efx.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2009 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/delay.h>
  15. #include <linux/notifier.h>
  16. #include <linux/ip.h>
  17. #include <linux/tcp.h>
  18. #include <linux/in.h>
  19. #include <linux/crc32.h>
  20. #include <linux/ethtool.h>
  21. #include <linux/topology.h>
  22. #include <linux/gfp.h>
  23. #include "net_driver.h"
  24. #include "efx.h"
  25. #include "mdio_10g.h"
  26. #include "nic.h"
  27. #include "mcdi.h"
  28. #include "workarounds.h"
  29. /**************************************************************************
  30. *
  31. * Type name strings
  32. *
  33. **************************************************************************
  34. */
  35. /* Loopback mode names (see LOOPBACK_MODE()) */
  36. const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
  37. const char *efx_loopback_mode_names[] = {
  38. [LOOPBACK_NONE] = "NONE",
  39. [LOOPBACK_DATA] = "DATAPATH",
  40. [LOOPBACK_GMAC] = "GMAC",
  41. [LOOPBACK_XGMII] = "XGMII",
  42. [LOOPBACK_XGXS] = "XGXS",
  43. [LOOPBACK_XAUI] = "XAUI",
  44. [LOOPBACK_GMII] = "GMII",
  45. [LOOPBACK_SGMII] = "SGMII",
  46. [LOOPBACK_XGBR] = "XGBR",
  47. [LOOPBACK_XFI] = "XFI",
  48. [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
  49. [LOOPBACK_GMII_FAR] = "GMII_FAR",
  50. [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
  51. [LOOPBACK_XFI_FAR] = "XFI_FAR",
  52. [LOOPBACK_GPHY] = "GPHY",
  53. [LOOPBACK_PHYXS] = "PHYXS",
  54. [LOOPBACK_PCS] = "PCS",
  55. [LOOPBACK_PMAPMD] = "PMA/PMD",
  56. [LOOPBACK_XPORT] = "XPORT",
  57. [LOOPBACK_XGMII_WS] = "XGMII_WS",
  58. [LOOPBACK_XAUI_WS] = "XAUI_WS",
  59. [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
  60. [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
  61. [LOOPBACK_GMII_WS] = "GMII_WS",
  62. [LOOPBACK_XFI_WS] = "XFI_WS",
  63. [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
  64. [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
  65. };
  66. /* Interrupt mode names (see INT_MODE())) */
  67. const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
  68. const char *efx_interrupt_mode_names[] = {
  69. [EFX_INT_MODE_MSIX] = "MSI-X",
  70. [EFX_INT_MODE_MSI] = "MSI",
  71. [EFX_INT_MODE_LEGACY] = "legacy",
  72. };
  73. const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
  74. const char *efx_reset_type_names[] = {
  75. [RESET_TYPE_INVISIBLE] = "INVISIBLE",
  76. [RESET_TYPE_ALL] = "ALL",
  77. [RESET_TYPE_WORLD] = "WORLD",
  78. [RESET_TYPE_DISABLE] = "DISABLE",
  79. [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
  80. [RESET_TYPE_INT_ERROR] = "INT_ERROR",
  81. [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
  82. [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
  83. [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
  84. [RESET_TYPE_TX_SKIP] = "TX_SKIP",
  85. [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
  86. };
  87. #define EFX_MAX_MTU (9 * 1024)
  88. /* Reset workqueue. If any NIC has a hardware failure then a reset will be
  89. * queued onto this work queue. This is not a per-nic work queue, because
  90. * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  91. */
  92. static struct workqueue_struct *reset_workqueue;
  93. /**************************************************************************
  94. *
  95. * Configurable values
  96. *
  97. *************************************************************************/
  98. /*
  99. * Use separate channels for TX and RX events
  100. *
  101. * Set this to 1 to use separate channels for TX and RX. It allows us
  102. * to control interrupt affinity separately for TX and RX.
  103. *
  104. * This is only used in MSI-X interrupt mode
  105. */
  106. static unsigned int separate_tx_channels;
  107. module_param(separate_tx_channels, uint, 0444);
  108. MODULE_PARM_DESC(separate_tx_channels,
  109. "Use separate channels for TX and RX");
  110. /* This is the weight assigned to each of the (per-channel) virtual
  111. * NAPI devices.
  112. */
  113. static int napi_weight = 64;
  114. /* This is the time (in jiffies) between invocations of the hardware
  115. * monitor, which checks for known hardware bugs and resets the
  116. * hardware and driver as necessary.
  117. */
  118. unsigned int efx_monitor_interval = 1 * HZ;
  119. /* This controls whether or not the driver will initialise devices
  120. * with invalid MAC addresses stored in the EEPROM or flash. If true,
  121. * such devices will be initialised with a random locally-generated
  122. * MAC address. This allows for loading the sfc_mtd driver to
  123. * reprogram the flash, even if the flash contents (including the MAC
  124. * address) have previously been erased.
  125. */
  126. static unsigned int allow_bad_hwaddr;
  127. /* Initial interrupt moderation settings. They can be modified after
  128. * module load with ethtool.
  129. *
  130. * The default for RX should strike a balance between increasing the
  131. * round-trip latency and reducing overhead.
  132. */
  133. static unsigned int rx_irq_mod_usec = 60;
  134. /* Initial interrupt moderation settings. They can be modified after
  135. * module load with ethtool.
  136. *
  137. * This default is chosen to ensure that a 10G link does not go idle
  138. * while a TX queue is stopped after it has become full. A queue is
  139. * restarted when it drops below half full. The time this takes (assuming
  140. * worst case 3 descriptors per packet and 1024 descriptors) is
  141. * 512 / 3 * 1.2 = 205 usec.
  142. */
  143. static unsigned int tx_irq_mod_usec = 150;
  144. /* This is the first interrupt mode to try out of:
  145. * 0 => MSI-X
  146. * 1 => MSI
  147. * 2 => legacy
  148. */
  149. static unsigned int interrupt_mode;
  150. /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
  151. * i.e. the number of CPUs among which we may distribute simultaneous
  152. * interrupt handling.
  153. *
  154. * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
  155. * The default (0) means to assign an interrupt to each package (level II cache)
  156. */
  157. static unsigned int rss_cpus;
  158. module_param(rss_cpus, uint, 0444);
  159. MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
  160. static int phy_flash_cfg;
  161. module_param(phy_flash_cfg, int, 0644);
  162. MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
  163. static unsigned irq_adapt_low_thresh = 10000;
  164. module_param(irq_adapt_low_thresh, uint, 0644);
  165. MODULE_PARM_DESC(irq_adapt_low_thresh,
  166. "Threshold score for reducing IRQ moderation");
  167. static unsigned irq_adapt_high_thresh = 20000;
  168. module_param(irq_adapt_high_thresh, uint, 0644);
  169. MODULE_PARM_DESC(irq_adapt_high_thresh,
  170. "Threshold score for increasing IRQ moderation");
  171. static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  172. NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
  173. NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
  174. NETIF_MSG_TX_ERR | NETIF_MSG_HW);
  175. module_param(debug, uint, 0);
  176. MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
  177. /**************************************************************************
  178. *
  179. * Utility functions and prototypes
  180. *
  181. *************************************************************************/
  182. static void efx_remove_channels(struct efx_nic *efx);
  183. static void efx_remove_port(struct efx_nic *efx);
  184. static void efx_fini_napi(struct efx_nic *efx);
  185. static void efx_fini_struct(struct efx_nic *efx);
  186. static void efx_start_all(struct efx_nic *efx);
  187. static void efx_stop_all(struct efx_nic *efx);
  188. #define EFX_ASSERT_RESET_SERIALISED(efx) \
  189. do { \
  190. if ((efx->state == STATE_RUNNING) || \
  191. (efx->state == STATE_DISABLED)) \
  192. ASSERT_RTNL(); \
  193. } while (0)
  194. /**************************************************************************
  195. *
  196. * Event queue processing
  197. *
  198. *************************************************************************/
  199. /* Process channel's event queue
  200. *
  201. * This function is responsible for processing the event queue of a
  202. * single channel. The caller must guarantee that this function will
  203. * never be concurrently called more than once on the same channel,
  204. * though different channels may be being processed concurrently.
  205. */
  206. static int efx_process_channel(struct efx_channel *channel, int budget)
  207. {
  208. struct efx_nic *efx = channel->efx;
  209. int spent;
  210. if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
  211. !channel->enabled))
  212. return 0;
  213. spent = efx_nic_process_eventq(channel, budget);
  214. if (spent == 0)
  215. return 0;
  216. /* Deliver last RX packet. */
  217. if (channel->rx_pkt) {
  218. __efx_rx_packet(channel, channel->rx_pkt,
  219. channel->rx_pkt_csummed);
  220. channel->rx_pkt = NULL;
  221. }
  222. efx_rx_strategy(channel);
  223. efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
  224. return spent;
  225. }
  226. /* Mark channel as finished processing
  227. *
  228. * Note that since we will not receive further interrupts for this
  229. * channel before we finish processing and call the eventq_read_ack()
  230. * method, there is no need to use the interrupt hold-off timers.
  231. */
  232. static inline void efx_channel_processed(struct efx_channel *channel)
  233. {
  234. /* The interrupt handler for this channel may set work_pending
  235. * as soon as we acknowledge the events we've seen. Make sure
  236. * it's cleared before then. */
  237. channel->work_pending = false;
  238. smp_wmb();
  239. efx_nic_eventq_read_ack(channel);
  240. }
  241. /* NAPI poll handler
  242. *
  243. * NAPI guarantees serialisation of polls of the same device, which
  244. * provides the guarantee required by efx_process_channel().
  245. */
  246. static int efx_poll(struct napi_struct *napi, int budget)
  247. {
  248. struct efx_channel *channel =
  249. container_of(napi, struct efx_channel, napi_str);
  250. struct efx_nic *efx = channel->efx;
  251. int spent;
  252. netif_vdbg(efx, intr, efx->net_dev,
  253. "channel %d NAPI poll executing on CPU %d\n",
  254. channel->channel, raw_smp_processor_id());
  255. spent = efx_process_channel(channel, budget);
  256. if (spent < budget) {
  257. if (channel->channel < efx->n_rx_channels &&
  258. efx->irq_rx_adaptive &&
  259. unlikely(++channel->irq_count == 1000)) {
  260. if (unlikely(channel->irq_mod_score <
  261. irq_adapt_low_thresh)) {
  262. if (channel->irq_moderation > 1) {
  263. channel->irq_moderation -= 1;
  264. efx->type->push_irq_moderation(channel);
  265. }
  266. } else if (unlikely(channel->irq_mod_score >
  267. irq_adapt_high_thresh)) {
  268. if (channel->irq_moderation <
  269. efx->irq_rx_moderation) {
  270. channel->irq_moderation += 1;
  271. efx->type->push_irq_moderation(channel);
  272. }
  273. }
  274. channel->irq_count = 0;
  275. channel->irq_mod_score = 0;
  276. }
  277. /* There is no race here; although napi_disable() will
  278. * only wait for napi_complete(), this isn't a problem
  279. * since efx_channel_processed() will have no effect if
  280. * interrupts have already been disabled.
