;
  520. DBG_MSG("intelfbhw_print_hw_state\n");
  521. if (!hw || !dinfo)
  522. return;
  523. /* Read in as much of the HW state as possible. */
  524. printk("hw state dump start\n");
  525. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  526. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  527. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  528. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  529. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  530. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  531. if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
  532. p1 = 0;
  533. else
  534. p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
  535. p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
  536. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  537. m1, m2, n, p1, p2);
  538. printk(" VGA0: clock is %d\n",
  539. calc_vclock(index, m1, m2, n, p1, p2));
  540. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  541. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  542. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  543. if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
  544. p1 = 0;
  545. else
  546. p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
  547. p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
  548. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  549. m1, m2, n, p1, p2);
  550. printk(" VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
  551. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  552. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  553. printk(" FPA0: 0x%08x\n", hw->fpa0);
  554. printk(" FPA1: 0x%08x\n", hw->fpa1);
  555. printk(" FPB0: 0x%08x\n", hw->fpb0);
  556. printk(" FPB1: 0x%08x\n", hw->fpb1);
  557. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  558. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  559. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  560. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  561. p1 = 0;
  562. else
  563. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  564. p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  565. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  566. m1, m2, n, p1, p2);
  567. printk(" PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
  568. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  569. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  570. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  571. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  572. p1 = 0;
  573. else
  574. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  575. p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  576. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  577. m1, m2, n, p1, p2);
  578. printk(" PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
  579. #if 0
  580. printk(" PALETTE_A:\n");
  581. for (i = 0; i < PALETTE_8_ENTRIES)
  582. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  583. printk(" PALETTE_B:\n");
  584. for (i = 0; i < PALETTE_8_ENTRIES)
  585. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  586. #endif
  587. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  588. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  589. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  590. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  591. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  592. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  593. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  594. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  595. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  596. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  597. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  598. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  599. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  600. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  601. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  602. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  603. printk(" ADPA: 0x%08x\n", hw->adpa);
  604. printk(" DVOA: 0x%08x\n", hw->dvoa);
  605. printk(" DVOB: 0x%08x\n", hw->dvob);
  606. printk(" DVOC: 0x%08x\n", hw->dvoc);
  607. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  608. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  609. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  610. printk(" LVDS: 0x%08x\n", hw->lvds);
  611. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  612. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  613. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  614. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  615. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  616. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  617. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  618. printk(" CURSOR_A_PALETTE: ");
  619. for (i = 0; i < 4; i++) {
  620. printk("0x%08x", hw->cursor_a_palette[i]);
  621. if (i < 3)
  622. printk(", ");
  623. }
  624. printk("\n");
  625. printk(" CURSOR_B_PALETTE: ");
  626. for (i = 0; i < 4; i++) {
  627. printk("0x%08x", hw->cursor_b_palette[i]);
  628. if (i < 3)
  629. printk(", ");
  630. }
  631. printk("\n");
