vmx.c 85 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  32. MODULE_AUTHOR("Qumranet");
  33. MODULE_LICENSE("GPL");
  34. static int bypass_guest_pf = 1;
  35. module_param(bypass_guest_pf, bool, 0);
  36. static int enable_vpid = 1;
  37. module_param(enable_vpid, bool, 0);
  38. static int flexpriority_enabled = 1;
  39. module_param(flexpriority_enabled, bool, 0);
  40. static int enable_ept = 1;
  41. module_param(enable_ept, bool, 0);
  42. struct vmcs {
  43. u32 revision_id;
  44. u32 abort;
  45. char data[0];
  46. };
  47. struct vcpu_vmx {
  48. struct kvm_vcpu vcpu;
  49. struct list_head local_vcpus_link;
  50. unsigned long host_rsp;
  51. int launched;
  52. u8 fail;
  53. u32 idt_vectoring_info;
  54. struct kvm_msr_entry *guest_msrs;
  55. struct kvm_msr_entry *host_msrs;
  56. int nmsrs;
  57. int save_nmsrs;
  58. int msr_offset_efer;
  59. #ifdef CONFIG_X86_64
  60. int msr_offset_kernel_gs_base;
  61. #endif
  62. struct vmcs *vmcs;
  63. struct {
  64. int loaded;
  65. u16 fs_sel, gs_sel, ldt_sel;
  66. int gs_ldt_reload_needed;
  67. int fs_reload_needed;
  68. int guest_efer_loaded;
  69. } host_state;
  70. struct {
  71. struct {
  72. bool pending;
  73. u8 vector;
  74. unsigned rip;
  75. } irq;
  76. } rmode;
  77. int vpid;
  78. };
  79. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  80. {
  81. return container_of(vcpu, struct vcpu_vmx, vcpu);
  82. }
  83. static int init_rmode(struct kvm *kvm);
  84. static u64 construct_eptp(unsigned long root_hpa);
  85. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  86. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  87. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  88. static struct page *vmx_io_bitmap_a;
  89. static struct page *vmx_io_bitmap_b;
  90. static struct page *vmx_msr_bitmap;
  91. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  92. static DEFINE_SPINLOCK(vmx_vpid_lock);
  93. static struct vmcs_config {
  94. int size;
  95. int order;
  96. u32 revision_id;
  97. u32 pin_based_exec_ctrl;
  98. u32 cpu_based_exec_ctrl;
  99. u32 cpu_based_2nd_exec_ctrl;
  100. u32 vmexit_ctrl;
  101. u32 vmentry_ctrl;
  102. } vmcs_config;
  103. struct vmx_capability {
  104. u32 ept;
  105. u32 vpid;
  106. } vmx_capability;
  107. #define VMX_SEGMENT_FIELD(seg) \
  108. [VCPU_SREG_##seg] = { \
  109. .selector = GUEST_##seg##_SELECTOR, \
  110. .base = GUEST_##seg##_BASE, \
  111. .limit = GUEST_##seg##_LIMIT, \
  112. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  113. }
  114. static struct kvm_vmx_segment_field {
  115. unsigned selector;
  116. unsigned base;
  117. unsigned limit;
  118. unsigned ar_bytes;
  119. } kvm_vmx_segment_fields[] = {
  120. VMX_SEGMENT_FIELD(CS),
  121. VMX_SEGMENT_FIELD(DS),
  122. VMX_SEGMENT_FIELD(ES),
  123. VMX_SEGMENT_FIELD(FS),
  124. VMX_SEGMENT_FIELD(GS),
  125. VMX_SEGMENT_FIELD(SS),
  126. VMX_SEGMENT_FIELD(TR),
  127. VMX_SEGMENT_FIELD(LDTR),
  128. };
  129. /*
  130. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  131. * away by decrementing the array size.
  132. */
  133. static const u32 vmx_msr_index[] = {
  134. #ifdef CONFIG_X86_64
  135. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  136. #endif
  137. MSR_EFER, MSR_K6_STAR,
  138. };
  139. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  140. static void load_msrs(struct kvm_msr_entry *e, int n)
  141. {
  142. int i;
  143. for (i = 0; i < n; ++i)
  144. wrmsrl(e[i].index, e[i].data);
  145. }
  146. static void save_msrs(struct kvm_msr_entry *e, int n)
  147. {
  148. int i;
  149. for (i = 0; i < n; ++i)
  150. rdmsrl(e[i].index, e[i].data);
  151. }
  152. static inline int is_page_fault(u32 intr_info)
  153. {
  154. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  155. INTR_INFO_VALID_MASK)) ==
  156. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  157. }
  158. static inline int is_no_device(u32 intr_info)
  159. {
  160. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  161. INTR_INFO_VALID_MASK)) ==
  162. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  163. }
  164. static inline int is_invalid_opcode(u32 intr_info)
  165. {
  166. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  167. INTR_INFO_VALID_MASK)) ==
  168. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  169. }
  170. static inline int is_external_interrupt(u32 intr_info)
  171. {
  172. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  173. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  174. }
  175. static inline int cpu_has_vmx_msr_bitmap(void)
  176. {
  177. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  178. }
  179. static inline int cpu_has_vmx_tpr_shadow(void)
  180. {
  181. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  182. }
  183. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  184. {
  185. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  186. }
  187. static inline int cpu_has_secondary_exec_ctrls(void)
  188. {
  189. return (vmcs_config.cpu_based_exec_ctrl &
  190. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  191. }
  192. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  193. {
  194. return flexpriority_enabled
  195. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  196. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  197. }
  198. static inline int cpu_has_vmx_invept_individual_addr(void)
  199. {
  200. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  201. }
  202. static inline int cpu_has_vmx_invept_context(void)
  203. {
  204. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  205. }
  206. static inline int cpu_has_vmx_invept_global(void)
  207. {
  208. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  209. }
  210. static inline int cpu_has_vmx_ept(void)
  211. {
  212. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  213. SECONDARY_EXEC_ENABLE_EPT);
  214. }
  215. static inline int vm_need_ept(void)
  216. {
  217. return (cpu_has_vmx_ept() && enable_ept);
  218. }
  219. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  220. {
  221. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  222. (irqchip_in_kernel(kvm)));
  223. }
  224. static inline int cpu_has_vmx_vpid(void)
  225. {
  226. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  227. SECONDARY_EXEC_ENABLE_VPID);
  228. }
  229. static inline int cpu_has_virtual_nmis(void)
  230. {
  231. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  232. }
  233. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  234. {
  235. int i;
  236. for (i = 0; i < vmx->nmsrs; ++i)
  237. if (vmx->guest_msrs[i].index == msr)
  238. return i;
  239. return -1;
  240. }
  241. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  242. {
  243. struct {
  244. u64 vpid : 16;
  245. u64 rsvd : 48;
  246. u64 gva;
  247. } operand = { vpid, 0, gva };
  248. asm volatile (__ex(ASM_VMX_INVVPID)
  249. /* CF==1 or ZF==1 --> rc = -1 */
  250. "; ja 1f ; ud2 ; 1:"
  251. : : "a"(&operand), "c"(ext) : "cc", "memory");
  252. }
  253. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  254. {
  255. struct {
  256. u64 eptp, gpa;
  257. } operand = {eptp, gpa};
  258. asm volatile (__ex(ASM_VMX_INVEPT)
  259. /* CF==1 or ZF==1 --> rc = -1 */
  260. "; ja 1f ; ud2 ; 1:\n"
  261. : : "a" (&operand), "c" (ext) : "cc", "memory");
  262. }
  263. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  264. {
  265. int i;
  266. i = __find_msr_index(vmx, msr);
  267. if (i >= 0)
  268. return &vmx->guest_msrs[i];
  269. return NULL;
  270. }
  271. static void vmcs_clear(struct vmcs *vmcs)
  272. {
  273. u64 phys_addr = __pa(vmcs);
  274. u8 error;
  275. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  276. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  277. : "cc", "memory");
  278. if (error)
  279. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  280. vmcs, phys_addr);
  281. }
  282. static void __vcpu_clear(void *arg)
  283. {
  284. struct vcpu_vmx *vmx = arg;
  285. int cpu = raw_smp_processor_id();
  286. if (vmx->vcpu.cpu == cpu)
  287. vmcs_clear(vmx->vmcs);
  288. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  289. per_cpu(current_vmcs, cpu) = NULL;
  290. rdtscll(vmx->vcpu.arch.host_tsc);
  291. list_del(&vmx->local_vcpus_link);
  292. vmx->vcpu.cpu = -1;
  293. vmx->launched = 0;
  294. }
  295. static void vcpu_clear(struct vcpu_vmx *vmx)
  296. {
  297. if (vmx->vcpu.cpu == -1)
  298. return;
  299. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  300. }
  301. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  302. {
  303. if (vmx->vpid == 0)
  304. return;
  305. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  306. }
  307. static inline void ept_sync_global(void)
  308. {
  309. if (cpu_has_vmx_invept_global())
  310. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  311. }
  312. static inline void ept_sync_context(u64 eptp)
  313. {
  314. if (vm_need_ept()) {
  315. if (cpu_has_vmx_invept_context())
  316. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  317. else
  318. ept_sync_global();
  319. }
  320. }
  321. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  322. {
  323. if (vm_need_ept()) {
  324. if (cpu_has_vmx_invept_individual_addr())
  325. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  326. eptp, gpa);
  327. else
  328. ept_sync_context(eptp);
  329. }
  330. }
  331. static unsigned long vmcs_readl(unsigned long field)
  332. {
  333. unsigned long value;
  334. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  335. : "=a"(value) : "d"(field) : "cc");
  336. return value;
  337. }
  338. static u16 vmcs_read16(unsigned long field)
  339. {
  340. return vmcs_readl(field);
  341. }
  342. static u32 vmcs_read32(unsigned long field)
  343. {
  344. return vmcs_readl(field);
  345. }
  346. static u64 vmcs_read64(unsigned long field)
  347. {
  348. #ifdef CONFIG_X86_64
  349. return vmcs_readl(field);
  350. #else
  351. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  352. #endif
  353. }
  354. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  355. {
  356. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  357. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  358. dump_stack();
  359. }
  360. static void vmcs_writel(unsigned long field, unsigned long value)
  361. {
  362. u8 error;
  363. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  364. : "=q"(error) : "a"(value), "d"(field) : "cc");
  365. if (unlikely(error))
  366. vmwrite_error(field, value);
  367. }
  368. static void vmcs_write16(unsigned long field, u16 value)
  369. {
  370. vmcs_writel(field, value);
  371. }
  372. static void vmcs_write32(unsigned long field, u32 value)
  373. {
  374. vmcs_writel(field, value);
  375. }
  376. static void vmcs_write64(unsigned long field, u64 value)
  377. {
  378. vmcs_writel(field, value);
  379. #ifndef CONFIG_X86_64
  380. asm volatile ("");
  381. vmcs_writel(field+1, value >> 32);
  382. #endif
  383. }
  384. static void vmcs_clear_bits(unsigned long field, u32 mask)
  385. {
  386. vmcs_writel(field, vmcs_readl(field) & ~mask);
  387. }
  388. static void vmcs_set_bits(unsigned long field, u32 mask)
  389. {
  390. vmcs_writel(field, vmcs_readl(field) | mask);
  391. }
  392. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  393. {
  394. u32 eb;
  395. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  396. if (!vcpu->fpu_active)
  397. eb |= 1u << NM_VECTOR;
  398. if (vcpu->guest_debug.enabled)
  399. eb |= 1u << DB_VECTOR;
  400. if (vcpu->arch.rmode.active)
  401. eb = ~0;
  402. if (vm_need_ept())
  403. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  404. vmcs_write32(EXCEPTION_BITMAP, eb);
  405. }
  406. static void reload_tss(void)
  407. {
  408. /*
  409. * VT restores TR but not its size. Useless.