  281. */
  282. napi_complete(napi);
  283. efx_channel_processed(channel);
  284. }
  285. return spent;
  286. }
  287. /* Process the eventq of the specified channel immediately on this CPU
  288. *
  289. * Disable hardware generated interrupts, wait for any existing
  290. * processing to finish, then directly poll (and ack ) the eventq.
  291. * Finally reenable NAPI and interrupts.
  292. *
  293. * Since we are touching interrupts the caller should hold the suspend lock
  294. */
  295. void efx_process_channel_now(struct efx_channel *channel)
  296. {
  297. struct efx_nic *efx = channel->efx;
  298. BUG_ON(channel->channel >= efx->n_channels);
  299. BUG_ON(!channel->enabled);
  300. /* Disable interrupts and wait for ISRs to complete */
  301. efx_nic_disable_interrupts(efx);
  302. if (efx->legacy_irq)
  303. synchronize_irq(efx->legacy_irq);
  304. if (channel->irq)
  305. synchronize_irq(channel->irq);
  306. /* Wait for any NAPI processing to complete */
  307. napi_disable(&channel->napi_str);
  308. /* Poll the channel */
  309. efx_process_channel(channel, channel->eventq_mask + 1);
  310. /* Ack the eventq. This may cause an interrupt to be generated
  311. * when they are reenabled */
  312. efx_channel_processed(channel);
  313. napi_enable(&channel->napi_str);
  314. efx_nic_enable_interrupts(efx);
  315. }
  316. /* Create event queue
  317. * Event queue memory allocations are done only once. If the channel
  318. * is reset, the memory buffer will be reused; this guards against
  319. * errors during channel reset and also simplifies interrupt handling.
  320. */
  321. static int efx_probe_eventq(struct efx_channel *channel)
  322. {
  323. struct efx_nic *efx = channel->efx;
  324. unsigned long entries;
  325. netif_dbg(channel->efx, probe, channel->efx->net_dev,
  326. "chan %d create event queue\n", channel->channel);
  327. /* Build an event queue with room for one event per tx and rx buffer,
  328. * plus some extra for link state events and MCDI completions. */
  329. entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
  330. EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
  331. channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
  332. return efx_nic_probe_eventq(channel);
  333. }
  334. /* Prepare channel's event queue */
  335. static void efx_init_eventq(struct efx_channel *channel)
  336. {
  337. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  338. "chan %d init event queue\n", channel->channel);
  339. channel->eventq_read_ptr = 0;
  340. efx_nic_init_eventq(channel);
  341. }
  342. static void efx_fini_eventq(struct efx_channel *channel)
  343. {
  344. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  345. "chan %d fini event queue\n", channel->channel);
  346. efx_nic_fini_eventq(channel);
  347. }
  348. static void efx_remove_eventq(struct efx_channel *channel)
  349. {
  350. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  351. "chan %d remove event queue\n", channel->channel);
  352. efx_nic_remove_eventq(channel);
  353. }
  354. /**************************************************************************
  355. *
  356. * Channel handling
  357. *
  358. *************************************************************************/
  359. /* Allocate and initialise a channel structure, optionally copying
  360. * parameters (but not resources) from an old channel structure. */
  361. static struct efx_channel *
  362. efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
  363. {
  364. struct efx_channel *channel;
  365. struct efx_rx_queue *rx_queue;
  366. struct efx_tx_queue *tx_queue;
  367. int j;
  368. if (old_channel) {
  369. channel = kmalloc(sizeof(*channel), GFP_KERNEL);
  370. if (!channel)
  371. return NULL;
  372. *channel = *old_channel;
  373. memset(&channel->eventq, 0, sizeof(channel->eventq));
  374. rx_queue = &channel->rx_queue;
  375. rx_queue->buffer = NULL;
  376. memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
  377. for (j = 0; j < EFX_TXQ_TYPES; j++) {
  378. tx_queue = &channel->tx_queue[j];
  379. if (tx_queue->channel)
  380. tx_queue->channel = channel;
  381. tx_queue->buffer = NULL;
  382. memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
  383. }
  384. } else {
  385. channel = kzalloc(sizeof(*channel), GFP_KERNEL);
  386. if (!channel)
  387. return NULL;
  388. channel->efx = efx;
  389. channel->channel = i;
  390. for (j = 0; j < EFX_TXQ_TYPES; j++) {
  391. tx_queue = &channel->tx_queue[j];
  392. tx_queue->efx = efx;
  393. tx_queue->queue = i * EFX_TXQ_TYPES + j;
  394. tx_queue->channel = channel;
  395. }
  396. }
  397. spin_lock_init(&channel->tx_stop_lock);
  398. atomic_set(&channel->tx_stop_count, 1);
  399. rx_queue = &channel->rx_queue;
  400. rx_queue->efx = efx;
  401. setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
  402. (unsigned long)rx_queue);
  403. return channel;
  404. }
  405. static int efx_probe_channel(struct efx_channel *channel)
  406. {
  407. struct efx_tx_queue *tx_queue;
  408. struct efx_rx_queue *rx_queue;
  409. int rc;
  410. netif_dbg(channel->efx, probe, channel->efx->net_dev,
  411. "creating channel %d\n", channel->channel);
  412. rc = efx_probe_eventq(channel);
  413. if (rc)
  414. goto fail1;
  415. efx_for_each_channel_tx_queue(tx_queue, channel) {
  416. rc = efx_probe_tx_queue(tx_queue);
  417. if (rc)
  418. goto fail2;
  419. }
  420. efx_for_each_channel_rx_queue(rx_queue, channel) {
  421. rc = efx_probe_rx_queue(rx_queue);
  422. if (rc)
  423. goto fail3;
  424. }
  425. channel->n_rx_frm_trunc = 0;
  426. return 0;
  427. fail3:
  428. efx_for_each_channel_rx_queue(rx_queue, channel)
  429. efx_remove_rx_queue(rx_queue);
  430. fail2:
  431. efx_for_each_channel_tx_queue(tx_queue, channel)
  432. efx_remove_tx_queue(tx_queue);
  433. fail1:
  434. return rc;
  435. }
  436. static void efx_set_channel_names(struct efx_nic *efx)
  437. {
  438. struct efx_channel *channel;
  439. const char *type = "";
  440. int number;
  441. efx_for_each_channel(channel, efx) {
  442. number = channel->channel;
  443. if (efx->n_channels > efx->n_rx_channels) {
  444. if (channel->channel < efx->n_rx_channels) {
  445. type = "-rx";
  446. } else {
  447. type = "-tx";
  448. number -= efx->n_rx_channels;
  449. }
  450. }
  451. snprintf(efx->channel_name[channel->channel],
  452. sizeof(efx->channel_name[0]),
  453. "%s%s-%d", efx->name, type, number);
  454. }
  455. }
  456. static int efx_probe_channels(struct efx_nic *efx)
  457. {
  458. struct efx_channel *channel;
  459. int rc;
  460. /* Restart special buffer allocation */
  461. efx->next_buffer_table = 0;
  462. efx_for_each_channel(channel, efx) {
  463. rc = efx_probe_channel(channel);
  464. if (rc) {
  465. netif_err(efx, probe, efx->net_dev,
  466. "failed to create channel %d\n",
  467. channel->channel);
  468. goto fail;
  469. }
  470. }
  471. efx_set_channel_names(efx);
  472. return 0;
  473. fail:
  474. efx_remove_channels(efx);
  475. return rc;
  476. }
  477. /* Channels are shutdown and reinitialised whilst the NIC is running
  478. * to propagate configuration changes (mtu, checksum offload), or
  479. * to clear hardware error conditions
  480. */
  481. static void efx_init_channels(struct efx_nic *efx)
  482. {
  483. struct efx_tx_queue *tx_queue;
  484. struct efx_rx_queue *rx_queue;
  485. struct efx_channel *channel;
  486. /* Calculate the rx buffer allocation parameters required to
  487. * support the current MTU, including padding for header
  488. * alignment and overruns.
  489. */
  490. efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
  491. EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
  492. efx->type->rx_buffer_hash_size +
  493. efx->type->rx_buffer_padding);
  494. efx->rx_buffer_order = get_order(efx->rx_buffer_len +
  495. sizeof(struct efx_rx_page_state));
  496. /* Initialise the channels */
  497. efx_for_each_channel(channel, efx) {
  498. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  499. "init chan %d\n", channel->channel);
  500. efx_init_eventq(channel);
  501. efx_for_each_channel_tx_queue(tx_queue, channel)
  502. efx_init_tx_queue(tx_queue);
  503. /* The rx buffer allocation strategy is MTU dependent */
  504. efx_rx_strategy(channel);
  505. efx_for_each_channel_rx_queue(rx_queue, channel)
  506. efx_init_rx_queue(rx_queue);
  507. WARN_ON(channel->rx_pkt != NULL);
  508. efx_rx_strategy(channel);
  509. }
  510. }
  511. /* This enables event queue processing and packet transmission.
  512. *
  513. * Note that this function is not allowed to fail, since that would
  514. * introduce too much complexity into the suspend/resume path.
  515. */
  516. static void efx_start_channel(struct efx_channel *channel)
  517. {
  518. struct efx_rx_queue *rx_queue;
  519. netif_dbg(channel->efx, ifup, channel->efx->net_dev,
  520. "starting chan %d\n", channel->channel);
  521. /* The interrupt handler for this channel may set work_pending
  522. * as soon as we enable it. Make sure it's cleared before
  523. * then. Similarly, make sure it sees the enabled flag set. */
  524. channel->work_pending = false;
  525. channel->enabled = true;
  526. smp_wmb();
  527. /* Fill the queues before enabling NAPI */
  528. efx_for_each_channel_rx_queue(rx_queue, channel)
  529. efx_fast_push_rx_descriptors(rx_queue);
  530. napi_enable(&channel->napi_str);
  531. }
  532. /* This disables event queue processing and packet transmission.
  533. * This function does not guarantee that all queue processing
  534. * (e.g. RX refill) is complete.
