kvm_main.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <asm/processor.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/pgtable.h>
  48. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  49. #include "coalesced_mmio.h"
  50. #endif
  51. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  52. #include <linux/pci.h>
  53. #include <linux/interrupt.h>
  54. #include "irq.h"
  55. #endif
  56. #define CREATE_TRACE_POINTS
  57. #include <trace/events/kvm.h>
  58. MODULE_AUTHOR("Qumranet");
  59. MODULE_LICENSE("GPL");
  60. /*
  61. * Ordering of locks:
  62. *
  63. * kvm->slots_lock --> kvm->lock --> kvm->irq_lock
  64. */
  65. DEFINE_SPINLOCK(kvm_lock);
  66. LIST_HEAD(vm_list);
  67. static cpumask_var_t cpus_hardware_enabled;
  68. struct kmem_cache *kvm_vcpu_cache;
  69. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  70. static __read_mostly struct preempt_ops kvm_preempt_ops;
  71. struct dentry *kvm_debugfs_dir;
  72. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  73. unsigned long arg);
  74. static bool kvm_rebooting;
  75. static bool largepages_enabled = true;
  76. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  77. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  78. int assigned_dev_id)
  79. {
  80. struct list_head *ptr;
  81. struct kvm_assigned_dev_kernel *match;
  82. list_for_each(ptr, head) {
  83. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  84. if (match->assigned_dev_id == assigned_dev_id)
  85. return match;
  86. }
  87. return NULL;
  88. }
  89. static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
  90. *assigned_dev, int irq)
  91. {
  92. int i, index;
  93. struct msix_entry *host_msix_entries;
  94. host_msix_entries = assigned_dev->host_msix_entries;
  95. index = -1;
  96. for (i = 0; i < assigned_dev->entries_nr; i++)
  97. if (irq == host_msix_entries[i].vector) {
  98. index = i;
  99. break;
  100. }
  101. if (index < 0) {
  102. printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
  103. return 0;
  104. }
  105. return index;
  106. }
  107. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  108. {
  109. struct kvm_assigned_dev_kernel *assigned_dev;
  110. struct kvm *kvm;
  111. int i;
  112. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  113. interrupt_work);
  114. kvm = assigned_dev->kvm;
  115. mutex_lock(&kvm->irq_lock);
  116. spin_lock_irq(&assigned_dev->assigned_dev_lock);
  117. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  118. struct kvm_guest_msix_entry *guest_entries =
  119. assigned_dev->guest_msix_entries;
  120. for (i = 0; i < assigned_dev->entries_nr; i++) {
  121. if (!(guest_entries[i].flags &
  122. KVM_ASSIGNED_MSIX_PENDING))
  123. continue;
  124. guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
  125. kvm_set_irq(assigned_dev->kvm,
  126. assigned_dev->irq_source_id,
  127. guest_entries[i].vector, 1);
  128. }
  129. } else
  130. kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
  131. assigned_dev->guest_irq, 1);
  132. spin_unlock_irq(&assigned_dev->assigned_dev_lock);
  133. mutex_unlock(&assigned_dev->kvm->irq_lock);
  134. }
  135. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  136. {
  137. unsigned long flags;
  138. struct kvm_assigned_dev_kernel *assigned_dev =
  139. (struct kvm_assigned_dev_kernel *) dev_id;
  140. spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
  141. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  142. int index = find_index_from_host_irq(assigned_dev, irq);
  143. if (index < 0)
  144. goto out;
  145. assigned_dev->guest_msix_entries[index].flags |=
  146. KVM_ASSIGNED_MSIX_PENDING;
  147. }
  148. schedule_work(&assigned_dev->interrupt_work);
  149. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
  150. disable_irq_nosync(irq);
  151. assigned_dev->host_irq_disabled = true;
  152. }
  153. out:
  154. spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
  155. return IRQ_HANDLED;
  156. }
  157. /* Ack the irq line for an assigned device */
  158. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  159. {
  160. struct kvm_assigned_dev_kernel *dev;
  161. unsigned long flags;
  162. if (kian->gsi == -1)
  163. return;
  164. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  165. ack_notifier);
  166. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  167. /* The guest irq may be shared so this ack may be
  168. * from another device.
  169. */
  170. spin_lock_irqsave(&dev->assigned_dev_lock, flags);
  171. if (dev->host_irq_disabled) {
  172. enable_irq(dev->host_irq);
  173. dev->host_irq_disabled = false;
  174. }
  175. spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
  176. }
  177. static void deassign_guest_irq(struct kvm *kvm,
  178. struct kvm_assigned_dev_kernel *assigned_dev)
  179. {
  180. kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
  181. assigned_dev->ack_notifier.gsi = -1;
  182. if (assigned_dev->irq_source_id != -1)
  183. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  184. assigned_dev->irq_source_id = -1;
  185. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
  186. }
  187. /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
  188. static void deassign_host_irq(struct kvm *kvm,
  189. struct kvm_assigned_dev_kernel *assigned_dev)
  190. {
  191. /*
  192. * In kvm_free_device_irq, cancel_work_sync return true if:
  193. * 1. work is scheduled, and then cancelled.
  194. * 2. work callback is executed.
  195. *
  196. * The first one ensured that the irq is disabled and no more events
  197. * would happen. But for the second one, the irq may be enabled (e.g.
  198. * for MSI). So we disable irq here to prevent further events.
  199. *
  200. * Notice this maybe result in nested disable if the interrupt type is
  201. * INTx, but it's OK for we are going to free it.
  202. *
  203. * If this function is a part of VM destroy, please ensure that till
  204. * now, the kvm state is still legal for probably we also have to wait
  205. * interrupt_work done.
  206. */
  207. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  208. int i;
  209. for (i = 0; i < assigned_dev->entries_nr; i++)
  210. disable_irq_nosync(assigned_dev->
  211. host_msix_entries[i].vector);
  212. cancel_work_sync(&assigned_dev->interrupt_work);
  213. for (i = 0; i < assigned_dev->entries_nr; i++)
  214. free_irq(assigned_dev->host_msix_entries[i].vector,
  215. (void *)assigned_dev);
  216. assigned_dev->entries_nr = 0;
  217. kfree(assigned_dev->host_msix_entries);
  218. kfree(assigned_dev->guest_msix_entries);
  219. pci_disable_msix(assigned_dev->dev);
  220. } else {
  221. /* Deal with MSI and INTx */
  222. disable_irq_nosync(assigned_dev->host_irq);
  223. cancel_work_sync(&assigned_dev->interrupt_work);
  224. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  225. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
  226. pci_disable_msi(assigned_dev->dev);
  227. }
  228. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
  229. }
  230. static int kvm_deassign_irq(struct kvm *kvm,
  231. struct kvm_assigned_dev_kernel *assigned_dev,
  232. unsigned long irq_requested_type)
  233. {
  234. unsigned long guest_irq_type, host_irq_type;
  235. if (!irqchip_in_kernel(kvm))
  236. return -EINVAL;
  237. /* no irq assignment to deassign */
  238. if (!assigned_dev->irq_requested_type)
  239. return -ENXIO;
  240. host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
  241. guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
  242. if (host_irq_type)
  243. deassign_host_irq(kvm, assigned_dev);
  244. if (guest_irq_type)
  245. deassign_guest_irq(kvm, assigned_dev);
  246. return 0;
  247. }
  248. static void kvm_free_assigned_irq(struct kvm *kvm,
  249. struct kvm_assigned_dev_kernel *assigned_dev)
  250. {
  251. kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
  252. }
  253. static void kvm_free_assigned_device(struct kvm *kvm,
  254. struct kvm_assigned_dev_kernel
  255. *assigned_dev)
  256. {
  257. kvm_free_assigned_irq(kvm, assigned_dev);
  258. pci_reset_function(assigned_dev->dev);
  259. pci_release_regions(assigned_dev->dev);
  260. pci_disable_device(assigned_dev->dev);
  261. pci_dev_put(assigned_dev->dev);
  262. list_del(&assigned_dev->list);
  263. kfree(assigned_dev);
  264. }
  265. void kvm_free_all_assigned_devices(struct kvm *kvm)
  266. {
  267. struct list_head *ptr, *ptr2;
  268. struct kvm_assigned_dev_kernel *assigned_dev;
  269. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  270. assigned_dev = list_entry(ptr,
  271. struct kvm_assigned_dev_kernel,
  272. list);
  273. kvm_free_assigned_device(kvm, assigned_dev);
  274. }
  275. }
  276. static int assigned_device_enable_host_intx(struct kvm *kvm,
  277. struct kvm_assigned_dev_kernel *dev)
  278. {
  279. dev->host_irq = dev->dev->irq;
  280. /* Even though this is PCI, we don't want to use shared
  281. * interrupts. Sharing host devices with guest-assigned devices
  282. * on the same interrupt line is not a happy situation: there
  283. * are going to be long delays in accepting, acking, etc.