  410. */
  411. struct descriptor_table gdt;
  412. struct desc_struct *descs;
  413. kvm_get_gdt(&gdt);
  414. descs = (void *)gdt.base;
  415. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  416. load_TR_desc();
  417. }
  418. static void load_transition_efer(struct vcpu_vmx *vmx)
  419. {
  420. int efer_offset = vmx->msr_offset_efer;
  421. u64 host_efer = vmx->host_msrs[efer_offset].data;
  422. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  423. u64 ignore_bits;
  424. if (efer_offset < 0)
  425. return;
  426. /*
  427. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  428. * outside long mode
  429. */
  430. ignore_bits = EFER_NX | EFER_SCE;
  431. #ifdef CONFIG_X86_64
  432. ignore_bits |= EFER_LMA | EFER_LME;
  433. /* SCE is meaningful only in long mode on Intel */
  434. if (guest_efer & EFER_LMA)
  435. ignore_bits &= ~(u64)EFER_SCE;
  436. #endif
  437. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  438. return;
  439. vmx->host_state.guest_efer_loaded = 1;
  440. guest_efer &= ~ignore_bits;
  441. guest_efer |= host_efer & ignore_bits;
  442. wrmsrl(MSR_EFER, guest_efer);
  443. vmx->vcpu.stat.efer_reload++;
  444. }
  445. static void reload_host_efer(struct vcpu_vmx *vmx)
  446. {
  447. if (vmx->host_state.guest_efer_loaded) {
  448. vmx->host_state.guest_efer_loaded = 0;
  449. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  450. }
  451. }
  452. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  453. {
  454. struct vcpu_vmx *vmx = to_vmx(vcpu);
  455. if (vmx->host_state.loaded)
  456. return;
  457. vmx->host_state.loaded = 1;
  458. /*
  459. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  460. * allow segment selectors with cpl > 0 or ti == 1.
  461. */
  462. vmx->host_state.ldt_sel = kvm_read_ldt();
  463. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  464. vmx->host_state.fs_sel = kvm_read_fs();
  465. if (!(vmx->host_state.fs_sel & 7)) {
  466. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  467. vmx->host_state.fs_reload_needed = 0;
  468. } else {
  469. vmcs_write16(HOST_FS_SELECTOR, 0);
  470. vmx->host_state.fs_reload_needed = 1;
  471. }
  472. vmx->host_state.gs_sel = kvm_read_gs();
  473. if (!(vmx->host_state.gs_sel & 7))
  474. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  475. else {
  476. vmcs_write16(HOST_GS_SELECTOR, 0);
  477. vmx->host_state.gs_ldt_reload_needed = 1;
  478. }
  479. #ifdef CONFIG_X86_64
  480. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  481. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  482. #else
  483. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  484. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  485. #endif
  486. #ifdef CONFIG_X86_64
  487. if (is_long_mode(&vmx->vcpu))
  488. save_msrs(vmx->host_msrs +
  489. vmx->msr_offset_kernel_gs_base, 1);
  490. #endif
  491. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  492. load_transition_efer(vmx);
  493. }
  494. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  495. {
  496. unsigned long flags;
  497. if (!vmx->host_state.loaded)
  498. return;
  499. ++vmx->vcpu.stat.host_state_reload;
  500. vmx->host_state.loaded = 0;
  501. if (vmx->host_state.fs_reload_needed)
  502. kvm_load_fs(vmx->host_state.fs_sel);
  503. if (vmx->host_state.gs_ldt_reload_needed) {
  504. kvm_load_ldt(vmx->host_state.ldt_sel);
  505. /*
  506. * If we have to reload gs, we must take care to
  507. * preserve our gs base.
  508. */
  509. local_irq_save(flags);
  510. kvm_load_gs(vmx->host_state.gs_sel);
  511. #ifdef CONFIG_X86_64
  512. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  513. #endif
  514. local_irq_restore(flags);
  515. }
  516. reload_tss();
  517. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  518. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  519. reload_host_efer(vmx);
  520. }
  521. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  522. {
  523. preempt_disable();
  524. __vmx_load_host_state(vmx);
  525. preempt_enable();
  526. }
  527. /*
  528. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  529. * vcpu mutex is already taken.
  530. */
  531. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  532. {
  533. struct vcpu_vmx *vmx = to_vmx(vcpu);
  534. u64 phys_addr = __pa(vmx->vmcs);
  535. u64 tsc_this, delta, new_offset;
  536. if (vcpu->cpu != cpu) {
  537. vcpu_clear(vmx);
  538. kvm_migrate_timers(vcpu);
  539. vpid_sync_vcpu_all(vmx);
  540. local_irq_disable();
  541. list_add(&vmx->local_vcpus_link,
  542. &per_cpu(vcpus_on_cpu, cpu));
  543. local_irq_enable();
  544. }
  545. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  546. u8 error;
  547. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  548. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  549. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  550. : "cc");
  551. if (error)
  552. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  553. vmx->vmcs, phys_addr);
  554. }
  555. if (vcpu->cpu != cpu) {
  556. struct descriptor_table dt;
  557. unsigned long sysenter_esp;
  558. vcpu->cpu = cpu;
  559. /*
  560. * Linux uses per-cpu TSS and GDT, so set these when switching
  561. * processors.
  562. */
  563. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  564. kvm_get_gdt(&dt);
  565. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  566. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  567. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  568. /*
  569. * Make sure the time stamp counter is monotonous.
  570. */
  571. rdtscll(tsc_this);
  572. if (tsc_this < vcpu->arch.host_tsc) {
  573. delta = vcpu->arch.host_tsc - tsc_this;
  574. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  575. vmcs_write64(TSC_OFFSET, new_offset);
  576. }
  577. }
  578. }
  579. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  580. {
  581. __vmx_load_host_state(to_vmx(vcpu));
  582. }
  583. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  584. {
  585. if (vcpu->fpu_active)
  586. return;
  587. vcpu->fpu_active = 1;
  588. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  589. if (vcpu->arch.cr0 & X86_CR0_TS)
  590. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  591. update_exception_bitmap(vcpu);
  592. }
  593. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  594. {
  595. if (!vcpu->fpu_active)
  596. return;
  597. vcpu->fpu_active = 0;
  598. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  599. update_exception_bitmap(vcpu);
  600. }
  601. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  602. {
  603. return vmcs_readl(GUEST_RFLAGS);
  604. }
  605. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  606. {
  607. if (vcpu->arch.rmode.active)
  608. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  609. vmcs_writel(GUEST_RFLAGS, rflags);
  610. }
  611. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  612. {
  613. unsigned long rip;
  614. u32 interruptibility;
  615. rip = kvm_rip_read(vcpu);
  616. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  617. kvm_rip_write(vcpu, rip);
  618. /*
  619. * We emulated an instruction, so temporary interrupt blocking
  620. * should be removed, if set.
  621. */
  622. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  623. if (interruptibility & 3)
  624. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  625. interruptibility & ~3);
  626. vcpu->arch.interrupt_window_open = 1;
  627. }
  628. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  629. bool has_error_code, u32 error_code)
  630. {
  631. struct vcpu_vmx *vmx = to_vmx(vcpu);
  632. if (has_error_code)
  633. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  634. if (vcpu->arch.rmode.active) {
  635. vmx->rmode.irq.pending = true;
  636. vmx->rmode.irq.vector = nr;
  637. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  638. if (nr == BP_VECTOR)
  639. vmx->rmode.irq.rip++;
  640. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  641. nr | INTR_TYPE_SOFT_INTR
  642. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  643. | INTR_INFO_VALID_MASK);
  644. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  645. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  646. return;
  647. }
  648. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  649. nr | INTR_TYPE_EXCEPTION
  650. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  651. | INTR_INFO_VALID_MASK);
  652. }
  653. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  654. {
  655. return false;
  656. }
  657. /*
  658. * Swap MSR entry in host/guest MSR entry array.
  659. */
  660. #ifdef CONFIG_X86_64
  661. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  662. {
  663. struct kvm_msr_entry tmp;
  664. tmp = vmx->guest_msrs[to];
  665. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  666. vmx->guest_msrs[from] = tmp;
  667. tmp = vmx->host_msrs[to];
  668. vmx->host_msrs[to] = vmx->host_msrs[from];
  669. vmx->host_msrs[from] = tmp;
  670. }
  671. #endif
  672. /*
  673. * Set up the vmcs to automatically save and restore system
  674. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  675. * mode, as fiddling with msrs is very expensive.
  676. */
  677. static void setup_msrs(struct vcpu_vmx *vmx)
  678. {
  679. int save_nmsrs;
  680. vmx_load_host_state(vmx);
  681. save_nmsrs = 0;
  682. #ifdef CONFIG_X86_64
  683. if (is_long_mode(&vmx->vcpu)) {
  684. int index;
  685. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  686. if (index >= 0)
  687. move_msr_up(vmx, index, save_nmsrs++);
  688. index = __find_msr_index(vmx, MSR_LSTAR);
  689. if (index >= 0)
  690. move_msr_up(vmx, index, save_nmsrs++);
  691. index = __find_msr_index(vmx, MSR_CSTAR);
  692. if (index >= 0)
  693. move_msr_up(vmx, index, save_nmsrs++);
  694. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  695. if (index >= 0)
  696. move_msr_up(vmx, index, save_nmsrs++);
  697. /*
  698. * MSR_K6_STAR is only needed on long mode guests, and only
  699. * if efer.sce is enabled.
  700. */
  701. index = __find_msr_index(vmx, MSR_K6_STAR);
  702. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  703. move_msr_up(vmx, index, save_nmsrs++);
  704. }
  705. #endif
  706. vmx->save_nmsrs = save_nmsrs;
  707. #ifdef CONFIG_X86_64
  708. vmx->msr_offset_kernel_gs_base =
  709. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  710. #endif
  711. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  712. }
  713. /*
  714. * reads and returns guest's timestamp counter "register"
  715. * guest_tsc = host_tsc + tsc_offset -- 21.3
  716. */
  717. static u64 guest_read_tsc(void)
  718. {
  719. u64 host_tsc, tsc_offset;
  720. rdtscll(host_tsc);
  721. tsc_offset = vmcs_read64(TSC_OFFSET);
  722. return host_tsc + tsc_offset;
  723. }
  724. /*
  725. * writes 'guest_tsc' into guest's timestamp counter "register"
  726. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  727. */
  728. static void guest_write_tsc(u64 guest_tsc)
  729. {
  730. u64 host_tsc;
  731. rdtscll(host_tsc);
  732. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  733. }
  734. /*
  735. * Reads an msr value (of 'msr_index') into 'pdata'.
  736. * Returns 0 on success, non-0 otherwise.
  737. * Assumes vcpu_load() was already called.
