memory.c 72 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/delayacct.h>
  46. #include <linux/init.h>
  47. #include <linux/writeback.h>
  48. #include <asm/pgalloc.h>
  49. #include <asm/uaccess.h>
  50. #include <asm/tlb.h>
  51. #include <asm/tlbflush.h>
  52. #include <asm/pgtable.h>
  53. #include <linux/swapops.h>
  54. #include <linux/elf.h>
  55. #ifndef CONFIG_NEED_MULTIPLE_NODES
  56. /* use the per-pgdat data instead for discontigmem - mbligh */
  57. unsigned long max_mapnr;
  58. struct page *mem_map;
  59. EXPORT_SYMBOL(max_mapnr);
  60. EXPORT_SYMBOL(mem_map);
  61. #endif
  62. unsigned long num_physpages;
  63. /*
  64. * A number of key systems in x86 including ioremap() rely on the assumption
  65. * that high_memory defines the upper bound on direct map memory, then end
  66. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  67. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  68. * and ZONE_HIGHMEM.
  69. */
  70. void * high_memory;
  71. EXPORT_SYMBOL(num_physpages);
  72. EXPORT_SYMBOL(high_memory);
  73. int randomize_va_space __read_mostly = 1;
  74. static int __init disable_randmaps(char *s)
  75. {
  76. randomize_va_space = 0;
  77. return 1;
  78. }
  79. __setup("norandmaps", disable_randmaps);
  80. /*
  81. * If a p?d_bad entry is found while walking page tables, report
  82. * the error, before resetting entry to p?d_none. Usually (but
  83. * very seldom) called out from the p?d_none_or_clear_bad macros.
  84. */
  85. void pgd_clear_bad(pgd_t *pgd)
  86. {
  87. pgd_ERROR(*pgd);
  88. pgd_clear(pgd);
  89. }
  90. void pud_clear_bad(pud_t *pud)
  91. {
  92. pud_ERROR(*pud);
  93. pud_clear(pud);
  94. }
  95. void pmd_clear_bad(pmd_t *pmd)
  96. {
  97. pmd_ERROR(*pmd);
  98. pmd_clear(pmd);
  99. }
  100. /*
  101. * Note: this doesn't free the actual pages themselves. That
  102. * has been handled earlier when unmapping all the memory regions.
  103. */
  104. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  105. {
  106. struct page *page = pmd_page(*pmd);
  107. pmd_clear(pmd);
  108. pte_lock_deinit(page);
  109. pte_free_tlb(tlb, page);
  110. dec_zone_page_state(page, NR_PAGETABLE);
  111. tlb->mm->nr_ptes--;
  112. }
  113. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  114. unsigned long addr, unsigned long end,
  115. unsigned long floor, unsigned long ceiling)
  116. {
  117. pmd_t *pmd;
  118. unsigned long next;
  119. unsigned long start;
  120. start = addr;
  121. pmd = pmd_offset(pud, addr);
  122. do {
  123. next = pmd_addr_end(addr, end);
  124. if (pmd_none_or_clear_bad(pmd))
  125. continue;
  126. free_pte_range(tlb, pmd);
  127. } while (pmd++, addr = next, addr != end);
  128. start &= PUD_MASK;
  129. if (start < floor)
  130. return;
  131. if (ceiling) {
  132. ceiling &= PUD_MASK;
  133. if (!ceiling)
  134. return;
  135. }
  136. if (end - 1 > ceiling - 1)
  137. return;
  138. pmd = pmd_offset(pud, start);
  139. pud_clear(pud);
  140. pmd_free_tlb(tlb, pmd);
  141. }
  142. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  143. unsigned long addr, unsigned long end,
  144. unsigned long floor, unsigned long ceiling)
  145. {
  146. pud_t *pud;
  147. unsigned long next;
  148. unsigned long start;
  149. start = addr;
  150. pud = pud_offset(pgd, addr);
  151. do {
  152. next = pud_addr_end(addr, end);
  153. if (pud_none_or_clear_bad(pud))
  154. continue;
  155. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  156. } while (pud++, addr = next, addr != end);
  157. start &= PGDIR_MASK;
  158. if (start < floor)
  159. return;
  160. if (ceiling) {
  161. ceiling &= PGDIR_MASK;
  162. if (!ceiling)
  163. return;
  164. }
  165. if (end - 1 > ceiling - 1)
  166. return;
  167. pud = pud_offset(pgd, start);
  168. pgd_clear(pgd);
  169. pud_free_tlb(tlb, pud);
  170. }
  171. /*
  172. * This function frees user-level page tables of a process.
  173. *
  174. * Must be called with pagetable lock held.
