elevator.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@kernel.dk> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/delay.h>
  35. #include <linux/blktrace_api.h>
  36. #include <linux/hash.h>
  37. #include <asm/uaccess.h>
  38. static DEFINE_SPINLOCK(elv_list_lock);
  39. static LIST_HEAD(elv_list);
  40. /*
  41. * Merge hash stuff.
  42. */
  43. static const int elv_hash_shift = 6;
  44. #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
  45. #define ELV_HASH_FN(sec) (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
  46. #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
  47. #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
  48. #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
  49. /*
  50. * Query io scheduler to see if the current process issuing bio may be
  51. * merged with rq.
  52. */
  53. static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
  54. {
  55. request_queue_t *q = rq->q;
  56. elevator_t *e = q->elevator;
  57. if (e->ops->elevator_allow_merge_fn)
  58. return e->ops->elevator_allow_merge_fn(q, rq, bio);
  59. return 1;
  60. }
  61. /*
  62. * can we safely merge with this request?
  63. */
  64. inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  65. {
  66. if (!rq_mergeable(rq))
  67. return 0;
  68. /*
  69. * different data direction or already started, don't merge
  70. */
  71. if (bio_data_dir(bio) != rq_data_dir(rq))
  72. return 0;
  73. /*
  74. * must be same device and not a special request
  75. */
  76. if (rq->rq_disk != bio->bi_bdev->bd_disk || !rq->special)
  77. return 0;
  78. if (!elv_iosched_allow_merge(rq, bio))
  79. return 0;
  80. return 1;
  81. }
  82. EXPORT_SYMBOL(elv_rq_merge_ok);
  83. static inline int elv_try_merge(struct request *__rq, struct bio *bio)
  84. {
  85. int ret = ELEVATOR_NO_MERGE;
  86. /*
  87. * we can merge and sequence is ok, check if it's possible
  88. */
  89. if (elv_rq_merge_ok(__rq, bio)) {
  90. if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
  91. ret = ELEVATOR_BACK_MERGE;
  92. else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
  93. ret = ELEVATOR_FRONT_MERGE;
  94. }
  95. return ret;
  96. }
  97. static struct elevator_type *elevator_find(const char *name)
  98. {
  99. struct elevator_type *e;
  100. struct list_head *entry;
  101. list_for_each(entry, &elv_list) {
  102. e = list_entry(entry, struct elevator_type, list);
  103. if (!strcmp(e->elevator_name, name))
  104. return e;
  105. }
  106. return NULL;
  107. }
  108. static void elevator_put(struct elevator_type *e)
  109. {
  110. module_put(e->elevator_owner);
  111. }
  112. static struct elevator_type *elevator_get(const char *name)
  113. {
  114. struct elevator_type *e;
  115. spin_lock_irq(&elv_list_lock);
  116. e = elevator_find(name);
  117. if (e && !try_module_get(e->elevator_owner))
  118. e = NULL;
  119. spin_unlock_irq(&elv_list_lock);
  120. return e;
  121. }
  122. static void *elevator_init_queue(request_queue_t *q, struct elevator_queue *eq)
  123. {
  124. return eq->ops->elevator_init_fn(q);
  125. }
  126. static void elevator_attach(request_queue_t *q, struct elevator_queue *eq,
  127. void *data)
  128. {
  129. q->elevator = eq;
  130. eq->elevator_data = data;
  131. }
  132. static char chosen_elevator[16];
  133. static int __init elevator_setup(char *str)
  134. {
  135. /*
  136. * Be backwards-compatible with previous kernels, so users
  137. * won't get the wrong elevator.
