write.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690
  1. /*
  2. * linux/fs/nfs/write.c
  3. *
  4. * Write file data over NFS.
  5. *
  6. * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/slab.h>
  10. #include <linux/mm.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/file.h>
  13. #include <linux/writeback.h>
  14. #include <linux/swap.h>
  15. #include <linux/migrate.h>
  16. #include <linux/sunrpc/clnt.h>
  17. #include <linux/nfs_fs.h>
  18. #include <linux/nfs_mount.h>
  19. #include <linux/nfs_page.h>
  20. #include <linux/backing-dev.h>
  21. #include <asm/uaccess.h>
  22. #include "delegation.h"
  23. #include "internal.h"
  24. #include "iostat.h"
  25. #include "nfs4_fs.h"
  26. #include "fscache.h"
  27. #include "pnfs.h"
  28. #define NFSDBG_FACILITY NFSDBG_PAGECACHE
  29. #define MIN_POOL_WRITE (32)
  30. #define MIN_POOL_COMMIT (4)
  31. /*
  32. * Local function declarations
  33. */
  34. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
  35. struct inode *inode, int ioflags);
  36. static void nfs_redirty_request(struct nfs_page *req);
  37. static const struct rpc_call_ops nfs_write_partial_ops;
  38. static const struct rpc_call_ops nfs_write_full_ops;
  39. static const struct rpc_call_ops nfs_commit_ops;
  40. static struct kmem_cache *nfs_wdata_cachep;
  41. static mempool_t *nfs_wdata_mempool;
  42. static mempool_t *nfs_commit_mempool;
  43. struct nfs_write_data *nfs_commitdata_alloc(void)
  44. {
  45. struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
  46. if (p) {
  47. memset(p, 0, sizeof(*p));
  48. INIT_LIST_HEAD(&p->pages);
  49. }
  50. return p;
  51. }
  52. void nfs_commit_free(struct nfs_write_data *p)
  53. {
  54. if (p && (p->pagevec != &p->page_array[0]))
  55. kfree(p->pagevec);
  56. mempool_free(p, nfs_commit_mempool);
  57. }
  58. struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
  59. {
  60. struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
  61. if (p) {
  62. memset(p, 0, sizeof(*p));
  63. INIT_LIST_HEAD(&p->pages);
  64. p->npages = pagecount;
  65. if (pagecount <= ARRAY_SIZE(p->page_array))
  66. p->pagevec = p->page_array;
  67. else {
  68. p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
  69. if (!p->pagevec) {
  70. mempool_free(p, nfs_wdata_mempool);
  71. p = NULL;
  72. }
  73. }
  74. }
  75. return p;
  76. }
  77. void nfs_writedata_free(struct nfs_write_data *p)
  78. {
  79. if (p && (p->pagevec != &p->page_array[0]))
  80. kfree(p->pagevec);
  81. mempool_free(p, nfs_wdata_mempool);
  82. }
  83. static void nfs_writedata_release(struct nfs_write_data *wdata)
  84. {
  85. put_lseg(wdata->lseg);
  86. put_nfs_open_context(wdata->args.context);
  87. nfs_writedata_free(wdata);
  88. }
  89. static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
  90. {
  91. ctx->error = error;
  92. smp_wmb();
  93. set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
  94. }
  95. static struct nfs_page *nfs_page_find_request_locked(struct page *page)
  96. {
  97. struct nfs_page *req = NULL;
  98. if (PagePrivate(page)) {
  99. req = (struct nfs_page *)page_private(page);
  100. if (req != NULL)
  101. kref_get(&req->wb_kref);
  102. }
  103. return req;
  104. }
  105. static struct nfs_page *nfs_page_find_request(struct page *page)
  106. {
  107. struct inode *inode = page->mapping->host;
  108. struct nfs_page *req = NULL;
  109. spin_lock(&inode->i_lock);
  110. req = nfs_page_find_request_locked(page);
  111. spin_unlock(&inode->i_lock);
  112. return req;
  113. }
  114. /* Adjust the file length if we're writing beyond the end */
  115. static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
  116. {
  117. struct inode *inode = page->mapping->host;
  118. loff_t end, i_size;
  119. pgoff_t end_index;
  120. spin_lock(&inode->i_lock);
  121. i_size = i_size_read(inode);
  122. end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
  123. if (i_size > 0 && page->index < end_index)
  124. goto out;
  125. end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
  126. if (i_size >= end)
  127. goto out;
  128. i_size_write(inode, end);
  129. nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
  130. out:
  131. spin_unlock(&inode->i_lock);
  132. }
  133. /* A writeback failed: mark the page as bad, and invalidate the page cache */
  134. static void nfs_set_pageerror(struct page *page)
  135. {
  136. SetPageError(page);
  137. nfs_zap_mapping(page->mapping->host, page->mapping);
  138. }
  139. /* We can set the PG_uptodate flag if we see that a write request
  140. * covers the full page.
  141. */
  142. static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
  143. {
  144. if (PageUptodate(page))
  145. return;
  146. if (base != 0)
  147. return;
  148. if (count != nfs_page_length(page))
  149. return;
  150. SetPageUptodate(page);
  151. }
  152. static int wb_priority(struct writeback_control *wbc)
  153. {
  154. if (wbc->for_reclaim)
  155. return FLUSH_HIGHPRI | FLUSH_STABLE;
  156. if (wbc->for_kupdate || wbc->for_background)
  157. return FLUSH_LOWPRI | FLUSH_COND_STABLE;
  158. return FLUSH_COND_STABLE;
  159. }
  160. /*
  161. * NFS congestion control
  162. */
  163. int nfs_congestion_kb;
  164. #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
  165. #define NFS_CONGESTION_OFF_THRESH \
  166. (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
  167. static int nfs_set_page_writeback(struct page *page)
  168. {
  169. int ret = test_set_page_writeback(page);
  170. if (!ret) {
  171. struct inode *inode = page->mapping->host;
  172. struct nfs_server *nfss = NFS_SERVER(inode);
  173. page_cache_get(page);
  174. if (atomic_long_inc_return(&nfss->writeback) >
  175. NFS_CONGESTION_ON_THRESH) {
  176. set_bdi_congested(&nfss->backing_dev_info,
  177. BLK_RW_ASYNC);
  178. }
  179. }
  180. return ret;
  181. }
  182. static void nfs_end_page_writeback(struct page *page)
  183. {
  184. struct inode *inode = page->mapping->host;
  185. struct nfs_server *nfss = NFS_SERVER(inode);
  186. end_page_writeback(page);
  187. page_cache_release(page);
  188. if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
  189. clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
  190. }
  191. static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
  192. {
  193. struct inode *inode = page->mapping->host;
  194. struct nfs_page *req;
  195. int ret;
  196. spin_lock(&inode->i_lock);
  197. for (;;) {
  198. req = nfs_page_find_request_locked(page);
  199. if (req == NULL)
  200. break;
  201. if (nfs_set_page_tag_locked(req))
  202. break;
  203. /* Note: If we hold the page lock, as is the case in nfs_writepage,
  204. * then the call to nfs_set_page_tag_locked() will always
  205. * succeed provided that someone hasn't already marked the
  206. * request as dirty (in which case we don't care).