  632. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  633. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  634. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  635. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  636. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  637. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  638. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  639. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  640. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  641. for (i = 0; i < 7; i++) {
  642. printk(" SWF0%d 0x%08x\n", i,
  643. hw->swf0x[i]);
  644. }
  645. for (i = 0; i < 7; i++) {
  646. printk(" SWF1%d 0x%08x\n", i,
  647. hw->swf1x[i]);
  648. }
  649. for (i = 0; i < 3; i++) {
  650. printk(" SWF3%d 0x%08x\n", i,
  651. hw->swf3x[i]);
  652. }
  653. for (i = 0; i < 8; i++)
  654. printk(" FENCE%d 0x%08x\n", i,
  655. hw->fence[i]);
  656. printk(" INSTPM 0x%08x\n", hw->instpm);
  657. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  658. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  659. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  660. printk("hw state dump end\n");
  661. #endif
  662. }
  663. /* Split the M parameter into M1 and M2. */
  664. static int
  665. splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
  666. {
  667. int m1, m2;
  668. int testm;
  669. /* no point optimising too much - brute force m */
  670. for (m1 = plls[index].min_m1; m1 < plls[index].max_m1+1; m1++) {
  671. for (m2 = plls[index].min_m2; m2 < plls[index].max_m2+1; m2++) {
  672. testm = ( 5 * ( m1 + 2 )) + (m2 + 2);
  673. if (testm == m) {
  674. *retm1 = (unsigned int)m1;
  675. *retm2 = (unsigned int)m2;
  676. return 0;
  677. }
  678. }
  679. }
  680. return 1;
  681. }
  682. /* Split the P parameter into P1 and P2. */
  683. static int
  684. splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
  685. {
  686. int p1, p2;
  687. if (index == PLLS_I9xx) {
  688. switch (p) {
  689. case 10:
  690. p1 = 2;
  691. p2 = 0;
  692. break;
  693. case 20:
  694. p1 = 1;
  695. p2 = 0;
  696. break;
  697. default:
  698. p1 = (p / 10) + 1;
  699. p2 = 0;
  700. break;
  701. }
  702. *retp1 = (unsigned int)p1;
  703. *retp2 = (unsigned int)p2;
  704. return 0;
  705. }
  706. if (index == PLLS_I8xx) {
  707. if (p % 4 == 0)
  708. p2 = 1;
  709. else
  710. p2 = 0;
  711. p1 = (p / (1 << (p2 + 1))) - 2;
  712. if (p % 4 == 0 && p1 < plls[index].min_p1) {
  713. p2 = 0;
  714. p1 = (p / (1 << (p2 + 1))) - 2;
  715. }
  716. if (p1 < plls[index].min_p1 ||
  717. p1 > plls[index].max_p1 ||
  718. (p1 + 2) * (1 << (p2 + 1)) != p) {
  719. return 1;
  720. } else {
  721. *retp1 = (unsigned int)p1;
  722. *retp2 = (unsigned int)p2;
  723. return 0;
  724. }
  725. }
  726. return 1;
  727. }
  728. static int
  729. calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
  730. u32 *retp2, u32 *retclock)
  731. {
  732. u32 m1, m2, n, p1, p2, n1, testm;
  733. u32 f_vco, p, p_best = 0, m, f_out = 0;
  734. u32 err_max, err_target, err_best = 10000000;
  735. u32 n_best = 0, m_best = 0, f_best, f_err;
  736. u32 p_min, p_max, p_inc, div_min, div_max;
  737. /* Accept 0.5% difference, but aim for 0.1% */
  738. err_max = 5 * clock / 1000;
  739. err_target = clock / 1000;
  740. DBG_MSG("Clock is %d\n", clock);
  741. div_max = plls[index].max_vco_freq / clock;
  742. if (index == PLLS_I9xx)
  743. div_min = 5;
  744. else
  745. div_min = ROUND_UP_TO(plls[index].min_vco_freq, clock) / clock;
  746. if (clock <= plls[index].p_transition_clock)
  747. p_inc = plls[index].p_inc_lo;
  748. else
  749. p_inc = plls[index].p_inc_hi;
  750. p_min = ROUND_UP_TO(div_min, p_inc);
  751. p_max = ROUND_DOWN_TO(div_max, p_inc);
  752. if (p_min < plls[index].min_p)
  753. p_min = plls[index].min_p;
  754. if (p_max > plls[index].max_p)
  755. p_max = plls[index].max_p;
  756. if (clock < PLL_REFCLK && index == PLLS_I9xx) {
  757. p_min = 10;
  758. p_max = 20;
  759. /* this makes 640x480 work it really shouldn't
  760. - SOMEONE WITHOUT DOCS WOZ HERE */
  761. if (clock < 30000)
  762. clock *= 4;
  763. }
  764. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  765. p = p_min;
  766. do {
  767. if (splitp(index, p, &p1, &p2)) {
  768. WRN_MSG("cannot split p = %d\n", p);
  769. p += p_inc;
  770. continue;
  771. }
  772. n = plls[index].min_n;
  773. f_vco = clock * p;
  774. do {
  775. m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
  776. if (m < plls[index].min_m)
  777. m = plls[index].min_m + 1;
  778. if (m > plls[index].max_m)
  779. m = plls[index].max_m - 1;
  780. for (testm = m - 1; testm <= m; testm++) {
  781. f_out = calc_vclock3(index, m, n, p);
  782. if (splitm(index, m, &m1, &m2)) {
  783. WRN_MSG("cannot split m = %d\n", m);
  784. n++;
  785. continue;
  786. }
  787. if (clock > f_out)
  788. f_err = clock - f_out;
  789. else/* slightly bias the error for bigger clocks */
  790. f_err = f_out - clock + 1;
  791. if (f_err < err_best) {
  792. m_best = m;
  793. n_best = n;
  794. p_best = p;
  795. f_best = f_out;
  796. err_best = f_err;
  797. }
  798. }
  799. n++;
  800. } while ((n <= plls[index].max_n) && (f_out >= clock));
  801. p += p_inc;
  802. } while ((p <= p_max));
  803. if (!m_best) {
  804. WRN_MSG("cannot find parameters for clock %d\n", clock);
  805. return 1;
  806. }
  807. m = m_best;
  808. n = n_best;
  809. p = p_best;
  810. splitm(index, m, &m1, &m2);
  811. splitp(index, p, &p1, &p2);
  812. n1 = n - 2;
  813. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  814. "f: %d (%d), VCO: %d\n",