  284. */
  285. if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
  286. 0, "kvm_assigned_intx_device", (void *)dev))
  287. return -EIO;
  288. return 0;
  289. }
  290. #ifdef __KVM_HAVE_MSI
  291. static int assigned_device_enable_host_msi(struct kvm *kvm,
  292. struct kvm_assigned_dev_kernel *dev)
  293. {
  294. int r;
  295. if (!dev->dev->msi_enabled) {
  296. r = pci_enable_msi(dev->dev);
  297. if (r)
  298. return r;
  299. }
  300. dev->host_irq = dev->dev->irq;
  301. if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
  302. "kvm_assigned_msi_device", (void *)dev)) {
  303. pci_disable_msi(dev->dev);
  304. return -EIO;
  305. }
  306. return 0;
  307. }
  308. #endif
  309. #ifdef __KVM_HAVE_MSIX
  310. static int assigned_device_enable_host_msix(struct kvm *kvm,
  311. struct kvm_assigned_dev_kernel *dev)
  312. {
  313. int i, r = -EINVAL;
  314. /* host_msix_entries and guest_msix_entries should have been
  315. * initialized */
  316. if (dev->entries_nr == 0)
  317. return r;
  318. r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
  319. if (r)
  320. return r;
  321. for (i = 0; i < dev->entries_nr; i++) {
  322. r = request_irq(dev->host_msix_entries[i].vector,
  323. kvm_assigned_dev_intr, 0,
  324. "kvm_assigned_msix_device",
  325. (void *)dev);
  326. /* FIXME: free requested_irq's on failure */
  327. if (r)
  328. return r;
  329. }
  330. return 0;
  331. }
  332. #endif
  333. static int assigned_device_enable_guest_intx(struct kvm *kvm,
  334. struct kvm_assigned_dev_kernel *dev,
  335. struct kvm_assigned_irq *irq)
  336. {
  337. dev->guest_irq = irq->guest_irq;
  338. dev->ack_notifier.gsi = irq->guest_irq;
  339. return 0;
  340. }
  341. #ifdef __KVM_HAVE_MSI
  342. static int assigned_device_enable_guest_msi(struct kvm *kvm,
  343. struct kvm_assigned_dev_kernel *dev,
  344. struct kvm_assigned_irq *irq)
  345. {
  346. dev->guest_irq = irq->guest_irq;
  347. dev->ack_notifier.gsi = -1;
  348. dev->host_irq_disabled = false;
  349. return 0;
  350. }
  351. #endif
  352. #ifdef __KVM_HAVE_MSIX
  353. static int assigned_device_enable_guest_msix(struct kvm *kvm,
  354. struct kvm_assigned_dev_kernel *dev,
  355. struct kvm_assigned_irq *irq)
  356. {
  357. dev->guest_irq = irq->guest_irq;
  358. dev->ack_notifier.gsi = -1;
  359. dev->host_irq_disabled = false;
  360. return 0;
  361. }
  362. #endif
  363. static int assign_host_irq(struct kvm *kvm,
  364. struct kvm_assigned_dev_kernel *dev,
  365. __u32 host_irq_type)
  366. {
  367. int r = -EEXIST;
  368. if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
  369. return r;
  370. switch (host_irq_type) {
  371. case KVM_DEV_IRQ_HOST_INTX:
  372. r = assigned_device_enable_host_intx(kvm, dev);
  373. break;
  374. #ifdef __KVM_HAVE_MSI
  375. case KVM_DEV_IRQ_HOST_MSI:
  376. r = assigned_device_enable_host_msi(kvm, dev);
  377. break;
  378. #endif
  379. #ifdef __KVM_HAVE_MSIX
  380. case KVM_DEV_IRQ_HOST_MSIX:
  381. r = assigned_device_enable_host_msix(kvm, dev);
  382. break;
  383. #endif
  384. default:
  385. r = -EINVAL;
  386. }
  387. if (!r)
  388. dev->irq_requested_type |= host_irq_type;
  389. return r;
  390. }
  391. static int assign_guest_irq(struct kvm *kvm,
  392. struct kvm_assigned_dev_kernel *dev,
  393. struct kvm_assigned_irq *irq,
  394. unsigned long guest_irq_type)
  395. {
  396. int id;
  397. int r = -EEXIST;
  398. if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
  399. return r;
  400. id = kvm_request_irq_source_id(kvm);
  401. if (id < 0)
  402. return id;
  403. dev->irq_source_id = id;
  404. switch (guest_irq_type) {
  405. case KVM_DEV_IRQ_GUEST_INTX:
  406. r = assigned_device_enable_guest_intx(kvm, dev, irq);
  407. break;
  408. #ifdef __KVM_HAVE_MSI
  409. case KVM_DEV_IRQ_GUEST_MSI:
  410. r = assigned_device_enable_guest_msi(kvm, dev, irq);
  411. break;
  412. #endif
  413. #ifdef __KVM_HAVE_MSIX
  414. case KVM_DEV_IRQ_GUEST_MSIX:
  415. r = assigned_device_enable_guest_msix(kvm, dev, irq);
  416. break;
  417. #endif
  418. default:
  419. r = -EINVAL;
  420. }
  421. if (!r) {
  422. dev->irq_requested_type |= guest_irq_type;
  423. kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
  424. } else
  425. kvm_free_irq_source_id(kvm, dev->irq_source_id);
  426. return r;
  427. }
  428. /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
  429. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  430. struct kvm_assigned_irq *assigned_irq)
  431. {
  432. int r = -EINVAL;
  433. struct kvm_assigned_dev_kernel *match;
  434. unsigned long host_irq_type, guest_irq_type;
  435. if (!capable(CAP_SYS_RAWIO))
  436. return -EPERM;
  437. if (!irqchip_in_kernel(kvm))
  438. return r;
  439. mutex_lock(&kvm->lock);
  440. r = -ENODEV;
  441. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  442. assigned_irq->assigned_dev_id);
  443. if (!match)
  444. goto out;
  445. host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
  446. guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
  447. r = -EINVAL;
  448. /* can only assign one type at a time */
  449. if (hweight_long(host_irq_type) > 1)
  450. goto out;
  451. if (hweight_long(guest_irq_type) > 1)
  452. goto out;
  453. if (host_irq_type == 0 && guest_irq_type == 0)
  454. goto out;
  455. r = 0;
  456. if (host_irq_type)
  457. r = assign_host_irq(kvm, match, host_irq_type);
  458. if (r)
  459. goto out;
  460. if (guest_irq_type)
  461. r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
  462. out:
  463. mutex_unlock(&kvm->lock);
  464. return r;
  465. }
  466. static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
  467. struct kvm_assigned_irq
  468. *assigned_irq)
  469. {
  470. int r = -ENODEV;
  471. struct kvm_assigned_dev_kernel *match;
  472. mutex_lock(&kvm->lock);
  473. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  474. assigned_irq->assigned_dev_id);
  475. if (!match)
  476. goto out;
  477. r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
  478. out:
  479. mutex_unlock(&kvm->lock);
  480. return r;
  481. }
  482. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  483. struct kvm_assigned_pci_dev *assigned_dev)
  484. {
  485. int r = 0;
  486. struct kvm_assigned_dev_kernel *match;
  487. struct pci_dev *dev;
  488. down_read(&kvm->slots_lock);
  489. mutex_lock(&kvm->lock);
  490. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  491. assigned_dev->assigned_dev_id);
  492. if (match) {
  493. /* device already assigned */
  494. r = -EEXIST;
  495. goto out;
  496. }
  497. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  498. if (match == NULL) {
  499. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  500. __func__);
  501. r = -ENOMEM;
  502. goto out;
  503. }
  504. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  505. assigned_dev->devfn);
  506. if (!dev) {
  507. printk(KERN_INFO "%s: host device not found\n", __func__);
  508. r = -EINVAL;
  509. goto out_free;
  510. }
  511. if (pci_enable_device(dev)) {
  512. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  513. r = -EBUSY;
  514. goto out_put;
  515. }
  516. r = pci_request_regions(dev, "kvm_assigned_device");
  517. if (r) {
  518. printk(KERN_INFO "%s: Could not get access to device regions\n",
  519. __func__);
  520. goto out_disable;
  521. }
  522. pci_reset_function(dev);
  523. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  524. match->host_busnr = assigned_dev->busnr;
  525. match->host_devfn = assigned_dev->devfn;
  526. match->flags = assigned_dev->flags;
  527. match->dev = dev;
  528. spin_lock_init(&match->assigned_dev_lock);
  529. match->irq_source_id = -1;
  530. match->kvm = kvm;
  531. match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
  532. INIT_WORK(&match->interrupt_work,
  533. kvm_assigned_dev_interrupt_work_handler);
  534. list_add(&match->list, &kvm->arch.assigned_dev_head);
  535. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  536. if (!kvm->arch.iommu_domain) {
  537. r = kvm_iommu_map_guest(kvm);
  538. if (r)
  539. goto out_list_del;
  540. }
  541. r = kvm_assign_device(kvm, match);
  542. if (r)
  543. goto out_list_del;
  544. }
  545. out:
  546. mutex_unlock(&kvm->lock);
  547. up_read(&kvm->slots_lock);
  548. return r;
  549. out_list_del:
  550. list_del(&match->list);
  551. pci_release_regions(dev);
  552. out_disable:
  553. pci_disable_device(dev);
  554. out_put:
  555. pci_dev_put(dev);
  556. out_free:
  557. kfree(match);
  558. mutex_unlock(&kvm->lock);
  559. up_read(&kvm->slots_lock);
  560. return r;
  561. }
  562. #endif
  563. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  564. static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
  565. struct kvm_assigned_pci_dev *assigned_dev)
  566. {
  567. int r = 0;
  568. struct kvm_assigned_dev_kernel *match;
  569. mutex_lock(&kvm->lock);
  570. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  571. assigned_dev->assigned_dev_id);
  572. if (!match) {
  573. printk(KERN_INFO "%s: device hasn't been assigned before, "
  574. "so cannot be deassigned\n", __func__);
  575. r = -EINVAL;
  576. goto out;
  577. }
  578. if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
  579. kvm_deassign_device(kvm, match);
  580. kvm_free_assigned_device(kvm, match);
  581. out:
  582. mutex_unlock(&kvm->lock);
  583. return r;
  584. }
  585. #endif
  586. inline int kvm_is_mmio_pfn(pfn_t pfn)
  587. {
  588. if (pfn_valid(pfn)) {
  589. struct page *page = compound_head(pfn_to_page(pfn));
  590. return PageReserved(page);
  591. }
  592. return true;
  593. }
  594. /*
  595. * Switches to specified vcpu, until a matching vcpu_put()
  596. */
  597. void vcpu_load(struct kvm_vcpu *vcpu)
  598. {
  599. int cpu;
  600. mutex_lock(&vcpu->mutex);
  601. cpu = get_cpu();
  602. preempt_notifier_register(&vcpu->preempt_notifier);
  603. kvm_arch_vcpu_load(vcpu, cpu);
  604. put_cpu();
  605. }
  606. void vcpu_put(struct kvm_vcpu *vcpu)
  607. {
  608. preempt_disable();
  609. kvm_arch_vcpu_put(vcpu);
  610. preempt_notifier_unregister(&vcpu->preempt_notifier);
  611. preempt_enable();
  612. mutex_unlock(&vcpu->mutex);
  613. }
  614. static void ack_flush(void *_completed)
  615. {
  616. }
  617. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  618. {
  619. int i, cpu, me;
  620. cpumask_var_t cpus;
  621. bool called = true;
  622. struct kvm_vcpu *vcpu;
  623. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  624. spin_lock(&kvm->requests_lock);
  625. me = smp_processor_id();
  626. kvm_for_each_vcpu(i, vcpu, kvm) {
  627. if (test_and_set_bit(req, &vcpu->requests))
  628. continue;
  629. cpu = vcpu->cpu;
  630. if (cpus != NULL && cpu != -1 && cpu != me)
  631. cpumask_set_cpu(cpu, cpus);
  632. }
  633. if (unlikely(cpus == NULL))
  634. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  635. else if (!cpumask_empty(cpus))
  636. smp_call_function_many(cpus, ack_flush, NULL, 1);
  637. else
  638. called = false;
  639. spin_unlock(&kvm->requests_lock);
  640. free_cpumask_var(cpus);
  641. return called;
  642. }
  643. void kvm_flush_remote_tlbs(struct kvm *kvm)
  644. {
  645. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  646. ++kvm->stat.remote_tlb_flush;
  647. }
  648. void kvm_reload_remote_mmus(struct kvm *kvm)
  649. {
  650. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  651. }
  652. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  653. {
  654. struct page *page;
  655. int r;
  656. mutex_init(&vcpu->mutex);
  657. vcpu->cpu = -1;
  658. vcpu->kvm = kvm;
  659. vcpu->vcpu_id = id;
  660. init_waitqueue_head(&vcpu->wq);
  661. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  662. if (!page) {
  663. r = -ENOMEM;
  664. goto fail;
  665. }
  666. vcpu->run = page_address(page);
  667. r = kvm_arch_vcpu_init(vcpu);
  668. if (r < 0)
  669. goto fail_free_run;
  670. return 0;
  671. fail_free_run:
  672. free_page((unsigned long)vcpu->run);
  673. fail:
  674. return r;
  675. }
  676. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  677. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  678. {
  679. kvm_arch_vcpu_uninit(vcpu);
  680. free_page((unsigned long)vcpu->run);
  681. }
  682. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  683. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  684. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  685. {
  686. return container_of(mn, struct kvm, mmu_notifier);
  687. }
  688. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  689. struct mm_struct *mm,
  690. unsigned long address)
  691. {
  692. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  693. int need_tlb_flush;
  694. /*
  695. * When ->invalidate_page runs, the linux pte has been zapped
  696. * already but the page is still allocated until
  697. * ->invalidate_page returns. So if we increase the sequence
  698. * here the kvm page fault will notice if the spte can't be
  699. * established because the page is going to be freed. If
  700. * instead the kvm page fault establishes the spte before
  701. * ->invalidate_page runs, kvm_unmap_hva will release it
  702. * before returning.