  138. */
  139. if (!strcmp(str, "as"))
  140. strcpy(chosen_elevator, "anticipatory");
  141. else
  142. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  143. return 1;
  144. }
  145. __setup("elevator=", elevator_setup);
  146. static struct kobj_type elv_ktype;
  147. static elevator_t *elevator_alloc(request_queue_t *q, struct elevator_type *e)
  148. {
  149. elevator_t *eq;
  150. int i;
  151. eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL, q->node);
  152. if (unlikely(!eq))
  153. goto err;
  154. memset(eq, 0, sizeof(*eq));
  155. eq->ops = &e->ops;
  156. eq->elevator_type = e;
  157. kobject_init(&eq->kobj);
  158. snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
  159. eq->kobj.ktype = &elv_ktype;
  160. mutex_init(&eq->sysfs_lock);
  161. eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
  162. GFP_KERNEL, q->node);
  163. if (!eq->hash)
  164. goto err;
  165. for (i = 0; i < ELV_HASH_ENTRIES; i++)
  166. INIT_HLIST_HEAD(&eq->hash[i]);
  167. return eq;
  168. err:
  169. kfree(eq);
  170. elevator_put(e);
  171. return NULL;
  172. }
  173. static void elevator_release(struct kobject *kobj)
  174. {
  175. elevator_t *e = container_of(kobj, elevator_t, kobj);
  176. elevator_put(e->elevator_type);
  177. kfree(e->hash);
  178. kfree(e);
  179. }
  180. int elevator_init(request_queue_t *q, char *name)
  181. {
  182. struct elevator_type *e = NULL;
  183. struct elevator_queue *eq;
  184. int ret = 0;
  185. void *data;
  186. INIT_LIST_HEAD(&q->queue_head);
  187. q->last_merge = NULL;
  188. q->end_sector = 0;
  189. q->boundary_rq = NULL;
  190. if (name && !(e = elevator_get(name)))
  191. return -EINVAL;
  192. if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
  193. printk("I/O scheduler %s not found\n", chosen_elevator);
  194. if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
  195. printk("Default I/O scheduler not found, using no-op\n");
  196. e = elevator_get("noop");
  197. }
  198. eq = elevator_alloc(q, e);
  199. if (!eq)
  200. return -ENOMEM;
  201. data = elevator_init_queue(q, eq);
  202. if (!data) {
  203. kobject_put(&eq->kobj);
  204. return -ENOMEM;
  205. }
  206. elevator_attach(q, eq, data);
  207. return ret;
  208. }
  209. EXPORT_SYMBOL(elevator_init);
  210. void elevator_exit(elevator_t *e)
  211. {
  212. mutex_lock(&e->sysfs_lock);
  213. if (e->ops->elevator_exit_fn)
  214. e->ops->elevator_exit_fn(e);
  215. e->ops = NULL;
  216. mutex_unlock(&e->sysfs_lock);
  217. kobject_put(&e->kobj);
  218. }
  219. EXPORT_SYMBOL(elevator_exit);
  220. static inline void __elv_rqhash_del(struct request *rq)
  221. {
  222. hlist_del_init(&rq->hash);
  223. }
  224. static void elv_rqhash_del(request_queue_t *q, struct request *rq)
  225. {
  226. if (ELV_ON_HASH(rq))
  227. __elv_rqhash_del(rq);
  228. }
  229. static void elv_rqhash_add(request_queue_t *q, struct request *rq)
  230. {
  231. elevator_t *e = q->elevator;
  232. BUG_ON(ELV_ON_HASH(rq));
  233. hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
  234. }
  235. static void elv_rqhash_reposition(request_queue_t *q, struct request *rq)
  236. {
  237. __elv_rqhash_del(rq);
  238. elv_rqhash_add(q, rq);
  239. }
  240. static struct request *elv_rqhash_find(request_queue_t *q, sector_t offset)
  241. {
  242. elevator_t *e = q->elevator;
  243. struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
  244. struct hlist_node *entry, *next;
  245. struct request *rq;
  246. hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
  247. BUG_ON(!ELV_ON_HASH(rq));
  248. if (unlikely(!rq_mergeable(rq))) {
  249. __elv_rqhash_del(rq);
  250. continue;
  251. }
  252. if (rq_hash_key(rq) == offset)
  253. return rq;
  254. }
  255. return NULL;
  256. }
  257. /*
  258. * RB-tree support functions for inserting/lookup/removal of requests
  259. * in a sorted RB tree.
