ttm_tt.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644
  1. /**************************************************************************
  2. *
  3. * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
  4. * All Rights Reserved.
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a
  7. * copy of this software and associated documentation files (the
  8. * "Software"), to deal in the Software without restriction, including
  9. * without limitation the rights to use, copy, modify, merge, publish,
  10. * distribute, sub license, and/or sell copies of the Software, and to
  11. * permit persons to whom the Software is furnished to do so, subject to
  12. * the following conditions:
  13. *
  14. * The above copyright notice and this permission notice (including the
  15. * next paragraph) shall be included in all copies or substantial portions
  16. * of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21. * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22. * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23. * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24. * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25. *
  26. **************************************************************************/
  27. /*
  28. * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29. */
  30. #include <linux/version.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/sched.h>
  33. #include <linux/highmem.h>
  34. #include <linux/pagemap.h>
  35. #include <linux/file.h>
  36. #include <linux/swap.h>
  37. #include "ttm/ttm_module.h"
  38. #include "ttm/ttm_bo_driver.h"
  39. #include "ttm/ttm_placement.h"
  40. static int ttm_tt_swapin(struct ttm_tt *ttm);
  41. #if defined(CONFIG_X86)
  42. static void ttm_tt_clflush_page(struct page *page)
  43. {
  44. uint8_t *page_virtual;
  45. unsigned int i;
  46. if (unlikely(page == NULL))
  47. return;
  48. page_virtual = kmap_atomic(page, KM_USER0);
  49. for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
  50. clflush(page_virtual + i);
  51. kunmap_atomic(page_virtual, KM_USER0);
  52. }
  53. static void ttm_tt_cache_flush_clflush(struct page *pages[],
  54. unsigned long num_pages)
  55. {
  56. unsigned long i;
  57. mb();
  58. for (i = 0; i < num_pages; ++i)
  59. ttm_tt_clflush_page(*pages++);
  60. mb();
  61. }
  62. #elif !defined(__powerpc__)
  63. static void ttm_tt_ipi_handler(void *null)
  64. {
  65. ;
  66. }
  67. #endif
  68. void ttm_tt_cache_flush(struct page *pages[], unsigned long num_pages)
  69. {
  70. #if defined(CONFIG_X86)
  71. if (cpu_has_clflush) {
  72. ttm_tt_cache_flush_clflush(pages, num_pages);
  73. return;
  74. }
  75. #elif defined(__powerpc__)
  76. unsigned long i;
  77. for (i = 0; i < num_pages; ++i) {
  78. if (pages[i]) {
  79. unsigned long start = (unsigned long)page_address(pages[i]);
  80. flush_dcache_range(start, start + PAGE_SIZE);
  81. }
  82. }
  83. #else
  84. if (on_each_cpu(ttm_tt_ipi_handler, NULL, 1) != 0)
  85. printk(KERN_ERR TTM_PFX
  86. "Timed out waiting for drm cache flush.\n");
  87. #endif
  88. }
  89. /**
  90. * Allocates storage for pointers to the pages that back the ttm.
  91. *
  92. * Uses kmalloc if possible. Otherwise falls back to vmalloc.
  93. */
  94. static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
  95. {
  96. unsigned long size = ttm->num_pages * sizeof(*ttm->pages);
  97. ttm->pages = NULL;
  98. if (size <= PAGE_SIZE)
  99. ttm->pages = kzalloc(size, GFP_KERNEL);
  100. if (!ttm->pages) {
  101. ttm->pages = vmalloc_user(size);
  102. if (ttm->pages)
  103. ttm->page_flags |= TTM_PAGE_FLAG_VMALLOC;
  104. }
  105. }
  106. static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
  107. {
  108. if (ttm->page_flags & TTM_PAGE_FLAG_VMALLOC) {
  109. vfree(ttm->pages);
  110. ttm->page_flags &= ~TTM_PAGE_FLAG_VMALLOC;
  111. } else {