  738. */
  739. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  740. {
  741. u64 data;
  742. struct kvm_msr_entry *msr;
  743. if (!pdata) {
  744. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  745. return -EINVAL;
  746. }
  747. switch (msr_index) {
  748. #ifdef CONFIG_X86_64
  749. case MSR_FS_BASE:
  750. data = vmcs_readl(GUEST_FS_BASE);
  751. break;
  752. case MSR_GS_BASE:
  753. data = vmcs_readl(GUEST_GS_BASE);
  754. break;
  755. case MSR_EFER:
  756. return kvm_get_msr_common(vcpu, msr_index, pdata);
  757. #endif
  758. case MSR_IA32_TIME_STAMP_COUNTER:
  759. data = guest_read_tsc();
  760. break;
  761. case MSR_IA32_SYSENTER_CS:
  762. data = vmcs_read32(GUEST_SYSENTER_CS);
  763. break;
  764. case MSR_IA32_SYSENTER_EIP:
  765. data = vmcs_readl(GUEST_SYSENTER_EIP);
  766. break;
  767. case MSR_IA32_SYSENTER_ESP:
  768. data = vmcs_readl(GUEST_SYSENTER_ESP);
  769. break;
  770. default:
  771. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  772. if (msr) {
  773. data = msr->data;
  774. break;
  775. }
  776. return kvm_get_msr_common(vcpu, msr_index, pdata);
  777. }
  778. *pdata = data;
  779. return 0;
  780. }
  781. /*
  782. * Writes msr value into into the appropriate "register".
  783. * Returns 0 on success, non-0 otherwise.
  784. * Assumes vcpu_load() was already called.
  785. */
  786. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  787. {
  788. struct vcpu_vmx *vmx = to_vmx(vcpu);
  789. struct kvm_msr_entry *msr;
  790. int ret = 0;
  791. switch (msr_index) {
  792. #ifdef CONFIG_X86_64
  793. case MSR_EFER:
  794. vmx_load_host_state(vmx);
  795. ret = kvm_set_msr_common(vcpu, msr_index, data);
  796. break;
  797. case MSR_FS_BASE:
  798. vmcs_writel(GUEST_FS_BASE, data);
  799. break;
  800. case MSR_GS_BASE:
  801. vmcs_writel(GUEST_GS_BASE, data);
  802. break;
  803. #endif
  804. case MSR_IA32_SYSENTER_CS:
  805. vmcs_write32(GUEST_SYSENTER_CS, data);
  806. break;
  807. case MSR_IA32_SYSENTER_EIP:
  808. vmcs_writel(GUEST_SYSENTER_EIP, data);
  809. break;
  810. case MSR_IA32_SYSENTER_ESP:
  811. vmcs_writel(GUEST_SYSENTER_ESP, data);
  812. break;
  813. case MSR_IA32_TIME_STAMP_COUNTER:
  814. guest_write_tsc(data);
  815. break;
  816. case MSR_P6_PERFCTR0:
  817. case MSR_P6_PERFCTR1:
  818. case MSR_P6_EVNTSEL0:
  819. case MSR_P6_EVNTSEL1:
  820. /*
  821. * Just discard all writes to the performance counters; this
  822. * should keep both older linux and windows 64-bit guests
  823. * happy
  824. */
  825. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  826. break;
  827. default:
  828. vmx_load_host_state(vmx);
  829. msr = find_msr_entry(vmx, msr_index);
  830. if (msr) {
  831. msr->data = data;
  832. break;
  833. }
  834. ret = kvm_set_msr_common(vcpu, msr_index, data);
  835. }
  836. return ret;
  837. }
  838. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  839. {
  840. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  841. switch (reg) {
  842. case VCPU_REGS_RSP:
  843. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  844. break;
  845. case VCPU_REGS_RIP:
  846. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  847. break;
  848. default:
  849. break;
  850. }
  851. }
  852. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  853. {
  854. unsigned long dr7 = 0x400;
  855. int old_singlestep;
  856. old_singlestep = vcpu->guest_debug.singlestep;
  857. vcpu->guest_debug.enabled = dbg->enabled;
  858. if (vcpu->guest_debug.enabled) {
  859. int i;
  860. dr7 |= 0x200; /* exact */
  861. for (i = 0; i < 4; ++i) {
  862. if (!dbg->breakpoints[i].enabled)
  863. continue;
  864. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  865. dr7 |= 2 << (i*2); /* global enable */
  866. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  867. }
  868. vcpu->guest_debug.singlestep = dbg->singlestep;
  869. } else
  870. vcpu->guest_debug.singlestep = 0;
  871. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  872. unsigned long flags;
  873. flags = vmcs_readl(GUEST_RFLAGS);
  874. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  875. vmcs_writel(GUEST_RFLAGS, flags);
  876. }
  877. update_exception_bitmap(vcpu);
  878. vmcs_writel(GUEST_DR7, dr7);
  879. return 0;
  880. }
  881. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  882. {
  883. if (!vcpu->arch.interrupt.pending)
  884. return -1;
  885. return vcpu->arch.interrupt.nr;
  886. }
  887. static __init int cpu_has_kvm_support(void)
  888. {
  889. unsigned long ecx = cpuid_ecx(1);
  890. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  891. }
  892. static __init int vmx_disabled_by_bios(void)
  893. {
  894. u64 msr;
  895. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  896. return (msr & (IA32_FEATURE_CONTROL_LOCKED_BIT |
  897. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
  898. == IA32_FEATURE_CONTROL_LOCKED_BIT;
  899. /* locked but not enabled */
  900. }
  901. static void hardware_enable(void *garbage)
  902. {
  903. int cpu = raw_smp_processor_id();
  904. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  905. u64 old;
  906. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  907. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  908. if ((old & (IA32_FEATURE_CONTROL_LOCKED_BIT |
  909. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
  910. != (IA32_FEATURE_CONTROL_LOCKED_BIT |
  911. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
  912. /* enable and lock */
  913. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  914. IA32_FEATURE_CONTROL_LOCKED_BIT |
  915. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT);
  916. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  917. asm volatile (ASM_VMX_VMXON_RAX
  918. : : "a"(&phys_addr), "m"(phys_addr)
  919. : "memory", "cc");
  920. }
  921. static void vmclear_local_vcpus(void)
  922. {
  923. int cpu = raw_smp_processor_id();
  924. struct vcpu_vmx *vmx, *n;
  925. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  926. local_vcpus_link)
  927. __vcpu_clear(vmx);
  928. }
  929. static void hardware_disable(void *garbage)
  930. {
  931. vmclear_local_vcpus();
  932. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  933. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  934. }
  935. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  936. u32 msr, u32 *result)
  937. {
  938. u32 vmx_msr_low, vmx_msr_high;
  939. u32 ctl = ctl_min | ctl_opt;
  940. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  941. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  942. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  943. /* Ensure minimum (required) set of control bits are supported. */
  944. if (ctl_min & ~ctl)
  945. return -EIO;
  946. *result = ctl;
  947. return 0;
  948. }
  949. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  950. {
  951. u32 vmx_msr_low, vmx_msr_high;
  952. u32 min, opt, min2, opt2;
  953. u32 _pin_based_exec_control = 0;
  954. u32 _cpu_based_exec_control = 0;
  955. u32 _cpu_based_2nd_exec_control = 0;
  956. u32 _vmexit_control = 0;
  957. u32 _vmentry_control = 0;
  958. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  959. opt = PIN_BASED_VIRTUAL_NMIS;
  960. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  961. &_pin_based_exec_control) < 0)
  962. return -EIO;
  963. min = CPU_BASED_HLT_EXITING |
  964. #ifdef CONFIG_X86_64
  965. CPU_BASED_CR8_LOAD_EXITING |
  966. CPU_BASED_CR8_STORE_EXITING |
  967. #endif
  968. CPU_BASED_CR3_LOAD_EXITING |
  969. CPU_BASED_CR3_STORE_EXITING |
  970. CPU_BASED_USE_IO_BITMAPS |
  971. CPU_BASED_MOV_DR_EXITING |
  972. CPU_BASED_USE_TSC_OFFSETING;
  973. opt = CPU_BASED_TPR_SHADOW |
  974. CPU_BASED_USE_MSR_BITMAPS |
  975. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  976. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  977. &_cpu_based_exec_control) < 0)
  978. return -EIO;
  979. #ifdef CONFIG_X86_64
  980. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  981. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  982. ~CPU_BASED_CR8_STORE_EXITING;
  983. #endif
  984. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  985. min2 = 0;
  986. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  987. SECONDARY_EXEC_WBINVD_EXITING |
  988. SECONDARY_EXEC_ENABLE_VPID |
  989. SECONDARY_EXEC_ENABLE_EPT;
  990. if (adjust_vmx_controls(min2, opt2,
  991. MSR_IA32_VMX_PROCBASED_CTLS2,
  992. &_cpu_based_2nd_exec_control) < 0)
  993. return -EIO;
  994. }
  995. #ifndef CONFIG_X86_64
  996. if (!(_cpu_based_2nd_exec_control &
  997. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  998. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  999. #endif
  1000. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1001. /* CR3 accesses don't need to cause VM Exits when EPT enabled */
  1002. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1003. CPU_BASED_CR3_STORE_EXITING);
  1004. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1005. &_cpu_based_exec_control) < 0)
  1006. return -EIO;
  1007. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1008. vmx_capability.ept, vmx_capability.vpid);
  1009. }
  1010. min = 0;
  1011. #ifdef CONFIG_X86_64
  1012. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1013. #endif
  1014. opt = 0;
  1015. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1016. &_vmexit_control) < 0)
  1017. return -EIO;
  1018. min = opt = 0;
  1019. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1020. &_vmentry_control) < 0)
  1021. return -EIO;
  1022. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1023. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1024. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1025. return -EIO;
  1026. #ifdef CONFIG_X86_64
  1027. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1028. if (vmx_msr_high & (1u<<16))
  1029. return -EIO;
  1030. #endif
  1031. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1032. if (((vmx_msr_high >> 18) & 15) != 6)
  1033. return -EIO;
  1034. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1035. vmcs_conf->order = get_order(vmcs_config.size);
  1036. vmcs_conf->revision_id = vmx_msr_low;
  1037. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1038. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1039. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1040. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1041. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1042. return 0;
  1043. }
  1044. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1045. {
  1046. int node = cpu_to_node(cpu);
  1047. struct page *pages;
  1048. struct vmcs *vmcs;
  1049. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1050. if (!pages)
  1051. return NULL;
  1052. vmcs = page_address(pages);
  1053. memset(vmcs, 0, vmcs_config.size);
  1054. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1055. return vmcs;
  1056. }
  1057. static struct vmcs *alloc_vmcs(void)
  1058. {
  1059. return alloc_vmcs_cpu(raw_smp_processor_id());
  1060. }
  1061. static void free_vmcs(struct vmcs *vmcs)
  1062. {
  1063. free_pages((unsigned long)vmcs, vmcs_config.order);
  1064. }
  1065. static void free_kvm_area(void)
  1066. {
  1067. int cpu;
  1068. for_each_online_cpu(cpu)
  1069. free_vmcs(per_cpu(vmxarea, cpu));
  1070. }
  1071. static __init int alloc_kvm_area(void)
  1072. {
  1073. int cpu;
  1074. for_each_online_cpu(cpu) {
  1075. struct vmcs *vmcs;
  1076. vmcs = alloc_vmcs_cpu(cpu);
  1077. if (!vmcs) {
  1078. free_kvm_area();
  1079. return -ENOMEM;
  1080. }
  1081. per_cpu(vmxarea, cpu) = vmcs;
  1082. }
  1083. return 0;
  1084. }
  1085. static __init int hardware_setup(void)
  1086. {
  1087. if (setup_vmcs_config(&vmcs_config) < 0)
  1088. return -EIO;
  1089. if (boot_cpu_has(X86_FEATURE_NX))
  1090. kvm_enable_efer_bits(EFER_NX);
  1091. return alloc_kvm_area();
  1092. }
  1093. static __exit void hardware_unsetup(void)
  1094. {
  1095. free_kvm_area();
  1096. }
  1097. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1098. {
  1099. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1100. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1101. vmcs_write16(sf->selector, save->selector);
  1102. vmcs_writel(sf->base, save->base);
  1103. vmcs_write32(sf->limit, save->limit);
  1104. vmcs_write32(sf->ar_bytes, save->ar);