  815. m, m1, m2, n, n1, p, p1, p2,
  816. calc_vclock3(index, m, n, p),
  817. calc_vclock(index, m1, m2, n1, p1, p2),
  818. calc_vclock3(index, m, n, p) * p);
  819. *retm1 = m1;
  820. *retm2 = m2;
  821. *retn = n1;
  822. *retp1 = p1;
  823. *retp2 = p2;
  824. *retclock = calc_vclock(index, m1, m2, n1, p1, p2);
  825. return 0;
  826. }
  827. static __inline__ int
  828. check_overflow(u32 value, u32 limit, const char *description)
  829. {
  830. if (value > limit) {
  831. WRN_MSG("%s value %d exceeds limit %d\n",
  832. description, value, limit);
  833. return 1;
  834. }
  835. return 0;
  836. }
  837. /* It is assumed that hw is filled in with the initial state information. */
  838. int
  839. intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  840. struct fb_var_screeninfo *var)
  841. {
  842. int pipe = PIPE_A;
  843. u32 *dpll, *fp0, *fp1;
  844. u32 m1, m2, n, p1, p2, clock_target, clock;
  845. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  846. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  847. u32 vsync_pol, hsync_pol;
  848. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  849. DBG_MSG("intelfbhw_mode_to_hw\n");
  850. /* Disable VGA */
  851. hw->vgacntrl |= VGA_DISABLE;
  852. /* Check whether pipe A or pipe B is enabled. */
  853. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  854. pipe = PIPE_A;
  855. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  856. pipe = PIPE_B;
  857. /* Set which pipe's registers will be set. */
  858. if (pipe == PIPE_B) {
  859. dpll = &hw->dpll_b;
  860. fp0 = &hw->fpb0;
  861. fp1 = &hw->fpb1;
  862. hs = &hw->hsync_b;
  863. hb = &hw->hblank_b;
  864. ht = &hw->htotal_b;
  865. vs = &hw->vsync_b;
  866. vb = &hw->vblank_b;
  867. vt = &hw->vtotal_b;
  868. ss = &hw->src_size_b;
  869. pipe_conf = &hw->pipe_b_conf;
  870. } else {
  871. dpll = &hw->dpll_a;
  872. fp0 = &hw->fpa0;
  873. fp1 = &hw->fpa1;
  874. hs = &hw->hsync_a;
  875. hb = &hw->hblank_a;
  876. ht = &hw->htotal_a;
  877. vs = &hw->vsync_a;
  878. vb = &hw->vblank_a;
  879. vt = &hw->vtotal_a;
  880. ss = &hw->src_size_a;
  881. pipe_conf = &hw->pipe_a_conf;
  882. }
  883. /* Use ADPA register for sync control. */
  884. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  885. /* sync polarity */
  886. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  887. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  888. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  889. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  890. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  891. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  892. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  893. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  894. /* Connect correct pipe to the analog port DAC */
  895. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  896. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  897. /* Set DPMS state to D0 (on) */
  898. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  899. hw->adpa |= ADPA_DPMS_D0;
  900. hw->adpa |= ADPA_DAC_ENABLE;
  901. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  902. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  903. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  904. /* Desired clock in kHz */
  905. clock_target = 1000000000 / var->pixclock;
  906. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
  907. &n, &p1, &p2, &clock)) {
  908. WRN_MSG("calc_pll_params failed\n");
  909. return 1;
  910. }
  911. /* Check for overflow. */
  912. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  913. return 1;
  914. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  915. return 1;
  916. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  917. return 1;
  918. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  919. return 1;
  920. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  921. return 1;
  922. *dpll &= ~DPLL_P1_FORCE_DIV2;
  923. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  924. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  925. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  926. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  927. (m1 << FP_M1_DIVISOR_SHIFT) |
  928. (m2 << FP_M2_DIVISOR_SHIFT);
  929. *fp1 = *fp0;
  930. hw->dvob &= ~PORT_ENABLE;
  931. hw->dvoc &= ~PORT_ENABLE;
  932. /* Use display plane A. */
  933. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  934. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  935. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  936. switch (intelfb_var_to_depth(var)) {
  937. case 8:
  938. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  939. break;
  940. case 15:
  941. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  942. break;
  943. case 16:
  944. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  945. break;
  946. case 24:
  947. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  948. break;
  949. }
  950. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  951. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  952. /* Set CRTC registers. */
  953. hactive = var->xres;
  954. hsync_start = hactive + var->right_margin;
  955. hsync_end = hsync_start + var->hsync_len;
  956. htotal = hsync_end + var->left_margin;
  957. hblank_start = hactive;
  958. hblank_end = htotal;