  112. kfree(ttm->pages);
  113. }
  114. ttm->pages = NULL;
  115. }
  116. static struct page *ttm_tt_alloc_page(unsigned page_flags)
  117. {
  118. if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
  119. return alloc_page(GFP_HIGHUSER | __GFP_ZERO);
  120. return alloc_page(GFP_HIGHUSER);
  121. }
  122. static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
  123. {
  124. int write;
  125. int dirty;
  126. struct page *page;
  127. int i;
  128. struct ttm_backend *be = ttm->be;
  129. BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
  130. write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
  131. dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
  132. if (be)
  133. be->func->clear(be);
  134. for (i = 0; i < ttm->num_pages; ++i) {
  135. page = ttm->pages[i];
  136. if (page == NULL)
  137. continue;
  138. if (page == ttm->dummy_read_page) {
  139. BUG_ON(write);
  140. continue;
  141. }
  142. if (write && dirty && !PageReserved(page))
  143. set_page_dirty_lock(page);
  144. ttm->pages[i] = NULL;
  145. ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE, false);
  146. put_page(page);
  147. }
  148. ttm->state = tt_unpopulated;
  149. ttm->first_himem_page = ttm->num_pages;
  150. ttm->last_lomem_page = -1;
  151. }
  152. static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
  153. {
  154. struct page *p;
  155. struct ttm_bo_device *bdev = ttm->bdev;
  156. struct ttm_mem_global *mem_glob = bdev->mem_glob;
  157. int ret;
  158. while (NULL == (p = ttm->pages[index])) {
  159. p = ttm_tt_alloc_page(ttm->page_flags);
  160. if (!p)
  161. return NULL;
  162. if (PageHighMem(p)) {
  163. ret =
  164. ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
  165. false, false, true);
  166. if (unlikely(ret != 0))
  167. goto out_err;
  168. ttm->pages[--ttm->first_himem_page] = p;
  169. } else {
  170. ret =
  171. ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
  172. false, false, false);
  173. if (unlikely(ret != 0))
  174. goto out_err;
  175. ttm->pages[++ttm->last_lomem_page] = p;
  176. }
  177. }
  178. return p;
  179. out_err:
  180. put_page(p);
  181. return NULL;
  182. }
  183. struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
  184. {
  185. int ret;
  186. if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
  187. ret = ttm_tt_swapin(ttm);
  188. if (unlikely(ret != 0))
  189. return NULL;
  190. }
  191. return __ttm_tt_get_page(ttm, index);
  192. }
  193. int ttm_tt_populate(struct ttm_tt *ttm)
  194. {
  195. struct page *page;
  196. unsigned long i;
  197. struct ttm_backend *be;
  198. int ret;
  199. if (ttm->state != tt_unpopulated)
  200. return 0;
  201. if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
  202. ret = ttm_tt_swapin(ttm);
  203. if (unlikely(ret != 0))
  204. return ret;
  205. }
  206. be = ttm->be;
  207. for (i = 0; i < ttm->num_pages; ++i) {
  208. page = __ttm_tt_get_page(ttm, i);
  209. if (!page)
  210. return -ENOMEM;
  211. }
  212. be->func->populate(be, ttm->num_pages, ttm->pages,
  213. ttm->dummy_read_page);
  214. ttm->state = tt_unbound;
  215. return 0;
  216. }
  217. #ifdef CONFIG_X86
  218. static inline int ttm_tt_set_page_caching(struct page *p,
  219. enum ttm_caching_state c_state)
  220. {
  221. if (PageHighMem(p))
  222. return 0;
  223. switch (c_state) {
  224. case tt_cached:
  225. return set_pages_wb(p, 1);
  226. case tt_wc:
  227. return set_memory_wc((unsigned long) page_address(p), 1);
  228. default:
  229. return set_pages_uc(p, 1);
  230. }
  231. }
  232. #else /* CONFIG_X86 */
  233. static inline int ttm_tt_set_page_caching(struct page *p,
  234. enum ttm_caching_state c_state)
  235. {
  236. return 0;
  237. }
  238. #endif /* CONFIG_X86 */
  239. /*
  240. * Change caching policy for the linear kernel map
  241. * for range of pages in a ttm.