  535. */
  536. static void efx_stop_channel(struct efx_channel *channel)
  537. {
  538. if (!channel->enabled)
  539. return;
  540. netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
  541. "stop chan %d\n", channel->channel);
  542. channel->enabled = false;
  543. napi_disable(&channel->napi_str);
  544. }
  545. static void efx_fini_channels(struct efx_nic *efx)
  546. {
  547. struct efx_channel *channel;
  548. struct efx_tx_queue *tx_queue;
  549. struct efx_rx_queue *rx_queue;
  550. int rc;
  551. EFX_ASSERT_RESET_SERIALISED(efx);
  552. BUG_ON(efx->port_enabled);
  553. rc = efx_nic_flush_queues(efx);
  554. if (rc && EFX_WORKAROUND_7803(efx)) {
  555. /* Schedule a reset to recover from the flush failure. The
  556. * descriptor caches reference memory we're about to free,
  557. * but falcon_reconfigure_mac_wrapper() won't reconnect
  558. * the MACs because of the pending reset. */
  559. netif_err(efx, drv, efx->net_dev,
  560. "Resetting to recover from flush failure\n");
  561. efx_schedule_reset(efx, RESET_TYPE_ALL);
  562. } else if (rc) {
  563. netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
  564. } else {
  565. netif_dbg(efx, drv, efx->net_dev,
  566. "successfully flushed all queues\n");
  567. }
  568. efx_for_each_channel(channel, efx) {
  569. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  570. "shut down chan %d\n", channel->channel);
  571. efx_for_each_channel_rx_queue(rx_queue, channel)
  572. efx_fini_rx_queue(rx_queue);
  573. efx_for_each_channel_tx_queue(tx_queue, channel)
  574. efx_fini_tx_queue(tx_queue);
  575. efx_fini_eventq(channel);
  576. }
  577. }
  578. static void efx_remove_channel(struct efx_channel *channel)
  579. {
  580. struct efx_tx_queue *tx_queue;
  581. struct efx_rx_queue *rx_queue;
  582. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  583. "destroy chan %d\n", channel->channel);
  584. efx_for_each_channel_rx_queue(rx_queue, channel)
  585. efx_remove_rx_queue(rx_queue);
  586. efx_for_each_channel_tx_queue(tx_queue, channel)
  587. efx_remove_tx_queue(tx_queue);
  588. efx_remove_eventq(channel);
  589. }
  590. static void efx_remove_channels(struct efx_nic *efx)
  591. {
  592. struct efx_channel *channel;
  593. efx_for_each_channel(channel, efx)
  594. efx_remove_channel(channel);
  595. }
  596. int
  597. efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
  598. {
  599. struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
  600. u32 old_rxq_entries, old_txq_entries;
  601. unsigned i;
  602. int rc;
  603. efx_stop_all(efx);
  604. efx_fini_channels(efx);
  605. /* Clone channels */
  606. memset(other_channel, 0, sizeof(other_channel));
  607. for (i = 0; i < efx->n_channels; i++) {
  608. channel = efx_alloc_channel(efx, i, efx->channel[i]);
  609. if (!channel) {
  610. rc = -ENOMEM;
  611. goto out;
  612. }
  613. other_channel[i] = channel;
  614. }
  615. /* Swap entry counts and channel pointers */
  616. old_rxq_entries = efx->rxq_entries;
  617. old_txq_entries = efx->txq_entries;
  618. efx->rxq_entries = rxq_entries;
  619. efx->txq_entries = txq_entries;
  620. for (i = 0; i < efx->n_channels; i++) {
  621. channel = efx->channel[i];
  622. efx->channel[i] = other_channel[i];
  623. other_channel[i] = channel;
  624. }
  625. rc = efx_probe_channels(efx);
  626. if (rc)
  627. goto rollback;
  628. /* Destroy old channels */
  629. for (i = 0; i < efx->n_channels; i++)
  630. efx_remove_channel(other_channel[i]);
  631. out:
  632. /* Free unused channel structures */
  633. for (i = 0; i < efx->n_channels; i++)
  634. kfree(other_channel[i]);
  635. efx_init_channels(efx);
  636. efx_start_all(efx);
  637. return rc;
  638. rollback:
  639. /* Swap back */
  640. efx->rxq_entries = old_rxq_entries;
  641. efx->txq_entries = old_txq_entries;
  642. for (i = 0; i < efx->n_channels; i++) {
  643. channel = efx->channel[i];
  644. efx->channel[i] = other_channel[i];
  645. other_channel[i] = channel;
  646. }
  647. goto out;
  648. }
  649. void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
  650. {
  651. mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
  652. }
  653. /**************************************************************************
  654. *
  655. * Port handling
  656. *
  657. **************************************************************************/
  658. /* This ensures that the kernel is kept informed (via
  659. * netif_carrier_on/off) of the link status, and also maintains the
  660. * link status's stop on the port's TX queue.
  661. */
  662. void efx_link_status_changed(struct efx_nic *efx)
  663. {
  664. struct efx_link_state *link_state = &efx->link_state;
  665. /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
  666. * that no events are triggered between unregister_netdev() and the
  667. * driver unloading. A more general condition is that NETDEV_CHANGE
  668. * can only be generated between NETDEV_UP and NETDEV_DOWN */
  669. if (!netif_running(efx->net_dev))
  670. return;
  671. if (efx->port_inhibited) {
  672. netif_carrier_off(efx->net_dev);
  673. return;
  674. }
  675. if (link_state->up != netif_carrier_ok(efx->net_dev)) {
  676. efx->n_link_state_changes++;
  677. if (link_state->up)
  678. netif_carrier_on(efx->net_dev);
  679. else
  680. netif_carrier_off(efx->net_dev);
  681. }
  682. /* Status message for kernel log */
  683. if (link_state->up) {
  684. netif_info(efx, link, efx->net_dev,
  685. "link up at %uMbps %s-duplex (MTU %d)%s\n",
  686. link_state->speed, link_state->fd ? "full" : "half",
  687. efx->net_dev->mtu,
  688. (efx->promiscuous ? " [PROMISC]" : ""));
  689. } else {
  690. netif_info(efx, link, efx->net_dev, "link down\n");
  691. }
  692. }
  693. void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
  694. {
  695. efx->link_advertising = advertising;
  696. if (advertising) {
  697. if (advertising & ADVERTISED_Pause)
  698. efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
  699. else
  700. efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
  701. if (advertising & ADVERTISED_Asym_Pause)
  702. efx->wanted_fc ^= EFX_FC_TX;
  703. }
  704. }
  705. void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
  706. {
  707. efx->wanted_fc = wanted_fc;
  708. if (efx->link_advertising) {
  709. if (wanted_fc & EFX_FC_RX)
  710. efx->link_advertising |= (ADVERTISED_Pause |
  711. ADVERTISED_Asym_Pause);
  712. else
  713. efx->link_advertising &= ~(ADVERTISED_Pause |
  714. ADVERTISED_Asym_Pause);
  715. if (wanted_fc & EFX_FC_TX)
  716. efx->link_advertising ^= ADVERTISED_Asym_Pause;
  717. }
  718. }
  719. static void efx_fini_port(struct efx_nic *efx);
  720. /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
  721. * the MAC appropriately. All other PHY configuration changes are pushed
  722. * through phy_op->set_settings(), and pushed asynchronously to the MAC
  723. * through efx_monitor().
  724. *
  725. * Callers must hold the mac_lock
  726. */
  727. int __efx_reconfigure_port(struct efx_nic *efx)
  728. {
  729. enum efx_phy_mode phy_mode;
  730. int rc;
  731. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  732. /* Serialise the promiscuous flag with efx_set_multicast_list. */
  733. if (efx_dev_registered(efx)) {
  734. netif_addr_lock_bh(efx->net_dev);
  735. netif_addr_unlock_bh(efx->net_dev);
  736. }
  737. /* Disable PHY transmit in mac level loopbacks */
  738. phy_mode = efx->phy_mode;
  739. if (LOOPBACK_INTERNAL(efx))
  740. efx->phy_mode |= PHY_MODE_TX_DISABLED;
  741. else
  742. efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
  743. rc = efx->type->reconfigure_port(efx);
  744. if (rc)
  745. efx->phy_mode = phy_mode;
  746. return rc;
  747. }
  748. /* Reinitialise the MAC to pick up new PHY settings, even if the port is
  749. * disabled. */
  750. int efx_reconfigure_port(struct efx_nic *efx)
  751. {
  752. int rc;
  753. EFX_ASSERT_RESET_SERIALISED(efx);
  754. mutex_lock(&efx->mac_lock);
  755. rc = __efx_reconfigure_port(efx);
  756. mutex_unlock(&efx->mac_lock);
  757. return rc;
  758. }
  759. /* Asynchronous work item for changing MAC promiscuity and multicast
  760. * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
  761. * MAC directly. */
  762. static void efx_mac_work(struct work_struct *data)
  763. {
  764. struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
  765. mutex_lock(&efx->mac_lock);
  766. if (efx->port_enabled) {
  767. efx->type->push_multicast_hash(efx);
  768. efx->mac_op->reconfigure(efx);
  769. }
  770. mutex_unlock(&efx->mac_lock);
  771. }
  772. static int efx_probe_port(struct efx_nic *efx)
  773. {
  774. int rc;
  775. netif_dbg(efx, probe, efx->net_dev, "create port\n");
  776. if (phy_flash_cfg)
  777. efx->phy_mode = PHY_MODE_SPECIAL;
  778. /* Connect up MAC/PHY operations table */
  779. rc = efx->type->probe_port(efx);
  780. if (rc)
  781. return rc;
  782. /* Sanity check MAC address */
  783. if (is_valid_ether_addr(efx->mac_address)) {
  784. memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
  785. } else {
  786. netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
  787. efx->mac_address);
  788. if (!allow_bad_hwaddr) {
  789. rc = -EINVAL;
  790. goto err;
  791. }
  792. random_ether_addr(efx->net_dev->dev_addr);
  793. netif_info(efx, probe, efx->net_dev,
  794. "using locally-generated MAC %pM\n",
  795. efx->net_dev->dev_addr);
  796. }
  797. return 0;
  798. err:
  799. efx->type->remove_port(efx);
  800. return rc;
  801. }
  802. static int efx_init_port(struct efx_nic *efx)
  803. {
  804. int rc;
  805. netif_dbg(efx, drv, efx->net_dev, "init port\n");
  806. mutex_lock(&efx->mac_lock);
  807. rc = efx->phy_op->init(efx);
  808. if (rc)
  809. goto fail1;
  810. efx->port_initialized = true;
  811. /* Reconfigure the MAC before creating dma queues (required for
  812. * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
  813. efx->mac_op->reconfigure(efx);
  814. /* Ensure the PHY advertises the correct flow control settings */
  815. rc = efx->phy_op->reconfigure(efx);
  816. if (rc)
  817. goto fail2;
  818. mutex_unlock(&efx->mac_lock);
  819. return 0;
  820. fail2:
  821. efx->phy_op->fini(efx);
  822. fail1:
  823. mutex_unlock(&efx->mac_lock);
  824. return rc;
  825. }
  826. static void efx_start_port(struct efx_nic *efx)
  827. {
  828. netif_dbg(efx, ifup, efx->net_dev, "start port\n");
  829. BUG_ON(efx->port_enabled);
  830. mutex_lock(&efx->mac_lock);
  831. efx->port_enabled = true;
  832. /* efx_mac_work() might have been scheduled after efx_stop_port(),
  833. * and then cancelled by efx_flush_all() */
  834. efx->type->push_multicast_hash(efx);
  835. efx->mac_op->reconfigure(efx);
  836. mutex_unlock(&efx->mac_lock);
  837. }
  838. /* Prevent efx_mac_work() and efx_monitor() from working */
  839. static void efx_stop_port(struct efx_nic *efx)
  840. {
  841. netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
  842. mutex_lock(&efx->mac_lock);
  843. efx->port_enabled = false;
  844. mutex_unlock(&efx->mac_lock);
  845. /* Serialise against efx_set_multicast_list() */
  846. if (efx_dev_registered(efx)) {
  847. netif_addr_lock_bh(efx->net_dev);
  848. netif_addr_unlock_bh(efx->net_dev);
  849. }
  850. }
  851. static void efx_fini_port(struct efx_nic *efx)
  852. {
  853. netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
  854. if (!efx->port_initialized)
  855. return;
  856. efx->phy_op->fini(efx);
  857. efx->port_initialized = false;
  858. efx->link_state.up = false;
  859. efx_link_status_changed(efx);
  860. }
  861. static void efx_remove_port(struct efx_nic *efx)
  862. {
  863. netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
  864. efx->type->remove_port(efx);
  865. }
  866. /**************************************************************************
  867. *
  868. * NIC handling
  869. *
  870. **************************************************************************/
  871. /* This configures the PCI device to enable I/O and DMA. */
  872. static int efx_init_io(struct efx_nic *efx)
  873. {
  874. struct pci_dev *pci_dev = efx->pci_dev;
  875. dma_addr_t dma_mask = efx->type->max_dma_mask;
  876. int rc;
  877. netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
  878. rc = pci_enable_device(pci_dev);
  879. if (rc) {
  880. netif_err(efx, probe, efx->net_dev,
  881. "failed to enable PCI device\n");
  882. goto fail1;
  883. }
  884. pci_set_master(pci_dev);
  885. /* Set the PCI DMA mask. Try all possibilities from our
  886. * genuine mask down to 32 bits, because some architectures
  887. * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
  888. * masks event though they reject 46 bit masks.