  260. */
  261. struct request *elv_rb_add(struct rb_root *root, struct request *rq)
  262. {
  263. struct rb_node **p = &root->rb_node;
  264. struct rb_node *parent = NULL;
  265. struct request *__rq;
  266. while (*p) {
  267. parent = *p;
  268. __rq = rb_entry(parent, struct request, rb_node);
  269. if (rq->sector < __rq->sector)
  270. p = &(*p)->rb_left;
  271. else if (rq->sector > __rq->sector)
  272. p = &(*p)->rb_right;
  273. else
  274. return __rq;
  275. }
  276. rb_link_node(&rq->rb_node, parent, p);
  277. rb_insert_color(&rq->rb_node, root);
  278. return NULL;
  279. }
  280. EXPORT_SYMBOL(elv_rb_add);
  281. void elv_rb_del(struct rb_root *root, struct request *rq)
  282. {
  283. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  284. rb_erase(&rq->rb_node, root);
  285. RB_CLEAR_NODE(&rq->rb_node);
  286. }
  287. EXPORT_SYMBOL(elv_rb_del);
  288. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  289. {
  290. struct rb_node *n = root->rb_node;
  291. struct request *rq;
  292. while (n) {
  293. rq = rb_entry(n, struct request, rb_node);
  294. if (sector < rq->sector)
  295. n = n->rb_left;
  296. else if (sector > rq->sector)
  297. n = n->rb_right;
  298. else
  299. return rq;
  300. }
  301. return NULL;
  302. }
  303. EXPORT_SYMBOL(elv_rb_find);
  304. /*
  305. * Insert rq into dispatch queue of q. Queue lock must be held on
  306. * entry. rq is sort insted into the dispatch queue. To be used by
  307. * specific elevators.
  308. */
  309. void elv_dispatch_sort(request_queue_t *q, struct request *rq)
  310. {
  311. sector_t boundary;
  312. struct list_head *entry;
  313. if (q->last_merge == rq)
  314. q->last_merge = NULL;
  315. elv_rqhash_del(q, rq);
  316. q->nr_sorted--;
  317. boundary = q->end_sector;
  318. list_for_each_prev(entry, &q->queue_head) {
  319. struct request *pos = list_entry_rq(entry);
  320. if (pos->cmd_flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
  321. break;
  322. if (rq->sector >= boundary) {
  323. if (pos->sector < boundary)
  324. continue;
  325. } else {
  326. if (pos->sector >= boundary)
  327. break;
  328. }
  329. if (rq->sector >= pos->sector)
  330. break;
  331. }
  332. list_add(&rq->queuelist, entry);
  333. }
  334. EXPORT_SYMBOL(elv_dispatch_sort);
  335. /*
  336. * Insert rq into dispatch queue of q. Queue lock must be held on
  337. * entry. rq is added to the back of the dispatch queue. To be used by
  338. * specific elevators.
  339. */
  340. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  341. {
  342. if (q->last_merge == rq)
  343. q->last_merge = NULL;
  344. elv_rqhash_del(q, rq);
  345. q->nr_sorted--;
  346. q->end_sector = rq_end_sector(rq);
  347. q->boundary_rq = rq;
  348. list_add_tail(&rq->queuelist, &q->queue_head);
  349. }
  350. EXPORT_SYMBOL(elv_dispatch_add_tail);
  351. int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
  352. {
  353. elevator_t *e = q->elevator;
  354. struct request *__rq;
  355. int ret;
  356. /*
  357. * First try one-hit cache.
  358. */
  359. if (q->last_merge) {
  360. ret = elv_try_merge(q->last_merge, bio);
  361. if (ret != ELEVATOR_NO_MERGE) {
  362. *req = q->last_merge;
  363. return ret;
  364. }
  365. }
  366. /*
  367. * See if our hash lookup can find a potential backmerge.