  207. */
  208. spin_unlock(&inode->i_lock);
  209. if (!nonblock)
  210. ret = nfs_wait_on_request(req);
  211. else
  212. ret = -EAGAIN;
  213. nfs_release_request(req);
  214. if (ret != 0)
  215. return ERR_PTR(ret);
  216. spin_lock(&inode->i_lock);
  217. }
  218. spin_unlock(&inode->i_lock);
  219. return req;
  220. }
  221. /*
  222. * Find an associated nfs write request, and prepare to flush it out
  223. * May return an error if the user signalled nfs_wait_on_request().
  224. */
  225. static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
  226. struct page *page, bool nonblock)
  227. {
  228. struct nfs_page *req;
  229. int ret = 0;
  230. req = nfs_find_and_lock_request(page, nonblock);
  231. if (!req)
  232. goto out;
  233. ret = PTR_ERR(req);
  234. if (IS_ERR(req))
  235. goto out;
  236. ret = nfs_set_page_writeback(page);
  237. BUG_ON(ret != 0);
  238. BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
  239. if (!nfs_pageio_add_request(pgio, req)) {
  240. nfs_redirty_request(req);
  241. ret = pgio->pg_error;
  242. }
  243. out:
  244. return ret;
  245. }
  246. static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
  247. {
  248. struct inode *inode = page->mapping->host;
  249. int ret;
  250. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
  251. nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
  252. nfs_pageio_cond_complete(pgio, page->index);
  253. ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
  254. if (ret == -EAGAIN) {
  255. redirty_page_for_writepage(wbc, page);
  256. ret = 0;
  257. }
  258. return ret;
  259. }
  260. /*
  261. * Write an mmapped page to the server.
  262. */
  263. static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
  264. {
  265. struct nfs_pageio_descriptor pgio;
  266. int err;
  267. nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
  268. err = nfs_do_writepage(page, wbc, &pgio);
  269. nfs_pageio_complete(&pgio);
  270. if (err < 0)
  271. return err;
  272. if (pgio.pg_error < 0)
  273. return pgio.pg_error;
  274. return 0;
  275. }
  276. int nfs_writepage(struct page *page, struct writeback_control *wbc)
  277. {
  278. int ret;
  279. ret = nfs_writepage_locked(page, wbc);
  280. unlock_page(page);
  281. return ret;
  282. }
  283. static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
  284. {
  285. int ret;
  286. ret = nfs_do_writepage(page, wbc, data);
  287. unlock_page(page);
  288. return ret;
  289. }
  290. int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
  291. {
  292. struct inode *inode = mapping->host;
  293. unsigned long *bitlock = &NFS_I(inode)->flags;
  294. struct nfs_pageio_descriptor pgio;
  295. int err;
  296. /* Stop dirtying of new pages while we sync */
  297. err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
  298. nfs_wait_bit_killable, TASK_KILLABLE);
  299. if (err)
  300. goto out_err;
  301. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
  302. nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
  303. err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
  304. nfs_pageio_complete(&pgio);
  305. clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
  306. smp_mb__after_clear_bit();
  307. wake_up_bit(bitlock, NFS_INO_FLUSHING);
  308. if (err < 0)
  309. goto out_err;
  310. err = pgio.pg_error;
  311. if (err < 0)
  312. goto out_err;
  313. return 0;
  314. out_err:
  315. return err;
  316. }
  317. /*
  318. * Insert a write request into an inode
  319. */
  320. static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
  321. {
  322. struct nfs_inode *nfsi = NFS_I(inode);
  323. int error;
  324. error = radix_tree_preload(GFP_NOFS);
  325. if (error != 0)
  326. goto out;
  327. /* Lock the request! */
  328. nfs_lock_request_dontget(req);
  329. spin_lock(&inode->i_lock);
  330. error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
  331. BUG_ON(error);
  332. if (!nfsi->npages) {
  333. igrab(inode);
  334. if (nfs_have_delegation(inode, FMODE_WRITE))
  335. nfsi->change_attr++;
  336. }
  337. set_bit(PG_MAPPED, &req->wb_flags);
  338. SetPagePrivate(req->wb_page);
  339. set_page_private(req->wb_page, (unsigned long)req);
  340. nfsi->npages++;
  341. kref_get(&req->wb_kref);
  342. radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
  343. NFS_PAGE_TAG_LOCKED);
  344. spin_unlock(&inode->i_lock);
  345. radix_tree_preload_end();
  346. out:
  347. return error;
  348. }
  349. /*
  350. * Remove a write request from an inode
  351. */
  352. static void nfs_inode_remove_request(struct nfs_page *req)
  353. {
  354. struct inode *inode = req->wb_context->path.dentry->d_inode;
  355. struct nfs_inode *nfsi = NFS_I(inode);
  356. BUG_ON (!NFS_WBACK_BUSY(req));
  357. spin_lock(&inode->i_lock);
  358. set_page_private(req->wb_page, 0);
  359. ClearPagePrivate(req->wb_page);
  360. clear_bit(PG_MAPPED, &req->wb_flags);
  361. radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
  362. nfsi->npages--;
  363. if (!nfsi->npages) {
  364. spin_unlock(&inode->i_lock);
  365. iput(inode);
  366. } else
  367. spin_unlock(&inode->i_lock);
  368. nfs_release_request(req);
  369. }
  370. static void
  371. nfs_mark_request_dirty(struct nfs_page *req)
  372. {
  373. __set_page_dirty_nobuffers(req->wb_page);
  374. __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
  375. }
  376. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  377. /*
  378. * Add a request to the inode's commit list.