  703. *
  704. * The sequence increase only need to be seen at spin_unlock
  705. * time, and not at spin_lock time.
  706. *
  707. * Increasing the sequence after the spin_unlock would be
  708. * unsafe because the kvm page fault could then establish the
  709. * pte after kvm_unmap_hva returned, without noticing the page
  710. * is going to be freed.
  711. */
  712. spin_lock(&kvm->mmu_lock);
  713. kvm->mmu_notifier_seq++;
  714. need_tlb_flush = kvm_unmap_hva(kvm, address);
  715. spin_unlock(&kvm->mmu_lock);
  716. /* we've to flush the tlb before the pages can be freed */
  717. if (need_tlb_flush)
  718. kvm_flush_remote_tlbs(kvm);
  719. }
  720. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  721. struct mm_struct *mm,
  722. unsigned long address,
  723. pte_t pte)
  724. {
  725. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  726. spin_lock(&kvm->mmu_lock);
  727. kvm->mmu_notifier_seq++;
  728. kvm_set_spte_hva(kvm, address, pte);
  729. spin_unlock(&kvm->mmu_lock);
  730. }
  731. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  732. struct mm_struct *mm,
  733. unsigned long start,
  734. unsigned long end)
  735. {
  736. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  737. int need_tlb_flush = 0;
  738. spin_lock(&kvm->mmu_lock);
  739. /*
  740. * The count increase must become visible at unlock time as no
  741. * spte can be established without taking the mmu_lock and
  742. * count is also read inside the mmu_lock critical section.
  743. */
  744. kvm->mmu_notifier_count++;
  745. for (; start < end; start += PAGE_SIZE)
  746. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  747. spin_unlock(&kvm->mmu_lock);
  748. /* we've to flush the tlb before the pages can be freed */
  749. if (need_tlb_flush)
  750. kvm_flush_remote_tlbs(kvm);
  751. }
  752. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  753. struct mm_struct *mm,
  754. unsigned long start,
  755. unsigned long end)
  756. {
  757. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  758. spin_lock(&kvm->mmu_lock);
  759. /*
  760. * This sequence increase will notify the kvm page fault that
  761. * the page that is going to be mapped in the spte could have
  762. * been freed.
  763. */
  764. kvm->mmu_notifier_seq++;
  765. /*
  766. * The above sequence increase must be visible before the
  767. * below count decrease but both values are read by the kvm
  768. * page fault under mmu_lock spinlock so we don't need to add
  769. * a smb_wmb() here in between the two.
  770. */
  771. kvm->mmu_notifier_count--;
  772. spin_unlock(&kvm->mmu_lock);
  773. BUG_ON(kvm->mmu_notifier_count < 0);
  774. }
  775. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  776. struct mm_struct *mm,
  777. unsigned long address)
  778. {
  779. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  780. int young;
  781. spin_lock(&kvm->mmu_lock);
  782. young = kvm_age_hva(kvm, address);
  783. spin_unlock(&kvm->mmu_lock);
  784. if (young)
  785. kvm_flush_remote_tlbs(kvm);
  786. return young;
  787. }
  788. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  789. struct mm_struct *mm)
  790. {
  791. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  792. kvm_arch_flush_shadow(kvm);
  793. }
  794. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  795. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  796. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  797. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  798. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  799. .change_pte = kvm_mmu_notifier_change_pte,
  800. .release = kvm_mmu_notifier_release,
  801. };
  802. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  803. static struct kvm *kvm_create_vm(void)
  804. {
  805. struct kvm *kvm = kvm_arch_create_vm();
  806. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  807. struct page *page;
  808. #endif
  809. if (IS_ERR(kvm))
  810. goto out;
  811. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  812. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  813. #endif
  814. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  815. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  816. if (!page) {
  817. kfree(kvm);
  818. return ERR_PTR(-ENOMEM);
  819. }
  820. kvm->coalesced_mmio_ring =
  821. (struct kvm_coalesced_mmio_ring *)page_address(page);
  822. #endif
  823. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  824. {
  825. int err;
  826. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  827. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  828. if (err) {
  829. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  830. put_page(page);
  831. #endif
  832. kfree(kvm);
  833. return ERR_PTR(err);
  834. }
  835. }
  836. #endif
  837. kvm->mm = current->mm;
  838. atomic_inc(&kvm->mm->mm_count);
  839. spin_lock_init(&kvm->mmu_lock);
  840. spin_lock_init(&kvm->requests_lock);
  841. kvm_io_bus_init(&kvm->pio_bus);
  842. kvm_eventfd_init(kvm);
  843. mutex_init(&kvm->lock);
  844. mutex_init(&kvm->irq_lock);
  845. kvm_io_bus_init(&kvm->mmio_bus);
  846. init_rwsem(&kvm->slots_lock);
  847. atomic_set(&kvm->users_count, 1);
  848. spin_lock(&kvm_lock);
  849. list_add(&kvm->vm_list, &vm_list);
  850. spin_unlock(&kvm_lock);
  851. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  852. kvm_coalesced_mmio_init(kvm);
  853. #endif
  854. out:
  855. return kvm;
  856. }
  857. /*
  858. * Free any memory in @free but not in @dont.
  859. */
  860. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  861. struct kvm_memory_slot *dont)
  862. {
  863. int i;
  864. if (!dont || free->rmap != dont->rmap)
  865. vfree(free->rmap);
  866. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  867. vfree(free->dirty_bitmap);
  868. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  869. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  870. vfree(free->lpage_info[i]);
  871. free->lpage_info[i] = NULL;
  872. }
  873. }
  874. free->npages = 0;
  875. free->dirty_bitmap = NULL;
  876. free->rmap = NULL;
  877. }
  878. void kvm_free_physmem(struct kvm *kvm)
  879. {
  880. int i;
  881. for (i = 0; i < kvm->nmemslots; ++i)
  882. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  883. }
  884. static void kvm_destroy_vm(struct kvm *kvm)
  885. {
  886. struct mm_struct *mm = kvm->mm;
  887. kvm_arch_sync_events(kvm);
  888. spin_lock(&kvm_lock);
  889. list_del(&kvm->vm_list);
  890. spin_unlock(&kvm_lock);
  891. kvm_free_irq_routing(kvm);
  892. kvm_io_bus_destroy(&kvm->pio_bus);
  893. kvm_io_bus_destroy(&kvm->mmio_bus);
  894. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  895. if (kvm->coalesced_mmio_ring != NULL)
  896. free_page((unsigned long)kvm->coalesced_mmio_ring);
  897. #endif
  898. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  899. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  900. #else
  901. kvm_arch_flush_shadow(kvm);
  902. #endif
  903. kvm_arch_destroy_vm(kvm);
  904. mmdrop(mm);
  905. }
  906. void kvm_get_kvm(struct kvm *kvm)
  907. {
  908. atomic_inc(&kvm->users_count);
  909. }
  910. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  911. void kvm_put_kvm(struct kvm *kvm)
  912. {
  913. if (atomic_dec_and_test(&kvm->users_count))
  914. kvm_destroy_vm(kvm);
  915. }
  916. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  917. static int kvm_vm_release(struct inode *inode, struct file *filp)
  918. {
  919. struct kvm *kvm = filp->private_data;
  920. kvm_irqfd_release(kvm);
  921. kvm_put_kvm(kvm);
  922. return 0;
  923. }
  924. /*
  925. * Allocate some memory and give it an address in the guest physical address
  926. * space.