  368. */
  369. __rq = elv_rqhash_find(q, bio->bi_sector);
  370. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  371. *req = __rq;
  372. return ELEVATOR_BACK_MERGE;
  373. }
  374. if (e->ops->elevator_merge_fn)
  375. return e->ops->elevator_merge_fn(q, req, bio);
  376. return ELEVATOR_NO_MERGE;
  377. }
  378. void elv_merged_request(request_queue_t *q, struct request *rq, int type)
  379. {
  380. elevator_t *e = q->elevator;
  381. if (e->ops->elevator_merged_fn)
  382. e->ops->elevator_merged_fn(q, rq, type);
  383. if (type == ELEVATOR_BACK_MERGE)
  384. elv_rqhash_reposition(q, rq);
  385. q->last_merge = rq;
  386. }
  387. void elv_merge_requests(request_queue_t *q, struct request *rq,
  388. struct request *next)
  389. {
  390. elevator_t *e = q->elevator;
  391. if (e->ops->elevator_merge_req_fn)
  392. e->ops->elevator_merge_req_fn(q, rq, next);
  393. elv_rqhash_reposition(q, rq);
  394. elv_rqhash_del(q, next);
  395. q->nr_sorted--;
  396. q->last_merge = rq;
  397. }
  398. void elv_requeue_request(request_queue_t *q, struct request *rq)
  399. {
  400. elevator_t *e = q->elevator;
  401. /*
  402. * it already went through dequeue, we need to decrement the
  403. * in_flight count again
  404. */
  405. if (blk_account_rq(rq)) {
  406. q->in_flight--;
  407. if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
  408. e->ops->elevator_deactivate_req_fn(q, rq);
  409. }
  410. rq->cmd_flags &= ~REQ_STARTED;
  411. elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
  412. }
  413. static void elv_drain_elevator(request_queue_t *q)
  414. {
  415. static int printed;
  416. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  417. ;
  418. if (q->nr_sorted == 0)
  419. return;
  420. if (printed++ < 10) {
  421. printk(KERN_ERR "%s: forced dispatching is broken "
  422. "(nr_sorted=%u), please report this\n",
  423. q->elevator->elevator_type->elevator_name, q->nr_sorted);
  424. }
  425. }
  426. void elv_insert(request_queue_t *q, struct request *rq, int where)
  427. {
  428. struct list_head *pos;
  429. unsigned ordseq;
  430. int unplug_it = 1;
  431. blk_add_trace_rq(q, rq, BLK_TA_INSERT);
  432. rq->q = q;
  433. switch (where) {
  434. case ELEVATOR_INSERT_FRONT:
  435. rq->cmd_flags |= REQ_SOFTBARRIER;
  436. list_add(&rq->queuelist, &q->queue_head);
  437. break;
  438. case ELEVATOR_INSERT_BACK:
  439. rq->cmd_flags |= REQ_SOFTBARRIER;
  440. elv_drain_elevator(q);
  441. list_add_tail(&rq->queuelist, &q->queue_head);
  442. /*
  443. * We kick the queue here for the following reasons.
  444. * - The elevator might have returned NULL previously
  445. * to delay requests and returned them now. As the
  446. * queue wasn't empty before this request, ll_rw_blk
  447. * won't run the queue on return, resulting in hang.
  448. * - Usually, back inserted requests won't be merged
  449. * with anything. There's no point in delaying queue
  450. * processing.
  451. */
  452. blk_remove_plug(q);
  453. q->request_fn(q);
  454. break;
  455. case ELEVATOR_INSERT_SORT:
  456. BUG_ON(!blk_fs_request(rq));
  457. rq->cmd_flags |= REQ_SORTED;
  458. q->nr_sorted++;
  459. if (rq_mergeable(rq)) {
  460. elv_rqhash_add(q, rq);
  461. if (!q->last_merge)
  462. q->last_merge = rq;
  463. }
  464. /*
  465. * Some ioscheds (cfq) run q->request_fn directly, so
  466. * rq cannot be accessed after calling
  467. * elevator_add_req_fn.
  468. */
  469. q->elevator->ops->elevator_add_req_fn(q, rq);
  470. break;
  471. case ELEVATOR_INSERT_REQUEUE:
  472. /*
  473. * If ordered flush isn't in progress, we do front
  474. * insertion; otherwise, requests should be requeued
  475. * in ordseq order.