  1105. } else {
  1106. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1107. << AR_DPL_SHIFT;
  1108. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1109. }
  1110. }
  1111. static void enter_pmode(struct kvm_vcpu *vcpu)
  1112. {
  1113. unsigned long flags;
  1114. vcpu->arch.rmode.active = 0;
  1115. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1116. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1117. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1118. flags = vmcs_readl(GUEST_RFLAGS);
  1119. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1120. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1121. vmcs_writel(GUEST_RFLAGS, flags);
  1122. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1123. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1124. update_exception_bitmap(vcpu);
  1125. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1126. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1127. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1128. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1129. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1130. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1131. vmcs_write16(GUEST_CS_SELECTOR,
  1132. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1133. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1134. }
  1135. static gva_t rmode_tss_base(struct kvm *kvm)
  1136. {
  1137. if (!kvm->arch.tss_addr) {
  1138. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1139. kvm->memslots[0].npages - 3;
  1140. return base_gfn << PAGE_SHIFT;
  1141. }
  1142. return kvm->arch.tss_addr;
  1143. }
  1144. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1145. {
  1146. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1147. save->selector = vmcs_read16(sf->selector);
  1148. save->base = vmcs_readl(sf->base);
  1149. save->limit = vmcs_read32(sf->limit);
  1150. save->ar = vmcs_read32(sf->ar_bytes);
  1151. vmcs_write16(sf->selector, save->base >> 4);
  1152. vmcs_write32(sf->base, save->base & 0xfffff);
  1153. vmcs_write32(sf->limit, 0xffff);
  1154. vmcs_write32(sf->ar_bytes, 0xf3);
  1155. }
  1156. static void enter_rmode(struct kvm_vcpu *vcpu)
  1157. {
  1158. unsigned long flags;
  1159. vcpu->arch.rmode.active = 1;
  1160. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1161. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1162. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1163. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1164. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1165. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1166. flags = vmcs_readl(GUEST_RFLAGS);
  1167. vcpu->arch.rmode.save_iopl
  1168. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1169. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1170. vmcs_writel(GUEST_RFLAGS, flags);
  1171. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1172. update_exception_bitmap(vcpu);
  1173. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1174. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1175. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1176. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1177. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1178. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1179. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1180. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1181. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1182. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1183. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1184. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1185. kvm_mmu_reset_context(vcpu);
  1186. init_rmode(vcpu->kvm);
  1187. }
  1188. #ifdef CONFIG_X86_64
  1189. static void enter_lmode(struct kvm_vcpu *vcpu)
  1190. {
  1191. u32 guest_tr_ar;
  1192. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1193. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1194. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1195. __func__);
  1196. vmcs_write32(GUEST_TR_AR_BYTES,
  1197. (guest_tr_ar & ~AR_TYPE_MASK)
  1198. | AR_TYPE_BUSY_64_TSS);
  1199. }
  1200. vcpu->arch.shadow_efer |= EFER_LMA;
  1201. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1202. vmcs_write32(VM_ENTRY_CONTROLS,
  1203. vmcs_read32(VM_ENTRY_CONTROLS)
  1204. | VM_ENTRY_IA32E_MODE);
  1205. }
  1206. static void exit_lmode(struct kvm_vcpu *vcpu)
  1207. {
  1208. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1209. vmcs_write32(VM_ENTRY_CONTROLS,
  1210. vmcs_read32(VM_ENTRY_CONTROLS)
  1211. & ~VM_ENTRY_IA32E_MODE);
  1212. }
  1213. #endif
  1214. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1215. {
  1216. vpid_sync_vcpu_all(to_vmx(vcpu));
  1217. if (vm_need_ept())
  1218. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1219. }
  1220. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1221. {
  1222. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1223. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1224. }
  1225. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1226. {
  1227. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1228. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1229. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1230. return;
  1231. }
  1232. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1233. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1234. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1235. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1236. }
  1237. }
  1238. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1239. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1240. unsigned long cr0,
  1241. struct kvm_vcpu *vcpu)
  1242. {
  1243. if (!(cr0 & X86_CR0_PG)) {
  1244. /* From paging/starting to nonpaging */
  1245. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1246. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1247. (CPU_BASED_CR3_LOAD_EXITING |
  1248. CPU_BASED_CR3_STORE_EXITING));
  1249. vcpu->arch.cr0 = cr0;
  1250. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1251. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1252. *hw_cr0 &= ~X86_CR0_WP;
  1253. } else if (!is_paging(vcpu)) {
  1254. /* From nonpaging to paging */
  1255. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1256. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1257. ~(CPU_BASED_CR3_LOAD_EXITING |
  1258. CPU_BASED_CR3_STORE_EXITING));
  1259. vcpu->arch.cr0 = cr0;
  1260. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1261. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1262. *hw_cr0 &= ~X86_CR0_WP;
  1263. }
  1264. }
  1265. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1266. struct kvm_vcpu *vcpu)
  1267. {
  1268. if (!is_paging(vcpu)) {
  1269. *hw_cr4 &= ~X86_CR4_PAE;
  1270. *hw_cr4 |= X86_CR4_PSE;
  1271. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1272. *hw_cr4 &= ~X86_CR4_PAE;
  1273. }
  1274. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1275. {
  1276. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1277. KVM_VM_CR0_ALWAYS_ON;
  1278. vmx_fpu_deactivate(vcpu);
  1279. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1280. enter_pmode(vcpu);
  1281. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1282. enter_rmode(vcpu);
  1283. #ifdef CONFIG_X86_64
  1284. if (vcpu->arch.shadow_efer & EFER_LME) {
  1285. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1286. enter_lmode(vcpu);
  1287. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1288. exit_lmode(vcpu);
  1289. }
  1290. #endif
  1291. if (vm_need_ept())
  1292. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1293. vmcs_writel(CR0_READ_SHADOW, cr0);
  1294. vmcs_writel(GUEST_CR0, hw_cr0);
  1295. vcpu->arch.cr0 = cr0;
  1296. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1297. vmx_fpu_activate(vcpu);
  1298. }
  1299. static u64 construct_eptp(unsigned long root_hpa)
  1300. {
  1301. u64 eptp;
  1302. /* TODO write the value reading from MSR */
  1303. eptp = VMX_EPT_DEFAULT_MT |
  1304. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1305. eptp |= (root_hpa & PAGE_MASK);
  1306. return eptp;
  1307. }
  1308. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1309. {
  1310. unsigned long guest_cr3;
  1311. u64 eptp;
  1312. guest_cr3 = cr3;
  1313. if (vm_need_ept()) {
  1314. eptp = construct_eptp(cr3);
  1315. vmcs_write64(EPT_POINTER, eptp);
  1316. ept_sync_context(eptp);
  1317. ept_load_pdptrs(vcpu);
  1318. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1319. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1320. }
  1321. vmx_flush_tlb(vcpu);
  1322. vmcs_writel(GUEST_CR3, guest_cr3);
  1323. if (vcpu->arch.cr0 & X86_CR0_PE)
  1324. vmx_fpu_deactivate(vcpu);
  1325. }
  1326. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1327. {
  1328. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1329. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1330. vcpu->arch.cr4 = cr4;
  1331. if (vm_need_ept())
  1332. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1333. vmcs_writel(CR4_READ_SHADOW, cr4);
  1334. vmcs_writel(GUEST_CR4, hw_cr4);
  1335. }
  1336. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1337. {
  1338. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1339. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1340. vcpu->arch.shadow_efer = efer;
  1341. if (!msr)
  1342. return;
  1343. if (efer & EFER_LMA) {
  1344. vmcs_write32(VM_ENTRY_CONTROLS,
  1345. vmcs_read32(VM_ENTRY_CONTROLS) |
  1346. VM_ENTRY_IA32E_MODE);
  1347. msr->data = efer;
  1348. } else {
  1349. vmcs_write32(VM_ENTRY_CONTROLS,
  1350. vmcs_read32(VM_ENTRY_CONTROLS) &
  1351. ~VM_ENTRY_IA32E_MODE);
  1352. msr->data = efer & ~EFER_LME;
  1353. }
  1354. setup_msrs(vmx);
  1355. }
  1356. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1357. {
  1358. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1359. return vmcs_readl(sf->base);
  1360. }
  1361. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1362. struct kvm_segment *var, int seg)
  1363. {
  1364. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1365. u32 ar;
  1366. var->base = vmcs_readl(sf->base);
  1367. var->limit = vmcs_read32(sf->limit);
  1368. var->selector = vmcs_read16(sf->selector);
  1369. ar = vmcs_read32(sf->ar_bytes);
  1370. if (ar & AR_UNUSABLE_MASK)
  1371. ar = 0;
  1372. var->type = ar & 15;
  1373. var->s = (ar >> 4) & 1;
  1374. var->dpl = (ar >> 5) & 3;
  1375. var->present = (ar >> 7) & 1;
  1376. var->avl = (ar >> 12) & 1;
  1377. var->l = (ar >> 13) & 1;
  1378. var->db = (ar >> 14) & 1;
  1379. var->g = (ar >> 15) & 1;
  1380. var->unusable = (ar >> 16) & 1;
  1381. }
  1382. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1383. {
  1384. struct kvm_segment kvm_seg;
  1385. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1386. return 0;
  1387. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1388. return 3;
  1389. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1390. return kvm_seg.selector & 3;
  1391. }
  1392. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1393. {
  1394. u32 ar;
  1395. if (var->unusable)
  1396. ar = 1 << 16;
  1397. else {
  1398. ar = var->type & 15;
  1399. ar |= (var->s & 1) << 4;
  1400. ar |= (var->dpl & 3) << 5;
  1401. ar |= (var->present & 1) << 7;
  1402. ar |= (var->avl & 1) << 12;
  1403. ar |= (var->l & 1) << 13;
  1404. ar |= (var->db & 1) << 14;
  1405. ar |= (var->g & 1) << 15;
  1406. }
  1407. if (ar == 0) /* a 0 value means unusable */
  1408. ar = AR_UNUSABLE_MASK;
  1409. return ar;
  1410. }
  1411. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1412. struct kvm_segment *var, int seg)
  1413. {
  1414. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1415. u32 ar;
  1416. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1417. vcpu->arch.rmode.tr.selector = var->selector;
  1418. vcpu->arch.rmode.tr.base = var->base;
  1419. vcpu->arch.rmode.tr.limit = var->limit;
  1420. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1421. return;
  1422. }
  1423. vmcs_writel(sf->base, var->base);
  1424. vmcs_write32(sf->limit, var->limit);
  1425. vmcs_write16(sf->selector, var->selector);
  1426. if (vcpu->arch.rmode.active && var->s) {
  1427. /*
  1428. * Hack real-mode segments into vm86 compatibility.