  927. *
  928. * Discontiguous memory is allowed, mostly for framebuffers.
  929. *
  930. * Must be called holding mmap_sem for write.
  931. */
  932. int __kvm_set_memory_region(struct kvm *kvm,
  933. struct kvm_userspace_memory_region *mem,
  934. int user_alloc)
  935. {
  936. int r;
  937. gfn_t base_gfn;
  938. unsigned long npages;
  939. unsigned long i;
  940. struct kvm_memory_slot *memslot;
  941. struct kvm_memory_slot old, new;
  942. r = -EINVAL;
  943. /* General sanity checks */
  944. if (mem->memory_size & (PAGE_SIZE - 1))
  945. goto out;
  946. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  947. goto out;
  948. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  949. goto out;
  950. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  951. goto out;
  952. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  953. goto out;
  954. memslot = &kvm->memslots[mem->slot];
  955. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  956. npages = mem->memory_size >> PAGE_SHIFT;
  957. if (!npages)
  958. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  959. new = old = *memslot;
  960. new.base_gfn = base_gfn;
  961. new.npages = npages;
  962. new.flags = mem->flags;
  963. /* Disallow changing a memory slot's size. */
  964. r = -EINVAL;
  965. if (npages && old.npages && npages != old.npages)
  966. goto out_free;
  967. /* Check for overlaps */
  968. r = -EEXIST;
  969. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  970. struct kvm_memory_slot *s = &kvm->memslots[i];
  971. if (s == memslot || !s->npages)
  972. continue;
  973. if (!((base_gfn + npages <= s->base_gfn) ||
  974. (base_gfn >= s->base_gfn + s->npages)))
  975. goto out_free;
  976. }
  977. /* Free page dirty bitmap if unneeded */
  978. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  979. new.dirty_bitmap = NULL;
  980. r = -ENOMEM;
  981. /* Allocate if a slot is being created */
  982. #ifndef CONFIG_S390
  983. if (npages && !new.rmap) {
  984. new.rmap = vmalloc(npages * sizeof(struct page *));
  985. if (!new.rmap)
  986. goto out_free;
  987. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  988. new.user_alloc = user_alloc;
  989. /*
  990. * hva_to_rmmap() serialzies with the mmu_lock and to be
  991. * safe it has to ignore memslots with !user_alloc &&
  992. * !userspace_addr.
  993. */
  994. if (user_alloc)
  995. new.userspace_addr = mem->userspace_addr;
  996. else
  997. new.userspace_addr = 0;
  998. }
  999. if (!npages)
  1000. goto skip_lpage;
  1001. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  1002. unsigned long ugfn;
  1003. unsigned long j;
  1004. int lpages;
  1005. int level = i + 2;
  1006. /* Avoid unused variable warning if no large pages */
  1007. (void)level;
  1008. if (new.lpage_info[i])
  1009. continue;
  1010. lpages = 1 + (base_gfn + npages - 1) /
  1011. KVM_PAGES_PER_HPAGE(level);
  1012. lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
  1013. new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
  1014. if (!new.lpage_info[i])
  1015. goto out_free;
  1016. memset(new.lpage_info[i], 0,
  1017. lpages * sizeof(*new.lpage_info[i]));
  1018. if (base_gfn % KVM_PAGES_PER_HPAGE(level))
  1019. new.lpage_info[i][0].write_count = 1;
  1020. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
  1021. new.lpage_info[i][lpages - 1].write_count = 1;
  1022. ugfn = new.userspace_addr >> PAGE_SHIFT;
  1023. /*
  1024. * If the gfn and userspace address are not aligned wrt each
  1025. * other, or if explicitly asked to, disable large page
  1026. * support for this slot
  1027. */
  1028. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  1029. !largepages_enabled)
  1030. for (j = 0; j < lpages; ++j)
  1031. new.lpage_info[i][j].write_count = 1;
  1032. }
  1033. skip_lpage:
  1034. /* Allocate page dirty bitmap if needed */
  1035. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  1036. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  1037. new.dirty_bitmap = vmalloc(dirty_bytes);
  1038. if (!new.dirty_bitmap)
  1039. goto out_free;
  1040. memset(new.dirty_bitmap, 0, dirty_bytes);
  1041. if (old.npages)
  1042. kvm_arch_flush_shadow(kvm);
  1043. }
  1044. #else /* not defined CONFIG_S390 */
  1045. new.user_alloc = user_alloc;
  1046. if (user_alloc)
  1047. new.userspace_addr = mem->userspace_addr;
  1048. #endif /* not defined CONFIG_S390 */
  1049. if (!npages)
  1050. kvm_arch_flush_shadow(kvm);
  1051. spin_lock(&kvm->mmu_lock);
  1052. if (mem->slot >= kvm->nmemslots)
  1053. kvm->nmemslots = mem->slot + 1;
  1054. *memslot = new;
  1055. spin_unlock(&kvm->mmu_lock);
  1056. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  1057. if (r) {
  1058. spin_lock(&kvm->mmu_lock);
  1059. *memslot = old;
  1060. spin_unlock(&kvm->mmu_lock);
  1061. goto out_free;
  1062. }
  1063. kvm_free_physmem_slot(&old, npages ? &new : NULL);
  1064. /* Slot deletion case: we have to update the current slot */
  1065. spin_lock(&kvm->mmu_lock);
  1066. if (!npages)
  1067. *memslot = old;
  1068. spin_unlock(&kvm->mmu_lock);
  1069. #ifdef CONFIG_DMAR
  1070. /* map the pages in iommu page table */
  1071. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  1072. if (r)
  1073. goto out;
  1074. #endif
  1075. return 0;
  1076. out_free:
  1077. kvm_free_physmem_slot(&new, &old);
  1078. out:
  1079. return r;
  1080. }
  1081. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  1082. int kvm_set_memory_region(struct kvm *kvm,
  1083. struct kvm_userspace_memory_region *mem,
  1084. int user_alloc)
  1085. {
  1086. int r;
  1087. down_write(&kvm->slots_lock);
  1088. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  1089. up_write(&kvm->slots_lock);
  1090. return r;
  1091. }
  1092. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  1093. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  1094. struct
  1095. kvm_userspace_memory_region *mem,
  1096. int user_alloc)
  1097. {
  1098. if (mem->slot >= KVM_MEMORY_SLOTS)
  1099. return -EINVAL;
  1100. return kvm_set_memory_region(kvm, mem, user_alloc);
  1101. }
  1102. int kvm_get_dirty_log(struct kvm *kvm,
  1103. struct kvm_dirty_log *log, int *is_dirty)
  1104. {
  1105. struct kvm_memory_slot *memslot;
  1106. int r, i;
  1107. int n;
  1108. unsigned long any = 0;
  1109. r = -EINVAL;
  1110. if (log->slot >= KVM_MEMORY_SLOTS)
  1111. goto out;
  1112. memslot = &kvm->memslots[log->slot];
  1113. r = -ENOENT;
  1114. if (!memslot->dirty_bitmap)
  1115. goto out;
  1116. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1117. for (i = 0; !any && i < n/sizeof(long); ++i)
  1118. any = memslot->dirty_bitmap[i];
  1119. r = -EFAULT;
  1120. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1121. goto out;
  1122. if (any)
  1123. *is_dirty = 1;
  1124. r = 0;
  1125. out:
  1126. return r;
  1127. }
  1128. void kvm_disable_largepages(void)
  1129. {
  1130. largepages_enabled = false;
  1131. }
  1132. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  1133. int is_error_page(struct page *page)
  1134. {
  1135. return page == bad_page;
  1136. }
  1137. EXPORT_SYMBOL_GPL(is_error_page);
  1138. int is_error_pfn(pfn_t pfn)
  1139. {
  1140. return pfn == bad_pfn;
  1141. }
  1142. EXPORT_SYMBOL_GPL(is_error_pfn);
  1143. static inline unsigned long bad_hva(void)
  1144. {
  1145. return PAGE_OFFSET;
  1146. }
  1147. int kvm_is_error_hva(unsigned long addr)
  1148. {
  1149. return addr == bad_hva();
  1150. }
  1151. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  1152. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  1153. {
  1154. int i;
  1155. for (i = 0; i < kvm->nmemslots; ++i) {
  1156. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1157. if (gfn >= memslot->base_gfn
  1158. && gfn < memslot->base_gfn + memslot->npages)
  1159. return memslot;
  1160. }
  1161. return NULL;
  1162. }
  1163. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  1164. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  1165. {
  1166. gfn = unalias_gfn(kvm, gfn);
  1167. return gfn_to_memslot_unaliased(kvm, gfn);
  1168. }
  1169. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  1170. {
  1171. int i;
  1172. gfn = unalias_gfn(kvm, gfn);
  1173. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1174. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1175. if (gfn >= memslot->base_gfn
  1176. && gfn < memslot->base_gfn + memslot->npages)
  1177. return 1;
  1178. }
  1179. return 0;
  1180. }
  1181. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  1182. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  1183. {
  1184. struct kvm_memory_slot *slot;
  1185. gfn = unalias_gfn(kvm, gfn);
  1186. slot = gfn_to_memslot_unaliased(kvm, gfn);
  1187. if (!slot)
  1188. return bad_hva();
  1189. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  1190. }
  1191. EXPORT_SYMBOL_GPL(gfn_to_hva);
  1192. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  1193. {