  379. */
  380. static void
  381. nfs_mark_request_commit(struct nfs_page *req)
  382. {
  383. struct inode *inode = req->wb_context->path.dentry->d_inode;
  384. struct nfs_inode *nfsi = NFS_I(inode);
  385. spin_lock(&inode->i_lock);
  386. set_bit(PG_CLEAN, &(req)->wb_flags);
  387. radix_tree_tag_set(&nfsi->nfs_page_tree,
  388. req->wb_index,
  389. NFS_PAGE_TAG_COMMIT);
  390. nfsi->ncommit++;
  391. spin_unlock(&inode->i_lock);
  392. inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  393. inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  394. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  395. }
  396. static int
  397. nfs_clear_request_commit(struct nfs_page *req)
  398. {
  399. struct page *page = req->wb_page;
  400. if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
  401. dec_zone_page_state(page, NR_UNSTABLE_NFS);
  402. dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  403. return 1;
  404. }
  405. return 0;
  406. }
  407. static inline
  408. int nfs_write_need_commit(struct nfs_write_data *data)
  409. {
  410. if (data->verf.committed == NFS_DATA_SYNC)
  411. return data->lseg == NULL;
  412. else
  413. return data->verf.committed != NFS_FILE_SYNC;
  414. }
  415. static inline
  416. int nfs_reschedule_unstable_write(struct nfs_page *req)
  417. {
  418. if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  419. nfs_mark_request_commit(req);
  420. return 1;
  421. }
  422. if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  423. nfs_mark_request_dirty(req);
  424. return 1;
  425. }
  426. return 0;
  427. }
  428. #else
  429. static inline void
  430. nfs_mark_request_commit(struct nfs_page *req)
  431. {
  432. }
  433. static inline int
  434. nfs_clear_request_commit(struct nfs_page *req)
  435. {
  436. return 0;
  437. }
  438. static inline
  439. int nfs_write_need_commit(struct nfs_write_data *data)
  440. {
  441. return 0;
  442. }
  443. static inline
  444. int nfs_reschedule_unstable_write(struct nfs_page *req)
  445. {
  446. return 0;
  447. }
  448. #endif
  449. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  450. static int
  451. nfs_need_commit(struct nfs_inode *nfsi)
  452. {
  453. return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
  454. }
  455. /*
  456. * nfs_scan_commit - Scan an inode for commit requests
  457. * @inode: NFS inode to scan
  458. * @dst: destination list
  459. * @idx_start: lower bound of page->index to scan.
  460. * @npages: idx_start + npages sets the upper bound to scan.
  461. *
  462. * Moves requests from the inode's 'commit' request list.
  463. * The requests are *not* checked to ensure that they form a contiguous set.
  464. */
  465. static int
  466. nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  467. {
  468. struct nfs_inode *nfsi = NFS_I(inode);
  469. int ret;
  470. if (!nfs_need_commit(nfsi))
  471. return 0;
  472. ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
  473. if (ret > 0)
  474. nfsi->ncommit -= ret;
  475. if (nfs_need_commit(NFS_I(inode)))
  476. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  477. return ret;
  478. }
  479. #else
  480. static inline int nfs_need_commit(struct nfs_inode *nfsi)
  481. {
  482. return 0;
  483. }
  484. static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  485. {
  486. return 0;
  487. }
  488. #endif
  489. /*
  490. * Search for an existing write request, and attempt to update
  491. * it to reflect a new dirty region on a given page.
  492. *
  493. * If the attempt fails, then the existing request is flushed out
  494. * to disk.
  495. */
  496. static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
  497. struct page *page,
  498. unsigned int offset,
  499. unsigned int bytes)
  500. {
  501. struct nfs_page *req;
  502. unsigned int rqend;
  503. unsigned int end;
  504. int error;
  505. if (!PagePrivate(page))
  506. return NULL;
  507. end = offset + bytes;
  508. spin_lock(&inode->i_lock);
  509. for (;;) {
  510. req = nfs_page_find_request_locked(page);
  511. if (req == NULL)
  512. goto out_unlock;
  513. rqend = req->wb_offset + req->wb_bytes;
  514. /*
  515. * Tell the caller to flush out the request if
  516. * the offsets are non-contiguous.
  517. * Note: nfs_flush_incompatible() will already
  518. * have flushed out requests having wrong owners.
  519. */
  520. if (offset > rqend
  521. || end < req->wb_offset)
  522. goto out_flushme;
  523. if (nfs_set_page_tag_locked(req))
  524. break;
  525. /* The request is locked, so wait and then retry */
  526. spin_unlock(&inode->i_lock);
  527. error = nfs_wait_on_request(req);
  528. nfs_release_request(req);
  529. if (error != 0)
  530. goto out_err;
  531. spin_lock(&inode->i_lock);
  532. }
  533. if (nfs_clear_request_commit(req) &&
  534. radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
  535. req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL)
  536. NFS_I(inode)->ncommit--;
  537. /* Okay, the request matches. Update the region */
  538. if (offset < req->wb_offset) {
  539. req->wb_offset = offset;
  540. req->wb_pgbase = offset;
  541. }
  542. if (end > rqend)
  543. req->wb_bytes = end - req->wb_offset;
  544. else
  545. req->wb_bytes = rqend - req->wb_offset;
  546. out_unlock:
  547. spin_unlock(&inode->i_lock);
  548. return req;
  549. out_flushme:
  550. spin_unlock(&inode->i_lock);
  551. nfs_release_request(req);
  552. error = nfs_wb_page(inode, page);
  553. out_err:
  554. return ERR_PTR(error);
  555. }
  556. /*
  557. * Try to update an existing write request, or create one if there is none.
  558. *
  559. * Note: Should always be called with the Page Lock held to prevent races
  560. * if we have to add a new request. Also assumes that the caller has
  561. * already called nfs_flush_incompatible() if necessary.
  562. */
  563. static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
  564. struct page *page, unsigned int offset, unsigned int bytes)
  565. {
  566. struct inode *inode = page->mapping->host;
  567. struct nfs_page *req;
  568. int error;
  569. req = nfs_try_to_update_request(inode, page, offset, bytes);
  570. if (req != NULL)
  571. goto out;
  572. req = nfs_create_request(ctx, inode, page, offset, bytes);
  573. if (IS_ERR(req))
  574. goto out;
  575. error = nfs_inode_add_request(inode, req);
  576. if (error != 0) {
  577. nfs_release_request(req);
  578. req = ERR_PTR(error);
  579. }
  580. out:
  581. return req;
  582. }
  583. static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
  584. unsigned int offset, unsigned int count)
  585. {
  586. struct nfs_page *req;
  587. req = nfs_setup_write_request(ctx, page, offset, count);
  588. if (IS_ERR(req))
  589. return PTR_ERR(req);
  590. nfs_mark_request_dirty(req);
  591. /* Update file length */
  592. nfs_grow_file(page, offset, count);
  593. nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
  594. nfs_mark_request_dirty(req);
  595. nfs_clear_page_tag_locked(req);
  596. return 0;
  597. }
  598. int nfs_flush_incompatible(struct file *file, struct page *page)
  599. {
  600. struct nfs_open_context *ctx = nfs_file_open_context(file);
  601. struct nfs_page *req;
  602. int do_flush, status;
  603. /*
  604. * Look for a request corresponding to this page. If there
  605. * is one, and it belongs to another file, we flush it out
  606. * before we try to copy anything into the page. Do this
  607. * due to the lack of an ACCESS-type call in NFSv2.