  1429. */
  1430. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1431. vmcs_writel(sf->base, 0xf0000);
  1432. ar = 0xf3;
  1433. } else
  1434. ar = vmx_segment_access_rights(var);
  1435. vmcs_write32(sf->ar_bytes, ar);
  1436. }
  1437. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1438. {
  1439. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1440. *db = (ar >> 14) & 1;
  1441. *l = (ar >> 13) & 1;
  1442. }
  1443. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1444. {
  1445. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1446. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1447. }
  1448. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1449. {
  1450. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1451. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1452. }
  1453. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1454. {
  1455. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1456. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1457. }
  1458. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1459. {
  1460. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1461. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1462. }
  1463. static int init_rmode_tss(struct kvm *kvm)
  1464. {
  1465. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1466. u16 data = 0;
  1467. int ret = 0;
  1468. int r;
  1469. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1470. if (r < 0)
  1471. goto out;
  1472. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1473. r = kvm_write_guest_page(kvm, fn++, &data,
  1474. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1475. if (r < 0)
  1476. goto out;
  1477. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1478. if (r < 0)
  1479. goto out;
  1480. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1481. if (r < 0)
  1482. goto out;
  1483. data = ~0;
  1484. r = kvm_write_guest_page(kvm, fn, &data,
  1485. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1486. sizeof(u8));
  1487. if (r < 0)
  1488. goto out;
  1489. ret = 1;
  1490. out:
  1491. return ret;
  1492. }
  1493. static int init_rmode_identity_map(struct kvm *kvm)
  1494. {
  1495. int i, r, ret;
  1496. pfn_t identity_map_pfn;
  1497. u32 tmp;
  1498. if (!vm_need_ept())
  1499. return 1;
  1500. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1501. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1502. "haven't been allocated!\n");
  1503. return 0;
  1504. }
  1505. if (likely(kvm->arch.ept_identity_pagetable_done))
  1506. return 1;
  1507. ret = 0;
  1508. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1509. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1510. if (r < 0)
  1511. goto out;
  1512. /* Set up identity-mapping pagetable for EPT in real mode */
  1513. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1514. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1515. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1516. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1517. &tmp, i * sizeof(tmp), sizeof(tmp));
  1518. if (r < 0)
  1519. goto out;
  1520. }
  1521. kvm->arch.ept_identity_pagetable_done = true;
  1522. ret = 1;
  1523. out:
  1524. return ret;
  1525. }
  1526. static void seg_setup(int seg)
  1527. {
  1528. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1529. vmcs_write16(sf->selector, 0);
  1530. vmcs_writel(sf->base, 0);
  1531. vmcs_write32(sf->limit, 0xffff);
  1532. vmcs_write32(sf->ar_bytes, 0x93);
  1533. }
  1534. static int alloc_apic_access_page(struct kvm *kvm)
  1535. {
  1536. struct kvm_userspace_memory_region kvm_userspace_mem;
  1537. int r = 0;
  1538. down_write(&kvm->slots_lock);
  1539. if (kvm->arch.apic_access_page)
  1540. goto out;
  1541. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1542. kvm_userspace_mem.flags = 0;
  1543. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1544. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1545. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1546. if (r)
  1547. goto out;
  1548. down_read(&current->mm->mmap_sem);
  1549. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1550. up_read(&current->mm->mmap_sem);
  1551. out:
  1552. up_write(&kvm->slots_lock);
  1553. return r;
  1554. }
  1555. static int alloc_identity_pagetable(struct kvm *kvm)
  1556. {
  1557. struct kvm_userspace_memory_region kvm_userspace_mem;
  1558. int r = 0;
  1559. down_write(&kvm->slots_lock);
  1560. if (kvm->arch.ept_identity_pagetable)
  1561. goto out;
  1562. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1563. kvm_userspace_mem.flags = 0;
  1564. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1565. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1566. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1567. if (r)
  1568. goto out;
  1569. down_read(&current->mm->mmap_sem);
  1570. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1571. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1572. up_read(&current->mm->mmap_sem);
  1573. out:
  1574. up_write(&kvm->slots_lock);
  1575. return r;
  1576. }
  1577. static void allocate_vpid(struct vcpu_vmx *vmx)
  1578. {
  1579. int vpid;
  1580. vmx->vpid = 0;
  1581. if (!enable_vpid || !cpu_has_vmx_vpid())
  1582. return;
  1583. spin_lock(&vmx_vpid_lock);
  1584. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1585. if (vpid < VMX_NR_VPIDS) {
  1586. vmx->vpid = vpid;
  1587. __set_bit(vpid, vmx_vpid_bitmap);
  1588. }
  1589. spin_unlock(&vmx_vpid_lock);
  1590. }
  1591. static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1592. {
  1593. void *va;
  1594. if (!cpu_has_vmx_msr_bitmap())
  1595. return;
  1596. /*
  1597. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1598. * have the write-low and read-high bitmap offsets the wrong way round.
  1599. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1600. */
  1601. va = kmap(msr_bitmap);
  1602. if (msr <= 0x1fff) {
  1603. __clear_bit(msr, va + 0x000); /* read-low */
  1604. __clear_bit(msr, va + 0x800); /* write-low */
  1605. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1606. msr &= 0x1fff;
  1607. __clear_bit(msr, va + 0x400); /* read-high */
  1608. __clear_bit(msr, va + 0xc00); /* write-high */
  1609. }
  1610. kunmap(msr_bitmap);
  1611. }
  1612. /*
  1613. * Sets up the vmcs for emulated real mode.
  1614. */
  1615. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1616. {
  1617. u32 host_sysenter_cs;
  1618. u32 junk;
  1619. unsigned long a;
  1620. struct descriptor_table dt;
  1621. int i;
  1622. unsigned long kvm_vmx_return;
  1623. u32 exec_control;
  1624. /* I/O */
  1625. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1626. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1627. if (cpu_has_vmx_msr_bitmap())
  1628. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1629. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1630. /* Control */
  1631. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1632. vmcs_config.pin_based_exec_ctrl);
  1633. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1634. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1635. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1636. #ifdef CONFIG_X86_64
  1637. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1638. CPU_BASED_CR8_LOAD_EXITING;
  1639. #endif
  1640. }
  1641. if (!vm_need_ept())
  1642. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1643. CPU_BASED_CR3_LOAD_EXITING;
  1644. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1645. if (cpu_has_secondary_exec_ctrls()) {
  1646. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1647. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1648. exec_control &=
  1649. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1650. if (vmx->vpid == 0)
  1651. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1652. if (!vm_need_ept())
  1653. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1654. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1655. }
  1656. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1657. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1658. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1659. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1660. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1661. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1662. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1663. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1664. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1665. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1666. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1667. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1668. #ifdef CONFIG_X86_64
  1669. rdmsrl(MSR_FS_BASE, a);
  1670. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1671. rdmsrl(MSR_GS_BASE, a);
  1672. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1673. #else
  1674. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1675. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1676. #endif
  1677. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1678. kvm_get_idt(&dt);
  1679. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1680. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1681. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1682. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1683. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1684. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1685. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1686. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1687. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1688. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1689. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1690. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1691. for (i = 0; i < NR_VMX_MSR; ++i) {
  1692. u32 index = vmx_msr_index[i];
  1693. u32 data_low, data_high;
  1694. u64 data;
  1695. int j = vmx->nmsrs;
  1696. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1697. continue;
  1698. if (wrmsr_safe(index, data_low, data_high) < 0)
  1699. continue;
  1700. data = data_low | ((u64)data_high << 32);
  1701. vmx->host_msrs[j].index = index;
  1702. vmx->host_msrs[j].reserved = 0;
  1703. vmx->host_msrs[j].data = data;
  1704. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1705. ++vmx->nmsrs;
  1706. }
  1707. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1708. /* 22.2.1, 20.8.1 */
  1709. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1710. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1711. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1712. return 0;
  1713. }
  1714. static int init_rmode(struct kvm *kvm)
  1715. {
  1716. if (!init_rmode_tss(kvm))
  1717. return 0;
  1718. if (!init_rmode_identity_map(kvm))
  1719. return 0;
  1720. return 1;
  1721. }
  1722. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1723. {
  1724. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1725. u64 msr;
  1726. int ret;
  1727. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1728. down_read(&vcpu->kvm->slots_lock);
  1729. if (!init_rmode(vmx->vcpu.kvm)) {
  1730. ret = -ENOMEM;
  1731. goto out;
  1732. }
  1733. vmx->vcpu.arch.rmode.active = 0;
  1734. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1735. kvm_set_cr8(&vmx->vcpu, 0);
  1736. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1737. if (vmx->vcpu.vcpu_id == 0)
  1738. msr |= MSR_IA32_APICBASE_BSP;
  1739. kvm_set_apic_base(&vmx->vcpu, msr);
  1740. fx_init(&vmx->vcpu);
  1741. /*
  1742. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1743. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1744. */
  1745. if (vmx->vcpu.vcpu_id == 0) {
  1746. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1747. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1748. } else {
  1749. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1750. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1751. }
  1752. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1753. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1754. seg_setup(VCPU_SREG_DS);
  1755. seg_setup(VCPU_SREG_ES);
  1756. seg_setup(VCPU_SREG_FS);
  1757. seg_setup(VCPU_SREG_GS);
  1758. seg_setup(VCPU_SREG_SS);
  1759. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1760. vmcs_writel(GUEST_TR_BASE, 0);
  1761. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1762. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1763. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1764. vmcs_writel(GUEST_LDTR_BASE, 0);
  1765. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1766. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1767. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1768. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1769. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1770. vmcs_writel(GUEST_RFLAGS, 0x02);
  1771. if (vmx->vcpu.vcpu_id == 0)
  1772. kvm_rip_write(vcpu, 0xfff0);
  1773. else
  1774. kvm_rip_write(vcpu, 0);
  1775. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  1776. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1777. vmcs_writel(GUEST_DR7, 0x400);
  1778. vmcs_writel(GUEST_GDTR_BASE, 0);
  1779. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1780. vmcs_writel(GUEST_IDTR_BASE, 0);
  1781. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1782. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1783. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1784. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1785. guest_write_tsc(0);
  1786. /* Special registers */
  1787. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1788. setup_msrs(vmx);
  1789. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1790. if (cpu_has_vmx_tpr_shadow()) {
  1791. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1792. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1793. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1794. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1795. vmcs_write32(TPR_THRESHOLD, 0);
  1796. }
  1797. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1798. vmcs_write64(APIC_ACCESS_ADDR,
  1799. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1800. if (vmx->vpid != 0)
  1801. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  1802. vmx->vcpu.arch.cr0 = 0x60000010;
  1803. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1804. vmx_set_cr4(&vmx->vcpu, 0);
  1805. vmx_set_efer(&vmx->vcpu, 0);
  1806. vmx_fpu_activate(&vmx->vcpu);
  1807. update_exception_bitmap(&vmx->vcpu);
  1808. vpid_sync_vcpu_all(vmx);
  1809. ret = 0;
  1810. out:
  1811. up_read(&vcpu->kvm->slots_lock);
  1812. return ret;
  1813. }
  1814. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1815. {
  1816. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1817. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  1818. if (vcpu->arch.rmode.active) {
  1819. vmx->rmode.irq.pending = true;
  1820. vmx->rmode.irq.vector = irq;
  1821. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  1822. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1823. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1824. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1825. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  1826. return;
  1827. }
  1828. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1829. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1830. }
  1831. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  1832. {
  1833. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1834. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  1835. }
  1836. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1837. {
  1838. int word_index = __ffs(vcpu->arch.irq_summary);
  1839. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1840. int irq = word_index * BITS_PER_LONG + bit_index;
  1841. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1842. if (!vcpu->arch.irq_pending[word_index])
  1843. clear_bit(word_index, &vcpu->arch.irq_summary);
  1844. vmx_inject_irq(vcpu, irq);
  1845. }
  1846. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1847. struct kvm_run *kvm_run)
  1848. {
  1849. u32 cpu_based_vm_exec_control;
  1850. vcpu->arch.interrupt_window_open =
  1851. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1852. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1853. if (vcpu->arch.interrupt_window_open &&
  1854. vcpu->arch.irq_summary &&
  1855. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1856. /*
  1857. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1858. */
  1859. kvm_do_inject_irq(vcpu);
  1860. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1861. if (!vcpu->arch.interrupt_window_open &&
  1862. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  1863. /*
  1864. * Interrupts blocked. Wait for unblock.