  1194. struct page *page[1];
  1195. unsigned long addr;
  1196. int npages;
  1197. pfn_t pfn;
  1198. might_sleep();
  1199. addr = gfn_to_hva(kvm, gfn);
  1200. if (kvm_is_error_hva(addr)) {
  1201. get_page(bad_page);
  1202. return page_to_pfn(bad_page);
  1203. }
  1204. npages = get_user_pages_fast(addr, 1, 1, page);
  1205. if (unlikely(npages != 1)) {
  1206. struct vm_area_struct *vma;
  1207. down_read(&current->mm->mmap_sem);
  1208. vma = find_vma(current->mm, addr);
  1209. if (vma == NULL || addr < vma->vm_start ||
  1210. !(vma->vm_flags & VM_PFNMAP)) {
  1211. up_read(&current->mm->mmap_sem);
  1212. get_page(bad_page);
  1213. return page_to_pfn(bad_page);
  1214. }
  1215. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1216. up_read(&current->mm->mmap_sem);
  1217. BUG_ON(!kvm_is_mmio_pfn(pfn));
  1218. } else
  1219. pfn = page_to_pfn(page[0]);
  1220. return pfn;
  1221. }
  1222. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1223. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1224. {
  1225. pfn_t pfn;
  1226. pfn = gfn_to_pfn(kvm, gfn);
  1227. if (!kvm_is_mmio_pfn(pfn))
  1228. return pfn_to_page(pfn);
  1229. WARN_ON(kvm_is_mmio_pfn(pfn));
  1230. get_page(bad_page);
  1231. return bad_page;
  1232. }
  1233. EXPORT_SYMBOL_GPL(gfn_to_page);
  1234. void kvm_release_page_clean(struct page *page)
  1235. {
  1236. kvm_release_pfn_clean(page_to_pfn(page));
  1237. }
  1238. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1239. void kvm_release_pfn_clean(pfn_t pfn)
  1240. {
  1241. if (!kvm_is_mmio_pfn(pfn))
  1242. put_page(pfn_to_page(pfn));
  1243. }
  1244. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1245. void kvm_release_page_dirty(struct page *page)
  1246. {
  1247. kvm_release_pfn_dirty(page_to_pfn(page));
  1248. }
  1249. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1250. void kvm_release_pfn_dirty(pfn_t pfn)
  1251. {
  1252. kvm_set_pfn_dirty(pfn);
  1253. kvm_release_pfn_clean(pfn);
  1254. }
  1255. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1256. void kvm_set_page_dirty(struct page *page)
  1257. {
  1258. kvm_set_pfn_dirty(page_to_pfn(page));
  1259. }
  1260. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1261. void kvm_set_pfn_dirty(pfn_t pfn)
  1262. {
  1263. if (!kvm_is_mmio_pfn(pfn)) {
  1264. struct page *page = pfn_to_page(pfn);
  1265. if (!PageReserved(page))
  1266. SetPageDirty(page);
  1267. }
  1268. }
  1269. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1270. void kvm_set_pfn_accessed(pfn_t pfn)
  1271. {
  1272. if (!kvm_is_mmio_pfn(pfn))
  1273. mark_page_accessed(pfn_to_page(pfn));
  1274. }
  1275. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1276. void kvm_get_pfn(pfn_t pfn)
  1277. {
  1278. if (!kvm_is_mmio_pfn(pfn))
  1279. get_page(pfn_to_page(pfn));
  1280. }
  1281. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1282. static int next_segment(unsigned long len, int offset)
  1283. {
  1284. if (len > PAGE_SIZE - offset)
  1285. return PAGE_SIZE - offset;
  1286. else
  1287. return len;
  1288. }
  1289. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1290. int len)
  1291. {
  1292. int r;
  1293. unsigned long addr;
  1294. addr = gfn_to_hva(kvm, gfn);
  1295. if (kvm_is_error_hva(addr))
  1296. return -EFAULT;
  1297. r = copy_from_user(data, (void __user *)addr + offset, len);
  1298. if (r)
  1299. return -EFAULT;
  1300. return 0;
  1301. }
  1302. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1303. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1304. {
  1305. gfn_t gfn = gpa >> PAGE_SHIFT;
  1306. int seg;
  1307. int offset = offset_in_page(gpa);
  1308. int ret;
  1309. while ((seg = next_segment(len, offset)) != 0) {
  1310. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1311. if (ret < 0)
  1312. return ret;
  1313. offset = 0;
  1314. len -= seg;
  1315. data += seg;
  1316. ++gfn;
  1317. }
  1318. return 0;
  1319. }
  1320. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1321. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1322. unsigned long len)
  1323. {
  1324. int r;
  1325. unsigned long addr;
  1326. gfn_t gfn = gpa >> PAGE_SHIFT;
  1327. int offset = offset_in_page(gpa);
  1328. addr = gfn_to_hva(kvm, gfn);
  1329. if (kvm_is_error_hva(addr))
  1330. return -EFAULT;
  1331. pagefault_disable();
  1332. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1333. pagefault_enable();
  1334. if (r)
  1335. return -EFAULT;
  1336. return 0;
  1337. }
  1338. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1339. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1340. int offset, int len)
  1341. {
  1342. int r;
  1343. unsigned long addr;
  1344. addr = gfn_to_hva(kvm, gfn);
  1345. if (kvm_is_error_hva(addr))
  1346. return -EFAULT;
  1347. r = copy_to_user((void __user *)addr + offset, data, len);
  1348. if (r)
  1349. return -EFAULT;
  1350. mark_page_dirty(kvm, gfn);
  1351. return 0;
  1352. }
  1353. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1354. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1355. unsigned long len)
  1356. {
  1357. gfn_t gfn = gpa >> PAGE_SHIFT;
  1358. int seg;
  1359. int offset = offset_in_page(gpa);
  1360. int ret;
  1361. while ((seg = next_segment(len, offset)) != 0) {
  1362. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1363. if (ret < 0)
  1364. return ret;
  1365. offset = 0;
  1366. len -= seg;
  1367. data += seg;
  1368. ++gfn;
  1369. }
  1370. return 0;
  1371. }
  1372. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1373. {
  1374. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1375. }
  1376. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1377. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1378. {
  1379. gfn_t gfn = gpa >> PAGE_SHIFT;
  1380. int seg;
  1381. int offset = offset_in_page(gpa);
  1382. int ret;
  1383. while ((seg = next_segment(len, offset)) != 0) {
  1384. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1385. if (ret < 0)
  1386. return ret;
  1387. offset = 0;
  1388. len -= seg;
  1389. ++gfn;
  1390. }
  1391. return 0;
  1392. }
  1393. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1394. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1395. {
  1396. struct kvm_memory_slot *memslot;
  1397. gfn = unalias_gfn(kvm, gfn);
  1398. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1399. if (memslot && memslot->dirty_bitmap) {
  1400. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1401. /* avoid RMW */
  1402. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1403. set_bit(rel_gfn, memslot->dirty_bitmap);
  1404. }
  1405. }
  1406. /*
  1407. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1408. */
  1409. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1410. {
  1411. DEFINE_WAIT(wait);
  1412. for (;;) {
  1413. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1414. if (kvm_arch_vcpu_runnable(vcpu)) {
  1415. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1416. break;
  1417. }
  1418. if (kvm_cpu_has_pending_timer(vcpu))
  1419. break;
  1420. if (signal_pending(current))
  1421. break;
  1422. schedule();
  1423. }
  1424. finish_wait(&vcpu->wq, &wait);
  1425. }
  1426. void kvm_resched(struct kvm_vcpu *vcpu)
  1427. {
  1428. if (!need_resched())
  1429. return;
  1430. cond_resched();
  1431. }
  1432. EXPORT_SYMBOL_GPL(kvm_resched);
  1433. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1434. {
  1435. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1436. struct page *page;
  1437. if (vmf->pgoff == 0)
  1438. page = virt_to_page(vcpu->run);
  1439. #ifdef CONFIG_X86
  1440. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1441. page = virt_to_page(vcpu->arch.pio_data);
  1442. #endif
  1443. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1444. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1445. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1446. #endif
  1447. else
  1448. return VM_FAULT_SIGBUS;
  1449. get_page(page);
  1450. vmf->page = page;
  1451. return 0;
  1452. }
  1453. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1454. .fault = kvm_vcpu_fault,
  1455. };
  1456. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1457. {
  1458. vma->vm_ops = &kvm_vcpu_vm_ops;
  1459. return 0;
  1460. }
  1461. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1462. {
  1463. struct kvm_vcpu *vcpu = filp->private_data;
  1464. kvm_put_kvm(vcpu->kvm);
  1465. return 0;
  1466. }
  1467. static struct file_operations kvm_vcpu_fops = {
  1468. .release = kvm_vcpu_release,
  1469. .unlocked_ioctl = kvm_vcpu_ioctl,
  1470. .compat_ioctl = kvm_vcpu_ioctl,
  1471. .mmap = kvm_vcpu_mmap,
  1472. };
  1473. /*
  1474. * Allocates an inode for the vcpu.
  1475. */
  1476. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1477. {
  1478. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1479. }
  1480. /*
  1481. * Creates some virtual cpus. Good luck creating more than one.
