regcache-rbtree.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346
  1. /*
  2. * Register cache access API - rbtree caching support
  3. *
  4. * Copyright 2011 Wolfson Microelectronics plc
  5. *
  6. * Author: Dimitris Papastamos <dp@opensource.wolfsonmicro.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/rbtree.h>
  14. #include "internal.h"
  15. static int regcache_rbtree_write(struct regmap *map, unsigned int reg,
  16. unsigned int value);
  17. static int regcache_rbtree_exit(struct regmap *map);
  18. struct regcache_rbtree_node {
  19. /* the actual rbtree node holding this block */
  20. struct rb_node node;
  21. /* base register handled by this block */
  22. unsigned int base_reg;
  23. /* block of adjacent registers */
  24. void *block;
  25. /* number of registers available in the block */
  26. unsigned int blklen;
  27. } __attribute__ ((packed));
  28. struct regcache_rbtree_ctx {
  29. struct rb_root root;
  30. struct regcache_rbtree_node *cached_rbnode;
  31. };
  32. static inline void regcache_rbtree_get_base_top_reg(
  33. struct regcache_rbtree_node *rbnode,
  34. unsigned int *base, unsigned int *top)
  35. {
  36. *base = rbnode->base_reg;
  37. *top = rbnode->base_reg + rbnode->blklen - 1;
  38. }
  39. static unsigned int regcache_rbtree_get_register(
  40. struct regcache_rbtree_node *rbnode, unsigned int idx,
  41. unsigned int word_size)
  42. {
  43. return regcache_get_val(rbnode->block, idx, word_size);
  44. }
  45. static void regcache_rbtree_set_register(struct regcache_rbtree_node *rbnode,
  46. unsigned int idx, unsigned int val,
  47. unsigned int word_size)
  48. {
  49. regcache_set_val(rbnode->block, idx, val, word_size);
  50. }
  51. static struct regcache_rbtree_node *regcache_rbtree_lookup(struct regmap *map,
  52. unsigned int reg)
  53. {
  54. struct regcache_rbtree_ctx *rbtree_ctx = map->cache;
  55. struct rb_node *node;
  56. struct regcache_rbtree_node *rbnode;
  57. unsigned int base_reg, top_reg;
  58. rbnode = rbtree_ctx->cached_rbnode;
  59. if (rbnode) {
  60. regcache_rbtree_get_base_top_reg(rbnode, &base_reg, &top_reg);
  61. if (reg >= base_reg && reg <= top_reg)
  62. return rbnode;
  63. }
  64. node = rbtree_ctx->root.rb_node;
  65. while (node) {
  66. rbnode = container_of(node, struct regcache_rbtree_node, node);
  67. regcache_rbtree_get_base_top_reg(rbnode, &base_reg, &top_reg);
  68. if (reg >= base_reg && reg <= top_reg) {
  69. rbtree_ctx->cached_rbnode = rbnode;
  70. return rbnode;
  71. } else if (reg > top_reg) {
  72. node = node->rb_right;
  73. } else if (reg < base_reg) {
  74. node = node->rb_left;
  75. }
  76. }
  77. return NULL;
  78. }
  79. static int regcache_rbtree_insert(struct rb_root *root,
  80. struct regcache_rbtree_node *rbnode)
  81. {
  82. struct rb_node **new, *parent;
  83. struct regcache_rbtree_node *rbnode_tmp;
  84. unsigned int base_reg_tmp, top_reg_tmp;
  85. unsigned int base_reg;
  86. parent = NULL;
  87. new = &root->rb_node;
  88. while (*new) {
  89. rbnode_tmp = container_of(*new, struct regcache_rbtree_node,
  90. node);
  91. /* base and top registers of the current rbnode */
  92. regcache_rbtree_get_base_top_reg(rbnode_tmp, &base_reg_tmp,
  93. &top_reg_tmp);
  94. /* base register of the rbnode to be added */
  95. base_reg = rbnode->base_reg;
  96. parent = *new;
  97. /* if this register has already been inserted, just return */
  98. if (base_reg >= base_reg_tmp &&
  99. base_reg <= top_reg_tmp)
  100. return 0;