  608. * Also do the same if we find a request from an existing
  609. * dropped page.
  610. */
  611. do {
  612. req = nfs_page_find_request(page);
  613. if (req == NULL)
  614. return 0;
  615. do_flush = req->wb_page != page || req->wb_context != ctx ||
  616. req->wb_lock_context->lockowner != current->files ||
  617. req->wb_lock_context->pid != current->tgid;
  618. nfs_release_request(req);
  619. if (!do_flush)
  620. return 0;
  621. status = nfs_wb_page(page->mapping->host, page);
  622. } while (status == 0);
  623. return status;
  624. }
  625. /*
  626. * If the page cache is marked as unsafe or invalid, then we can't rely on
  627. * the PageUptodate() flag. In this case, we will need to turn off
  628. * write optimisations that depend on the page contents being correct.
  629. */
  630. static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
  631. {
  632. return PageUptodate(page) &&
  633. !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
  634. }
  635. /*
  636. * Update and possibly write a cached page of an NFS file.
  637. *
  638. * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
  639. * things with a page scheduled for an RPC call (e.g. invalidate it).
  640. */
  641. int nfs_updatepage(struct file *file, struct page *page,
  642. unsigned int offset, unsigned int count)
  643. {
  644. struct nfs_open_context *ctx = nfs_file_open_context(file);
  645. struct inode *inode = page->mapping->host;
  646. int status = 0;
  647. nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
  648. dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
  649. file->f_path.dentry->d_parent->d_name.name,
  650. file->f_path.dentry->d_name.name, count,
  651. (long long)(page_offset(page) + offset));
  652. /* If we're not using byte range locks, and we know the page
  653. * is up to date, it may be more efficient to extend the write
  654. * to cover the entire page in order to avoid fragmentation
  655. * inefficiencies.
  656. */
  657. if (nfs_write_pageuptodate(page, inode) &&
  658. inode->i_flock == NULL &&
  659. !(file->f_flags & O_DSYNC)) {
  660. count = max(count + offset, nfs_page_length(page));
  661. offset = 0;
  662. }
  663. status = nfs_writepage_setup(ctx, page, offset, count);
  664. if (status < 0)
  665. nfs_set_pageerror(page);
  666. dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
  667. status, (long long)i_size_read(inode));
  668. return status;
  669. }
  670. static void nfs_writepage_release(struct nfs_page *req)
  671. {
  672. struct page *page = req->wb_page;
  673. if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req))
  674. nfs_inode_remove_request(req);
  675. nfs_clear_page_tag_locked(req);
  676. nfs_end_page_writeback(page);
  677. }
  678. static int flush_task_priority(int how)
  679. {
  680. switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
  681. case FLUSH_HIGHPRI:
  682. return RPC_PRIORITY_HIGH;
  683. case FLUSH_LOWPRI:
  684. return RPC_PRIORITY_LOW;
  685. }
  686. return RPC_PRIORITY_NORMAL;
  687. }
  688. int nfs_initiate_write(struct nfs_write_data *data,
  689. struct rpc_clnt *clnt,
  690. const struct rpc_call_ops *call_ops,
  691. int how)
  692. {
  693. struct inode *inode = data->inode;
  694. int priority = flush_task_priority(how);
  695. struct rpc_task *task;
  696. struct rpc_message msg = {
  697. .rpc_argp = &data->args,
  698. .rpc_resp = &data->res,
  699. .rpc_cred = data->cred,
  700. };
  701. struct rpc_task_setup task_setup_data = {
  702. .rpc_client = clnt,
  703. .task = &data->task,
  704. .rpc_message = &msg,
  705. .callback_ops = call_ops,
  706. .callback_data = data,
  707. .workqueue = nfsiod_workqueue,
  708. .flags = RPC_TASK_ASYNC,
  709. .priority = priority,
  710. };
  711. int ret = 0;
  712. /* Set up the initial task struct. */
  713. NFS_PROTO(inode)->write_setup(data, &msg);
  714. dprintk("NFS: %5u initiated write call "
  715. "(req %s/%lld, %u bytes @ offset %llu)\n",
  716. data->task.tk_pid,
  717. inode->i_sb->s_id,
  718. (long long)NFS_FILEID(inode),
  719. data->args.count,
  720. (unsigned long long)data->args.offset);
  721. task = rpc_run_task(&task_setup_data);
  722. if (IS_ERR(task)) {
  723. ret = PTR_ERR(task);
  724. goto out;
  725. }
  726. if (how & FLUSH_SYNC) {
  727. ret = rpc_wait_for_completion_task(task);
  728. if (ret == 0)
  729. ret = task->tk_status;
  730. }
  731. rpc_put_task(task);
  732. out:
  733. return ret;
  734. }
  735. EXPORT_SYMBOL_GPL(nfs_initiate_write);
  736. /*
  737. * Set up the argument/result storage required for the RPC call.
  738. */
  739. static int nfs_write_rpcsetup(struct nfs_page *req,
  740. struct nfs_write_data *data,
  741. const struct rpc_call_ops *call_ops,
  742. unsigned int count, unsigned int offset,
  743. struct pnfs_layout_segment *lseg,
  744. int how)
  745. {
  746. struct inode *inode = req->wb_context->path.dentry->d_inode;
  747. /* Set up the RPC argument and reply structs
  748. * NB: take care not to mess about with data->commit et al. */
  749. data->req = req;
  750. data->inode = inode = req->wb_context->path.dentry->d_inode;
  751. data->cred = req->wb_context->cred;
  752. data->lseg = get_lseg(lseg);
  753. data->args.fh = NFS_FH(inode);
  754. data->args.offset = req_offset(req) + offset;
  755. data->args.pgbase = req->wb_pgbase + offset;
  756. data->args.pages = data->pagevec;
  757. data->args.count = count;
  758. data->args.context = get_nfs_open_context(req->wb_context);
  759. data->args.lock_context = req->wb_lock_context;
  760. data->args.stable = NFS_UNSTABLE;
  761. if (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
  762. data->args.stable = NFS_DATA_SYNC;
  763. if (!nfs_need_commit(NFS_I(inode)))
  764. data->args.stable = NFS_FILE_SYNC;
  765. }
  766. data->res.fattr = &data->fattr;
  767. data->res.count = count;
  768. data->res.verf = &data->verf;
  769. nfs_fattr_init(&data->fattr);
  770. if (data->lseg &&
  771. (pnfs_try_to_write_data(data, call_ops, how) == PNFS_ATTEMPTED))
  772. return 0;
  773. return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
  774. }
  775. /* If a nfs_flush_* function fails, it should remove reqs from @head and
  776. * call this on each, which will prepare them to be retried on next
  777. * writeback using standard nfs.