  1482. */
  1483. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1484. {
  1485. int r;
  1486. struct kvm_vcpu *vcpu, *v;
  1487. vcpu = kvm_arch_vcpu_create(kvm, id);
  1488. if (IS_ERR(vcpu))
  1489. return PTR_ERR(vcpu);
  1490. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1491. r = kvm_arch_vcpu_setup(vcpu);
  1492. if (r)
  1493. return r;
  1494. mutex_lock(&kvm->lock);
  1495. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1496. r = -EINVAL;
  1497. goto vcpu_destroy;
  1498. }
  1499. kvm_for_each_vcpu(r, v, kvm)
  1500. if (v->vcpu_id == id) {
  1501. r = -EEXIST;
  1502. goto vcpu_destroy;
  1503. }
  1504. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1505. /* Now it's all set up, let userspace reach it */
  1506. kvm_get_kvm(kvm);
  1507. r = create_vcpu_fd(vcpu);
  1508. if (r < 0) {
  1509. kvm_put_kvm(kvm);
  1510. goto vcpu_destroy;
  1511. }
  1512. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1513. smp_wmb();
  1514. atomic_inc(&kvm->online_vcpus);
  1515. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1516. if (kvm->bsp_vcpu_id == id)
  1517. kvm->bsp_vcpu = vcpu;
  1518. #endif
  1519. mutex_unlock(&kvm->lock);
  1520. return r;
  1521. vcpu_destroy:
  1522. mutex_unlock(&kvm->lock);
  1523. kvm_arch_vcpu_destroy(vcpu);
  1524. return r;
  1525. }
  1526. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1527. {
  1528. if (sigset) {
  1529. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1530. vcpu->sigset_active = 1;
  1531. vcpu->sigset = *sigset;
  1532. } else
  1533. vcpu->sigset_active = 0;
  1534. return 0;
  1535. }
  1536. #ifdef __KVM_HAVE_MSIX
  1537. static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
  1538. struct kvm_assigned_msix_nr *entry_nr)
  1539. {
  1540. int r = 0;
  1541. struct kvm_assigned_dev_kernel *adev;
  1542. mutex_lock(&kvm->lock);
  1543. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1544. entry_nr->assigned_dev_id);
  1545. if (!adev) {
  1546. r = -EINVAL;
  1547. goto msix_nr_out;
  1548. }
  1549. if (adev->entries_nr == 0) {
  1550. adev->entries_nr = entry_nr->entry_nr;
  1551. if (adev->entries_nr == 0 ||
  1552. adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
  1553. r = -EINVAL;
  1554. goto msix_nr_out;
  1555. }
  1556. adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
  1557. entry_nr->entry_nr,
  1558. GFP_KERNEL);
  1559. if (!adev->host_msix_entries) {
  1560. r = -ENOMEM;
  1561. goto msix_nr_out;
  1562. }
  1563. adev->guest_msix_entries = kzalloc(
  1564. sizeof(struct kvm_guest_msix_entry) *
  1565. entry_nr->entry_nr, GFP_KERNEL);
  1566. if (!adev->guest_msix_entries) {
  1567. kfree(adev->host_msix_entries);
  1568. r = -ENOMEM;
  1569. goto msix_nr_out;
  1570. }
  1571. } else /* Not allowed set MSI-X number twice */
  1572. r = -EINVAL;
  1573. msix_nr_out:
  1574. mutex_unlock(&kvm->lock);
  1575. return r;
  1576. }
  1577. static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
  1578. struct kvm_assigned_msix_entry *entry)
  1579. {
  1580. int r = 0, i;
  1581. struct kvm_assigned_dev_kernel *adev;
  1582. mutex_lock(&kvm->lock);
  1583. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1584. entry->assigned_dev_id);
  1585. if (!adev) {
  1586. r = -EINVAL;
  1587. goto msix_entry_out;
  1588. }
  1589. for (i = 0; i < adev->entries_nr; i++)
  1590. if (adev->guest_msix_entries[i].vector == 0 ||
  1591. adev->guest_msix_entries[i].entry == entry->entry) {
  1592. adev->guest_msix_entries[i].entry = entry->entry;
  1593. adev->guest_msix_entries[i].vector = entry->gsi;
  1594. adev->host_msix_entries[i].entry = entry->entry;
  1595. break;
  1596. }
  1597. if (i == adev->entries_nr) {
  1598. r = -ENOSPC;
  1599. goto msix_entry_out;
  1600. }
  1601. msix_entry_out:
  1602. mutex_unlock(&kvm->lock);
  1603. return r;
  1604. }
  1605. #endif
  1606. static long kvm_vcpu_ioctl(struct file *filp,
  1607. unsigned int ioctl, unsigned long arg)
  1608. {
  1609. struct kvm_vcpu *vcpu = filp->private_data;
  1610. void __user *argp = (void __user *)arg;
  1611. int r;
  1612. struct kvm_fpu *fpu = NULL;
  1613. struct kvm_sregs *kvm_sregs = NULL;
  1614. if (vcpu->kvm->mm != current->mm)
  1615. return -EIO;
  1616. switch (ioctl) {
  1617. case KVM_RUN:
  1618. r = -EINVAL;
  1619. if (arg)
  1620. goto out;
  1621. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1622. break;
  1623. case KVM_GET_REGS: {
  1624. struct kvm_regs *kvm_regs;
  1625. r = -ENOMEM;
  1626. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1627. if (!kvm_regs)
  1628. goto out;
  1629. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1630. if (r)
  1631. goto out_free1;
  1632. r = -EFAULT;
  1633. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1634. goto out_free1;
  1635. r = 0;
  1636. out_free1:
  1637. kfree(kvm_regs);
  1638. break;
  1639. }
  1640. case KVM_SET_REGS: {
  1641. struct kvm_regs *kvm_regs;
  1642. r = -ENOMEM;
  1643. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1644. if (!kvm_regs)
  1645. goto out;
  1646. r = -EFAULT;
  1647. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1648. goto out_free2;
  1649. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1650. if (r)
  1651. goto out_free2;
  1652. r = 0;
  1653. out_free2:
  1654. kfree(kvm_regs);
  1655. break;
  1656. }
  1657. case KVM_GET_SREGS: {
  1658. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1659. r = -ENOMEM;
  1660. if (!kvm_sregs)
  1661. goto out;
  1662. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1663. if (r)
  1664. goto out;
  1665. r = -EFAULT;
  1666. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1667. goto out;
  1668. r = 0;
  1669. break;
  1670. }
  1671. case KVM_SET_SREGS: {
  1672. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1673. r = -ENOMEM;
  1674. if (!kvm_sregs)
  1675. goto out;
  1676. r = -EFAULT;
  1677. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1678. goto out;
  1679. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1680. if (r)
  1681. goto out;
  1682. r = 0;
  1683. break;
  1684. }
  1685. case KVM_GET_MP_STATE: {
  1686. struct kvm_mp_state mp_state;
  1687. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1688. if (r)
  1689. goto out;
  1690. r = -EFAULT;
  1691. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1692. goto out;
  1693. r = 0;
  1694. break;
  1695. }
  1696. case KVM_SET_MP_STATE: {
  1697. struct kvm_mp_state mp_state;
  1698. r = -EFAULT;
  1699. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1700. goto out;
  1701. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1702. if (r)
  1703. goto out;
  1704. r = 0;
  1705. break;
  1706. }
  1707. case KVM_TRANSLATE: {
  1708. struct kvm_translation tr;
  1709. r = -EFAULT;
  1710. if (copy_from_user(&tr, argp, sizeof tr))
  1711. goto out;
  1712. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1713. if (r)
  1714. goto out;
  1715. r = -EFAULT;
  1716. if (copy_to_user(argp, &tr, sizeof tr))
  1717. goto out;
  1718. r = 0;
  1719. break;
  1720. }
  1721. case KVM_SET_GUEST_DEBUG: {
  1722. struct kvm_guest_debug dbg;
  1723. r = -EFAULT;
  1724. if (copy_from_user(&dbg, argp, sizeof dbg))
  1725. goto out;
  1726. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1727. if (r)
  1728. goto out;
  1729. r = 0;
  1730. break;
  1731. }
  1732. case KVM_SET_SIGNAL_MASK: {
  1733. struct kvm_signal_mask __user *sigmask_arg = argp;
  1734. struct kvm_signal_mask kvm_sigmask;
  1735. sigset_t sigset, *p;
  1736. p = NULL;
  1737. if (argp) {
  1738. r = -EFAULT;
  1739. if (copy_from_user(&kvm_sigmask, argp,
  1740. sizeof kvm_sigmask))
  1741. goto out;
  1742. r = -EINVAL;
  1743. if (kvm_sigmask.len != sizeof sigset)
  1744. goto out;
  1745. r = -EFAULT;
  1746. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1747. sizeof sigset))
  1748. goto out;
  1749. p = &sigset;
  1750. }
  1751. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1752. break;
  1753. }
  1754. case KVM_GET_FPU: {
  1755. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1756. r = -ENOMEM;
  1757. if (!fpu)
  1758. goto out;
  1759. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1760. if (r)
  1761. goto out;
  1762. r = -EFAULT;
  1763. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1764. goto out;
  1765. r = 0;
  1766. break;
  1767. }
  1768. case KVM_SET_FPU: {
  1769. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1770. r = -ENOMEM;
  1771. if (!fpu)
  1772. goto out;
  1773. r = -EFAULT;
  1774. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1775. goto out;
  1776. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1777. if (r)
  1778. goto out;
  1779. r = 0;
  1780. break;
  1781. }
  1782. default:
  1783. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1784. }
  1785. out:
  1786. kfree(fpu);
  1787. kfree(kvm_sregs);
  1788. return r;
  1789. }
  1790. static long kvm_vm_ioctl(struct file *filp,
  1791. unsigned int ioctl, unsigned long arg)
  1792. {
  1793. struct kvm *kvm = filp->private_data;
  1794. void __user *argp = (void __user *)arg;
  1795. int r;
  1796. if (kvm->mm != current->mm)
  1797. return -EIO;
  1798. switch (ioctl) {
  1799. case KVM_CREATE_VCPU:
  1800. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1801. if (r < 0)
  1802. goto out;
  1803. break;
  1804. case KVM_SET_USER_MEMORY_REGION: {
  1805. struct kvm_userspace_memory_region kvm_userspace_mem;
  1806. r = -EFAULT;
  1807. if (copy_from_user(&kvm_userspace_mem, argp,
  1808. sizeof kvm_userspace_mem))
  1809. goto out;
  1810. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1811. if (r)
  1812. goto out;
  1813. break;
  1814. }
  1815. case KVM_GET_DIRTY_LOG: {
  1816. struct kvm_dirty_log log;
  1817. r = -EFAULT;
  1818. if (copy_from_user(&log, argp, sizeof log))
  1819. goto out;
  1820. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1821. if (r)