  242. */
  243. static int ttm_tt_set_caching(struct ttm_tt *ttm,
  244. enum ttm_caching_state c_state)
  245. {
  246. int i, j;
  247. struct page *cur_page;
  248. int ret;
  249. if (ttm->caching_state == c_state)
  250. return 0;
  251. if (c_state != tt_cached) {
  252. ret = ttm_tt_populate(ttm);
  253. if (unlikely(ret != 0))
  254. return ret;
  255. }
  256. if (ttm->caching_state == tt_cached)
  257. ttm_tt_cache_flush(ttm->pages, ttm->num_pages);
  258. for (i = 0; i < ttm->num_pages; ++i) {
  259. cur_page = ttm->pages[i];
  260. if (likely(cur_page != NULL)) {
  261. ret = ttm_tt_set_page_caching(cur_page, c_state);
  262. if (unlikely(ret != 0))
  263. goto out_err;
  264. }
  265. }
  266. ttm->caching_state = c_state;
  267. return 0;
  268. out_err:
  269. for (j = 0; j < i; ++j) {
  270. cur_page = ttm->pages[j];
  271. if (likely(cur_page != NULL)) {
  272. (void)ttm_tt_set_page_caching(cur_page,
  273. ttm->caching_state);
  274. }
  275. }
  276. return ret;
  277. }
  278. int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
  279. {
  280. enum ttm_caching_state state;
  281. if (placement & TTM_PL_FLAG_WC)
  282. state = tt_wc;
  283. else if (placement & TTM_PL_FLAG_UNCACHED)
  284. state = tt_uncached;
  285. else
  286. state = tt_cached;
  287. return ttm_tt_set_caching(ttm, state);
  288. }
  289. static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
  290. {
  291. int i;
  292. struct page *cur_page;
  293. struct ttm_backend *be = ttm->be;
  294. if (be)
  295. be->func->clear(be);
  296. (void)ttm_tt_set_caching(ttm, tt_cached);
  297. for (i = 0; i < ttm->num_pages; ++i) {
  298. cur_page = ttm->pages[i];
  299. ttm->pages[i] = NULL;
  300. if (cur_page) {
  301. if (page_count(cur_page) != 1)
  302. printk(KERN_ERR TTM_PFX
  303. "Erroneous page count. "
  304. "Leaking pages.\n");
  305. ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE,
  306. PageHighMem(cur_page));
  307. __free_page(cur_page);
  308. }
  309. }
  310. ttm->state = tt_unpopulated;
  311. ttm->first_himem_page = ttm->num_pages;
  312. ttm->last_lomem_page = -1;
  313. }
  314. void ttm_tt_destroy(struct ttm_tt *ttm)
  315. {
  316. struct ttm_backend *be;
  317. if (unlikely(ttm == NULL))
  318. return;
  319. be = ttm->be;
  320. if (likely(be != NULL)) {
  321. be->func->destroy(be);
  322. ttm->be = NULL;
  323. }
  324. if (likely(ttm->pages != NULL)) {
  325. if (ttm->page_flags & TTM_PAGE_FLAG_USER)
  326. ttm_tt_free_user_pages(ttm);
  327. else
  328. ttm_tt_free_alloced_pages(ttm);
  329. ttm_tt_free_page_directory(ttm);
  330. }
  331. if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
  332. ttm->swap_storage)
  333. fput(ttm->swap_storage);
  334. kfree(ttm);
  335. }
  336. int ttm_tt_set_user(struct ttm_tt *ttm,
  337. struct task_struct *tsk,
  338. unsigned long start, unsigned long num_pages)
  339. {
  340. struct mm_struct *mm = tsk->mm;
  341. int ret;
  342. int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
  343. struct ttm_mem_global *mem_glob = ttm->bdev->mem_glob;
  344. BUG_ON(num_pages != ttm->num_pages);
  345. BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
  346. /**
  347. * Account user pages as lowmem pages for now.
  348. */
  349. ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
  350. false, false, false);
  351. if (unlikely(ret != 0))
  352. return ret;
  353. down_read(&mm->mmap_sem);
  354. ret = get_user_pages(tsk, mm, start, num_pages,
  355. write, 0, ttm->pages, NULL);
  356. up_read(&mm->mmap_sem);
  357. if (ret != num_pages && write) {
  358. ttm_tt_free_user_pages(ttm);
  359. ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE, false);
  360. return -ENOMEM;
  361. }
  362. ttm->tsk = tsk;
  363. ttm->start = start;
  364. ttm->state = tt_unbound;
  365. return 0;
  366. }
  367. struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
  368. uint32_t page_flags, struct page *dummy_read_page)
  369. {
  370. struct ttm_bo_driver *bo_driver = bdev->driver;
  371. struct ttm_tt *ttm;
  372. if (!bo_driver)
  373. return NULL;
  374. ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
  375. if (!ttm)
  376. return NULL;
  377. ttm->bdev = bdev;
  378. ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  379. ttm->first_himem_page = ttm->num_pages;
  380. ttm->last_lomem_page = -1;
  381. ttm->caching_state = tt_cached;
  382. ttm->page_flags = page_flags;
  383. ttm->dummy_read_page = dummy_read_page;
  384. ttm_tt_alloc_page_directory(ttm);
  385. if (!ttm->pages) {
  386. ttm_tt_destroy(ttm);
  387. printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
  388. return NULL;
  389. }
  390. ttm->be = bo_driver->create_ttm_backend_entry(bdev);
  391. if (!ttm->be) {
  392. ttm_tt_destroy(ttm);