  959. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  960. hactive, hsync_start, hsync_end, htotal, hblank_start,
  961. hblank_end);
  962. vactive = var->yres;
  963. vsync_start = vactive + var->lower_margin;
  964. vsync_end = vsync_start + var->vsync_len;
  965. vtotal = vsync_end + var->upper_margin;
  966. vblank_start = vactive;
  967. vblank_end = vtotal;
  968. vblank_end = vsync_end + 1;
  969. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  970. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  971. vblank_end);
  972. /* Adjust for register values, and check for overflow. */
  973. hactive--;
  974. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  975. return 1;
  976. hsync_start--;
  977. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  978. return 1;
  979. hsync_end--;
  980. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  981. return 1;
  982. htotal--;
  983. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  984. return 1;
  985. hblank_start--;
  986. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  987. return 1;
  988. hblank_end--;
  989. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  990. return 1;
  991. vactive--;
  992. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  993. return 1;
  994. vsync_start--;
  995. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  996. return 1;
  997. vsync_end--;
  998. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  999. return 1;
  1000. vtotal--;
  1001. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  1002. return 1;
  1003. vblank_start--;
  1004. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1005. return 1;
  1006. vblank_end--;
  1007. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1008. return 1;
  1009. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1010. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1011. (hblank_end << HSYNCEND_SHIFT);
  1012. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1013. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1014. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1015. (vblank_end << VSYNCEND_SHIFT);
  1016. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1017. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1018. (vactive << SRC_SIZE_VERT_SHIFT);
  1019. hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
  1020. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1021. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1022. var->xoffset * var->bits_per_pixel / 8;
  1023. hw->disp_a_base += dinfo->fb.offset << 12;
  1024. /* Check stride alignment. */
  1025. if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
  1026. WRN_MSG("display stride %d has bad alignment %d\n",
  1027. hw->disp_a_stride, STRIDE_ALIGNMENT);
  1028. return 1;
  1029. }
  1030. /* Set the palette to 8-bit mode. */
  1031. *pipe_conf &= ~PIPECONF_GAMMA;
  1032. return 0;
  1033. }
  1034. /* Program a (non-VGA) video mode. */
  1035. int
  1036. intelfbhw_program_mode(struct intelfb_info *dinfo,
  1037. const struct intelfb_hwstate *hw, int blank)
  1038. {
  1039. int pipe = PIPE_A;
  1040. u32 tmp;
  1041. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1042. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1043. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
  1044. u32 hsync_reg, htotal_reg, hblank_reg;
  1045. u32 vsync_reg, vtotal_reg, vblank_reg;
  1046. u32 src_size_reg;
  1047. u32 count, tmp_val[3];
  1048. /* Assume single pipe, display plane A, analog CRT. */
  1049. #if VERBOSE > 0
  1050. DBG_MSG("intelfbhw_program_mode\n");
  1051. #endif
  1052. /* Disable VGA */
  1053. tmp = INREG(VGACNTRL);
  1054. tmp |= VGA_DISABLE;
  1055. OUTREG(VGACNTRL, tmp);
  1056. /* Check whether pipe A or pipe B is enabled. */
  1057. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  1058. pipe = PIPE_A;
  1059. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  1060. pipe = PIPE_B;
  1061. dinfo->pipe = pipe;
  1062. if (pipe == PIPE_B) {
  1063. dpll = &hw->dpll_b;
  1064. fp0 = &hw->fpb0;
  1065. fp1 = &hw->fpb1;
  1066. pipe_conf = &hw->pipe_b_conf;
  1067. hs = &hw->hsync_b;
  1068. hb = &hw->hblank_b;
  1069. ht = &hw->htotal_b;
  1070. vs = &hw->vsync_b;
  1071. vb = &hw->vblank_b;
  1072. vt = &hw->vtotal_b;
  1073. ss = &hw->src_size_b;
  1074. dpll_reg = DPLL_B;
  1075. fp0_reg = FPB0;
  1076. fp1_reg = FPB1;
  1077. pipe_conf_reg = PIPEBCONF;
  1078. hsync_reg = HSYNC_B;
  1079. htotal_reg = HTOTAL_B;
  1080. hblank_reg = HBLANK_B;
  1081. vsync_reg = VSYNC_B;
  1082. vtotal_reg = VTOTAL_B;
  1083. vblank_reg = VBLANK_B;
  1084. src_size_reg = SRC_SIZE_B;
  1085. } else {
  1086. dpll = &hw->dpll_a;
  1087. fp0 = &hw->fpa0;
  1088. fp1 = &hw->fpa1;
  1089. pipe_conf = &hw->pipe_a_conf;
  1090. hs = &hw->hsync_a;
  1091. hb = &hw->hblank_a;
  1092. ht = &hw->htotal_a;
  1093. vs = &hw->vsync_a;
  1094. vb = &hw->vblank_a;
  1095. vt = &hw->vtotal_a;
  1096. ss = &hw->src_size_a;
  1097. dpll_reg = DPLL_A;
  1098. fp0_reg = FPA0;
  1099. fp1_reg = FPA1;
  1100. pipe_conf_reg = PIPEACONF;
  1101. hsync_reg = HSYNC_A;
  1102. htotal_reg = HTOTAL_A;
  1103. hblank_reg = HBLANK_A;
  1104. vsync_reg = VSYNC_A;
  1105. vtotal_reg = VTOTAL_A;
  1106. vblank_reg = VBLANK_A;
  1107. src_size_reg = SRC_SIZE_A;
  1108. }
  1109. /* turn off pipe */
  1110. tmp = INREG(pipe_conf_reg);
  1111. tmp &= ~PIPECONF_ENABLE;
  1112. OUTREG(pipe_conf_reg, tmp);