  101. else if (base_reg > top_reg_tmp)
  102. new = &((*new)->rb_right);
  103. else if (base_reg < base_reg_tmp)
  104. new = &((*new)->rb_left);
  105. }
  106. /* insert the node into the rbtree */
  107. rb_link_node(&rbnode->node, parent, new);
  108. rb_insert_color(&rbnode->node, root);
  109. return 1;
  110. }
  111. static int regcache_rbtree_init(struct regmap *map)
  112. {
  113. struct regcache_rbtree_ctx *rbtree_ctx;
  114. int i;
  115. int ret;
  116. map->cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
  117. if (!map->cache)
  118. return -ENOMEM;
  119. rbtree_ctx = map->cache;
  120. rbtree_ctx->root = RB_ROOT;
  121. rbtree_ctx->cached_rbnode = NULL;
  122. for (i = 0; i < map->num_reg_defaults; i++) {
  123. ret = regcache_rbtree_write(map,
  124. map->reg_defaults[i].reg,
  125. map->reg_defaults[i].def);
  126. if (ret)
  127. goto err;
  128. }
  129. return 0;
  130. err:
  131. regcache_rbtree_exit(map);
  132. return ret;
  133. }
  134. static int regcache_rbtree_exit(struct regmap *map)
  135. {
  136. struct rb_node *next;
  137. struct regcache_rbtree_ctx *rbtree_ctx;
  138. struct regcache_rbtree_node *rbtree_node;
  139. /* if we've already been called then just return */
  140. rbtree_ctx = map->cache;
  141. if (!rbtree_ctx)
  142. return 0;
  143. /* free up the rbtree */
  144. next = rb_first(&rbtree_ctx->root);
  145. while (next) {
  146. rbtree_node = rb_entry(next, struct regcache_rbtree_node, node);
  147. next = rb_next(&rbtree_node->node);
  148. rb_erase(&rbtree_node->node, &rbtree_ctx->root);
  149. kfree(rbtree_node->block);
  150. kfree(rbtree_node);
  151. }
  152. /* release the resources */
  153. kfree(map->cache);
  154. map->cache = NULL;
  155. return 0;
  156. }
  157. static int regcache_rbtree_read(struct regmap *map,
  158. unsigned int reg, unsigned int *value)
  159. {
  160. struct regcache_rbtree_node *rbnode;
  161. unsigned int reg_tmp;
  162. rbnode = regcache_rbtree_lookup(map, reg);
  163. if (rbnode) {
  164. reg_tmp = reg - rbnode->base_reg;
  165. *value = regcache_rbtree_get_register(rbnode, reg_tmp,
  166. map->cache_word_size);
  167. } else {
  168. return -ENOENT;
  169. }
  170. return 0;
  171. }
  172. static int regcache_rbtree_insert_to_block(struct regcache_rbtree_node *rbnode,
  173. unsigned int pos, unsigned int reg,
  174. unsigned int value, unsigned int word_size)
  175. {
  176. u8 *blk;
  177. blk = krealloc(rbnode->block,
  178. (rbnode->blklen + 1) * word_size, GFP_KERNEL);
  179. if (!blk)
  180. return -ENOMEM;
  181. /* insert the register value in the correct place in the rbnode block */
  182. memmove(blk + (pos + 1) * word_size,
  183. blk + pos * word_size,
  184. (rbnode->blklen - pos) * word_size);
  185. /* update the rbnode block, its size and the base register */
  186. rbnode->block = blk;
  187. rbnode->blklen++;
  188. if (!pos)
  189. rbnode->base_reg = reg;
  190. regcache_rbtree_set_register(rbnode, pos, value, word_size);
  191. return 0;
  192. }
  193. static int regcache_rbtree_write(struct regmap *map, unsigned int reg,
  194. unsigned int value)
  195. {
  196. struct regcache_rbtree_ctx *rbtree_ctx;
  197. struct regcache_rbtree_node *rbnode, *rbnode_tmp;
  198. struct rb_node *node;
  199. unsigned int val;
  200. unsigned int reg_tmp;
  201. unsigned int pos;
  202. int i;
  203. int ret;
  204. rbtree_ctx = map->cache;
  205. /* if we can't locate it in the cached rbnode we'll have
  206. * to traverse the rbtree looking for it.