  889. */
  890. while (dma_mask > 0x7fffffffUL) {
  891. if (pci_dma_supported(pci_dev, dma_mask) &&
  892. ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
  893. break;
  894. dma_mask >>= 1;
  895. }
  896. if (rc) {
  897. netif_err(efx, probe, efx->net_dev,
  898. "could not find a suitable DMA mask\n");
  899. goto fail2;
  900. }
  901. netif_dbg(efx, probe, efx->net_dev,
  902. "using DMA mask %llx\n", (unsigned long long) dma_mask);
  903. rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
  904. if (rc) {
  905. /* pci_set_consistent_dma_mask() is not *allowed* to
  906. * fail with a mask that pci_set_dma_mask() accepted,
  907. * but just in case...
  908. */
  909. netif_err(efx, probe, efx->net_dev,
  910. "failed to set consistent DMA mask\n");
  911. goto fail2;
  912. }
  913. efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
  914. rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
  915. if (rc) {
  916. netif_err(efx, probe, efx->net_dev,
  917. "request for memory BAR failed\n");
  918. rc = -EIO;
  919. goto fail3;
  920. }
  921. efx->membase = ioremap_nocache(efx->membase_phys,
  922. efx->type->mem_map_size);
  923. if (!efx->membase) {
  924. netif_err(efx, probe, efx->net_dev,
  925. "could not map memory BAR at %llx+%x\n",
  926. (unsigned long long)efx->membase_phys,
  927. efx->type->mem_map_size);
  928. rc = -ENOMEM;
  929. goto fail4;
  930. }
  931. netif_dbg(efx, probe, efx->net_dev,
  932. "memory BAR at %llx+%x (virtual %p)\n",
  933. (unsigned long long)efx->membase_phys,
  934. efx->type->mem_map_size, efx->membase);
  935. return 0;
  936. fail4:
  937. pci_release_region(efx->pci_dev, EFX_MEM_BAR);
  938. fail3:
  939. efx->membase_phys = 0;
  940. fail2:
  941. pci_disable_device(efx->pci_dev);
  942. fail1:
  943. return rc;
  944. }
  945. static void efx_fini_io(struct efx_nic *efx)
  946. {
  947. netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
  948. if (efx->membase) {
  949. iounmap(efx->membase);
  950. efx->membase = NULL;
  951. }
  952. if (efx->membase_phys) {
  953. pci_release_region(efx->pci_dev, EFX_MEM_BAR);
  954. efx->membase_phys = 0;
  955. }
  956. pci_disable_device(efx->pci_dev);
  957. }
  958. /* Get number of channels wanted. Each channel will have its own IRQ,
  959. * 1 RX queue and/or 2 TX queues. */
  960. static int efx_wanted_channels(void)
  961. {
  962. cpumask_var_t core_mask;
  963. int count;
  964. int cpu;
  965. if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
  966. printk(KERN_WARNING
  967. "sfc: RSS disabled due to allocation failure\n");
  968. return 1;
  969. }
  970. count = 0;
  971. for_each_online_cpu(cpu) {
  972. if (!cpumask_test_cpu(cpu, core_mask)) {
  973. ++count;
  974. cpumask_or(core_mask, core_mask,
  975. topology_core_cpumask(cpu));
  976. }
  977. }
  978. free_cpumask_var(core_mask);
  979. return count;
  980. }
  981. /* Probe the number and type of interrupts we are able to obtain, and
  982. * the resulting numbers of channels and RX queues.
  983. */
  984. static void efx_probe_interrupts(struct efx_nic *efx)
  985. {
  986. int max_channels =
  987. min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
  988. int rc, i;
  989. if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
  990. struct msix_entry xentries[EFX_MAX_CHANNELS];
  991. int n_channels;
  992. n_channels = efx_wanted_channels();
  993. if (separate_tx_channels)
  994. n_channels *= 2;
  995. n_channels = min(n_channels, max_channels);
  996. for (i = 0; i < n_channels; i++)
  997. xentries[i].entry = i;
  998. rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
  999. if (rc > 0) {
  1000. netif_err(efx, drv, efx->net_dev,
  1001. "WARNING: Insufficient MSI-X vectors"
  1002. " available (%d < %d).\n", rc, n_channels);
  1003. netif_err(efx, drv, efx->net_dev,
  1004. "WARNING: Performance may be reduced.\n");
  1005. EFX_BUG_ON_PARANOID(rc >= n_channels);
  1006. n_channels = rc;
  1007. rc = pci_enable_msix(efx->pci_dev, xentries,
  1008. n_channels);
  1009. }
  1010. if (rc == 0) {
  1011. efx->n_channels = n_channels;
  1012. if (separate_tx_channels) {
  1013. efx->n_tx_channels =
  1014. max(efx->n_channels / 2, 1U);
  1015. efx->n_rx_channels =
  1016. max(efx->n_channels -
  1017. efx->n_tx_channels, 1U);
  1018. } else {
  1019. efx->n_tx_channels = efx->n_channels;
  1020. efx->n_rx_channels = efx->n_channels;
  1021. }
  1022. for (i = 0; i < n_channels; i++)
  1023. efx_get_channel(efx, i)->irq =
  1024. xentries[i].vector;
  1025. } else {
  1026. /* Fall back to single channel MSI */
  1027. efx->interrupt_mode = EFX_INT_MODE_MSI;
  1028. netif_err(efx, drv, efx->net_dev,
  1029. "could not enable MSI-X\n");
  1030. }
  1031. }
  1032. /* Try single interrupt MSI */
  1033. if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
  1034. efx->n_channels = 1;
  1035. efx->n_rx_channels = 1;
  1036. efx->n_tx_channels = 1;
  1037. rc = pci_enable_msi(efx->pci_dev);
  1038. if (rc == 0) {
  1039. efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
  1040. } else {
  1041. netif_err(efx, drv, efx->net_dev,
  1042. "could not enable MSI\n");
  1043. efx->interrupt_mode = EFX_INT_MODE_LEGACY;
  1044. }
  1045. }
  1046. /* Assume legacy interrupts */
  1047. if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
  1048. efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
  1049. efx->n_rx_channels = 1;
  1050. efx->n_tx_channels = 1;
  1051. efx->legacy_irq = efx->pci_dev->irq;
  1052. }
  1053. }
  1054. static void efx_remove_interrupts(struct efx_nic *efx)
  1055. {
  1056. struct efx_channel *channel;
  1057. /* Remove MSI/MSI-X interrupts */
  1058. efx_for_each_channel(channel, efx)
  1059. channel->irq = 0;
  1060. pci_disable_msi(efx->pci_dev);
  1061. pci_disable_msix(efx->pci_dev);
  1062. /* Remove legacy interrupt */
  1063. efx->legacy_irq = 0;
  1064. }
  1065. struct efx_tx_queue *
  1066. efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
  1067. {
  1068. unsigned tx_channel_offset =
  1069. separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
  1070. EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
  1071. type >= EFX_TXQ_TYPES);
  1072. return &efx->channel[tx_channel_offset + index]->tx_queue[type];
  1073. }
  1074. static void efx_set_channels(struct efx_nic *efx)
  1075. {
  1076. struct efx_channel *channel;
  1077. struct efx_tx_queue *tx_queue;
  1078. unsigned tx_channel_offset =
  1079. separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
  1080. /* Channel pointers were set in efx_init_struct() but we now
  1081. * need to clear them for TX queues in any RX-only channels. */
  1082. efx_for_each_channel(channel, efx) {
  1083. if (channel->channel - tx_channel_offset >=
  1084. efx->n_tx_channels) {
  1085. efx_for_each_channel_tx_queue(tx_queue, channel)
  1086. tx_queue->channel = NULL;
  1087. }
  1088. }
  1089. }
  1090. static int efx_probe_nic(struct efx_nic *efx)
  1091. {
  1092. size_t i;
  1093. int rc;
  1094. netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
  1095. /* Carry out hardware-type specific initialisation */
  1096. rc = efx->type->probe(efx);
  1097. if (rc)
  1098. return rc;
  1099. /* Determine the number of channels and queues by trying to hook
  1100. * in MSI-X interrupts. */
  1101. efx_probe_interrupts(efx);
  1102. if (efx->n_channels > 1)
  1103. get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
  1104. for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
  1105. efx->rx_indir_table[i] = i % efx->n_rx_channels;
  1106. efx_set_channels(efx);
  1107. efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
  1108. /* Initialise the interrupt moderation settings */
  1109. efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
  1110. return 0;
  1111. }
  1112. static void efx_remove_nic(struct efx_nic *efx)
  1113. {
  1114. netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
  1115. efx_remove_interrupts(efx);
  1116. efx->type->remove(efx);
  1117. }
  1118. /**************************************************************************
  1119. *
  1120. * NIC startup/shutdown
  1121. *
  1122. *************************************************************************/
  1123. static int efx_probe_all(struct efx_nic *efx)
  1124. {
  1125. int rc;
  1126. rc = efx_probe_nic(efx);
  1127. if (rc) {
  1128. netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
  1129. goto fail1;
  1130. }
  1131. rc = efx_probe_port(efx);
  1132. if (rc) {
  1133. netif_err(efx, probe, efx->net_dev, "failed to create port\n");
  1134. goto fail2;
  1135. }
  1136. efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
  1137. rc = efx_probe_channels(efx);
  1138. if (rc)
  1139. goto fail3;
  1140. return 0;
  1141. fail3:
  1142. efx_remove_port(efx);
  1143. fail2:
  1144. efx_remove_nic(efx);
  1145. fail1:
  1146. return rc;
  1147. }
  1148. /* Called after previous invocation(s) of efx_stop_all, restarts the
  1149. * port, kernel transmit queue, NAPI processing and hardware interrupts,
  1150. * and ensures that the port is scheduled to be reconfigured.