  1865. */
  1866. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1867. else
  1868. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1869. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1870. }
  1871. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1872. {
  1873. int ret;
  1874. struct kvm_userspace_memory_region tss_mem = {
  1875. .slot = 8,
  1876. .guest_phys_addr = addr,
  1877. .memory_size = PAGE_SIZE * 3,
  1878. .flags = 0,
  1879. };
  1880. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1881. if (ret)
  1882. return ret;
  1883. kvm->arch.tss_addr = addr;
  1884. return 0;
  1885. }
  1886. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1887. {
  1888. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1889. set_debugreg(dbg->bp[0], 0);
  1890. set_debugreg(dbg->bp[1], 1);
  1891. set_debugreg(dbg->bp[2], 2);
  1892. set_debugreg(dbg->bp[3], 3);
  1893. if (dbg->singlestep) {
  1894. unsigned long flags;
  1895. flags = vmcs_readl(GUEST_RFLAGS);
  1896. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1897. vmcs_writel(GUEST_RFLAGS, flags);
  1898. }
  1899. }
  1900. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1901. int vec, u32 err_code)
  1902. {
  1903. /*
  1904. * Instruction with address size override prefix opcode 0x67
  1905. * Cause the #SS fault with 0 error code in VM86 mode.
  1906. */
  1907. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1908. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1909. return 1;
  1910. /*
  1911. * Forward all other exceptions that are valid in real mode.
  1912. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  1913. * the required debugging infrastructure rework.
  1914. */
  1915. switch (vec) {
  1916. case DE_VECTOR:
  1917. case DB_VECTOR:
  1918. case BP_VECTOR:
  1919. case OF_VECTOR:
  1920. case BR_VECTOR:
  1921. case UD_VECTOR:
  1922. case DF_VECTOR:
  1923. case SS_VECTOR:
  1924. case GP_VECTOR:
  1925. case MF_VECTOR:
  1926. kvm_queue_exception(vcpu, vec);
  1927. return 1;
  1928. }
  1929. return 0;
  1930. }
  1931. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1932. {
  1933. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1934. u32 intr_info, error_code;
  1935. unsigned long cr2, rip;
  1936. u32 vect_info;
  1937. enum emulation_result er;
  1938. vect_info = vmx->idt_vectoring_info;
  1939. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1940. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1941. !is_page_fault(intr_info))
  1942. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1943. "intr info 0x%x\n", __func__, vect_info, intr_info);
  1944. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1945. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1946. set_bit(irq, vcpu->arch.irq_pending);
  1947. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1948. }
  1949. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1950. return 1; /* already handled by vmx_vcpu_run() */
  1951. if (is_no_device(intr_info)) {
  1952. vmx_fpu_activate(vcpu);
  1953. return 1;
  1954. }
  1955. if (is_invalid_opcode(intr_info)) {
  1956. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  1957. if (er != EMULATE_DONE)
  1958. kvm_queue_exception(vcpu, UD_VECTOR);
  1959. return 1;
  1960. }
  1961. error_code = 0;
  1962. rip = kvm_rip_read(vcpu);
  1963. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  1964. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1965. if (is_page_fault(intr_info)) {
  1966. /* EPT won't cause page fault directly */
  1967. if (vm_need_ept())
  1968. BUG();
  1969. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1970. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  1971. (u32)((u64)cr2 >> 32), handler);
  1972. if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
  1973. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  1974. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1975. }
  1976. if (vcpu->arch.rmode.active &&
  1977. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1978. error_code)) {
  1979. if (vcpu->arch.halt_request) {
  1980. vcpu->arch.halt_request = 0;
  1981. return kvm_emulate_halt(vcpu);
  1982. }
  1983. return 1;
  1984. }
  1985. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1986. (INTR_TYPE_EXCEPTION | 1)) {
  1987. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1988. return 0;
  1989. }
  1990. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1991. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1992. kvm_run->ex.error_code = error_code;
  1993. return 0;
  1994. }
  1995. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1996. struct kvm_run *kvm_run)
  1997. {
  1998. ++vcpu->stat.irq_exits;
  1999. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2000. return 1;
  2001. }
  2002. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2003. {
  2004. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2005. return 0;
  2006. }
  2007. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2008. {
  2009. unsigned long exit_qualification;
  2010. int size, down, in, string, rep;
  2011. unsigned port;
  2012. ++vcpu->stat.io_exits;
  2013. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2014. string = (exit_qualification & 16) != 0;
  2015. if (string) {
  2016. if (emulate_instruction(vcpu,
  2017. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2018. return 0;
  2019. return 1;
  2020. }
  2021. size = (exit_qualification & 7) + 1;
  2022. in = (exit_qualification & 8) != 0;
  2023. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  2024. rep = (exit_qualification & 32) != 0;
  2025. port = exit_qualification >> 16;
  2026. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2027. }
  2028. static void
  2029. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2030. {
  2031. /*
  2032. * Patch in the VMCALL instruction:
  2033. */
  2034. hypercall[0] = 0x0f;
  2035. hypercall[1] = 0x01;
  2036. hypercall[2] = 0xc1;
  2037. }
  2038. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2039. {
  2040. unsigned long exit_qualification;
  2041. int cr;
  2042. int reg;
  2043. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2044. cr = exit_qualification & 15;
  2045. reg = (exit_qualification >> 8) & 15;
  2046. switch ((exit_qualification >> 4) & 3) {
  2047. case 0: /* mov to cr */
  2048. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2049. (u32)kvm_register_read(vcpu, reg),
  2050. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2051. handler);
  2052. switch (cr) {
  2053. case 0:
  2054. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2055. skip_emulated_instruction(vcpu);
  2056. return 1;
  2057. case 3:
  2058. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2059. skip_emulated_instruction(vcpu);
  2060. return 1;
  2061. case 4:
  2062. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2063. skip_emulated_instruction(vcpu);
  2064. return 1;
  2065. case 8:
  2066. kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
  2067. skip_emulated_instruction(vcpu);
  2068. if (irqchip_in_kernel(vcpu->kvm))
  2069. return 1;
  2070. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2071. return 0;
  2072. };
  2073. break;
  2074. case 2: /* clts */
  2075. vmx_fpu_deactivate(vcpu);
  2076. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2077. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2078. vmx_fpu_activate(vcpu);
  2079. KVMTRACE_0D(CLTS, vcpu, handler);
  2080. skip_emulated_instruction(vcpu);
  2081. return 1;
  2082. case 1: /*mov from cr*/
  2083. switch (cr) {
  2084. case 3:
  2085. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2086. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2087. (u32)kvm_register_read(vcpu, reg),
  2088. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2089. handler);
  2090. skip_emulated_instruction(vcpu);
  2091. return 1;
  2092. case 8:
  2093. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2094. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2095. (u32)kvm_register_read(vcpu, reg), handler);
  2096. skip_emulated_instruction(vcpu);
  2097. return 1;
  2098. }
  2099. break;
  2100. case 3: /* lmsw */
  2101. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2102. skip_emulated_instruction(vcpu);
  2103. return 1;
  2104. default:
  2105. break;
  2106. }
  2107. kvm_run->exit_reason = 0;
  2108. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2109. (int)(exit_qualification >> 4) & 3, cr);
  2110. return 0;
  2111. }
  2112. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2113. {
  2114. unsigned long exit_qualification;
  2115. unsigned long val;
  2116. int dr, reg;
  2117. /*
  2118. * FIXME: this code assumes the host is debugging the guest.
  2119. * need to deal with guest debugging itself too.