  1113. count = 0;
  1114. do {
  1115. tmp_val[count%3] = INREG(0x70000);
  1116. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
  1117. break;
  1118. count++;
  1119. udelay(1);
  1120. if (count % 200 == 0) {
  1121. tmp = INREG(pipe_conf_reg);
  1122. tmp &= ~PIPECONF_ENABLE;
  1123. OUTREG(pipe_conf_reg, tmp);
  1124. }
  1125. } while(count < 2000);
  1126. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1127. /* Disable planes A and B. */
  1128. tmp = INREG(DSPACNTR);
  1129. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1130. OUTREG(DSPACNTR, tmp);
  1131. tmp = INREG(DSPBCNTR);
  1132. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1133. OUTREG(DSPBCNTR, tmp);
  1134. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1135. mdelay(20);
  1136. /* Disable Sync */
  1137. tmp = INREG(ADPA);
  1138. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1139. tmp |= ADPA_DPMS_D3;
  1140. OUTREG(ADPA, tmp);
  1141. /* do some funky magic - xyzzy */
  1142. OUTREG(0x61204, 0xabcd0000);
  1143. /* turn off PLL */
  1144. tmp = INREG(dpll_reg);
  1145. dpll_reg &= ~DPLL_VCO_ENABLE;
  1146. OUTREG(dpll_reg, tmp);
  1147. /* Set PLL parameters */
  1148. OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
  1149. OUTREG(fp0_reg, *fp0);
  1150. OUTREG(fp1_reg, *fp1);
  1151. /* Enable PLL */
  1152. tmp = INREG(dpll_reg);
  1153. tmp |= DPLL_VCO_ENABLE;
  1154. OUTREG(dpll_reg, tmp);
  1155. /* Set DVOs B/C */
  1156. OUTREG(DVOB, hw->dvob);
  1157. OUTREG(DVOC, hw->dvoc);
  1158. /* undo funky magic */
  1159. OUTREG(0x61204, 0x00000000);
  1160. /* Set ADPA */
  1161. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1162. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1163. /* Set pipe parameters */
  1164. OUTREG(hsync_reg, *hs);
  1165. OUTREG(hblank_reg, *hb);
  1166. OUTREG(htotal_reg, *ht);
  1167. OUTREG(vsync_reg, *vs);
  1168. OUTREG(vblank_reg, *vb);
  1169. OUTREG(vtotal_reg, *vt);
  1170. OUTREG(src_size_reg, *ss);
  1171. /* Enable pipe */
  1172. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1173. /* Enable sync */
  1174. tmp = INREG(ADPA);
  1175. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1176. tmp |= ADPA_DPMS_D0;
  1177. OUTREG(ADPA, tmp);
  1178. /* setup display plane */
  1179. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1180. /*
  1181. * i830M errata: the display plane must be enabled
  1182. * to allow writes to the other bits in the plane
  1183. * control register.
  1184. */
  1185. tmp = INREG(DSPACNTR);
  1186. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1187. tmp |= DISPPLANE_PLANE_ENABLE;
  1188. OUTREG(DSPACNTR, tmp);
  1189. OUTREG(DSPACNTR,
  1190. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1191. mdelay(1);
  1192. }
  1193. }
  1194. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1195. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1196. OUTREG(DSPABASE, hw->disp_a_base);
  1197. /* Enable plane */
  1198. if (!blank) {
  1199. tmp = INREG(DSPACNTR);
  1200. tmp |= DISPPLANE_PLANE_ENABLE;
  1201. OUTREG(DSPACNTR, tmp);
  1202. OUTREG(DSPABASE, hw->disp_a_base);
  1203. }
  1204. return 0;
  1205. }
  1206. /* forward declarations */
  1207. static void refresh_ring(struct intelfb_info *dinfo);
  1208. static void reset_state(struct intelfb_info *dinfo);
  1209. static void do_flush(struct intelfb_info *dinfo);
  1210. static int
  1211. wait_ring(struct intelfb_info *dinfo, int n)
  1212. {
  1213. int i = 0;
  1214. unsigned long end;
  1215. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1216. #if VERBOSE > 0
  1217. DBG_MSG("wait_ring: %d\n", n);
  1218. #endif
  1219. end = jiffies + (HZ * 3);
  1220. while (dinfo->ring_space < n) {
  1221. dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
  1222. RING_HEAD_MASK);
  1223. if (dinfo->ring_tail + RING_MIN_FREE <
  1224. (u32 __iomem) dinfo->ring_head)
  1225. dinfo->ring_space = (u32 __iomem) dinfo->ring_head
  1226. - (dinfo->ring_tail + RING_MIN_FREE);
  1227. else
  1228. dinfo->ring_space = (dinfo->ring.size +
  1229. (u32 __iomem) dinfo->ring_head)
  1230. - (dinfo->ring_tail + RING_MIN_FREE);
  1231. if ((u32 __iomem) dinfo->ring_head != last_head) {
  1232. end = jiffies + (HZ * 3);
  1233. last_head = (u32 __iomem) dinfo->ring_head;
  1234. }
  1235. i++;
  1236. if (time_before(end, jiffies)) {
  1237. if (!i) {
  1238. /* Try again */
  1239. reset_state(dinfo);
  1240. refresh_ring(dinfo);
  1241. do_flush(dinfo);
  1242. end = jiffies + (HZ * 3);
  1243. i = 1;
  1244. } else {
  1245. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1246. dinfo->ring_space, n);
  1247. WRN_MSG("lockup - turning off hardware "
  1248. "acceleration\n");
  1249. dinfo->ring_lockup = 1;
  1250. break;
  1251. }
  1252. }
  1253. udelay(1);
  1254. }
  1255. return i;
  1256. }
  1257. static void
  1258. do_flush(struct intelfb_info *dinfo) {
  1259. START_RING(2);
  1260. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1261. OUT_RING(MI_NOOP);
  1262. ADVANCE_RING();
  1263. }
  1264. void
  1265. intelfbhw_do_sync(struct intelfb_info *dinfo)
  1266. {
  1267. #if VERBOSE > 0
  1268. DBG_MSG("intelfbhw_do_sync\n");
  1269. #endif
  1270. if (!dinfo->accel)
  1271. return;
  1272. /*
  1273. * Send a flush, then wait until the ring is empty. This is what
  1274. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1275. * than the recommended method (both have problems).