  207. */
  208. rbnode = regcache_rbtree_lookup(map, reg);
  209. if (rbnode) {
  210. reg_tmp = reg - rbnode->base_reg;
  211. val = regcache_rbtree_get_register(rbnode, reg_tmp,
  212. map->cache_word_size);
  213. if (val == value)
  214. return 0;
  215. regcache_rbtree_set_register(rbnode, reg_tmp, value,
  216. map->cache_word_size);
  217. } else {
  218. /* look for an adjacent register to the one we are about to add */
  219. for (node = rb_first(&rbtree_ctx->root); node;
  220. node = rb_next(node)) {
  221. rbnode_tmp = rb_entry(node, struct regcache_rbtree_node, node);
  222. for (i = 0; i < rbnode_tmp->blklen; i++) {
  223. reg_tmp = rbnode_tmp->base_reg + i;
  224. if (abs(reg_tmp - reg) != 1)
  225. continue;
  226. /* decide where in the block to place our register */
  227. if (reg_tmp + 1 == reg)
  228. pos = i + 1;
  229. else
  230. pos = i;
  231. ret = regcache_rbtree_insert_to_block(rbnode_tmp, pos,
  232. reg, value,
  233. map->cache_word_size);
  234. if (ret)
  235. return ret;
  236. rbtree_ctx->cached_rbnode = rbnode_tmp;
  237. return 0;
  238. }
  239. }
  240. /* we did not manage to find a place to insert it in an existing
  241. * block so create a new rbnode with a single register in its block.
  242. * This block will get populated further if any other adjacent
  243. * registers get modified in the future.
  244. */
  245. rbnode = kzalloc(sizeof *rbnode, GFP_KERNEL);
  246. if (!rbnode)
  247. return -ENOMEM;
  248. rbnode->blklen = 1;
  249. rbnode->base_reg = reg;
  250. rbnode->block = kmalloc(rbnode->blklen * map->cache_word_size,
  251. GFP_KERNEL);
  252. if (!rbnode->block) {
  253. kfree(rbnode);
  254. return -ENOMEM;
  255. }
  256. regcache_rbtree_set_register(rbnode, 0, value, map->cache_word_size);
  257. regcache_rbtree_insert(&rbtree_ctx->root, rbnode);
  258. rbtree_ctx->cached_rbnode = rbnode;
  259. }
  260. return 0;
  261. }
  262. static int regcache_rbtree_sync(struct regmap *map)
  263. {
  264. struct regcache_rbtree_ctx *rbtree_ctx;
  265. struct rb_node *node;
  266. struct regcache_rbtree_node *rbnode;
  267. unsigned int regtmp;
  268. unsigned int val;
  269. int ret;
  270. int i;
  271. rbtree_ctx = map->cache;
  272. for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
  273. rbnode = rb_entry(node, struct regcache_rbtree_node, node);
  274. for (i = 0; i < rbnode->blklen; i++) {
  275. regtmp = rbnode->base_reg + i;
  276. val = regcache_rbtree_get_register(rbnode, i,
  277. map->cache_word_size);
  278. /* Is this the hardware default? If so skip. */
  279. ret = regcache_lookup_reg(map, i);
  280. if (ret > 0 && val == map->reg_defaults[ret].def)
  281. continue;
  282. map->cache_bypass = 1;
  283. ret = _regmap_write(map, regtmp, val);
  284. map->cache_bypass = 0;
  285. if (ret)
  286. return ret;
  287. dev_dbg(map->dev, "Synced register %#x, value %#x\n",
  288. regtmp, val);
  289. }
  290. }
  291. return 0;
  292. }
  293. struct regcache_ops regcache_rbtree_ops = {
  294. .type = REGCACHE_RBTREE,
  295. .name = "rbtree",
  296. .init = regcache_rbtree_init,
  297. .exit = regcache_rbtree_exit,
  298. .read = regcache_rbtree_read,
  299. .write = regcache_rbtree_write,
  300. .sync = regcache_rbtree_sync
  301. };