  1151. * This function is safe to call multiple times when the NIC is in any
  1152. * state. */
  1153. static void efx_start_all(struct efx_nic *efx)
  1154. {
  1155. struct efx_channel *channel;
  1156. EFX_ASSERT_RESET_SERIALISED(efx);
  1157. /* Check that it is appropriate to restart the interface. All
  1158. * of these flags are safe to read under just the rtnl lock */
  1159. if (efx->port_enabled)
  1160. return;
  1161. if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
  1162. return;
  1163. if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
  1164. return;
  1165. /* Mark the port as enabled so port reconfigurations can start, then
  1166. * restart the transmit interface early so the watchdog timer stops */
  1167. efx_start_port(efx);
  1168. efx_for_each_channel(channel, efx) {
  1169. if (efx_dev_registered(efx))
  1170. efx_wake_queue(channel);
  1171. efx_start_channel(channel);
  1172. }
  1173. efx_nic_enable_interrupts(efx);
  1174. /* Switch to event based MCDI completions after enabling interrupts.
  1175. * If a reset has been scheduled, then we need to stay in polled mode.
  1176. * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
  1177. * reset_pending [modified from an atomic context], we instead guarantee
  1178. * that efx_mcdi_mode_poll() isn't reverted erroneously */
  1179. efx_mcdi_mode_event(efx);
  1180. if (efx->reset_pending != RESET_TYPE_NONE)
  1181. efx_mcdi_mode_poll(efx);
  1182. /* Start the hardware monitor if there is one. Otherwise (we're link
  1183. * event driven), we have to poll the PHY because after an event queue
  1184. * flush, we could have a missed a link state change */
  1185. if (efx->type->monitor != NULL) {
  1186. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  1187. efx_monitor_interval);
  1188. } else {
  1189. mutex_lock(&efx->mac_lock);
  1190. if (efx->phy_op->poll(efx))
  1191. efx_link_status_changed(efx);
  1192. mutex_unlock(&efx->mac_lock);
  1193. }
  1194. efx->type->start_stats(efx);
  1195. }
  1196. /* Flush all delayed work. Should only be called when no more delayed work
  1197. * will be scheduled. This doesn't flush pending online resets (efx_reset),
  1198. * since we're holding the rtnl_lock at this point. */
  1199. static void efx_flush_all(struct efx_nic *efx)
  1200. {
  1201. /* Make sure the hardware monitor is stopped */
  1202. cancel_delayed_work_sync(&efx->monitor_work);
  1203. /* Stop scheduled port reconfigurations */
  1204. cancel_work_sync(&efx->mac_work);
  1205. }
  1206. /* Quiesce hardware and software without bringing the link down.
  1207. * Safe to call multiple times, when the nic and interface is in any
  1208. * state. The caller is guaranteed to subsequently be in a position
  1209. * to modify any hardware and software state they see fit without
  1210. * taking locks. */
  1211. static void efx_stop_all(struct efx_nic *efx)
  1212. {
  1213. struct efx_channel *channel;
  1214. EFX_ASSERT_RESET_SERIALISED(efx);
  1215. /* port_enabled can be read safely under the rtnl lock */
  1216. if (!efx->port_enabled)
  1217. return;
  1218. efx->type->stop_stats(efx);
  1219. /* Switch to MCDI polling on Siena before disabling interrupts */
  1220. efx_mcdi_mode_poll(efx);
  1221. /* Disable interrupts and wait for ISR to complete */
  1222. efx_nic_disable_interrupts(efx);
  1223. if (efx->legacy_irq)
  1224. synchronize_irq(efx->legacy_irq);
  1225. efx_for_each_channel(channel, efx) {
  1226. if (channel->irq)
  1227. synchronize_irq(channel->irq);
  1228. }
  1229. /* Stop all NAPI processing and synchronous rx refills */
  1230. efx_for_each_channel(channel, efx)
  1231. efx_stop_channel(channel);
  1232. /* Stop all asynchronous port reconfigurations. Since all
  1233. * event processing has already been stopped, there is no
  1234. * window to loose phy events */
  1235. efx_stop_port(efx);
  1236. /* Flush efx_mac_work(), refill_workqueue, monitor_work */
  1237. efx_flush_all(efx);
  1238. /* Stop the kernel transmit interface late, so the watchdog
  1239. * timer isn't ticking over the flush */
  1240. if (efx_dev_registered(efx)) {
  1241. struct efx_channel *channel;
  1242. efx_for_each_channel(channel, efx)
  1243. efx_stop_queue(channel);
  1244. netif_tx_lock_bh(efx->net_dev);
  1245. netif_tx_unlock_bh(efx->net_dev);
  1246. }
  1247. }
  1248. static void efx_remove_all(struct efx_nic *efx)
  1249. {
  1250. efx_remove_channels(efx);
  1251. efx_remove_port(efx);
  1252. efx_remove_nic(efx);
  1253. }
  1254. /**************************************************************************
  1255. *
  1256. * Interrupt moderation
  1257. *
  1258. **************************************************************************/
  1259. static unsigned irq_mod_ticks(int usecs, int resolution)
  1260. {
  1261. if (usecs <= 0)
  1262. return 0; /* cannot receive interrupts ahead of time :-) */
  1263. if (usecs < resolution)
  1264. return 1; /* never round down to 0 */
  1265. return usecs / resolution;
  1266. }
  1267. /* Set interrupt moderation parameters */
  1268. void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
  1269. bool rx_adaptive)
  1270. {
  1271. struct efx_channel *channel;
  1272. unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
  1273. unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
  1274. EFX_ASSERT_RESET_SERIALISED(efx);
  1275. efx->irq_rx_adaptive = rx_adaptive;
  1276. efx->irq_rx_moderation = rx_ticks;
  1277. efx_for_each_channel(channel, efx) {
  1278. if (efx_channel_get_rx_queue(channel))
  1279. channel->irq_moderation = rx_ticks;
  1280. else if (efx_channel_get_tx_queue(channel, 0))
  1281. channel->irq_moderation = tx_ticks;
  1282. }
  1283. }
  1284. /**************************************************************************
  1285. *
  1286. * Hardware monitor
  1287. *
  1288. **************************************************************************/
  1289. /* Run periodically off the general workqueue. Serialised against
  1290. * efx_reconfigure_port via the mac_lock */
  1291. static void efx_monitor(struct work_struct *data)
  1292. {
  1293. struct efx_nic *efx = container_of(data, struct efx_nic,
  1294. monitor_work.work);
  1295. netif_vdbg(efx, timer, efx->net_dev,
  1296. "hardware monitor executing on CPU %d\n",
  1297. raw_smp_processor_id());
  1298. BUG_ON(efx->type->monitor == NULL);
  1299. /* If the mac_lock is already held then it is likely a port
  1300. * reconfiguration is already in place, which will likely do
  1301. * most of the work of check_hw() anyway. */
  1302. if (!mutex_trylock(&efx->mac_lock))
  1303. goto out_requeue;
  1304. if (!efx->port_enabled)
  1305. goto out_unlock;
  1306. efx->type->monitor(efx);
  1307. out_unlock:
  1308. mutex_unlock(&efx->mac_lock);
  1309. out_requeue:
  1310. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  1311. efx_monitor_interval);
  1312. }
  1313. /**************************************************************************
  1314. *
  1315. * ioctls
  1316. *
  1317. *************************************************************************/
  1318. /* Net device ioctl
  1319. * Context: process, rtnl_lock() held.
  1320. */
  1321. static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
  1322. {
  1323. struct efx_nic *efx = netdev_priv(net_dev);
  1324. struct mii_ioctl_data *data = if_mii(ifr);
  1325. EFX_ASSERT_RESET_SERIALISED(efx);
  1326. /* Convert phy_id from older PRTAD/DEVAD format */
  1327. if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
  1328. (data->phy_id & 0xfc00) == 0x0400)
  1329. data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
  1330. return mdio_mii_ioctl(&efx->mdio, data, cmd);
  1331. }
  1332. /**************************************************************************
  1333. *
  1334. * NAPI interface
  1335. *
  1336. **************************************************************************/
  1337. static int efx_init_napi(struct efx_nic *efx)
  1338. {
  1339. struct efx_channel *channel;
  1340. efx_for_each_channel(channel, efx) {
  1341. channel->napi_dev = efx->net_dev;
  1342. netif_napi_add(channel->napi_dev, &channel->napi_str,
  1343. efx_poll, napi_weight);
  1344. }
  1345. return 0;
  1346. }
  1347. static void efx_fini_napi(struct efx_nic *efx)
  1348. {
  1349. struct efx_channel *channel;
  1350. efx_for_each_channel(channel, efx) {
  1351. if (channel->napi_dev)
  1352. netif_napi_del(&channel->napi_str);
  1353. channel->napi_dev = NULL;
  1354. }
  1355. }
  1356. /**************************************************************************
  1357. *
  1358. * Kernel netpoll interface
  1359. *
  1360. *************************************************************************/
  1361. #ifdef CONFIG_NET_POLL_CONTROLLER
  1362. /* Although in the common case interrupts will be disabled, this is not
  1363. * guaranteed. However, all our work happens inside the NAPI callback,
  1364. * so no locking is required.
  1365. */
  1366. static void efx_netpoll(struct net_device *net_dev)
  1367. {
  1368. struct efx_nic *efx = netdev_priv(net_dev);
  1369. struct efx_channel *channel;
  1370. efx_for_each_channel(channel, efx)
  1371. efx_schedule_channel(channel);
  1372. }
  1373. #endif
  1374. /**************************************************************************
  1375. *
  1376. * Kernel net device interface
  1377. *
  1378. *************************************************************************/
  1379. /* Context: process, rtnl_lock() held. */
  1380. static int efx_net_open(struct net_device *net_dev)
  1381. {
  1382. struct efx_nic *efx = netdev_priv(net_dev);
  1383. EFX_ASSERT_RESET_SERIALISED(efx);
  1384. netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
  1385. raw_smp_processor_id());
  1386. if (efx->state == STATE_DISABLED)
  1387. return -EIO;
  1388. if (efx->phy_mode & PHY_MODE_SPECIAL)
  1389. return -EBUSY;
  1390. if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
  1391. return -EIO;
  1392. /* Notify the kernel of the link state polled during driver load,
  1393. * before the monitor starts running */
  1394. efx_link_status_changed(efx);
  1395. efx_start_all(efx);
  1396. return 0;
  1397. }
  1398. /* Context: process, rtnl_lock() held.