  393. printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
  394. return NULL;
  395. }
  396. ttm->state = tt_unpopulated;
  397. return ttm;
  398. }
  399. void ttm_tt_unbind(struct ttm_tt *ttm)
  400. {
  401. int ret;
  402. struct ttm_backend *be = ttm->be;
  403. if (ttm->state == tt_bound) {
  404. ret = be->func->unbind(be);
  405. BUG_ON(ret);
  406. ttm->state = tt_unbound;
  407. }
  408. }
  409. int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
  410. {
  411. int ret = 0;
  412. struct ttm_backend *be;
  413. if (!ttm)
  414. return -EINVAL;
  415. if (ttm->state == tt_bound)
  416. return 0;
  417. be = ttm->be;
  418. ret = ttm_tt_populate(ttm);
  419. if (ret)
  420. return ret;
  421. ret = be->func->bind(be, bo_mem);
  422. if (ret) {
  423. printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
  424. return ret;
  425. }
  426. ttm->state = tt_bound;
  427. if (ttm->page_flags & TTM_PAGE_FLAG_USER)
  428. ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
  429. return 0;
  430. }
  431. EXPORT_SYMBOL(ttm_tt_bind);
  432. static int ttm_tt_swapin(struct ttm_tt *ttm)
  433. {
  434. struct address_space *swap_space;
  435. struct file *swap_storage;
  436. struct page *from_page;
  437. struct page *to_page;
  438. void *from_virtual;
  439. void *to_virtual;
  440. int i;
  441. int ret;
  442. if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
  443. ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
  444. ttm->num_pages);
  445. if (unlikely(ret != 0))
  446. return ret;
  447. ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
  448. return 0;
  449. }
  450. swap_storage = ttm->swap_storage;
  451. BUG_ON(swap_storage == NULL);
  452. swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
  453. for (i = 0; i < ttm->num_pages; ++i) {
  454. from_page = read_mapping_page(swap_space, i, NULL);
  455. if (IS_ERR(from_page))
  456. goto out_err;
  457. to_page = __ttm_tt_get_page(ttm, i);
  458. if (unlikely(to_page == NULL))
  459. goto out_err;
  460. preempt_disable();
  461. from_virtual = kmap_atomic(from_page, KM_USER0);
  462. to_virtual = kmap_atomic(to_page, KM_USER1);
  463. memcpy(to_virtual, from_virtual, PAGE_SIZE);
  464. kunmap_atomic(to_virtual, KM_USER1);
  465. kunmap_atomic(from_virtual, KM_USER0);
  466. preempt_enable();
  467. page_cache_release(from_page);
  468. }
  469. if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
  470. fput(swap_storage);
  471. ttm->swap_storage = NULL;
  472. ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
  473. return 0;
  474. out_err:
  475. ttm_tt_free_alloced_pages(ttm);
  476. return -ENOMEM;
  477. }
  478. int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
  479. {
  480. struct address_space *swap_space;
  481. struct file *swap_storage;
  482. struct page *from_page;
  483. struct page *to_page;
  484. void *from_virtual;
  485. void *to_virtual;
  486. int i;
  487. BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
  488. BUG_ON(ttm->caching_state != tt_cached);
  489. /*
  490. * For user buffers, just unpin the pages, as there should be
  491. * vma references.
  492. */
  493. if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
  494. ttm_tt_free_user_pages(ttm);
  495. ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
  496. ttm->swap_storage = NULL;
  497. return 0;
  498. }
  499. if (!persistant_swap_storage) {
  500. swap_storage = shmem_file_setup("ttm swap",
  501. ttm->num_pages << PAGE_SHIFT,
  502. 0);
  503. if (unlikely(IS_ERR(swap_storage))) {
  504. printk(KERN_ERR "Failed allocating swap storage.\n");
  505. return -ENOMEM;
  506. }
  507. } else
  508. swap_storage = persistant_swap_storage;
  509. swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
  510. for (i = 0; i < ttm->num_pages; ++i) {
  511. from_page = ttm->pages[i];
  512. if (unlikely(from_page == NULL))
  513. continue;
  514. to_page = read_mapping_page(swap_space, i, NULL);
  515. if (unlikely(to_page == NULL))
  516. goto out_err;
  517. preempt_disable();
  518. from_virtual = kmap_atomic(from_page, KM_USER0);
  519. to_virtual = kmap_atomic(to_page, KM_USER1);
  520. memcpy(to_virtual, from_virtual, PAGE_SIZE);
  521. kunmap_atomic(to_virtual, KM_USER1);
  522. kunmap_atomic(from_virtual, KM_USER0);
  523. preempt_enable();
  524. set_page_dirty(to_page);
  525. mark_page_accessed(to_page);
  526. page_cache_release(to_page);
  527. }
  528. ttm_tt_free_alloced_pages(ttm);
  529. ttm->swap_storage = swap_storage;
  530. ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
  531. if (persistant_swap_storage)
  532. ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;
  533. return 0;
  534. out_err:
  535. if (!persistant_swap_storage)
  536. fput(swap_storage);
  537. return -ENOMEM;
  538. }