  175. */
  176. void free_pgd_range(struct mmu_gather **tlb,
  177. unsigned long addr, unsigned long end,
  178. unsigned long floor, unsigned long ceiling)
  179. {
  180. pgd_t *pgd;
  181. unsigned long next;
  182. unsigned long start;
  183. /*
  184. * The next few lines have given us lots of grief...
  185. *
  186. * Why are we testing PMD* at this top level? Because often
  187. * there will be no work to do at all, and we'd prefer not to
  188. * go all the way down to the bottom just to discover that.
  189. *
  190. * Why all these "- 1"s? Because 0 represents both the bottom
  191. * of the address space and the top of it (using -1 for the
  192. * top wouldn't help much: the masks would do the wrong thing).
  193. * The rule is that addr 0 and floor 0 refer to the bottom of
  194. * the address space, but end 0 and ceiling 0 refer to the top
  195. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  196. * that end 0 case should be mythical).
  197. *
  198. * Wherever addr is brought up or ceiling brought down, we must
  199. * be careful to reject "the opposite 0" before it confuses the
  200. * subsequent tests. But what about where end is brought down
  201. * by PMD_SIZE below? no, end can't go down to 0 there.
  202. *
  203. * Whereas we round start (addr) and ceiling down, by different
  204. * masks at different levels, in order to test whether a table
  205. * now has no other vmas using it, so can be freed, we don't
  206. * bother to round floor or end up - the tests don't need that.
  207. */
  208. addr &= PMD_MASK;
  209. if (addr < floor) {
  210. addr += PMD_SIZE;
  211. if (!addr)
  212. return;
  213. }
  214. if (ceiling) {
  215. ceiling &= PMD_MASK;
  216. if (!ceiling)
  217. return;
  218. }
  219. if (end - 1 > ceiling - 1)
  220. end -= PMD_SIZE;
  221. if (addr > end - 1)
  222. return;
  223. start = addr;
  224. pgd = pgd_offset((*tlb)->mm, addr);
  225. do {
  226. next = pgd_addr_end(addr, end);
  227. if (pgd_none_or_clear_bad(pgd))
  228. continue;
  229. free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
  230. } while (pgd++, addr = next, addr != end);
  231. }
  232. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
  233. unsigned long floor, unsigned long ceiling)
  234. {
  235. while (vma) {
  236. struct vm_area_struct *next = vma->vm_next;
  237. unsigned long addr = vma->vm_start;
  238. /*
  239. * Hide vma from rmap and vmtruncate before freeing pgtables
  240. */
  241. anon_vma_unlink(vma);
  242. unlink_file_vma(vma);
  243. if (is_vm_hugetlb_page(vma)) {
  244. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  245. floor, next? next->vm_start: ceiling);
  246. } else {
  247. /*
  248. * Optimization: gather nearby vmas into one call down
  249. */
  250. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  251. && !is_vm_hugetlb_page(next)) {
  252. vma = next;
  253. next = vma->vm_next;
  254. anon_vma_unlink(vma);
  255. unlink_file_vma(vma);
  256. }
  257. free_pgd_range(tlb, addr, vma->vm_end,
  258. floor, next? next->vm_start: ceiling);
  259. }
  260. vma = next;
  261. }
  262. }
  263. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  264. {
  265. struct page *new = pte_alloc_one(mm, address);
  266. if (!new)
  267. return -ENOMEM;
  268. pte_lock_init(new);
  269. spin_lock(&mm->page_table_lock);
  270. if (pmd_present(*pmd)) { /* Another has populated it */
  271. pte_lock_deinit(new);
  272. pte_free(new);
  273. } else {
  274. mm->nr_ptes++;
  275. inc_zone_page_state(new, NR_PAGETABLE);
  276. pmd_populate(mm, pmd, new);
  277. }
  278. spin_unlock(&mm->page_table_lock);
  279. return 0;
  280. }
  281. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  282. {
  283. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  284. if (!new)
  285. return -ENOMEM;
  286. spin_lock(&init_mm.page_table_lock);
  287. if (pmd_present(*pmd)) /* Another has populated it */
  288. pte_free_kernel(new);
  289. else
  290. pmd_populate_kernel(&init_mm, pmd, new);
  291. spin_unlock(&init_mm.page_table_lock);
  292. return 0;
  293. }
  294. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  295. {
  296. if (file_rss)
  297. add_mm_counter(mm, file_rss, file_rss);
  298. if (anon_rss)
  299. add_mm_counter(mm, anon_rss, anon_rss);
  300. }
  301. /*
  302. * This function is called to print an error when a bad pte
  303. * is found. For example, we might have a PFN-mapped pte in
  304. * a region that doesn't allow it.
  305. *
  306. * The calling function must still handle the error.