  1399. * Note that the kernel will ignore our return code; this method
  1400. * should really be a void.
  1401. */
  1402. static int efx_net_stop(struct net_device *net_dev)
  1403. {
  1404. struct efx_nic *efx = netdev_priv(net_dev);
  1405. netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
  1406. raw_smp_processor_id());
  1407. if (efx->state != STATE_DISABLED) {
  1408. /* Stop the device and flush all the channels */
  1409. efx_stop_all(efx);
  1410. efx_fini_channels(efx);
  1411. efx_init_channels(efx);
  1412. }
  1413. return 0;
  1414. }
  1415. /* Context: process, dev_base_lock or RTNL held, non-blocking. */
  1416. static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
  1417. {
  1418. struct efx_nic *efx = netdev_priv(net_dev);
  1419. struct efx_mac_stats *mac_stats = &efx->mac_stats;
  1420. spin_lock_bh(&efx->stats_lock);
  1421. efx->type->update_stats(efx);
  1422. spin_unlock_bh(&efx->stats_lock);
  1423. stats->rx_packets = mac_stats->rx_packets;
  1424. stats->tx_packets = mac_stats->tx_packets;
  1425. stats->rx_bytes = mac_stats->rx_bytes;
  1426. stats->tx_bytes = mac_stats->tx_bytes;
  1427. stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
  1428. stats->multicast = mac_stats->rx_multicast;
  1429. stats->collisions = mac_stats->tx_collision;
  1430. stats->rx_length_errors = (mac_stats->rx_gtjumbo +
  1431. mac_stats->rx_length_error);
  1432. stats->rx_crc_errors = mac_stats->rx_bad;
  1433. stats->rx_frame_errors = mac_stats->rx_align_error;
  1434. stats->rx_fifo_errors = mac_stats->rx_overflow;
  1435. stats->rx_missed_errors = mac_stats->rx_missed;
  1436. stats->tx_window_errors = mac_stats->tx_late_collision;
  1437. stats->rx_errors = (stats->rx_length_errors +
  1438. stats->rx_crc_errors +
  1439. stats->rx_frame_errors +
  1440. mac_stats->rx_symbol_error);
  1441. stats->tx_errors = (stats->tx_window_errors +
  1442. mac_stats->tx_bad);
  1443. return stats;
  1444. }
  1445. /* Context: netif_tx_lock held, BHs disabled. */
  1446. static void efx_watchdog(struct net_device *net_dev)
  1447. {
  1448. struct efx_nic *efx = netdev_priv(net_dev);
  1449. netif_err(efx, tx_err, efx->net_dev,
  1450. "TX stuck with port_enabled=%d: resetting channels\n",
  1451. efx->port_enabled);
  1452. efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
  1453. }
  1454. /* Context: process, rtnl_lock() held. */
  1455. static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
  1456. {
  1457. struct efx_nic *efx = netdev_priv(net_dev);
  1458. int rc = 0;
  1459. EFX_ASSERT_RESET_SERIALISED(efx);
  1460. if (new_mtu > EFX_MAX_MTU)
  1461. return -EINVAL;
  1462. efx_stop_all(efx);
  1463. netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
  1464. efx_fini_channels(efx);
  1465. mutex_lock(&efx->mac_lock);
  1466. /* Reconfigure the MAC before enabling the dma queues so that
  1467. * the RX buffers don't overflow */
  1468. net_dev->mtu = new_mtu;
  1469. efx->mac_op->reconfigure(efx);
  1470. mutex_unlock(&efx->mac_lock);
  1471. efx_init_channels(efx);
  1472. efx_start_all(efx);
  1473. return rc;
  1474. }
  1475. static int efx_set_mac_address(struct net_device *net_dev, void *data)
  1476. {
  1477. struct efx_nic *efx = netdev_priv(net_dev);
  1478. struct sockaddr *addr = data;
  1479. char *new_addr = addr->sa_data;
  1480. EFX_ASSERT_RESET_SERIALISED(efx);
  1481. if (!is_valid_ether_addr(new_addr)) {
  1482. netif_err(efx, drv, efx->net_dev,
  1483. "invalid ethernet MAC address requested: %pM\n",
  1484. new_addr);
  1485. return -EINVAL;
  1486. }
  1487. memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
  1488. /* Reconfigure the MAC */
  1489. mutex_lock(&efx->mac_lock);
  1490. efx->mac_op->reconfigure(efx);
  1491. mutex_unlock(&efx->mac_lock);
  1492. return 0;
  1493. }
  1494. /* Context: netif_addr_lock held, BHs disabled. */
  1495. static void efx_set_multicast_list(struct net_device *net_dev)
  1496. {
  1497. struct efx_nic *efx = netdev_priv(net_dev);
  1498. struct netdev_hw_addr *ha;
  1499. union efx_multicast_hash *mc_hash = &efx->multicast_hash;
  1500. u32 crc;
  1501. int bit;
  1502. efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
  1503. /* Build multicast hash table */
  1504. if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
  1505. memset(mc_hash, 0xff, sizeof(*mc_hash));
  1506. } else {
  1507. memset(mc_hash, 0x00, sizeof(*mc_hash));
  1508. netdev_for_each_mc_addr(ha, net_dev) {
  1509. crc = ether_crc_le(ETH_ALEN, ha->addr);
  1510. bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
  1511. set_bit_le(bit, mc_hash->byte);
  1512. }
  1513. /* Broadcast packets go through the multicast hash filter.
  1514. * ether_crc_le() of the broadcast address is 0xbe2612ff
  1515. * so we always add bit 0xff to the mask.
  1516. */
  1517. set_bit_le(0xff, mc_hash->byte);
  1518. }
  1519. if (efx->port_enabled)
  1520. queue_work(efx->workqueue, &efx->mac_work);
  1521. /* Otherwise efx_start_port() will do this */
  1522. }
  1523. static const struct net_device_ops efx_netdev_ops = {
  1524. .ndo_open = efx_net_open,
  1525. .ndo_stop = efx_net_stop,
  1526. .ndo_get_stats64 = efx_net_stats,
  1527. .ndo_tx_timeout = efx_watchdog,
  1528. .ndo_start_xmit = efx_hard_start_xmit,
  1529. .ndo_validate_addr = eth_validate_addr,
  1530. .ndo_do_ioctl = efx_ioctl,
  1531. .ndo_change_mtu = efx_change_mtu,
  1532. .ndo_set_mac_address = efx_set_mac_address,
  1533. .ndo_set_multicast_list = efx_set_multicast_list,
  1534. #ifdef CONFIG_NET_POLL_CONTROLLER
  1535. .ndo_poll_controller = efx_netpoll,
  1536. #endif
  1537. };
  1538. static void efx_update_name(struct efx_nic *efx)
  1539. {
  1540. strcpy(efx->name, efx->net_dev->name);
  1541. efx_mtd_rename(efx);
  1542. efx_set_channel_names(efx);
  1543. }
  1544. static int efx_netdev_event(struct notifier_block *this,
  1545. unsigned long event, void *ptr)
  1546. {
  1547. struct net_device *net_dev = ptr;
  1548. if (net_dev->netdev_ops == &efx_netdev_ops &&
  1549. event == NETDEV_CHANGENAME)
  1550. efx_update_name(netdev_priv(net_dev));
  1551. return NOTIFY_DONE;
  1552. }
  1553. static struct notifier_block efx_netdev_notifier = {
  1554. .notifier_call = efx_netdev_event,
  1555. };
  1556. static ssize_t
  1557. show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
  1558. {
  1559. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  1560. return sprintf(buf, "%d\n", efx->phy_type);
  1561. }
  1562. static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
  1563. static int efx_register_netdev(struct efx_nic *efx)
  1564. {
  1565. struct net_device *net_dev = efx->net_dev;
  1566. int rc;
  1567. net_dev->watchdog_timeo = 5 * HZ;
  1568. net_dev->irq = efx->pci_dev->irq;
  1569. net_dev->netdev_ops = &efx_netdev_ops;
  1570. SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
  1571. /* Clear MAC statistics */
  1572. efx->mac_op->update_stats(efx);
  1573. memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
  1574. rtnl_lock();
  1575. rc = dev_alloc_name(net_dev, net_dev->name);
  1576. if (rc < 0)
  1577. goto fail_locked;
  1578. efx_update_name(efx);
  1579. rc = register_netdevice(net_dev);
  1580. if (rc)
  1581. goto fail_locked;
  1582. /* Always start with carrier off; PHY events will detect the link */
  1583. netif_carrier_off(efx->net_dev);
  1584. rtnl_unlock();
  1585. rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1586. if (rc) {
  1587. netif_err(efx, drv, efx->net_dev,
  1588. "failed to init net dev attributes\n");
  1589. goto fail_registered;
  1590. }
  1591. return 0;
  1592. fail_locked:
  1593. rtnl_unlock();
  1594. netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
  1595. return rc;
  1596. fail_registered:
  1597. unregister_netdev(net_dev);
  1598. return rc;
  1599. }
  1600. static void efx_unregister_netdev(struct efx_nic *efx)
  1601. {
  1602. struct efx_channel *channel;
  1603. struct efx_tx_queue *tx_queue;
  1604. if (!efx->net_dev)
  1605. return;
  1606. BUG_ON(netdev_priv(efx->net_dev) != efx);
  1607. /* Free up any skbs still remaining. This has to happen before
  1608. * we try to unregister the netdev as running their destructors
  1609. * may be needed to get the device ref. count to 0. */
  1610. efx_for_each_channel(channel, efx) {
  1611. efx_for_each_channel_tx_queue(tx_queue, channel)
  1612. efx_release_tx_buffers(tx_queue);
  1613. }
  1614. if (efx_dev_registered(efx)) {
  1615. strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
  1616. device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1617. unregister_netdev(efx->net_dev);
  1618. }
  1619. }
  1620. /**************************************************************************
  1621. *
  1622. * Device reset and suspend
  1623. *
  1624. **************************************************************************/
  1625. /* Tears down the entire software state and most of the hardware state
  1626. * before reset. */
  1627. void efx_reset_down(struct efx_nic *efx, enum reset_type method)
  1628. {
  1629. EFX_ASSERT_RESET_SERIALISED(efx);
  1630. efx_stop_all(efx);
  1631. mutex_lock(&efx->mac_lock);
  1632. mutex_lock(&efx->spi_lock);
  1633. efx_fini_channels(efx);
  1634. if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
  1635. efx->phy_op->fini(efx);
  1636. efx->type->fini(efx);
  1637. }
  1638. /* This function will always ensure that the locks acquired in
  1639. * efx_reset_down() are released. A failure return code indicates
  1640. * that we were unable to reinitialise the hardware, and the
  1641. * driver should be disabled. If ok is false, then the rx and tx
  1642. * engines are not restarted, pending a RESET_DISABLE. */
  1643. int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
  1644. {
  1645. int rc;
  1646. EFX_ASSERT_RESET_SERIALISED(efx);
  1647. rc = efx->type->init(efx);
  1648. if (rc) {
  1649. netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
  1650. goto fail;
  1651. }
  1652. if (!ok)
  1653. goto fail;
  1654. if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
  1655. rc = efx->phy_op->init(efx);
  1656. if (rc)
  1657. goto fail;
  1658. if (efx->phy_op->reconfigure(efx))
  1659. netif_err(efx, drv, efx->net_dev,
  1660. "could not restore PHY settings\n");
  1661. }
  1662. efx->mac_op->reconfigure(efx);
  1663. efx_init_channels(efx);
  1664. mutex_unlock(&efx->spi_lock);
  1665. mutex_unlock(&efx->mac_lock);
  1666. efx_start_all(efx);
  1667. return 0;
  1668. fail:
  1669. efx->port_initialized = false;
  1670. mutex_unlock(&efx->spi_lock);
  1671. mutex_unlock(&efx->mac_lock);
  1672. return rc;
  1673. }
  1674. /* Reset the NIC using the specified method. Note that the reset may
  1675. * fail, in which case the card will be left in an unusable state.