  1276. */
  1277. do_flush(dinfo);
  1278. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1279. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1280. }
  1281. static void
  1282. refresh_ring(struct intelfb_info *dinfo)
  1283. {
  1284. #if VERBOSE > 0
  1285. DBG_MSG("refresh_ring\n");
  1286. #endif
  1287. dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
  1288. RING_HEAD_MASK);
  1289. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1290. if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
  1291. dinfo->ring_space = (u32 __iomem) dinfo->ring_head
  1292. - (dinfo->ring_tail + RING_MIN_FREE);
  1293. else
  1294. dinfo->ring_space = (dinfo->ring.size +
  1295. (u32 __iomem) dinfo->ring_head)
  1296. - (dinfo->ring_tail + RING_MIN_FREE);
  1297. }
  1298. static void
  1299. reset_state(struct intelfb_info *dinfo)
  1300. {
  1301. int i;
  1302. u32 tmp;
  1303. #if VERBOSE > 0
  1304. DBG_MSG("reset_state\n");
  1305. #endif
  1306. for (i = 0; i < FENCE_NUM; i++)
  1307. OUTREG(FENCE + (i << 2), 0);
  1308. /* Flush the ring buffer if it's enabled. */
  1309. tmp = INREG(PRI_RING_LENGTH);
  1310. if (tmp & RING_ENABLE) {
  1311. #if VERBOSE > 0
  1312. DBG_MSG("reset_state: ring was enabled\n");
  1313. #endif
  1314. refresh_ring(dinfo);
  1315. intelfbhw_do_sync(dinfo);
  1316. DO_RING_IDLE();
  1317. }
  1318. OUTREG(PRI_RING_LENGTH, 0);
  1319. OUTREG(PRI_RING_HEAD, 0);
  1320. OUTREG(PRI_RING_TAIL, 0);
  1321. OUTREG(PRI_RING_START, 0);
  1322. }
  1323. /* Stop the 2D engine, and turn off the ring buffer. */
  1324. void
  1325. intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1326. {
  1327. #if VERBOSE > 0
  1328. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
  1329. dinfo->ring_active);
  1330. #endif
  1331. if (!dinfo->accel)
  1332. return;
  1333. dinfo->ring_active = 0;
  1334. reset_state(dinfo);
  1335. }
  1336. /*
  1337. * Enable the ring buffer, and initialise the 2D engine.
  1338. * It is assumed that the graphics engine has been stopped by previously
  1339. * calling intelfb_2d_stop().