  778. */
  779. static void nfs_redirty_request(struct nfs_page *req)
  780. {
  781. struct page *page = req->wb_page;
  782. nfs_mark_request_dirty(req);
  783. nfs_clear_page_tag_locked(req);
  784. nfs_end_page_writeback(page);
  785. }
  786. /*
  787. * Generate multiple small requests to write out a single
  788. * contiguous dirty area on one page.
  789. */
  790. static int nfs_flush_multi(struct nfs_pageio_descriptor *desc)
  791. {
  792. struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
  793. struct page *page = req->wb_page;
  794. struct nfs_write_data *data;
  795. size_t wsize = NFS_SERVER(desc->pg_inode)->wsize, nbytes;
  796. unsigned int offset;
  797. int requests = 0;
  798. int ret = 0;
  799. struct pnfs_layout_segment *lseg;
  800. LIST_HEAD(list);
  801. nfs_list_remove_request(req);
  802. if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
  803. (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
  804. desc->pg_count > wsize))
  805. desc->pg_ioflags &= ~FLUSH_COND_STABLE;
  806. nbytes = desc->pg_count;
  807. do {
  808. size_t len = min(nbytes, wsize);
  809. data = nfs_writedata_alloc(1);
  810. if (!data)
  811. goto out_bad;
  812. list_add(&data->pages, &list);
  813. requests++;
  814. nbytes -= len;
  815. } while (nbytes != 0);
  816. atomic_set(&req->wb_complete, requests);
  817. BUG_ON(desc->pg_lseg);
  818. lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW);
  819. ClearPageError(page);
  820. offset = 0;
  821. nbytes = desc->pg_count;
  822. do {
  823. int ret2;
  824. data = list_entry(list.next, struct nfs_write_data, pages);
  825. list_del_init(&data->pages);
  826. data->pagevec[0] = page;
  827. if (nbytes < wsize)
  828. wsize = nbytes;
  829. ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
  830. wsize, offset, lseg, desc->pg_ioflags);
  831. if (ret == 0)
  832. ret = ret2;
  833. offset += wsize;
  834. nbytes -= wsize;
  835. } while (nbytes != 0);
  836. put_lseg(lseg);
  837. desc->pg_lseg = NULL;
  838. return ret;
  839. out_bad:
  840. while (!list_empty(&list)) {
  841. data = list_entry(list.next, struct nfs_write_data, pages);
  842. list_del(&data->pages);
  843. nfs_writedata_free(data);
  844. }
  845. nfs_redirty_request(req);
  846. return -ENOMEM;
  847. }
  848. /*
  849. * Create an RPC task for the given write request and kick it.
  850. * The page must have been locked by the caller.
  851. *
  852. * It may happen that the page we're passed is not marked dirty.
  853. * This is the case if nfs_updatepage detects a conflicting request
  854. * that has been written but not committed.
  855. */
  856. static int nfs_flush_one(struct nfs_pageio_descriptor *desc)
  857. {
  858. struct nfs_page *req;
  859. struct page **pages;
  860. struct nfs_write_data *data;
  861. struct list_head *head = &desc->pg_list;
  862. struct pnfs_layout_segment *lseg = desc->pg_lseg;
  863. int ret;
  864. data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
  865. desc->pg_count));
  866. if (!data) {
  867. while (!list_empty(head)) {
  868. req = nfs_list_entry(head->next);
  869. nfs_list_remove_request(req);
  870. nfs_redirty_request(req);
  871. }
  872. ret = -ENOMEM;
  873. goto out;
  874. }
  875. pages = data->pagevec;
  876. while (!list_empty(head)) {
  877. req = nfs_list_entry(head->next);
  878. nfs_list_remove_request(req);
  879. nfs_list_add_request(req, &data->pages);
  880. ClearPageError(req->wb_page);
  881. *pages++ = req->wb_page;
  882. }
  883. req = nfs_list_entry(data->pages.next);
  884. if ((!lseg) && list_is_singular(&data->pages))
  885. lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW);
  886. if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
  887. (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
  888. desc->pg_ioflags &= ~FLUSH_COND_STABLE;
  889. /* Set up the argument struct */
  890. ret = nfs_write_rpcsetup(req, data, &nfs_write_full_ops, desc->pg_count, 0, lseg, desc->pg_ioflags);
  891. out:
  892. put_lseg(lseg); /* Cleans any gotten in ->pg_test */
  893. desc->pg_lseg = NULL;
  894. return ret;
  895. }
  896. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
  897. struct inode *inode, int ioflags)
  898. {
  899. size_t wsize = NFS_SERVER(inode)->wsize;
  900. pnfs_pageio_init_write(pgio, inode);
  901. if (wsize < PAGE_CACHE_SIZE)
  902. nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
  903. else
  904. nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
  905. }
  906. /*
  907. * Handle a write reply that flushed part of a page.
  908. */
  909. static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
  910. {
  911. struct nfs_write_data *data = calldata;
  912. dprintk("NFS: %5u write(%s/%lld %d@%lld)",
  913. task->tk_pid,
  914. data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
  915. (long long)
  916. NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
  917. data->req->wb_bytes, (long long)req_offset(data->req));
  918. nfs_writeback_done(task, data);
  919. }
  920. static void nfs_writeback_release_partial(void *calldata)
  921. {
  922. struct nfs_write_data *data = calldata;
  923. struct nfs_page *req = data->req;
  924. struct page *page = req->wb_page;
  925. int status = data->task.tk_status;
  926. if (status < 0) {
  927. nfs_set_pageerror(page);
  928. nfs_context_set_write_error(req->wb_context, status);
  929. dprintk(", error = %d\n", status);
  930. goto out;
  931. }
  932. if (nfs_write_need_commit(data)) {
  933. struct inode *inode = page->mapping->host;
  934. spin_lock(&inode->i_lock);
  935. if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  936. /* Do nothing we need to resend the writes */
  937. } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  938. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  939. dprintk(" defer commit\n");
  940. } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
  941. set_bit(PG_NEED_RESCHED, &req->wb_flags);
  942. clear_bit(PG_NEED_COMMIT, &req->wb_flags);
  943. dprintk(" server reboot detected\n");
  944. }
  945. spin_unlock(&inode->i_lock);
  946. } else
  947. dprintk(" OK\n");
  948. out:
  949. if (atomic_dec_and_test(&req->wb_complete))
  950. nfs_writepage_release(req);
  951. nfs_writedata_release(calldata);
  952. }
  953. #if defined(CONFIG_NFS_V4_1)
  954. void nfs_write_prepare(struct rpc_task *task, void *calldata)
  955. {
  956. struct nfs_write_data *data = calldata;
  957. if (nfs4_setup_sequence(NFS_SERVER(data->inode),
  958. &data->args.seq_args,
  959. &data->res.seq_res, 1, task))
  960. return;
  961. rpc_call_start(task);
  962. }
  963. #endif /* CONFIG_NFS_V4_1 */
  964. static const struct rpc_call_ops nfs_write_partial_ops = {
  965. #if defined(CONFIG_NFS_V4_1)
  966. .rpc_call_prepare = nfs_write_prepare,
  967. #endif /* CONFIG_NFS_V4_1 */
  968. .rpc_call_done = nfs_writeback_done_partial,
  969. .rpc_release = nfs_writeback_release_partial,
  970. };
  971. /*
  972. * Handle a write reply that flushes a whole page.