  1676. *
  1677. * Caller must hold the rtnl_lock.
  1678. */
  1679. int efx_reset(struct efx_nic *efx, enum reset_type method)
  1680. {
  1681. int rc, rc2;
  1682. bool disabled;
  1683. netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
  1684. RESET_TYPE(method));
  1685. efx_reset_down(efx, method);
  1686. rc = efx->type->reset(efx, method);
  1687. if (rc) {
  1688. netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
  1689. goto out;
  1690. }
  1691. /* Allow resets to be rescheduled. */
  1692. efx->reset_pending = RESET_TYPE_NONE;
  1693. /* Reinitialise bus-mastering, which may have been turned off before
  1694. * the reset was scheduled. This is still appropriate, even in the
  1695. * RESET_TYPE_DISABLE since this driver generally assumes the hardware
  1696. * can respond to requests. */
  1697. pci_set_master(efx->pci_dev);
  1698. out:
  1699. /* Leave device stopped if necessary */
  1700. disabled = rc || method == RESET_TYPE_DISABLE;
  1701. rc2 = efx_reset_up(efx, method, !disabled);
  1702. if (rc2) {
  1703. disabled = true;
  1704. if (!rc)
  1705. rc = rc2;
  1706. }
  1707. if (disabled) {
  1708. dev_close(efx->net_dev);
  1709. netif_err(efx, drv, efx->net_dev, "has been disabled\n");
  1710. efx->state = STATE_DISABLED;
  1711. } else {
  1712. netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
  1713. }
  1714. return rc;
  1715. }
  1716. /* The worker thread exists so that code that cannot sleep can
  1717. * schedule a reset for later.
  1718. */
  1719. static void efx_reset_work(struct work_struct *data)
  1720. {
  1721. struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
  1722. if (efx->reset_pending == RESET_TYPE_NONE)
  1723. return;
  1724. /* If we're not RUNNING then don't reset. Leave the reset_pending
  1725. * flag set so that efx_pci_probe_main will be retried */
  1726. if (efx->state != STATE_RUNNING) {
  1727. netif_info(efx, drv, efx->net_dev,
  1728. "scheduled reset quenched. NIC not RUNNING\n");
  1729. return;
  1730. }
  1731. rtnl_lock();
  1732. (void)efx_reset(efx, efx->reset_pending);
  1733. rtnl_unlock();
  1734. }
  1735. void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
  1736. {
  1737. enum reset_type method;
  1738. if (efx->reset_pending != RESET_TYPE_NONE) {
  1739. netif_info(efx, drv, efx->net_dev,
  1740. "quenching already scheduled reset\n");
  1741. return;
  1742. }
  1743. switch (type) {
  1744. case RESET_TYPE_INVISIBLE:
  1745. case RESET_TYPE_ALL:
  1746. case RESET_TYPE_WORLD:
  1747. case RESET_TYPE_DISABLE:
  1748. method = type;
  1749. break;
  1750. case RESET_TYPE_RX_RECOVERY:
  1751. case RESET_TYPE_RX_DESC_FETCH:
  1752. case RESET_TYPE_TX_DESC_FETCH:
  1753. case RESET_TYPE_TX_SKIP:
  1754. method = RESET_TYPE_INVISIBLE;
  1755. break;
  1756. case RESET_TYPE_MC_FAILURE:
  1757. default:
  1758. method = RESET_TYPE_ALL;
  1759. break;
  1760. }
  1761. if (method != type)
  1762. netif_dbg(efx, drv, efx->net_dev,
  1763. "scheduling %s reset for %s\n",
  1764. RESET_TYPE(method), RESET_TYPE(type));
  1765. else
  1766. netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
  1767. RESET_TYPE(method));
  1768. efx->reset_pending = method;
  1769. /* efx_process_channel() will no longer read events once a
  1770. * reset is scheduled. So switch back to poll'd MCDI completions. */
  1771. efx_mcdi_mode_poll(efx);
  1772. queue_work(reset_workqueue, &efx->reset_work);
  1773. }
  1774. /**************************************************************************
  1775. *
  1776. * List of NICs we support
  1777. *
  1778. **************************************************************************/
  1779. /* PCI device ID table */
  1780. static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
  1781. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
  1782. .driver_data = (unsigned long) &falcon_a1_nic_type},
  1783. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
  1784. .driver_data = (unsigned long) &falcon_b0_nic_type},
  1785. {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
  1786. .driver_data = (unsigned long) &siena_a0_nic_type},
  1787. {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
  1788. .driver_data = (unsigned long) &siena_a0_nic_type},
  1789. {0} /* end of list */
  1790. };
  1791. /**************************************************************************
  1792. *
  1793. * Dummy PHY/MAC operations
  1794. *
  1795. * Can be used for some unimplemented operations
  1796. * Needed so all function pointers are valid and do not have to be tested
  1797. * before use
  1798. *
  1799. **************************************************************************/
  1800. int efx_port_dummy_op_int(struct efx_nic *efx)
  1801. {
  1802. return 0;
  1803. }
  1804. void efx_port_dummy_op_void(struct efx_nic *efx) {}
  1805. void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
  1806. {
  1807. }
  1808. bool efx_port_dummy_op_poll(struct efx_nic *efx)
  1809. {
  1810. return false;
  1811. }
  1812. static struct efx_phy_operations efx_dummy_phy_operations = {
  1813. .init = efx_port_dummy_op_int,
  1814. .reconfigure = efx_port_dummy_op_int,
  1815. .poll = efx_port_dummy_op_poll,
  1816. .fini = efx_port_dummy_op_void,
  1817. };
  1818. /**************************************************************************
  1819. *
  1820. * Data housekeeping
  1821. *
  1822. **************************************************************************/
  1823. /* This zeroes out and then fills in the invariants in a struct
  1824. * efx_nic (including all sub-structures).
  1825. */
  1826. static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
  1827. struct pci_dev *pci_dev, struct net_device *net_dev)
  1828. {
  1829. int i;
  1830. /* Initialise common structures */
  1831. memset(efx, 0, sizeof(*efx));
  1832. spin_lock_init(&efx->biu_lock);
  1833. mutex_init(&efx->mdio_lock);
  1834. mutex_init(&efx->spi_lock);
  1835. #ifdef CONFIG_SFC_MTD
  1836. INIT_LIST_HEAD(&efx->mtd_list);
  1837. #endif
  1838. INIT_WORK(&efx->reset_work, efx_reset_work);
  1839. INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
  1840. efx->pci_dev = pci_dev;
  1841. efx->msg_enable = debug;
  1842. efx->state = STATE_INIT;
  1843. efx->reset_pending = RESET_TYPE_NONE;
  1844. strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
  1845. efx->net_dev = net_dev;
  1846. efx->rx_checksum_enabled = true;
  1847. spin_lock_init(&efx->stats_lock);
  1848. mutex_init(&efx->mac_lock);
  1849. efx->mac_op = type->default_mac_ops;
  1850. efx->phy_op = &efx_dummy_phy_operations;
  1851. efx->mdio.dev = net_dev;
  1852. INIT_WORK(&efx->mac_work, efx_mac_work);
  1853. for (i = 0; i < EFX_MAX_CHANNELS; i++) {
  1854. efx->channel[i] = efx_alloc_channel(efx, i, NULL);
  1855. if (!efx->channel[i])
  1856. goto fail;
  1857. }
  1858. efx->type = type;
  1859. EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
  1860. /* Higher numbered interrupt modes are less capable! */
  1861. efx->interrupt_mode = max(efx->type->max_interrupt_mode,
  1862. interrupt_mode);
  1863. /* Would be good to use the net_dev name, but we're too early */
  1864. snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
  1865. pci_name(pci_dev));
  1866. efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
  1867. if (!efx->workqueue)
  1868. goto fail;
  1869. return 0;
  1870. fail:
  1871. efx_fini_struct(efx);
  1872. return -ENOMEM;
  1873. }
  1874. static void efx_fini_struct(struct efx_nic *efx)
  1875. {
  1876. int i;
  1877. for (i = 0; i < EFX_MAX_CHANNELS; i++)
  1878. kfree(efx->channel[i]);
  1879. if (efx->workqueue) {
  1880. destroy_workqueue(efx->workqueue);
  1881. efx->workqueue = NULL;
  1882. }
  1883. }
  1884. /**************************************************************************
  1885. *
  1886. * PCI interface
  1887. *
  1888. **************************************************************************/
  1889. /* Main body of final NIC shutdown code
  1890. * This is called only at module unload (or hotplug removal).
  1891. */
  1892. static void efx_pci_remove_main(struct efx_nic *efx)
  1893. {
  1894. efx_nic_fini_interrupt(efx);
  1895. efx_fini_channels(efx);
  1896. efx_fini_port(efx);
  1897. efx->type->fini(efx);
  1898. efx_fini_napi(efx);
  1899. efx_remove_all(efx);
  1900. }
  1901. /* Final NIC shutdown
  1902. * This is called only at module unload (or hotplug removal).
  1903. */
  1904. static void efx_pci_remove(struct pci_dev *pci_dev)
  1905. {
  1906. struct efx_nic *efx;
  1907. efx = pci_get_drvdata(pci_dev);
  1908. if (!efx)
  1909. return;
  1910. /* Mark the NIC as fini, then stop the interface */
  1911. rtnl_lock();
  1912. efx->state = STATE_FINI;
  1913. dev_close(efx->net_dev);
  1914. /* Allow any queued efx_resets() to complete */
  1915. rtnl_unlock();
  1916. efx_unregister_netdev(efx);
  1917. efx_mtd_remove(efx);
  1918. /* Wait for any scheduled resets to complete. No more will be
  1919. * scheduled from this point because efx_stop_all() has been
  1920. * called, we are no longer registered with driverlink, and
  1921. * the net_device's have been removed. */
  1922. cancel_work_sync(&efx->reset_work);
  1923. efx_pci_remove_main(efx);
  1924. efx_fini_io(efx);
  1925. netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
  1926. pci_set_drvdata(pci_dev, NULL);
  1927. efx_fini_struct(efx);
  1928. free_netdev(efx->net_dev);
  1929. };
  1930. /* Main body of NIC initialisation
  1931. * This is called at module load (or hotplug insertion, theoretically).