  2120. */
  2121. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2122. dr = exit_qualification & 7;
  2123. reg = (exit_qualification >> 8) & 15;
  2124. if (exit_qualification & 16) {
  2125. /* mov from dr */
  2126. switch (dr) {
  2127. case 6:
  2128. val = 0xffff0ff0;
  2129. break;
  2130. case 7:
  2131. val = 0x400;
  2132. break;
  2133. default:
  2134. val = 0;
  2135. }
  2136. kvm_register_write(vcpu, reg, val);
  2137. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2138. } else {
  2139. /* mov to dr */
  2140. }
  2141. skip_emulated_instruction(vcpu);
  2142. return 1;
  2143. }
  2144. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2145. {
  2146. kvm_emulate_cpuid(vcpu);
  2147. return 1;
  2148. }
  2149. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2150. {
  2151. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2152. u64 data;
  2153. if (vmx_get_msr(vcpu, ecx, &data)) {
  2154. kvm_inject_gp(vcpu, 0);
  2155. return 1;
  2156. }
  2157. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2158. handler);
  2159. /* FIXME: handling of bits 32:63 of rax, rdx */
  2160. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2161. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2162. skip_emulated_instruction(vcpu);
  2163. return 1;
  2164. }
  2165. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2166. {
  2167. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2168. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2169. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2170. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2171. handler);
  2172. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2173. kvm_inject_gp(vcpu, 0);
  2174. return 1;
  2175. }
  2176. skip_emulated_instruction(vcpu);
  2177. return 1;
  2178. }
  2179. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2180. struct kvm_run *kvm_run)
  2181. {
  2182. return 1;
  2183. }
  2184. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2185. struct kvm_run *kvm_run)
  2186. {
  2187. u32 cpu_based_vm_exec_control;
  2188. /* clear pending irq */
  2189. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2190. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2191. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2192. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2193. /*
  2194. * If the user space waits to inject interrupts, exit as soon as
  2195. * possible
  2196. */
  2197. if (kvm_run->request_interrupt_window &&
  2198. !vcpu->arch.irq_summary) {
  2199. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2200. ++vcpu->stat.irq_window_exits;
  2201. return 0;
  2202. }
  2203. return 1;
  2204. }
  2205. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2206. {
  2207. skip_emulated_instruction(vcpu);
  2208. return kvm_emulate_halt(vcpu);
  2209. }
  2210. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2211. {
  2212. skip_emulated_instruction(vcpu);
  2213. kvm_emulate_hypercall(vcpu);
  2214. return 1;
  2215. }
  2216. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2217. {
  2218. skip_emulated_instruction(vcpu);
  2219. /* TODO: Add support for VT-d/pass-through device */
  2220. return 1;
  2221. }
  2222. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2223. {
  2224. u64 exit_qualification;
  2225. enum emulation_result er;
  2226. unsigned long offset;
  2227. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2228. offset = exit_qualification & 0xffful;
  2229. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2230. if (er != EMULATE_DONE) {
  2231. printk(KERN_ERR
  2232. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2233. offset);
  2234. return -ENOTSUPP;
  2235. }
  2236. return 1;
  2237. }
  2238. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2239. {
  2240. unsigned long exit_qualification;
  2241. u16 tss_selector;
  2242. int reason;
  2243. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2244. reason = (u32)exit_qualification >> 30;
  2245. tss_selector = exit_qualification;
  2246. return kvm_task_switch(vcpu, tss_selector, reason);
  2247. }
  2248. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2249. {
  2250. u64 exit_qualification;
  2251. enum emulation_result er;
  2252. gpa_t gpa;
  2253. unsigned long hva;
  2254. int gla_validity;
  2255. int r;
  2256. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2257. if (exit_qualification & (1 << 6)) {
  2258. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2259. return -ENOTSUPP;
  2260. }
  2261. gla_validity = (exit_qualification >> 7) & 0x3;
  2262. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2263. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2264. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2265. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2266. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2267. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2268. (long unsigned int)exit_qualification);
  2269. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2270. kvm_run->hw.hardware_exit_reason = 0;
  2271. return -ENOTSUPP;
  2272. }
  2273. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2274. hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
  2275. if (!kvm_is_error_hva(hva)) {
  2276. r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2277. if (r < 0) {
  2278. printk(KERN_ERR "EPT: Not enough memory!\n");
  2279. return -ENOMEM;
  2280. }
  2281. return 1;
  2282. } else {
  2283. /* must be MMIO */
  2284. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2285. if (er == EMULATE_FAIL) {
  2286. printk(KERN_ERR
  2287. "EPT: Fail to handle EPT violation vmexit!er is %d\n",
  2288. er);
  2289. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2290. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2291. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2292. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2293. (long unsigned int)exit_qualification);
  2294. return -ENOTSUPP;
  2295. } else if (er == EMULATE_DO_MMIO)
  2296. return 0;
  2297. }
  2298. return 1;
  2299. }
  2300. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2301. {
  2302. u32 cpu_based_vm_exec_control;
  2303. /* clear pending NMI */
  2304. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2305. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2306. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2307. ++vcpu->stat.nmi_window_exits;
  2308. return 1;
  2309. }
  2310. /*
  2311. * The exit handlers return 1 if the exit was handled fully and guest execution
  2312. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2313. * to be done to userspace and return 0.
  2314. */
  2315. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2316. struct kvm_run *kvm_run) = {
  2317. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2318. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2319. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2320. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2321. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2322. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2323. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2324. [EXIT_REASON_CPUID] = handle_cpuid,
  2325. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2326. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2327. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2328. [EXIT_REASON_HLT] = handle_halt,
  2329. [EXIT_REASON_VMCALL] = handle_vmcall,
  2330. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2331. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2332. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2333. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2334. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2335. };
  2336. static const int kvm_vmx_max_exit_handlers =
  2337. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2338. /*
  2339. * The guest has exited. See if we can fix it or if we need userspace
  2340. * assistance.
  2341. */
  2342. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2343. {
  2344. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2345. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2346. u32 vectoring_info = vmx->idt_vectoring_info;
  2347. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2348. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2349. /* Access CR3 don't cause VMExit in paging mode, so we need
  2350. * to sync with guest real CR3. */
  2351. if (vm_need_ept() && is_paging(vcpu)) {
  2352. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2353. ept_load_pdptrs(vcpu);
  2354. }
  2355. if (unlikely(vmx->fail)) {
  2356. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2357. kvm_run->fail_entry.hardware_entry_failure_reason
  2358. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2359. return 0;
  2360. }
  2361. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2362. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2363. exit_reason != EXIT_REASON_EPT_VIOLATION))
  2364. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  2365. "exit reason is 0x%x\n", __func__, exit_reason);
  2366. if (exit_reason < kvm_vmx_max_exit_handlers
  2367. && kvm_vmx_exit_handlers[exit_reason])
  2368. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2369. else {
  2370. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2371. kvm_run->hw.hardware_exit_reason = exit_reason;
  2372. }
  2373. return 0;
  2374. }
  2375. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2376. {
  2377. int max_irr, tpr;
  2378. if (!vm_need_tpr_shadow(vcpu->kvm))
  2379. return;
  2380. if (!kvm_lapic_enabled(vcpu) ||
  2381. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2382. vmcs_write32(TPR_THRESHOLD, 0);
  2383. return;
  2384. }
  2385. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2386. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2387. }
  2388. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2389. {
  2390. u32 cpu_based_vm_exec_control;
  2391. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2392. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2393. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2394. }
  2395. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2396. {
  2397. u32 cpu_based_vm_exec_control;
  2398. if (!cpu_has_virtual_nmis())
  2399. return;
  2400. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2401. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2402. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2403. }
  2404. static int vmx_nmi_enabled(struct kvm_vcpu *vcpu)
  2405. {
  2406. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2407. return !(guest_intr & (GUEST_INTR_STATE_NMI |
  2408. GUEST_INTR_STATE_MOV_SS |
  2409. GUEST_INTR_STATE_STI));
  2410. }
  2411. static int vmx_irq_enabled(struct kvm_vcpu *vcpu)
  2412. {
  2413. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2414. return (!(guest_intr & (GUEST_INTR_STATE_MOV_SS |
  2415. GUEST_INTR_STATE_STI)) &&
  2416. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  2417. }
  2418. static void enable_intr_window(struct kvm_vcpu *vcpu)
  2419. {
  2420. if (vcpu->arch.nmi_pending)
  2421. enable_nmi_window(vcpu);
  2422. else if (kvm_cpu_has_interrupt(vcpu))
  2423. enable_irq_window(vcpu);
  2424. }
  2425. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2426. {
  2427. u32 exit_intr_info;
  2428. u32 idt_vectoring_info;
  2429. bool unblock_nmi;
  2430. u8 vector;
  2431. int type;
  2432. bool idtv_info_valid;
  2433. u32 error;
  2434. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2435. if (cpu_has_virtual_nmis()) {
  2436. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2437. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2438. /*
  2439. * SDM 3: 25.7.1.2
  2440. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2441. * a guest IRET fault.
  2442. */
  2443. if (unblock_nmi && vector != DF_VECTOR)
  2444. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2445. GUEST_INTR_STATE_NMI);
  2446. }
  2447. idt_vectoring_info = vmx->idt_vectoring_info;
  2448. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2449. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2450. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2451. if (vmx->vcpu.arch.nmi_injected) {
  2452. /*
  2453. * SDM 3: 25.7.1.2
  2454. * Clear bit "block by NMI" before VM entry if a NMI delivery
  2455. * faulted.
  2456. */
  2457. if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
  2458. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2459. GUEST_INTR_STATE_NMI);
  2460. else
  2461. vmx->vcpu.arch.nmi_injected = false;
  2462. }
  2463. kvm_clear_exception_queue(&vmx->vcpu);
  2464. if (idtv_info_valid && type == INTR_TYPE_EXCEPTION) {
  2465. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2466. error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2467. kvm_queue_exception_e(&vmx->vcpu, vector, error);
  2468. } else
  2469. kvm_queue_exception(&vmx->vcpu, vector);
  2470. vmx->idt_vectoring_info = 0;
  2471. }
  2472. kvm_clear_interrupt_queue(&vmx->vcpu);
  2473. if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
  2474. kvm_queue_interrupt(&vmx->vcpu, vector);
  2475. vmx->idt_vectoring_info = 0;
  2476. }
  2477. }
  2478. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2479. {
  2480. u32 intr_info_field;
  2481. update_tpr_threshold(vcpu);
  2482. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  2483. if (cpu_has_virtual_nmis()) {
  2484. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2485. if (vmx_nmi_enabled(vcpu)) {
  2486. vcpu->arch.nmi_pending = false;
  2487. vcpu->arch.nmi_injected = true;
  2488. } else {
  2489. enable_intr_window(vcpu);
  2490. return;
  2491. }
  2492. }
  2493. if (vcpu->arch.nmi_injected) {
  2494. vmx_inject_nmi(vcpu);
  2495. enable_intr_window(vcpu);
  2496. return;
  2497. }
  2498. }
  2499. if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
  2500. if (vmx_irq_enabled(vcpu))
  2501. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
  2502. else
  2503. enable_irq_window(vcpu);
  2504. }
  2505. if (vcpu->arch.interrupt.pending) {
  2506. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2507. kvm_timer_intr_post(vcpu, vcpu->arch.interrupt.nr);
  2508. }
  2509. }
  2510. /*
  2511. * Failure to inject an interrupt should give us the information
  2512. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2513. * when fetching the interrupt redirection bitmap in the real-mode
  2514. * tss, this doesn't happen. So we do it ourselves.