  1340. */
  1341. void
  1342. intelfbhw_2d_start(struct intelfb_info *dinfo)
  1343. {
  1344. #if VERBOSE > 0
  1345. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1346. dinfo->accel, dinfo->ring_active);
  1347. #endif
  1348. if (!dinfo->accel)
  1349. return;
  1350. /* Initialise the primary ring buffer. */
  1351. OUTREG(PRI_RING_LENGTH, 0);
  1352. OUTREG(PRI_RING_TAIL, 0);
  1353. OUTREG(PRI_RING_HEAD, 0);
  1354. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1355. OUTREG(PRI_RING_LENGTH,
  1356. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1357. RING_NO_REPORT | RING_ENABLE);
  1358. refresh_ring(dinfo);
  1359. dinfo->ring_active = 1;
  1360. }
  1361. /* 2D fillrect (solid fill or invert) */
  1362. void
  1363. intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
  1364. u32 color, u32 pitch, u32 bpp, u32 rop)
  1365. {
  1366. u32 br00, br09, br13, br14, br16;
  1367. #if VERBOSE > 0
  1368. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1369. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1370. #endif
  1371. br00 = COLOR_BLT_CMD;
  1372. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1373. br13 = (rop << ROP_SHIFT) | pitch;
  1374. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1375. br16 = color;
  1376. switch (bpp) {
  1377. case 8:
  1378. br13 |= COLOR_DEPTH_8;
  1379. break;
  1380. case 16:
  1381. br13 |= COLOR_DEPTH_16;
  1382. break;
  1383. case 32:
  1384. br13 |= COLOR_DEPTH_32;
  1385. br00 |= WRITE_ALPHA | WRITE_RGB;
  1386. break;
  1387. }
  1388. START_RING(6);
  1389. OUT_RING(br00);
  1390. OUT_RING(br13);
  1391. OUT_RING(br14);
  1392. OUT_RING(br09);
  1393. OUT_RING(br16);
  1394. OUT_RING(MI_NOOP);
  1395. ADVANCE_RING();
  1396. #if VERBOSE > 0
  1397. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1398. dinfo->ring_tail, dinfo->ring_space);
  1399. #endif
  1400. }
  1401. void
  1402. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1403. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1404. {
  1405. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1406. #if VERBOSE > 0
  1407. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1408. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1409. #endif
  1410. br00 = XY_SRC_COPY_BLT_CMD;
  1411. br09 = dinfo->fb_start;
  1412. br11 = (pitch << PITCH_SHIFT);
  1413. br12 = dinfo->fb_start;
  1414. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1415. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1416. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1417. ((dsty + h) << HEIGHT_SHIFT);
  1418. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1419. switch (bpp) {
  1420. case 8:
  1421. br13 |= COLOR_DEPTH_8;
  1422. break;
  1423. case 16:
  1424. br13 |= COLOR_DEPTH_16;
  1425. break;
  1426. case 32:
  1427. br13 |= COLOR_DEPTH_32;
  1428. br00 |= WRITE_ALPHA | WRITE_RGB;
  1429. break;
  1430. }
  1431. START_RING(8);
  1432. OUT_RING(br00);
  1433. OUT_RING(br13);
  1434. OUT_RING(br22);
  1435. OUT_RING(br23);
  1436. OUT_RING(br09);
  1437. OUT_RING(br26);
  1438. OUT_RING(br11);
  1439. OUT_RING(br12);
  1440. ADVANCE_RING();
  1441. }
  1442. int
  1443. intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1444. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
  1445. {
  1446. int nbytes, ndwords, pad, tmp;
  1447. u32 br00, br09, br13, br18, br19, br22, br23;
  1448. int dat, ix, iy, iw;
  1449. int i, j;
  1450. #if VERBOSE > 0
  1451. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1452. #endif
  1453. /* size in bytes of a padded scanline */
  1454. nbytes = ROUND_UP_TO(w, 16) / 8;
  1455. /* Total bytes of padded scanline data to write out. */
  1456. nbytes = nbytes * h;
  1457. /*
  1458. * Check if the glyph data exceeds the immediate mode limit.
  1459. * It would take a large font (1K pixels) to hit this limit.
  1460. */
  1461. if (nbytes > MAX_MONO_IMM_SIZE)
  1462. return 0;
  1463. /* Src data is packaged a dword (32-bit) at a time. */
  1464. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1465. /*
  1466. * Ring has to be padded to a quad word. But because the command starts
  1467. with 7 bytes, pad only if there is an even number of ndwords
  1468. */
  1469. pad = !(ndwords % 2);
  1470. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1471. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1472. br09 = dinfo->fb_start;
  1473. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1474. br18 = bg;
  1475. br19 = fg;
  1476. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1477. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1478. switch (bpp) {
  1479. case 8:
  1480. br13 |= COLOR_DEPTH_8;
  1481. break;
  1482. case 16:
  1483. br13 |= COLOR_DEPTH_16;
  1484. break;
  1485. case 32:
  1486. br13 |= COLOR_DEPTH_32;
  1487. br00 |= WRITE_ALPHA | WRITE_RGB;
  1488. break;
  1489. }
  1490. START_RING(8 + ndwords);
  1491. OUT_RING(br00);
  1492. OUT_RING(br13);
  1493. OUT_RING(br22);
  1494. OUT_RING(br23);
  1495. OUT_RING(br09);
  1496. OUT_RING(br18);
  1497. OUT_RING(br19);
  1498. ix = iy = 0;
  1499. iw = ROUND_UP_TO(w, 8) / 8;
  1500. while (ndwords--) {
  1501. dat = 0;