  476. */
  477. rq->cmd_flags |= REQ_SOFTBARRIER;
  478. if (q->ordseq == 0) {
  479. list_add(&rq->queuelist, &q->queue_head);
  480. break;
  481. }
  482. ordseq = blk_ordered_req_seq(rq);
  483. list_for_each(pos, &q->queue_head) {
  484. struct request *pos_rq = list_entry_rq(pos);
  485. if (ordseq <= blk_ordered_req_seq(pos_rq))
  486. break;
  487. }
  488. list_add_tail(&rq->queuelist, pos);
  489. /*
  490. * most requeues happen because of a busy condition, don't
  491. * force unplug of the queue for that case.
  492. */
  493. unplug_it = 0;
  494. break;
  495. default:
  496. printk(KERN_ERR "%s: bad insertion point %d\n",
  497. __FUNCTION__, where);
  498. BUG();
  499. }
  500. if (unplug_it && blk_queue_plugged(q)) {
  501. int nrq = q->rq.count[READ] + q->rq.count[WRITE]
  502. - q->in_flight;
  503. if (nrq >= q->unplug_thresh)
  504. __generic_unplug_device(q);
  505. }
  506. }
  507. void __elv_add_request(request_queue_t *q, struct request *rq, int where,
  508. int plug)
  509. {
  510. if (q->ordcolor)
  511. rq->cmd_flags |= REQ_ORDERED_COLOR;
  512. if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
  513. /*
  514. * toggle ordered color
  515. */
  516. if (blk_barrier_rq(rq))
  517. q->ordcolor ^= 1;
  518. /*
  519. * barriers implicitly indicate back insertion
  520. */
  521. if (where == ELEVATOR_INSERT_SORT)
  522. where = ELEVATOR_INSERT_BACK;
  523. /*
  524. * this request is scheduling boundary, update
  525. * end_sector
  526. */
  527. if (blk_fs_request(rq)) {
  528. q->end_sector = rq_end_sector(rq);
  529. q->boundary_rq = rq;
  530. }
  531. } else if (!(rq->cmd_flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
  532. where = ELEVATOR_INSERT_BACK;
  533. if (plug)
  534. blk_plug_device(q);
  535. elv_insert(q, rq, where);
  536. }
  537. EXPORT_SYMBOL(__elv_add_request);
  538. void elv_add_request(request_queue_t *q, struct request *rq, int where,
  539. int plug)
  540. {
  541. unsigned long flags;
  542. spin_lock_irqsave(q->queue_lock, flags);
  543. __elv_add_request(q, rq, where, plug);
  544. spin_unlock_irqrestore(q->queue_lock, flags);
  545. }
  546. EXPORT_SYMBOL(elv_add_request);
  547. static inline struct request *__elv_next_request(request_queue_t *q)
  548. {
  549. struct request *rq;
  550. while (1) {
  551. while (!list_empty(&q->queue_head)) {
  552. rq = list_entry_rq(q->queue_head.next);
  553. if (blk_do_ordered(q, &rq))
  554. return rq;
  555. }
  556. if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
  557. return NULL;
  558. }
  559. }
  560. struct request *elv_next_request(request_queue_t *q)
  561. {
  562. struct request *rq;
  563. int ret;
  564. while ((rq = __elv_next_request(q)) != NULL) {
  565. if (!(rq->cmd_flags & REQ_STARTED)) {
  566. elevator_t *e = q->elevator;
  567. /*
  568. * This is the first time the device driver
  569. * sees this request (possibly after
  570. * requeueing). Notify IO scheduler.
  571. */
  572. if (blk_sorted_rq(rq) &&
  573. e->ops->elevator_activate_req_fn)
  574. e->ops->elevator_activate_req_fn(q, rq);
  575. /*
  576. * just mark as started even if we don't start
  577. * it, a request that has been delayed should
  578. * not be passed by new incoming requests
  579. */
  580. rq->cmd_flags |= REQ_STARTED;
  581. blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
  582. }
  583. if (!q->boundary_rq || q->boundary_rq == rq) {
  584. q->end_sector = rq_end_sector(rq);
  585. q->boundary_rq = NULL;
  586. }
  587. if ((rq->cmd_flags & REQ_DONTPREP) || !q->prep_rq_fn)
  588. break;
  589. ret = q->prep_rq_fn(q, rq);
  590. if (ret == BLKPREP_OK) {
  591. break;
  592. } else if (ret == BLKPREP_DEFER) {
  593. /*
  594. * the request may have been (partially) prepped.