  1822. goto out;
  1823. break;
  1824. }
  1825. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1826. case KVM_REGISTER_COALESCED_MMIO: {
  1827. struct kvm_coalesced_mmio_zone zone;
  1828. r = -EFAULT;
  1829. if (copy_from_user(&zone, argp, sizeof zone))
  1830. goto out;
  1831. r = -ENXIO;
  1832. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1833. if (r)
  1834. goto out;
  1835. r = 0;
  1836. break;
  1837. }
  1838. case KVM_UNREGISTER_COALESCED_MMIO: {
  1839. struct kvm_coalesced_mmio_zone zone;
  1840. r = -EFAULT;
  1841. if (copy_from_user(&zone, argp, sizeof zone))
  1842. goto out;
  1843. r = -ENXIO;
  1844. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1845. if (r)
  1846. goto out;
  1847. r = 0;
  1848. break;
  1849. }
  1850. #endif
  1851. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1852. case KVM_ASSIGN_PCI_DEVICE: {
  1853. struct kvm_assigned_pci_dev assigned_dev;
  1854. r = -EFAULT;
  1855. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1856. goto out;
  1857. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1858. if (r)
  1859. goto out;
  1860. break;
  1861. }
  1862. case KVM_ASSIGN_IRQ: {
  1863. r = -EOPNOTSUPP;
  1864. break;
  1865. }
  1866. #ifdef KVM_CAP_ASSIGN_DEV_IRQ
  1867. case KVM_ASSIGN_DEV_IRQ: {
  1868. struct kvm_assigned_irq assigned_irq;
  1869. r = -EFAULT;
  1870. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1871. goto out;
  1872. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1873. if (r)
  1874. goto out;
  1875. break;
  1876. }
  1877. case KVM_DEASSIGN_DEV_IRQ: {
  1878. struct kvm_assigned_irq assigned_irq;
  1879. r = -EFAULT;
  1880. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1881. goto out;
  1882. r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
  1883. if (r)
  1884. goto out;
  1885. break;
  1886. }
  1887. #endif
  1888. #endif
  1889. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  1890. case KVM_DEASSIGN_PCI_DEVICE: {
  1891. struct kvm_assigned_pci_dev assigned_dev;
  1892. r = -EFAULT;
  1893. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1894. goto out;
  1895. r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
  1896. if (r)
  1897. goto out;
  1898. break;
  1899. }
  1900. #endif
  1901. #ifdef KVM_CAP_IRQ_ROUTING
  1902. case KVM_SET_GSI_ROUTING: {
  1903. struct kvm_irq_routing routing;
  1904. struct kvm_irq_routing __user *urouting;
  1905. struct kvm_irq_routing_entry *entries;
  1906. r = -EFAULT;
  1907. if (copy_from_user(&routing, argp, sizeof(routing)))
  1908. goto out;
  1909. r = -EINVAL;
  1910. if (routing.nr >= KVM_MAX_IRQ_ROUTES)
  1911. goto out;
  1912. if (routing.flags)
  1913. goto out;
  1914. r = -ENOMEM;
  1915. entries = vmalloc(routing.nr * sizeof(*entries));
  1916. if (!entries)
  1917. goto out;
  1918. r = -EFAULT;
  1919. urouting = argp;
  1920. if (copy_from_user(entries, urouting->entries,
  1921. routing.nr * sizeof(*entries)))
  1922. goto out_free_irq_routing;
  1923. r = kvm_set_irq_routing(kvm, entries, routing.nr,
  1924. routing.flags);
  1925. out_free_irq_routing:
  1926. vfree(entries);
  1927. break;
  1928. }
  1929. #endif /* KVM_CAP_IRQ_ROUTING */
  1930. #ifdef __KVM_HAVE_MSIX
  1931. case KVM_ASSIGN_SET_MSIX_NR: {
  1932. struct kvm_assigned_msix_nr entry_nr;
  1933. r = -EFAULT;
  1934. if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
  1935. goto out;
  1936. r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
  1937. if (r)
  1938. goto out;
  1939. break;
  1940. }
  1941. case KVM_ASSIGN_SET_MSIX_ENTRY: {
  1942. struct kvm_assigned_msix_entry entry;
  1943. r = -EFAULT;
  1944. if (copy_from_user(&entry, argp, sizeof entry))
  1945. goto out;
  1946. r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
  1947. if (r)
  1948. goto out;
  1949. break;
  1950. }
  1951. #endif
  1952. case KVM_IRQFD: {
  1953. struct kvm_irqfd data;
  1954. r = -EFAULT;
  1955. if (copy_from_user(&data, argp, sizeof data))
  1956. goto out;
  1957. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1958. break;
  1959. }
  1960. case KVM_IOEVENTFD: {
  1961. struct kvm_ioeventfd data;
  1962. r = -EFAULT;
  1963. if (copy_from_user(&data, argp, sizeof data))
  1964. goto out;
  1965. r = kvm_ioeventfd(kvm, &data);
  1966. break;
  1967. }
  1968. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1969. case KVM_SET_BOOT_CPU_ID:
  1970. r = 0;
  1971. mutex_lock(&kvm->lock);
  1972. if (atomic_read(&kvm->online_vcpus) != 0)
  1973. r = -EBUSY;
  1974. else
  1975. kvm->bsp_vcpu_id = arg;
  1976. mutex_unlock(&kvm->lock);
  1977. break;
  1978. #endif
  1979. default:
  1980. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1981. }
  1982. out:
  1983. return r;
  1984. }
  1985. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1986. {
  1987. struct page *page[1];
  1988. unsigned long addr;
  1989. int npages;
  1990. gfn_t gfn = vmf->pgoff;
  1991. struct kvm *kvm = vma->vm_file->private_data;
  1992. addr = gfn_to_hva(kvm, gfn);
  1993. if (kvm_is_error_hva(addr))
  1994. return VM_FAULT_SIGBUS;
  1995. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1996. NULL);
  1997. if (unlikely(npages != 1))
  1998. return VM_FAULT_SIGBUS;
  1999. vmf->page = page[0];
  2000. return 0;
  2001. }
  2002. static const struct vm_operations_struct kvm_vm_vm_ops = {
  2003. .fault = kvm_vm_fault,
  2004. };
  2005. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2006. {
  2007. vma->vm_ops = &kvm_vm_vm_ops;
  2008. return 0;
  2009. }
  2010. static struct file_operations kvm_vm_fops = {
  2011. .release = kvm_vm_release,
  2012. .unlocked_ioctl = kvm_vm_ioctl,
  2013. .compat_ioctl = kvm_vm_ioctl,
  2014. .mmap = kvm_vm_mmap,
  2015. };
  2016. static int kvm_dev_ioctl_create_vm(void)
  2017. {
  2018. int fd;
  2019. struct kvm *kvm;
  2020. kvm = kvm_create_vm();
  2021. if (IS_ERR(kvm))
  2022. return PTR_ERR(kvm);
  2023. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  2024. if (fd < 0)
  2025. kvm_put_kvm(kvm);
  2026. return fd;
  2027. }
  2028. static long kvm_dev_ioctl_check_extension_generic(long arg)
  2029. {
  2030. switch (arg) {
  2031. case KVM_CAP_USER_MEMORY:
  2032. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  2033. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  2034. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  2035. case KVM_CAP_SET_BOOT_CPU_ID:
  2036. #endif
  2037. return 1;
  2038. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  2039. case KVM_CAP_IRQ_ROUTING:
  2040. return KVM_MAX_IRQ_ROUTES;
  2041. #endif
  2042. default:
  2043. break;
  2044. }
  2045. return kvm_dev_ioctl_check_extension(arg);
  2046. }
  2047. static long kvm_dev_ioctl(struct file *filp,
  2048. unsigned int ioctl, unsigned long arg)
  2049. {
  2050. long r = -EINVAL;
  2051. switch (ioctl) {
  2052. case KVM_GET_API_VERSION:
  2053. r = -EINVAL;
  2054. if (arg)
  2055. goto out;
  2056. r = KVM_API_VERSION;
  2057. break;
  2058. case KVM_CREATE_VM:
  2059. r = -EINVAL;
  2060. if (arg)
  2061. goto out;
  2062. r = kvm_dev_ioctl_create_vm();
  2063. break;
  2064. case KVM_CHECK_EXTENSION:
  2065. r = kvm_dev_ioctl_check_extension_generic(arg);
  2066. break;
  2067. case KVM_GET_VCPU_MMAP_SIZE:
  2068. r = -EINVAL;
  2069. if (arg)
  2070. goto out;
  2071. r = PAGE_SIZE; /* struct kvm_run */
  2072. #ifdef CONFIG_X86
  2073. r += PAGE_SIZE; /* pio data page */
  2074. #endif
  2075. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  2076. r += PAGE_SIZE; /* coalesced mmio ring page */
  2077. #endif
  2078. break;
  2079. case KVM_TRACE_ENABLE:
  2080. case KVM_TRACE_PAUSE:
  2081. case KVM_TRACE_DISABLE:
  2082. r = -EOPNOTSUPP;
  2083. break;
  2084. default:
  2085. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2086. }
  2087. out:
  2088. return r;
  2089. }
  2090. static struct file_operations kvm_chardev_ops = {
  2091. .unlocked_ioctl = kvm_dev_ioctl,
  2092. .compat_ioctl = kvm_dev_ioctl,
  2093. };
  2094. static struct miscdevice kvm_dev = {
  2095. KVM_MINOR,
  2096. "kvm",
  2097. &kvm_chardev_ops,
  2098. };
  2099. static void hardware_enable(void *junk)
  2100. {
  2101. int cpu = raw_smp_processor_id();
  2102. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2103. return;
  2104. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  2105. kvm_arch_hardware_enable(NULL);
  2106. }
  2107. static void hardware_disable(void *junk)
  2108. {
  2109. int cpu = raw_smp_processor_id();
  2110. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2111. return;
  2112. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2113. kvm_arch_hardware_disable(NULL);
  2114. }
  2115. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2116. void *v)
  2117. {
  2118. int cpu = (long)v;
  2119. val &= ~CPU_TASKS_FROZEN;
  2120. switch (val) {
  2121. case CPU_DYING:
  2122. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2123. cpu);
  2124. hardware_disable(NULL);
  2125. break;
  2126. case CPU_UP_CANCELED:
  2127. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2128. cpu);
  2129. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  2130. break;
  2131. case CPU_ONLINE:
  2132. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2133. cpu);
  2134. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  2135. break;
  2136. }
  2137. return NOTIFY_OK;
  2138. }
  2139. asmlinkage void kvm_handle_fault_on_reboot(void)
  2140. {
  2141. if (kvm_rebooting)
  2142. /* spin while reset goes on */
  2143. while (true)
  2144. ;
  2145. /* Fault while not rebooting. We want the trace. */
  2146. BUG();
  2147. }
  2148. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  2149. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2150. void *v)
  2151. {
  2152. /*
  2153. * Some (well, at least mine) BIOSes hang on reboot if
  2154. * in vmx root mode.