  973. *
  974. * FIXME: There is an inherent race with invalidate_inode_pages and
  975. * writebacks since the page->count is kept > 1 for as long
  976. * as the page has a write request pending.
  977. */
  978. static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
  979. {
  980. struct nfs_write_data *data = calldata;
  981. nfs_writeback_done(task, data);
  982. }
  983. static void nfs_writeback_release_full(void *calldata)
  984. {
  985. struct nfs_write_data *data = calldata;
  986. int status = data->task.tk_status;
  987. /* Update attributes as result of writeback. */
  988. while (!list_empty(&data->pages)) {
  989. struct nfs_page *req = nfs_list_entry(data->pages.next);
  990. struct page *page = req->wb_page;
  991. nfs_list_remove_request(req);
  992. dprintk("NFS: %5u write (%s/%lld %d@%lld)",
  993. data->task.tk_pid,
  994. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  995. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  996. req->wb_bytes,
  997. (long long)req_offset(req));
  998. if (status < 0) {
  999. nfs_set_pageerror(page);
  1000. nfs_context_set_write_error(req->wb_context, status);
  1001. dprintk(", error = %d\n", status);
  1002. goto remove_request;
  1003. }
  1004. if (nfs_write_need_commit(data)) {
  1005. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  1006. nfs_mark_request_commit(req);
  1007. dprintk(" marked for commit\n");
  1008. goto next;
  1009. }
  1010. dprintk(" OK\n");
  1011. remove_request:
  1012. nfs_inode_remove_request(req);
  1013. next:
  1014. nfs_clear_page_tag_locked(req);
  1015. nfs_end_page_writeback(page);
  1016. }
  1017. nfs_writedata_release(calldata);
  1018. }
  1019. static const struct rpc_call_ops nfs_write_full_ops = {
  1020. #if defined(CONFIG_NFS_V4_1)
  1021. .rpc_call_prepare = nfs_write_prepare,
  1022. #endif /* CONFIG_NFS_V4_1 */
  1023. .rpc_call_done = nfs_writeback_done_full,
  1024. .rpc_release = nfs_writeback_release_full,
  1025. };
  1026. /*
  1027. * This function is called when the WRITE call is complete.
  1028. */
  1029. void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
  1030. {
  1031. struct nfs_writeargs *argp = &data->args;
  1032. struct nfs_writeres *resp = &data->res;
  1033. struct nfs_server *server = NFS_SERVER(data->inode);
  1034. int status;
  1035. dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
  1036. task->tk_pid, task->tk_status);
  1037. /*
  1038. * ->write_done will attempt to use post-op attributes to detect
  1039. * conflicting writes by other clients. A strict interpretation
  1040. * of close-to-open would allow us to continue caching even if
  1041. * another writer had changed the file, but some applications
  1042. * depend on tighter cache coherency when writing.
  1043. */
  1044. status = NFS_PROTO(data->inode)->write_done(task, data);
  1045. if (status != 0)
  1046. return;
  1047. nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
  1048. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1049. if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
  1050. /* We tried a write call, but the server did not
  1051. * commit data to stable storage even though we
  1052. * requested it.
  1053. * Note: There is a known bug in Tru64 < 5.0 in which
  1054. * the server reports NFS_DATA_SYNC, but performs
  1055. * NFS_FILE_SYNC. We therefore implement this checking
  1056. * as a dprintk() in order to avoid filling syslog.
  1057. */
  1058. static unsigned long complain;
  1059. /* Note this will print the MDS for a DS write */
  1060. if (time_before(complain, jiffies)) {
  1061. dprintk("NFS: faulty NFS server %s:"
  1062. " (committed = %d) != (stable = %d)\n",
  1063. server->nfs_client->cl_hostname,
  1064. resp->verf->committed, argp->stable);
  1065. complain = jiffies + 300 * HZ;
  1066. }
  1067. }
  1068. #endif
  1069. /* Is this a short write? */
  1070. if (task->tk_status >= 0 && resp->count < argp->count) {
  1071. static unsigned long complain;
  1072. nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
  1073. /* Has the server at least made some progress? */
  1074. if (resp->count != 0) {
  1075. /* Was this an NFSv2 write or an NFSv3 stable write? */
  1076. if (resp->verf->committed != NFS_UNSTABLE) {
  1077. /* Resend from where the server left off */
  1078. data->mds_offset += resp->count;
  1079. argp->offset += resp->count;
  1080. argp->pgbase += resp->count;
  1081. argp->count -= resp->count;
  1082. } else {
  1083. /* Resend as a stable write in order to avoid
  1084. * headaches in the case of a server crash.
  1085. */
  1086. argp->stable = NFS_FILE_SYNC;
  1087. }
  1088. nfs_restart_rpc(task, server->nfs_client);
  1089. return;
  1090. }
  1091. if (time_before(complain, jiffies)) {
  1092. printk(KERN_WARNING
  1093. "NFS: Server wrote zero bytes, expected %u.\n",
  1094. argp->count);
  1095. complain = jiffies + 300 * HZ;
  1096. }
  1097. /* Can't do anything about it except throw an error. */
  1098. task->tk_status = -EIO;
  1099. }
  1100. return;
  1101. }
  1102. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1103. static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
  1104. {
  1105. int ret;
  1106. if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
  1107. return 1;
  1108. if (!may_wait)
  1109. return 0;
  1110. ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
  1111. NFS_INO_COMMIT,
  1112. nfs_wait_bit_killable,
  1113. TASK_KILLABLE);
  1114. return (ret < 0) ? ret : 1;
  1115. }
  1116. static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
  1117. {
  1118. clear_bit(NFS_INO_COMMIT, &nfsi->flags);
  1119. smp_mb__after_clear_bit();
  1120. wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
  1121. }
  1122. static void nfs_commitdata_release(void *data)
  1123. {
  1124. struct nfs_write_data *wdata = data;
  1125. put_nfs_open_context(wdata->args.context);
  1126. nfs_commit_free(wdata);
  1127. }
  1128. /*
  1129. * Set up the argument/result storage required for the RPC call.