  2515. */
  2516. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2517. {
  2518. vmx->rmode.irq.pending = 0;
  2519. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2520. return;
  2521. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2522. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2523. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2524. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2525. return;
  2526. }
  2527. vmx->idt_vectoring_info =
  2528. VECTORING_INFO_VALID_MASK
  2529. | INTR_TYPE_EXT_INTR
  2530. | vmx->rmode.irq.vector;
  2531. }
  2532. #ifdef CONFIG_X86_64
  2533. #define R "r"
  2534. #define Q "q"
  2535. #else
  2536. #define R "e"
  2537. #define Q "l"
  2538. #endif
  2539. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2540. {
  2541. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2542. u32 intr_info;
  2543. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2544. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2545. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2546. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2547. /*
  2548. * Loading guest fpu may have cleared host cr0.ts
  2549. */
  2550. vmcs_writel(HOST_CR0, read_cr0());
  2551. asm(
  2552. /* Store host registers */
  2553. "push %%"R"dx; push %%"R"bp;"
  2554. "push %%"R"cx \n\t"
  2555. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2556. "je 1f \n\t"
  2557. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2558. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2559. "1: \n\t"
  2560. /* Check if vmlaunch of vmresume is needed */
  2561. "cmpl $0, %c[launched](%0) \n\t"
  2562. /* Load guest registers. Don't clobber flags. */
  2563. "mov %c[cr2](%0), %%"R"ax \n\t"
  2564. "mov %%"R"ax, %%cr2 \n\t"
  2565. "mov %c[rax](%0), %%"R"ax \n\t"
  2566. "mov %c[rbx](%0), %%"R"bx \n\t"
  2567. "mov %c[rdx](%0), %%"R"dx \n\t"
  2568. "mov %c[rsi](%0), %%"R"si \n\t"
  2569. "mov %c[rdi](%0), %%"R"di \n\t"
  2570. "mov %c[rbp](%0), %%"R"bp \n\t"
  2571. #ifdef CONFIG_X86_64
  2572. "mov %c[r8](%0), %%r8 \n\t"
  2573. "mov %c[r9](%0), %%r9 \n\t"
  2574. "mov %c[r10](%0), %%r10 \n\t"
  2575. "mov %c[r11](%0), %%r11 \n\t"
  2576. "mov %c[r12](%0), %%r12 \n\t"
  2577. "mov %c[r13](%0), %%r13 \n\t"
  2578. "mov %c[r14](%0), %%r14 \n\t"
  2579. "mov %c[r15](%0), %%r15 \n\t"
  2580. #endif
  2581. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2582. /* Enter guest mode */
  2583. "jne .Llaunched \n\t"
  2584. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2585. "jmp .Lkvm_vmx_return \n\t"
  2586. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2587. ".Lkvm_vmx_return: "
  2588. /* Save guest registers, load host registers, keep flags */
  2589. "xchg %0, (%%"R"sp) \n\t"
  2590. "mov %%"R"ax, %c[rax](%0) \n\t"
  2591. "mov %%"R"bx, %c[rbx](%0) \n\t"
  2592. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  2593. "mov %%"R"dx, %c[rdx](%0) \n\t"
  2594. "mov %%"R"si, %c[rsi](%0) \n\t"
  2595. "mov %%"R"di, %c[rdi](%0) \n\t"
  2596. "mov %%"R"bp, %c[rbp](%0) \n\t"
  2597. #ifdef CONFIG_X86_64
  2598. "mov %%r8, %c[r8](%0) \n\t"
  2599. "mov %%r9, %c[r9](%0) \n\t"
  2600. "mov %%r10, %c[r10](%0) \n\t"
  2601. "mov %%r11, %c[r11](%0) \n\t"
  2602. "mov %%r12, %c[r12](%0) \n\t"
  2603. "mov %%r13, %c[r13](%0) \n\t"
  2604. "mov %%r14, %c[r14](%0) \n\t"
  2605. "mov %%r15, %c[r15](%0) \n\t"
  2606. #endif
  2607. "mov %%cr2, %%"R"ax \n\t"
  2608. "mov %%"R"ax, %c[cr2](%0) \n\t"
  2609. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  2610. "setbe %c[fail](%0) \n\t"
  2611. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2612. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2613. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2614. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  2615. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2616. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2617. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2618. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2619. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2620. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2621. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2622. #ifdef CONFIG_X86_64
  2623. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2624. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2625. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2626. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2627. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2628. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2629. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2630. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2631. #endif
  2632. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2633. : "cc", "memory"
  2634. , R"bx", R"di", R"si"
  2635. #ifdef CONFIG_X86_64
  2636. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2637. #endif
  2638. );
  2639. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2640. vcpu->arch.regs_dirty = 0;
  2641. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2642. if (vmx->rmode.irq.pending)
  2643. fixup_rmode_irq(vmx);
  2644. vcpu->arch.interrupt_window_open =
  2645. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2646. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)) == 0;
  2647. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2648. vmx->launched = 1;
  2649. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2650. /* We need to handle NMIs before interrupts are enabled */
  2651. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200 &&
  2652. (intr_info & INTR_INFO_VALID_MASK)) {
  2653. KVMTRACE_0D(NMI, vcpu, handler);
  2654. asm("int $2");
  2655. }
  2656. vmx_complete_interrupts(vmx);
  2657. }
  2658. #undef R
  2659. #undef Q
  2660. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2661. {
  2662. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2663. if (vmx->vmcs) {
  2664. vcpu_clear(vmx);
  2665. free_vmcs(vmx->vmcs);
  2666. vmx->vmcs = NULL;
  2667. }
  2668. }
  2669. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2670. {
  2671. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2672. spin_lock(&vmx_vpid_lock);
  2673. if (vmx->vpid != 0)
  2674. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2675. spin_unlock(&vmx_vpid_lock);
  2676. vmx_free_vmcs(vcpu);
  2677. kfree(vmx->host_msrs);
  2678. kfree(vmx->guest_msrs);
  2679. kvm_vcpu_uninit(vcpu);
  2680. kmem_cache_free(kvm_vcpu_cache, vmx);
  2681. }
  2682. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2683. {
  2684. int err;
  2685. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2686. int cpu;
  2687. if (!vmx)
  2688. return ERR_PTR(-ENOMEM);
  2689. allocate_vpid(vmx);
  2690. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2691. if (err)
  2692. goto free_vcpu;
  2693. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2694. if (!vmx->guest_msrs) {
  2695. err = -ENOMEM;
  2696. goto uninit_vcpu;
  2697. }
  2698. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2699. if (!vmx->host_msrs)
  2700. goto free_guest_msrs;
  2701. vmx->vmcs = alloc_vmcs();
  2702. if (!vmx->vmcs)
  2703. goto free_msrs;
  2704. vmcs_clear(vmx->vmcs);
  2705. cpu = get_cpu();
  2706. vmx_vcpu_load(&vmx->vcpu, cpu);
  2707. err = vmx_vcpu_setup(vmx);
  2708. vmx_vcpu_put(&vmx->vcpu);
  2709. put_cpu();
  2710. if (err)
  2711. goto free_vmcs;
  2712. if (vm_need_virtualize_apic_accesses(kvm))
  2713. if (alloc_apic_access_page(kvm) != 0)
  2714. goto free_vmcs;
  2715. if (vm_need_ept())
  2716. if (alloc_identity_pagetable(kvm) != 0)
  2717. goto free_vmcs;
  2718. return &vmx->vcpu;
  2719. free_vmcs:
  2720. free_vmcs(vmx->vmcs);
  2721. free_msrs:
  2722. kfree(vmx->host_msrs);
  2723. free_guest_msrs:
  2724. kfree(vmx->guest_msrs);
  2725. uninit_vcpu:
  2726. kvm_vcpu_uninit(&vmx->vcpu);
  2727. free_vcpu:
  2728. kmem_cache_free(kvm_vcpu_cache, vmx);
  2729. return ERR_PTR(err);
  2730. }
  2731. static void __init vmx_check_processor_compat(void *rtn)
  2732. {
  2733. struct vmcs_config vmcs_conf;
  2734. *(int *)rtn = 0;
  2735. if (setup_vmcs_config(&vmcs_conf) < 0)
  2736. *(int *)rtn = -EIO;
  2737. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2738. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2739. smp_processor_id());
  2740. *(int *)rtn = -EIO;
  2741. }
  2742. }
  2743. static int get_ept_level(void)
  2744. {
  2745. return VMX_EPT_DEFAULT_GAW + 1;
  2746. }
  2747. static struct kvm_x86_ops vmx_x86_ops = {
  2748. .cpu_has_kvm_support = cpu_has_kvm_support,
  2749. .disabled_by_bios = vmx_disabled_by_bios,
  2750. .hardware_setup = hardware_setup,
  2751. .hardware_unsetup = hardware_unsetup,
  2752. .check_processor_compatibility = vmx_check_processor_compat,
  2753. .hardware_enable = hardware_enable,
  2754. .hardware_disable = hardware_disable,
  2755. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2756. .vcpu_create = vmx_create_vcpu,
  2757. .vcpu_free = vmx_free_vcpu,
  2758. .vcpu_reset = vmx_vcpu_reset,
  2759. .prepare_guest_switch = vmx_save_host_state,
  2760. .vcpu_load = vmx_vcpu_load,
  2761. .vcpu_put = vmx_vcpu_put,
  2762. .set_guest_debug = set_guest_debug,
  2763. .guest_debug_pre = kvm_guest_debug_pre,
  2764. .get_msr = vmx_get_msr,
  2765. .set_msr = vmx_set_msr,
  2766. .get_segment_base = vmx_get_segment_base,
  2767. .get_segment = vmx_get_segment,
  2768. .set_segment = vmx_set_segment,
  2769. .get_cpl = vmx_get_cpl,
  2770. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2771. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2772. .set_cr0 = vmx_set_cr0,
  2773. .set_cr3 = vmx_set_cr3,
  2774. .set_cr4 = vmx_set_cr4,
  2775. .set_efer = vmx_set_efer,
  2776. .get_idt = vmx_get_idt,
  2777. .set_idt = vmx_set_idt,
  2778. .get_gdt = vmx_get_gdt,
  2779. .set_gdt = vmx_set_gdt,
  2780. .cache_reg = vmx_cache_reg,
  2781. .get_rflags = vmx_get_rflags,
  2782. .set_rflags = vmx_set_rflags,
  2783. .tlb_flush = vmx_flush_tlb,
  2784. .run = vmx_vcpu_run,
  2785. .handle_exit = kvm_handle_exit,
  2786. .skip_emulated_instruction = skip_emulated_instruction,
  2787. .patch_hypercall = vmx_patch_hypercall,
  2788. .get_irq = vmx_get_irq,
  2789. .set_irq = vmx_inject_irq,
  2790. .queue_exception = vmx_queue_exception,
  2791. .exception_injected = vmx_exception_injected,
  2792. .inject_pending_irq = vmx_intr_assist,
  2793. .inject_pending_vectors = do_interrupt_requests,
  2794. .set_tss_addr = vmx_set_tss_addr,
  2795. .get_tdp_level = get_ept_level,
  2796. };
  2797. static int __init vmx_init(void)
  2798. {
  2799. void *va;
  2800. int r;
  2801. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2802. if (!vmx_io_bitmap_a)
  2803. return -ENOMEM;
  2804. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2805. if (!vmx_io_bitmap_b) {
  2806. r = -ENOMEM;
  2807. goto out;
  2808. }
  2809. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2810. if (!vmx_msr_bitmap) {
  2811. r = -ENOMEM;
  2812. goto out1;
  2813. }
  2814. /*
  2815. * Allow direct access to the PC debug port (it is often used for I/O
  2816. * delays, but the vmexits simply slow things down).
  2817. */
  2818. va = kmap(vmx_io_bitmap_a);
  2819. memset(va, 0xff, PAGE_SIZE);
  2820. clear_bit(0x80, va);
  2821. kunmap(vmx_io_bitmap_a);
  2822. va = kmap(vmx_io_bitmap_b);
  2823. memset(va, 0xff, PAGE_SIZE);
  2824. kunmap(vmx_io_bitmap_b);
  2825. va = kmap(vmx_msr_bitmap);
  2826. memset(va, 0xff, PAGE_SIZE);
  2827. kunmap(vmx_msr_bitmap);
  2828. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  2829. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2830. if (r)
  2831. goto out2;
  2832. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  2833. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  2834. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  2835. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  2836. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  2837. if (vm_need_ept()) {
  2838. bypass_guest_pf = 0;
  2839. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  2840. VMX_EPT_WRITABLE_MASK |
  2841. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  2842. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  2843. VMX_EPT_EXECUTABLE_MASK);
  2844. kvm_enable_tdp();
  2845. } else
  2846. kvm_disable_tdp();
  2847. if (bypass_guest_pf)
  2848. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2849. ept_sync_global();
  2850. return 0;
  2851. out2:
  2852. __free_page(vmx_msr_bitmap);
  2853. out1:
  2854. __free_page(vmx_io_bitmap_b);
  2855. out:
  2856. __free_page(vmx_io_bitmap_a);
  2857. return r;
  2858. }
  2859. static void __exit vmx_exit(void)
  2860. {
  2861. __free_page(vmx_msr_bitmap);
  2862. __free_page(vmx_io_bitmap_b);
  2863. __free_page(vmx_io_bitmap_a);
  2864. kvm_exit();
  2865. }
  2866. module_init(vmx_init)
  2867. module_exit(vmx_exit)