  1502. for (j = 0; j < 2; ++j) {
  1503. for (i = 0; i < 2; ++i) {
  1504. if (ix != iw || i == 0)
  1505. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1506. }
  1507. if (ix == iw && iy != (h-1)) {
  1508. ix = 0;
  1509. ++iy;
  1510. }
  1511. }
  1512. OUT_RING(dat);
  1513. }
  1514. if (pad)
  1515. OUT_RING(MI_NOOP);
  1516. ADVANCE_RING();
  1517. return 1;
  1518. }
  1519. /* HW cursor functions. */
  1520. void
  1521. intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1522. {
  1523. u32 tmp;
  1524. #if VERBOSE > 0
  1525. DBG_MSG("intelfbhw_cursor_init\n");
  1526. #endif
  1527. if (dinfo->mobile || IS_I9xx(dinfo)) {
  1528. if (!dinfo->cursor.physical)
  1529. return;
  1530. tmp = INREG(CURSOR_A_CONTROL);
  1531. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1532. CURSOR_MEM_TYPE_LOCAL |
  1533. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1534. tmp |= CURSOR_MODE_DISABLE;
  1535. OUTREG(CURSOR_A_CONTROL, tmp);
  1536. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1537. } else {
  1538. tmp = INREG(CURSOR_CONTROL);
  1539. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1540. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1541. tmp = CURSOR_FORMAT_3C;
  1542. OUTREG(CURSOR_CONTROL, tmp);
  1543. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1544. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1545. (64 << CURSOR_SIZE_V_SHIFT);
  1546. OUTREG(CURSOR_SIZE, tmp);
  1547. }
  1548. }
  1549. void
  1550. intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1551. {
  1552. u32 tmp;
  1553. #if VERBOSE > 0
  1554. DBG_MSG("intelfbhw_cursor_hide\n");
  1555. #endif
  1556. dinfo->cursor_on = 0;
  1557. if (dinfo->mobile || IS_I9xx(dinfo)) {
  1558. if (!dinfo->cursor.physical)
  1559. return;
  1560. tmp = INREG(CURSOR_A_CONTROL);
  1561. tmp &= ~CURSOR_MODE_MASK;
  1562. tmp |= CURSOR_MODE_DISABLE;
  1563. OUTREG(CURSOR_A_CONTROL, tmp);
  1564. /* Flush changes */
  1565. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1566. } else {
  1567. tmp = INREG(CURSOR_CONTROL);
  1568. tmp &= ~CURSOR_ENABLE;
  1569. OUTREG(CURSOR_CONTROL, tmp);
  1570. }
  1571. }
  1572. void
  1573. intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1574. {
  1575. u32 tmp;
  1576. #if VERBOSE > 0
  1577. DBG_MSG("intelfbhw_cursor_show\n");
  1578. #endif
  1579. dinfo->cursor_on = 1;
  1580. if (dinfo->cursor_blanked)
  1581. return;
  1582. if (dinfo->mobile || IS_I9xx(dinfo)) {
  1583. if (!dinfo->cursor.physical)
  1584. return;
  1585. tmp = INREG(CURSOR_A_CONTROL);
  1586. tmp &= ~CURSOR_MODE_MASK;
  1587. tmp |= CURSOR_MODE_64_4C_AX;
  1588. OUTREG(CURSOR_A_CONTROL, tmp);
  1589. /* Flush changes */
  1590. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1591. } else {
  1592. tmp = INREG(CURSOR_CONTROL);
  1593. tmp |= CURSOR_ENABLE;
  1594. OUTREG(CURSOR_CONTROL, tmp);
  1595. }
  1596. }
  1597. void
  1598. intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1599. {
  1600. u32 tmp;
  1601. #if VERBOSE > 0
  1602. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1603. #endif
  1604. /*
  1605. * Sets the position. The coordinates are assumed to already
  1606. * have any offset adjusted. Assume that the cursor is never
  1607. * completely off-screen, and that x, y are always >= 0.
  1608. */
  1609. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1610. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1611. OUTREG(CURSOR_A_POSITION, tmp);
  1612. if (IS_I9xx(dinfo)) {
  1613. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1614. }
  1615. }
  1616. void
  1617. intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1618. {
  1619. #if VERBOSE > 0
  1620. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1621. #endif
  1622. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1623. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1624. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1625. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1626. }
  1627. void
  1628. intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1629. u8 *data)
  1630. {
  1631. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1632. int i, j, w = width / 8;
  1633. int mod = width % 8, t_mask, d_mask;
  1634. #if VERBOSE > 0
  1635. DBG_MSG("intelfbhw_cursor_load\n");
  1636. #endif
  1637. if (!dinfo->cursor.virtual)
  1638. return;
  1639. t_mask = 0xff >> mod;
  1640. d_mask = ~(0xff >> mod);
  1641. for (i = height; i--; ) {
  1642. for (j = 0; j < w; j++) {
  1643. writeb(0x00, addr + j);
  1644. writeb(*(data++), addr + j+8);
  1645. }
  1646. if (mod) {
  1647. writeb(t_mask, addr + j);
  1648. writeb(*(data++) & d_mask, addr + j+8);
  1649. }
  1650. addr += 16;
  1651. }
  1652. }
  1653. void
  1654. intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
  1655. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1656. int i, j;
  1657. #if VERBOSE > 0
  1658. DBG_MSG("intelfbhw_cursor_reset\n");
  1659. #endif
  1660. if (!dinfo->cursor.virtual)
  1661. return;
  1662. for (i = 64; i--; ) {
  1663. for (j = 0; j < 8; j++) {
  1664. writeb(0xff, addr + j+0);
  1665. writeb(0x00, addr + j+8);
  1666. }
  1667. addr += 16;
  1668. }
  1669. }