  1130. */
  1131. static int nfs_commit_rpcsetup(struct list_head *head,
  1132. struct nfs_write_data *data,
  1133. int how)
  1134. {
  1135. struct nfs_page *first = nfs_list_entry(head->next);
  1136. struct inode *inode = first->wb_context->path.dentry->d_inode;
  1137. int priority = flush_task_priority(how);
  1138. struct rpc_task *task;
  1139. struct rpc_message msg = {
  1140. .rpc_argp = &data->args,
  1141. .rpc_resp = &data->res,
  1142. .rpc_cred = first->wb_context->cred,
  1143. };
  1144. struct rpc_task_setup task_setup_data = {
  1145. .task = &data->task,
  1146. .rpc_client = NFS_CLIENT(inode),
  1147. .rpc_message = &msg,
  1148. .callback_ops = &nfs_commit_ops,
  1149. .callback_data = data,
  1150. .workqueue = nfsiod_workqueue,
  1151. .flags = RPC_TASK_ASYNC,
  1152. .priority = priority,
  1153. };
  1154. /* Set up the RPC argument and reply structs
  1155. * NB: take care not to mess about with data->commit et al. */
  1156. list_splice_init(head, &data->pages);
  1157. data->inode = inode;
  1158. data->cred = msg.rpc_cred;
  1159. data->args.fh = NFS_FH(data->inode);
  1160. /* Note: we always request a commit of the entire inode */
  1161. data->args.offset = 0;
  1162. data->args.count = 0;
  1163. data->args.context = get_nfs_open_context(first->wb_context);
  1164. data->res.count = 0;
  1165. data->res.fattr = &data->fattr;
  1166. data->res.verf = &data->verf;
  1167. nfs_fattr_init(&data->fattr);
  1168. /* Set up the initial task struct. */
  1169. NFS_PROTO(inode)->commit_setup(data, &msg);
  1170. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  1171. task = rpc_run_task(&task_setup_data);
  1172. if (IS_ERR(task))
  1173. return PTR_ERR(task);
  1174. if (how & FLUSH_SYNC)
  1175. rpc_wait_for_completion_task(task);
  1176. rpc_put_task(task);
  1177. return 0;
  1178. }
  1179. /*
  1180. * Commit dirty pages
  1181. */
  1182. static int
  1183. nfs_commit_list(struct inode *inode, struct list_head *head, int how)
  1184. {
  1185. struct nfs_write_data *data;
  1186. struct nfs_page *req;
  1187. data = nfs_commitdata_alloc();
  1188. if (!data)
  1189. goto out_bad;
  1190. /* Set up the argument struct */
  1191. return nfs_commit_rpcsetup(head, data, how);
  1192. out_bad:
  1193. while (!list_empty(head)) {
  1194. req = nfs_list_entry(head->next);
  1195. nfs_list_remove_request(req);
  1196. nfs_mark_request_commit(req);
  1197. dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  1198. dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
  1199. BDI_RECLAIMABLE);
  1200. nfs_clear_page_tag_locked(req);
  1201. }
  1202. nfs_commit_clear_lock(NFS_I(inode));
  1203. return -ENOMEM;
  1204. }
  1205. /*
  1206. * COMMIT call returned
  1207. */
  1208. static void nfs_commit_done(struct rpc_task *task, void *calldata)
  1209. {
  1210. struct nfs_write_data *data = calldata;
  1211. dprintk("NFS: %5u nfs_commit_done (status %d)\n",
  1212. task->tk_pid, task->tk_status);
  1213. /* Call the NFS version-specific code */
  1214. if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
  1215. return;
  1216. }
  1217. static void nfs_commit_release(void *calldata)
  1218. {
  1219. struct nfs_write_data *data = calldata;
  1220. struct nfs_page *req;
  1221. int status = data->task.tk_status;
  1222. while (!list_empty(&data->pages)) {
  1223. req = nfs_list_entry(data->pages.next);
  1224. nfs_list_remove_request(req);
  1225. nfs_clear_request_commit(req);
  1226. dprintk("NFS: commit (%s/%lld %d@%lld)",
  1227. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  1228. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  1229. req->wb_bytes,
  1230. (long long)req_offset(req));
  1231. if (status < 0) {
  1232. nfs_context_set_write_error(req->wb_context, status);
  1233. nfs_inode_remove_request(req);
  1234. dprintk(", error = %d\n", status);
  1235. goto next;
  1236. }
  1237. /* Okay, COMMIT succeeded, apparently. Check the verifier
  1238. * returned by the server against all stored verfs. */
  1239. if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
  1240. /* We have a match */
  1241. nfs_inode_remove_request(req);
  1242. dprintk(" OK\n");
  1243. goto next;
  1244. }
  1245. /* We have a mismatch. Write the page again */
  1246. dprintk(" mismatch\n");
  1247. nfs_mark_request_dirty(req);
  1248. next:
  1249. nfs_clear_page_tag_locked(req);
  1250. }
  1251. nfs_commit_clear_lock(NFS_I(data->inode));
  1252. nfs_commitdata_release(calldata);
  1253. }
  1254. static const struct rpc_call_ops nfs_commit_ops = {
  1255. #if defined(CONFIG_NFS_V4_1)
  1256. .rpc_call_prepare = nfs_write_prepare,
  1257. #endif /* CONFIG_NFS_V4_1 */
  1258. .rpc_call_done = nfs_commit_done,
  1259. .rpc_release = nfs_commit_release,
  1260. };
  1261. int nfs_commit_inode(struct inode *inode, int how)
  1262. {
  1263. LIST_HEAD(head);
  1264. int may_wait = how & FLUSH_SYNC;
  1265. int res;
  1266. res = nfs_commit_set_lock(NFS_I(inode), may_wait);
  1267. if (res <= 0)
  1268. goto out_mark_dirty;
  1269. spin_lock(&inode->i_lock);
  1270. res = nfs_scan_commit(inode, &head, 0, 0);
  1271. spin_unlock(&inode->i_lock);
  1272. if (res) {
  1273. int error = nfs_commit_list(inode, &head, how);
  1274. if (error < 0)
  1275. return error;
  1276. if (!may_wait)
  1277. goto out_mark_dirty;
  1278. error = wait_on_bit(&NFS_I(inode)->flags,
  1279. NFS_INO_COMMIT,
  1280. nfs_wait_bit_killable,
  1281. TASK_KILLABLE);
  1282. if (error < 0)
  1283. return error;
  1284. } else
  1285. nfs_commit_clear_lock(NFS_I(inode));
  1286. return res;
  1287. /* Note: If we exit without ensuring that the commit is complete,
  1288. * we must mark the inode as dirty. Otherwise, future calls to
  1289. * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
  1290. * that the data is on the disk.