  595. * we need to keep this request in the front to
  596. * avoid resource deadlock. REQ_STARTED will
  597. * prevent other fs requests from passing this one.
  598. */
  599. rq = NULL;
  600. break;
  601. } else if (ret == BLKPREP_KILL) {
  602. int nr_bytes = rq->hard_nr_sectors << 9;
  603. if (!nr_bytes)
  604. nr_bytes = rq->data_len;
  605. blkdev_dequeue_request(rq);
  606. rq->cmd_flags |= REQ_QUIET;
  607. end_that_request_chunk(rq, 0, nr_bytes);
  608. end_that_request_last(rq, 0);
  609. } else {
  610. printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
  611. ret);
  612. break;
  613. }
  614. }
  615. return rq;
  616. }
  617. EXPORT_SYMBOL(elv_next_request);
  618. void elv_dequeue_request(request_queue_t *q, struct request *rq)
  619. {
  620. BUG_ON(list_empty(&rq->queuelist));
  621. BUG_ON(ELV_ON_HASH(rq));
  622. list_del_init(&rq->queuelist);
  623. /*
  624. * the time frame between a request being removed from the lists
  625. * and to it is freed is accounted as io that is in progress at
  626. * the driver side.
  627. */
  628. if (blk_account_rq(rq))
  629. q->in_flight++;
  630. }
  631. EXPORT_SYMBOL(elv_dequeue_request);
  632. int elv_queue_empty(request_queue_t *q)
  633. {
  634. elevator_t *e = q->elevator;
  635. if (!list_empty(&q->queue_head))
  636. return 0;
  637. if (e->ops->elevator_queue_empty_fn)
  638. return e->ops->elevator_queue_empty_fn(q);
  639. return 1;
  640. }
  641. EXPORT_SYMBOL(elv_queue_empty);
  642. struct request *elv_latter_request(request_queue_t *q, struct request *rq)
  643. {
  644. elevator_t *e = q->elevator;
  645. if (e->ops->elevator_latter_req_fn)
  646. return e->ops->elevator_latter_req_fn(q, rq);
  647. return NULL;
  648. }
  649. struct request *elv_former_request(request_queue_t *q, struct request *rq)
  650. {
  651. elevator_t *e = q->elevator;
  652. if (e->ops->elevator_former_req_fn)
  653. return e->ops->elevator_former_req_fn(q, rq);
  654. return NULL;
  655. }
  656. int elv_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
  657. {
  658. elevator_t *e = q->elevator;
  659. if (e->ops->elevator_set_req_fn)
  660. return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
  661. rq->elevator_private = NULL;
  662. return 0;
  663. }
  664. void elv_put_request(request_queue_t *q, struct request *rq)
  665. {
  666. elevator_t *e = q->elevator;
  667. if (e->ops->elevator_put_req_fn)
  668. e->ops->elevator_put_req_fn(rq);
  669. }
  670. int elv_may_queue(request_queue_t *q, int rw)
  671. {
  672. elevator_t *e = q->elevator;
  673. if (e->ops->elevator_may_queue_fn)
  674. return e->ops->elevator_may_queue_fn(q, rw);
  675. return ELV_MQUEUE_MAY;
  676. }
  677. void elv_completed_request(request_queue_t *q, struct request *rq)
  678. {
  679. elevator_t *e = q->elevator;
  680. /*
  681. * request is released from the driver, io must be done
  682. */
  683. if (blk_account_rq(rq)) {
  684. q->in_flight--;
  685. if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
  686. e->ops->elevator_completed_req_fn(q, rq);
  687. }
  688. /*
  689. * Check if the queue is waiting for fs requests to be
  690. * drained for flush sequence.