  1932. */
  1933. static int efx_pci_probe_main(struct efx_nic *efx)
  1934. {
  1935. int rc;
  1936. /* Do start-of-day initialisation */
  1937. rc = efx_probe_all(efx);
  1938. if (rc)
  1939. goto fail1;
  1940. rc = efx_init_napi(efx);
  1941. if (rc)
  1942. goto fail2;
  1943. rc = efx->type->init(efx);
  1944. if (rc) {
  1945. netif_err(efx, probe, efx->net_dev,
  1946. "failed to initialise NIC\n");
  1947. goto fail3;
  1948. }
  1949. rc = efx_init_port(efx);
  1950. if (rc) {
  1951. netif_err(efx, probe, efx->net_dev,
  1952. "failed to initialise port\n");
  1953. goto fail4;
  1954. }
  1955. efx_init_channels(efx);
  1956. rc = efx_nic_init_interrupt(efx);
  1957. if (rc)
  1958. goto fail5;
  1959. return 0;
  1960. fail5:
  1961. efx_fini_channels(efx);
  1962. efx_fini_port(efx);
  1963. fail4:
  1964. efx->type->fini(efx);
  1965. fail3:
  1966. efx_fini_napi(efx);
  1967. fail2:
  1968. efx_remove_all(efx);
  1969. fail1:
  1970. return rc;
  1971. }
  1972. /* NIC initialisation
  1973. *
  1974. * This is called at module load (or hotplug insertion,
  1975. * theoretically). It sets up PCI mappings, tests and resets the NIC,
  1976. * sets up and registers the network devices with the kernel and hooks
  1977. * the interrupt service routine. It does not prepare the device for
  1978. * transmission; this is left to the first time one of the network
  1979. * interfaces is brought up (i.e. efx_net_open).
  1980. */
  1981. static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
  1982. const struct pci_device_id *entry)
  1983. {
  1984. struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
  1985. struct net_device *net_dev;
  1986. struct efx_nic *efx;
  1987. int i, rc;
  1988. /* Allocate and initialise a struct net_device and struct efx_nic */
  1989. net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
  1990. if (!net_dev)
  1991. return -ENOMEM;
  1992. net_dev->features |= (type->offload_features | NETIF_F_SG |
  1993. NETIF_F_HIGHDMA | NETIF_F_TSO |
  1994. NETIF_F_GRO);
  1995. if (type->offload_features & NETIF_F_V6_CSUM)
  1996. net_dev->features |= NETIF_F_TSO6;
  1997. /* Mask for features that also apply to VLAN devices */
  1998. net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
  1999. NETIF_F_HIGHDMA | NETIF_F_TSO);
  2000. efx = netdev_priv(net_dev);
  2001. pci_set_drvdata(pci_dev, efx);
  2002. SET_NETDEV_DEV(net_dev, &pci_dev->dev);
  2003. rc = efx_init_struct(efx, type, pci_dev, net_dev);
  2004. if (rc)
  2005. goto fail1;
  2006. netif_info(efx, probe, efx->net_dev,
  2007. "Solarflare Communications NIC detected\n");
  2008. /* Set up basic I/O (BAR mappings etc) */
  2009. rc = efx_init_io(efx);
  2010. if (rc)
  2011. goto fail2;
  2012. /* No serialisation is required with the reset path because
  2013. * we're in STATE_INIT. */
  2014. for (i = 0; i < 5; i++) {
  2015. rc = efx_pci_probe_main(efx);
  2016. /* Serialise against efx_reset(). No more resets will be
  2017. * scheduled since efx_stop_all() has been called, and we
  2018. * have not and never have been registered with either
  2019. * the rtnetlink or driverlink layers. */
  2020. cancel_work_sync(&efx->reset_work);
  2021. if (rc == 0) {
  2022. if (efx->reset_pending != RESET_TYPE_NONE) {
  2023. /* If there was a scheduled reset during
  2024. * probe, the NIC is probably hosed anyway */
  2025. efx_pci_remove_main(efx);
  2026. rc = -EIO;
  2027. } else {
  2028. break;
  2029. }
  2030. }
  2031. /* Retry if a recoverably reset event has been scheduled */
  2032. if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
  2033. (efx->reset_pending != RESET_TYPE_ALL))
  2034. goto fail3;
  2035. efx->reset_pending = RESET_TYPE_NONE;
  2036. }
  2037. if (rc) {
  2038. netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
  2039. goto fail4;
  2040. }
  2041. /* Switch to the running state before we expose the device to the OS,
  2042. * so that dev_open()|efx_start_all() will actually start the device */
  2043. efx->state = STATE_RUNNING;
  2044. rc = efx_register_netdev(efx);
  2045. if (rc)
  2046. goto fail5;
  2047. netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
  2048. rtnl_lock();
  2049. efx_mtd_probe(efx); /* allowed to fail */
  2050. rtnl_unlock();
  2051. return 0;
  2052. fail5:
  2053. efx_pci_remove_main(efx);
  2054. fail4:
  2055. fail3:
  2056. efx_fini_io(efx);
  2057. fail2:
  2058. efx_fini_struct(efx);
  2059. fail1:
  2060. WARN_ON(rc > 0);
  2061. netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
  2062. free_netdev(net_dev);
  2063. return rc;
  2064. }
  2065. static int efx_pm_freeze(struct device *dev)
  2066. {
  2067. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  2068. efx->state = STATE_FINI;
  2069. netif_device_detach(efx->net_dev);
  2070. efx_stop_all(efx);
  2071. efx_fini_channels(efx);
  2072. return 0;
  2073. }
  2074. static int efx_pm_thaw(struct device *dev)
  2075. {
  2076. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  2077. efx->state = STATE_INIT;
  2078. efx_init_channels(efx);
  2079. mutex_lock(&efx->mac_lock);
  2080. efx->phy_op->reconfigure(efx);
  2081. mutex_unlock(&efx->mac_lock);
  2082. efx_start_all(efx);
  2083. netif_device_attach(efx->net_dev);
  2084. efx->state = STATE_RUNNING;
  2085. efx->type->resume_wol(efx);
  2086. /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
  2087. queue_work(reset_workqueue, &efx->reset_work);
  2088. return 0;
  2089. }
  2090. static int efx_pm_poweroff(struct device *dev)
  2091. {
  2092. struct pci_dev *pci_dev = to_pci_dev(dev);
  2093. struct efx_nic *efx = pci_get_drvdata(pci_dev);
  2094. efx->type->fini(efx);
  2095. efx->reset_pending = RESET_TYPE_NONE;
  2096. pci_save_state(pci_dev);
  2097. return pci_set_power_state(pci_dev, PCI_D3hot);
  2098. }
  2099. /* Used for both resume and restore */
  2100. static int efx_pm_resume(struct device *dev)
  2101. {
  2102. struct pci_dev *pci_dev = to_pci_dev(dev);
  2103. struct efx_nic *efx = pci_get_drvdata(pci_dev);
  2104. int rc;
  2105. rc = pci_set_power_state(pci_dev, PCI_D0);
  2106. if (rc)
  2107. return rc;
  2108. pci_restore_state(pci_dev);
  2109. rc = pci_enable_device(pci_dev);
  2110. if (rc)
  2111. return rc;
  2112. pci_set_master(efx->pci_dev);
  2113. rc = efx->type->reset(efx, RESET_TYPE_ALL);
  2114. if (rc)
  2115. return rc;
  2116. rc = efx->type->init(efx);
  2117. if (rc)
  2118. return rc;
  2119. efx_pm_thaw(dev);
  2120. return 0;
  2121. }
  2122. static int efx_pm_suspend(struct device *dev)
  2123. {
  2124. int rc;
  2125. efx_pm_freeze(dev);
  2126. rc = efx_pm_poweroff(dev);
  2127. if (rc)
  2128. efx_pm_resume(dev);
  2129. return rc;
  2130. }
  2131. static struct dev_pm_ops efx_pm_ops = {
  2132. .suspend = efx_pm_suspend,
  2133. .resume = efx_pm_resume,
  2134. .freeze = efx_pm_freeze,
  2135. .thaw = efx_pm_thaw,
  2136. .poweroff = efx_pm_poweroff,
  2137. .restore = efx_pm_resume,
  2138. };
  2139. static struct pci_driver efx_pci_driver = {
  2140. .name = KBUILD_MODNAME,
  2141. .id_table = efx_pci_table,
  2142. .probe = efx_pci_probe,
  2143. .remove = efx_pci_remove,
  2144. .driver.pm = &efx_pm_ops,
  2145. };
  2146. /**************************************************************************
  2147. *
  2148. * Kernel module interface
  2149. *
  2150. *************************************************************************/
  2151. module_param(interrupt_mode, uint, 0444);
  2152. MODULE_PARM_DESC(interrupt_mode,
  2153. "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
  2154. static int __init efx_init_module(void)
  2155. {
  2156. int rc;
  2157. printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
  2158. rc = register_netdevice_notifier(&efx_netdev_notifier);
  2159. if (rc)
  2160. goto err_notifier;
  2161. reset_workqueue = create_singlethread_workqueue("sfc_reset");
  2162. if (!reset_workqueue) {
  2163. rc = -ENOMEM;
  2164. goto err_reset;
  2165. }
  2166. rc = pci_register_driver(&efx_pci_driver);
  2167. if (rc < 0)
  2168. goto err_pci;
  2169. return 0;
  2170. err_pci:
  2171. destroy_workqueue(reset_workqueue);
  2172. err_reset:
  2173. unregister_netdevice_notifier(&efx_netdev_notifier);
  2174. err_notifier:
  2175. return rc;
  2176. }
  2177. static void __exit efx_exit_module(void)
  2178. {
  2179. printk(KERN_INFO "Solarflare NET driver unloading\n");
  2180. pci_unregister_driver(&efx_pci_driver);
  2181. destroy_workqueue(reset_workqueue);
  2182. unregister_netdevice_notifier(&efx_netdev_notifier);
  2183. }
  2184. module_init(efx_init_module);
  2185. module_exit(efx_exit_module);
  2186. MODULE_AUTHOR("Solarflare Communications and "
  2187. "Michael Brown <mbrown@fensystems.co.uk>");
  2188. MODULE_DESCRIPTION("Solarflare Communications network driver");
  2189. MODULE_LICENSE("GPL");
  2190. MODULE_DEVICE_TABLE(pci, efx_pci_table);