  2155. *
  2156. * And Intel TXT required VMX off for all cpu when system shutdown.
  2157. */
  2158. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2159. kvm_rebooting = true;
  2160. on_each_cpu(hardware_disable, NULL, 1);
  2161. return NOTIFY_OK;
  2162. }
  2163. static struct notifier_block kvm_reboot_notifier = {
  2164. .notifier_call = kvm_reboot,
  2165. .priority = 0,
  2166. };
  2167. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2168. {
  2169. memset(bus, 0, sizeof(*bus));
  2170. }
  2171. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2172. {
  2173. int i;
  2174. for (i = 0; i < bus->dev_count; i++) {
  2175. struct kvm_io_device *pos = bus->devs[i];
  2176. kvm_iodevice_destructor(pos);
  2177. }
  2178. }
  2179. /* kvm_io_bus_write - called under kvm->slots_lock */
  2180. int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
  2181. int len, const void *val)
  2182. {
  2183. int i;
  2184. for (i = 0; i < bus->dev_count; i++)
  2185. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  2186. return 0;
  2187. return -EOPNOTSUPP;
  2188. }
  2189. /* kvm_io_bus_read - called under kvm->slots_lock */
  2190. int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
  2191. {
  2192. int i;
  2193. for (i = 0; i < bus->dev_count; i++)
  2194. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  2195. return 0;
  2196. return -EOPNOTSUPP;
  2197. }
  2198. int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
  2199. struct kvm_io_device *dev)
  2200. {
  2201. int ret;
  2202. down_write(&kvm->slots_lock);
  2203. ret = __kvm_io_bus_register_dev(bus, dev);
  2204. up_write(&kvm->slots_lock);
  2205. return ret;
  2206. }
  2207. /* An unlocked version. Caller must have write lock on slots_lock. */
  2208. int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
  2209. struct kvm_io_device *dev)
  2210. {
  2211. if (bus->dev_count > NR_IOBUS_DEVS-1)
  2212. return -ENOSPC;
  2213. bus->devs[bus->dev_count++] = dev;
  2214. return 0;
  2215. }
  2216. void kvm_io_bus_unregister_dev(struct kvm *kvm,
  2217. struct kvm_io_bus *bus,
  2218. struct kvm_io_device *dev)
  2219. {
  2220. down_write(&kvm->slots_lock);
  2221. __kvm_io_bus_unregister_dev(bus, dev);
  2222. up_write(&kvm->slots_lock);
  2223. }
  2224. /* An unlocked version. Caller must have write lock on slots_lock. */
  2225. void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
  2226. struct kvm_io_device *dev)
  2227. {
  2228. int i;
  2229. for (i = 0; i < bus->dev_count; i++)
  2230. if (bus->devs[i] == dev) {
  2231. bus->devs[i] = bus->devs[--bus->dev_count];
  2232. break;
  2233. }
  2234. }
  2235. static struct notifier_block kvm_cpu_notifier = {
  2236. .notifier_call = kvm_cpu_hotplug,
  2237. .priority = 20, /* must be > scheduler priority */
  2238. };
  2239. static int vm_stat_get(void *_offset, u64 *val)
  2240. {
  2241. unsigned offset = (long)_offset;
  2242. struct kvm *kvm;
  2243. *val = 0;
  2244. spin_lock(&kvm_lock);
  2245. list_for_each_entry(kvm, &vm_list, vm_list)
  2246. *val += *(u32 *)((void *)kvm + offset);
  2247. spin_unlock(&kvm_lock);
  2248. return 0;
  2249. }
  2250. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2251. static int vcpu_stat_get(void *_offset, u64 *val)
  2252. {
  2253. unsigned offset = (long)_offset;
  2254. struct kvm *kvm;
  2255. struct kvm_vcpu *vcpu;
  2256. int i;
  2257. *val = 0;
  2258. spin_lock(&kvm_lock);
  2259. list_for_each_entry(kvm, &vm_list, vm_list)
  2260. kvm_for_each_vcpu(i, vcpu, kvm)
  2261. *val += *(u32 *)((void *)vcpu + offset);
  2262. spin_unlock(&kvm_lock);
  2263. return 0;
  2264. }
  2265. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2266. static const struct file_operations *stat_fops[] = {
  2267. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2268. [KVM_STAT_VM] = &vm_stat_fops,
  2269. };
  2270. static void kvm_init_debug(void)
  2271. {
  2272. struct kvm_stats_debugfs_item *p;
  2273. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2274. for (p = debugfs_entries; p->name; ++p)
  2275. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2276. (void *)(long)p->offset,
  2277. stat_fops[p->kind]);
  2278. }
  2279. static void kvm_exit_debug(void)
  2280. {
  2281. struct kvm_stats_debugfs_item *p;
  2282. for (p = debugfs_entries; p->name; ++p)
  2283. debugfs_remove(p->dentry);
  2284. debugfs_remove(kvm_debugfs_dir);
  2285. }
  2286. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2287. {
  2288. hardware_disable(NULL);
  2289. return 0;
  2290. }
  2291. static int kvm_resume(struct sys_device *dev)
  2292. {
  2293. hardware_enable(NULL);
  2294. return 0;
  2295. }
  2296. static struct sysdev_class kvm_sysdev_class = {
  2297. .name = "kvm",
  2298. .suspend = kvm_suspend,
  2299. .resume = kvm_resume,
  2300. };
  2301. static struct sys_device kvm_sysdev = {
  2302. .id = 0,
  2303. .cls = &kvm_sysdev_class,
  2304. };
  2305. struct page *bad_page;
  2306. pfn_t bad_pfn;
  2307. static inline
  2308. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2309. {
  2310. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2311. }
  2312. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2313. {
  2314. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2315. kvm_arch_vcpu_load(vcpu, cpu);
  2316. }
  2317. static void kvm_sched_out(struct preempt_notifier *pn,
  2318. struct task_struct *next)
  2319. {
  2320. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2321. kvm_arch_vcpu_put(vcpu);
  2322. }
  2323. int kvm_init(void *opaque, unsigned int vcpu_size,
  2324. struct module *module)
  2325. {
  2326. int r;
  2327. int cpu;
  2328. r = kvm_arch_init(opaque);
  2329. if (r)
  2330. goto out_fail;
  2331. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2332. if (bad_page == NULL) {
  2333. r = -ENOMEM;
  2334. goto out;
  2335. }
  2336. bad_pfn = page_to_pfn(bad_page);
  2337. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2338. r = -ENOMEM;
  2339. goto out_free_0;
  2340. }
  2341. r = kvm_arch_hardware_setup();
  2342. if (r < 0)
  2343. goto out_free_0a;
  2344. for_each_online_cpu(cpu) {
  2345. smp_call_function_single(cpu,
  2346. kvm_arch_check_processor_compat,
  2347. &r, 1);
  2348. if (r < 0)
  2349. goto out_free_1;
  2350. }
  2351. on_each_cpu(hardware_enable, NULL, 1);
  2352. r = register_cpu_notifier(&kvm_cpu_notifier);
  2353. if (r)
  2354. goto out_free_2;
  2355. register_reboot_notifier(&kvm_reboot_notifier);
  2356. r = sysdev_class_register(&kvm_sysdev_class);
  2357. if (r)
  2358. goto out_free_3;
  2359. r = sysdev_register(&kvm_sysdev);
  2360. if (r)
  2361. goto out_free_4;
  2362. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2363. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2364. __alignof__(struct kvm_vcpu),
  2365. 0, NULL);
  2366. if (!kvm_vcpu_cache) {
  2367. r = -ENOMEM;
  2368. goto out_free_5;
  2369. }
  2370. kvm_chardev_ops.owner = module;
  2371. kvm_vm_fops.owner = module;
  2372. kvm_vcpu_fops.owner = module;
  2373. r = misc_register(&kvm_dev);
  2374. if (r) {
  2375. printk(KERN_ERR "kvm: misc device register failed\n");
  2376. goto out_free;
  2377. }
  2378. kvm_preempt_ops.sched_in = kvm_sched_in;
  2379. kvm_preempt_ops.sched_out = kvm_sched_out;
  2380. kvm_init_debug();
  2381. return 0;
  2382. out_free:
  2383. kmem_cache_destroy(kvm_vcpu_cache);
  2384. out_free_5:
  2385. sysdev_unregister(&kvm_sysdev);
  2386. out_free_4:
  2387. sysdev_class_unregister(&kvm_sysdev_class);
  2388. out_free_3:
  2389. unregister_reboot_notifier(&kvm_reboot_notifier);
  2390. unregister_cpu_notifier(&kvm_cpu_notifier);
  2391. out_free_2:
  2392. on_each_cpu(hardware_disable, NULL, 1);
  2393. out_free_1:
  2394. kvm_arch_hardware_unsetup();
  2395. out_free_0a:
  2396. free_cpumask_var(cpus_hardware_enabled);
  2397. out_free_0:
  2398. __free_page(bad_page);
  2399. out:
  2400. kvm_arch_exit();
  2401. out_fail:
  2402. return r;
  2403. }
  2404. EXPORT_SYMBOL_GPL(kvm_init);
  2405. void kvm_exit(void)
  2406. {
  2407. tracepoint_synchronize_unregister();
  2408. kvm_exit_debug();
  2409. misc_deregister(&kvm_dev);
  2410. kmem_cache_destroy(kvm_vcpu_cache);
  2411. sysdev_unregister(&kvm_sysdev);
  2412. sysdev_class_unregister(&kvm_sysdev_class);
  2413. unregister_reboot_notifier(&kvm_reboot_notifier);
  2414. unregister_cpu_notifier(&kvm_cpu_notifier);
  2415. on_each_cpu(hardware_disable, NULL, 1);
  2416. kvm_arch_hardware_unsetup();
  2417. kvm_arch_exit();
  2418. free_cpumask_var(cpus_hardware_enabled);
  2419. __free_page(bad_page);
  2420. }
  2421. EXPORT_SYMBOL_GPL(kvm_exit);