  691. */
  692. if (unlikely(q->ordseq)) {
  693. struct request *first_rq = list_entry_rq(q->queue_head.next);
  694. if (q->in_flight == 0 &&
  695. blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
  696. blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
  697. blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
  698. q->request_fn(q);
  699. }
  700. }
  701. }
  702. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  703. static ssize_t
  704. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  705. {
  706. elevator_t *e = container_of(kobj, elevator_t, kobj);
  707. struct elv_fs_entry *entry = to_elv(attr);
  708. ssize_t error;
  709. if (!entry->show)
  710. return -EIO;
  711. mutex_lock(&e->sysfs_lock);
  712. error = e->ops ? entry->show(e, page) : -ENOENT;
  713. mutex_unlock(&e->sysfs_lock);
  714. return error;
  715. }
  716. static ssize_t
  717. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  718. const char *page, size_t length)
  719. {
  720. elevator_t *e = container_of(kobj, elevator_t, kobj);
  721. struct elv_fs_entry *entry = to_elv(attr);
  722. ssize_t error;
  723. if (!entry->store)
  724. return -EIO;
  725. mutex_lock(&e->sysfs_lock);
  726. error = e->ops ? entry->store(e, page, length) : -ENOENT;
  727. mutex_unlock(&e->sysfs_lock);
  728. return error;
  729. }
  730. static struct sysfs_ops elv_sysfs_ops = {
  731. .show = elv_attr_show,
  732. .store = elv_attr_store,
  733. };
  734. static struct kobj_type elv_ktype = {
  735. .sysfs_ops = &elv_sysfs_ops,
  736. .release = elevator_release,
  737. };
  738. int elv_register_queue(struct request_queue *q)
  739. {
  740. elevator_t *e = q->elevator;
  741. int error;
  742. e->kobj.parent = &q->kobj;
  743. error = kobject_add(&e->kobj);
  744. if (!error) {
  745. struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
  746. if (attr) {
  747. while (attr->attr.name) {
  748. if (sysfs_create_file(&e->kobj, &attr->attr))
  749. break;
  750. attr++;
  751. }
  752. }
  753. kobject_uevent(&e->kobj, KOBJ_ADD);
  754. }
  755. return error;
  756. }
  757. static void __elv_unregister_queue(elevator_t *e)
  758. {
  759. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  760. kobject_del(&e->kobj);
  761. }
  762. void elv_unregister_queue(struct request_queue *q)
  763. {
  764. if (q)
  765. __elv_unregister_queue(q->elevator);
  766. }
  767. int elv_register(struct elevator_type *e)
  768. {
  769. spin_lock_irq(&elv_list_lock);
  770. BUG_ON(elevator_find(e->elevator_name));
  771. list_add_tail(&e->list, &elv_list);
  772. spin_unlock_irq(&elv_list_lock);
  773. printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
  774. if (!strcmp(e->elevator_name, chosen_elevator) ||
  775. (!*chosen_elevator &&
  776. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  777. printk(" (default)");
  778. printk("\n");
  779. return 0;
  780. }
  781. EXPORT_SYMBOL_GPL(elv_register);
  782. void elv_unregister(struct elevator_type *e)
  783. {
  784. struct task_struct *g, *p;
  785. /*
  786. * Iterate every thread in the process to remove the io contexts.
  787. */
  788. if (e->ops.trim) {
  789. read_lock(&tasklist_lock);
  790. do_each_thread(g, p) {
  791. task_lock(p);
  792. if (p->io_context)
  793. e->ops.trim(p->io_context);
  794. task_unlock(p);
  795. } while_each_thread(g, p);
  796. read_unlock(&tasklist_lock);
  797. }
  798. spin_lock_irq(&elv_list_lock);
  799. list_del_init(&e->list);
  800. spin_unlock_irq(&elv_list_lock);
  801. }
  802. EXPORT_SYMBOL_GPL(elv_unregister);
  803. /*
  804. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  805. * we don't free the old io scheduler, before we have allocated what we
  806. * need for the new one. this way we have a chance of going back to the old
  807. * one, if the new one fails init for some reason.