  1291. */
  1292. out_mark_dirty:
  1293. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  1294. return res;
  1295. }
  1296. static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
  1297. {
  1298. struct nfs_inode *nfsi = NFS_I(inode);
  1299. int flags = FLUSH_SYNC;
  1300. int ret = 0;
  1301. if (wbc->sync_mode == WB_SYNC_NONE) {
  1302. /* Don't commit yet if this is a non-blocking flush and there
  1303. * are a lot of outstanding writes for this mapping.
  1304. */
  1305. if (nfsi->ncommit <= (nfsi->npages >> 1))
  1306. goto out_mark_dirty;
  1307. /* don't wait for the COMMIT response */
  1308. flags = 0;
  1309. }
  1310. ret = nfs_commit_inode(inode, flags);
  1311. if (ret >= 0) {
  1312. if (wbc->sync_mode == WB_SYNC_NONE) {
  1313. if (ret < wbc->nr_to_write)
  1314. wbc->nr_to_write -= ret;
  1315. else
  1316. wbc->nr_to_write = 0;
  1317. }
  1318. return 0;
  1319. }
  1320. out_mark_dirty:
  1321. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  1322. return ret;
  1323. }
  1324. #else
  1325. static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
  1326. {
  1327. return 0;
  1328. }
  1329. #endif
  1330. int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
  1331. {
  1332. return nfs_commit_unstable_pages(inode, wbc);
  1333. }
  1334. /*
  1335. * flush the inode to disk.
  1336. */
  1337. int nfs_wb_all(struct inode *inode)
  1338. {
  1339. struct writeback_control wbc = {
  1340. .sync_mode = WB_SYNC_ALL,
  1341. .nr_to_write = LONG_MAX,
  1342. .range_start = 0,
  1343. .range_end = LLONG_MAX,
  1344. };
  1345. return sync_inode(inode, &wbc);
  1346. }
  1347. int nfs_wb_page_cancel(struct inode *inode, struct page *page)
  1348. {
  1349. struct nfs_page *req;
  1350. int ret = 0;
  1351. BUG_ON(!PageLocked(page));
  1352. for (;;) {
  1353. wait_on_page_writeback(page);
  1354. req = nfs_page_find_request(page);
  1355. if (req == NULL)
  1356. break;
  1357. if (nfs_lock_request_dontget(req)) {
  1358. nfs_inode_remove_request(req);
  1359. /*
  1360. * In case nfs_inode_remove_request has marked the
  1361. * page as being dirty
  1362. */
  1363. cancel_dirty_page(page, PAGE_CACHE_SIZE);
  1364. nfs_unlock_request(req);
  1365. break;
  1366. }
  1367. ret = nfs_wait_on_request(req);
  1368. nfs_release_request(req);
  1369. if (ret < 0)
  1370. break;
  1371. }
  1372. return ret;
  1373. }
  1374. /*
  1375. * Write back all requests on one page - we do this before reading it.
  1376. */
  1377. int nfs_wb_page(struct inode *inode, struct page *page)
  1378. {
  1379. loff_t range_start = page_offset(page);
  1380. loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
  1381. struct writeback_control wbc = {
  1382. .sync_mode = WB_SYNC_ALL,
  1383. .nr_to_write = 0,
  1384. .range_start = range_start,
  1385. .range_end = range_end,
  1386. };
  1387. int ret;
  1388. for (;;) {
  1389. wait_on_page_writeback(page);
  1390. if (clear_page_dirty_for_io(page)) {
  1391. ret = nfs_writepage_locked(page, &wbc);
  1392. if (ret < 0)
  1393. goto out_error;
  1394. continue;
  1395. }
  1396. if (!PagePrivate(page))
  1397. break;
  1398. ret = nfs_commit_inode(inode, FLUSH_SYNC);
  1399. if (ret < 0)
  1400. goto out_error;
  1401. }
  1402. return 0;
  1403. out_error:
  1404. return ret;
  1405. }
  1406. #ifdef CONFIG_MIGRATION
  1407. int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
  1408. struct page *page)
  1409. {
  1410. struct nfs_page *req;
  1411. int ret;
  1412. nfs_fscache_release_page(page, GFP_KERNEL);
  1413. req = nfs_find_and_lock_request(page, false);
  1414. ret = PTR_ERR(req);
  1415. if (IS_ERR(req))
  1416. goto out;
  1417. ret = migrate_page(mapping, newpage, page);
  1418. if (!req)
  1419. goto out;
  1420. if (ret)
  1421. goto out_unlock;
  1422. page_cache_get(newpage);
  1423. spin_lock(&mapping->host->i_lock);
  1424. req->wb_page = newpage;
  1425. SetPagePrivate(newpage);
  1426. set_page_private(newpage, (unsigned long)req);
  1427. ClearPagePrivate(page);
  1428. set_page_private(page, 0);
  1429. spin_unlock(&mapping->host->i_lock);
  1430. page_cache_release(page);
  1431. out_unlock:
  1432. nfs_clear_page_tag_locked(req);
  1433. out:
  1434. return ret;
  1435. }
  1436. #endif
  1437. int __init nfs_init_writepagecache(void)
  1438. {
  1439. nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
  1440. sizeof(struct nfs_write_data),
  1441. 0, SLAB_HWCACHE_ALIGN,
  1442. NULL);
  1443. if (nfs_wdata_cachep == NULL)
  1444. return -ENOMEM;
  1445. nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
  1446. nfs_wdata_cachep);
  1447. if (nfs_wdata_mempool == NULL)
  1448. return -ENOMEM;
  1449. nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
  1450. nfs_wdata_cachep);
  1451. if (nfs_commit_mempool == NULL)
  1452. return -ENOMEM;
  1453. /*
  1454. * NFS congestion size, scale with available memory.
  1455. *
  1456. * 64MB: 8192k
  1457. * 128MB: 11585k
  1458. * 256MB: 16384k
  1459. * 512MB: 23170k
  1460. * 1GB: 32768k
  1461. * 2GB: 46340k
  1462. * 4GB: 65536k
  1463. * 8GB: 92681k
  1464. * 16GB: 131072k
  1465. *
  1466. * This allows larger machines to have larger/more transfers.
  1467. * Limit the default to 256M
  1468. */
  1469. nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
  1470. if (nfs_congestion_kb > 256*1024)
  1471. nfs_congestion_kb = 256*1024;
  1472. return 0;
  1473. }
  1474. void nfs_destroy_writepagecache(void)
  1475. {
  1476. mempool_destroy(nfs_commit_mempool);
  1477. mempool_destroy(nfs_wdata_mempool);
  1478. kmem_cache_destroy(nfs_wdata_cachep);
  1479. }