  808. */
  809. static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
  810. {
  811. elevator_t *old_elevator, *e;
  812. void *data;
  813. /*
  814. * Allocate new elevator
  815. */
  816. e = elevator_alloc(q, new_e);
  817. if (!e)
  818. return 0;
  819. data = elevator_init_queue(q, e);
  820. if (!data) {
  821. kobject_put(&e->kobj);
  822. return 0;
  823. }
  824. /*
  825. * Turn on BYPASS and drain all requests w/ elevator private data
  826. */
  827. spin_lock_irq(q->queue_lock);
  828. set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  829. elv_drain_elevator(q);
  830. while (q->rq.elvpriv) {
  831. blk_remove_plug(q);
  832. q->request_fn(q);
  833. spin_unlock_irq(q->queue_lock);
  834. msleep(10);
  835. spin_lock_irq(q->queue_lock);
  836. elv_drain_elevator(q);
  837. }
  838. /*
  839. * Remember old elevator.
  840. */
  841. old_elevator = q->elevator;
  842. /*
  843. * attach and start new elevator
  844. */
  845. elevator_attach(q, e, data);
  846. spin_unlock_irq(q->queue_lock);
  847. __elv_unregister_queue(old_elevator);
  848. if (elv_register_queue(q))
  849. goto fail_register;
  850. /*
  851. * finally exit old elevator and turn off BYPASS.
  852. */
  853. elevator_exit(old_elevator);
  854. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  855. return 1;
  856. fail_register:
  857. /*
  858. * switch failed, exit the new io scheduler and reattach the old
  859. * one again (along with re-adding the sysfs dir)
  860. */
  861. elevator_exit(e);
  862. q->elevator = old_elevator;
  863. elv_register_queue(q);
  864. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  865. return 0;
  866. }
  867. ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
  868. {
  869. char elevator_name[ELV_NAME_MAX];
  870. size_t len;
  871. struct elevator_type *e;
  872. elevator_name[sizeof(elevator_name) - 1] = '\0';
  873. strncpy(elevator_name, name, sizeof(elevator_name) - 1);
  874. len = strlen(elevator_name);
  875. if (len && elevator_name[len - 1] == '\n')
  876. elevator_name[len - 1] = '\0';
  877. e = elevator_get(elevator_name);
  878. if (!e) {
  879. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  880. return -EINVAL;
  881. }
  882. if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
  883. elevator_put(e);
  884. return count;
  885. }
  886. if (!elevator_switch(q, e))
  887. printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
  888. return count;
  889. }
  890. ssize_t elv_iosched_show(request_queue_t *q, char *name)
  891. {
  892. elevator_t *e = q->elevator;
  893. struct elevator_type *elv = e->elevator_type;
  894. struct list_head *entry;
  895. int len = 0;
  896. spin_lock_irq(&elv_list_lock);
  897. list_for_each(entry, &elv_list) {
  898. struct elevator_type *__e;
  899. __e = list_entry(entry, struct elevator_type, list);
  900. if (!strcmp(elv->elevator_name, __e->elevator_name))
  901. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  902. else
  903. len += sprintf(name+len, "%s ", __e->elevator_name);
  904. }
  905. spin_unlock_irq(&elv_list_lock);
  906. len += sprintf(len+name, "\n");
  907. return len;
  908. }
  909. struct request *elv_rb_former_request(request_queue_t *q, struct request *rq)
  910. {
  911. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  912. if (rbprev)
  913. return rb_entry_rq(rbprev);
  914. return NULL;
  915. }
  916. EXPORT_SYMBOL(elv_rb_former_request);
  917. struct request *elv_rb_latter_request(request_queue_t *q, struct request *rq)
  918. {
  919. struct rb_node *rbnext = rb_next(&rq->rb_node);
  920. if (rbnext)
  921. return rb_entry_rq(rbnext);
  922. return NULL;
  923. }
  924. EXPORT_SYMBOL(elv_rb_latter_request);