  307. */
  308. void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
  309. {
  310. printk(KERN_ERR "Bad pte = %08llx, process = %s, "
  311. "vm_flags = %lx, vaddr = %lx\n",
  312. (long long)pte_val(pte),
  313. (vma->vm_mm == current->mm ? current->comm : "???"),
  314. vma->vm_flags, vaddr);
  315. dump_stack();
  316. }
  317. static inline int is_cow_mapping(unsigned int flags)
  318. {
  319. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  320. }
  321. /*
  322. * This function gets the "struct page" associated with a pte.
  323. *
  324. * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
  325. * will have each page table entry just pointing to a raw page frame
  326. * number, and as far as the VM layer is concerned, those do not have
  327. * pages associated with them - even if the PFN might point to memory
  328. * that otherwise is perfectly fine and has a "struct page".
  329. *
  330. * The way we recognize those mappings is through the rules set up
  331. * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
  332. * and the vm_pgoff will point to the first PFN mapped: thus every
  333. * page that is a raw mapping will always honor the rule
  334. *
  335. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  336. *
  337. * and if that isn't true, the page has been COW'ed (in which case it
  338. * _does_ have a "struct page" associated with it even if it is in a
  339. * VM_PFNMAP range).
  340. */
  341. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  342. {
  343. unsigned long pfn = pte_pfn(pte);
  344. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  345. unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
  346. if (pfn == vma->vm_pgoff + off)
  347. return NULL;
  348. if (!is_cow_mapping(vma->vm_flags))
  349. return NULL;
  350. }
  351. #ifdef CONFIG_DEBUG_VM
  352. /*
  353. * Add some anal sanity checks for now. Eventually,
  354. * we should just do "return pfn_to_page(pfn)", but
  355. * in the meantime we check that we get a valid pfn,
  356. * and that the resulting page looks ok.
  357. */
  358. if (unlikely(!pfn_valid(pfn))) {
  359. print_bad_pte(vma, pte, addr);
  360. return NULL;
  361. }
  362. #endif
  363. /*
  364. * NOTE! We still have PageReserved() pages in the page
  365. * tables.
  366. *
  367. * The PAGE_ZERO() pages and various VDSO mappings can
  368. * cause them to exist.
  369. */
  370. return pfn_to_page(pfn);
  371. }
  372. /*
  373. * copy one vm_area from one task to the other. Assumes the page tables
  374. * already present in the new task to be cleared in the whole range
  375. * covered by this vma.
  376. */
  377. static inline void
  378. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  379. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  380. unsigned long addr, int *rss)
  381. {
  382. unsigned long vm_flags = vma->vm_flags;
  383. pte_t pte = *src_pte;
  384. struct page *page;
  385. /* pte contains position in swap or file, so copy. */
  386. if (unlikely(!pte_present(pte))) {
  387. if (!pte_file(pte)) {
  388. swp_entry_t entry = pte_to_swp_entry(pte);
  389. swap_duplicate(entry);
  390. /* make sure dst_mm is on swapoff's mmlist. */
  391. if (unlikely(list_empty(&dst_mm->mmlist))) {
  392. spin_lock(&mmlist_lock);
  393. if (list_empty(&dst_mm->mmlist))
  394. list_add(&dst_mm->mmlist,
  395. &src_mm->mmlist);
  396. spin_unlock(&mmlist_lock);
  397. }
  398. if (is_write_migration_entry(entry) &&
  399. is_cow_mapping(vm_flags)) {
  400. /*
  401. * COW mappings require pages in both parent
  402. * and child to be set to read.
  403. */
  404. make_migration_entry_read(&entry);
  405. pte = swp_entry_to_pte(entry);
  406. set_pte_at(src_mm, addr, src_pte, pte);
  407. }
  408. }
  409. goto out_set_pte;
  410. }
  411. /*
  412. * If it's a COW mapping, write protect it both
  413. * in the parent and the child
  414. */
  415. if (is_cow_mapping(vm_flags)) {
  416. ptep_set_wrprotect(src_mm, addr, src_pte);
  417. pte = pte_wrprotect(pte);
  418. }
  419. /*
  420. * If it's a shared mapping, mark it clean in
  421. * the child
  422. */
  423. if (vm_flags & VM_SHARED)
  424. pte = pte_mkclean(pte);
  425. pte = pte_mkold(pte);
  426. page = vm_normal_page(vma, addr, pte);
  427. if (page) {
  428. get_page(page);
  429. page_dup_rmap(page, vma, addr);
  430. rss[!!PageAnon(page)]++;
  431. }
  432. out_set_pte:
  433. set_pte_at(dst_mm, addr, dst_pte, pte);
  434. }
  435. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  436. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  437. unsigned long addr, unsigned long end)
  438. {
  439. pte_t *src_pte, *dst_pte;
  440. spinlock_t *src_ptl, *dst_ptl;
  441. int progress = 0;
  442. int rss[2];
  443. again:
  444. rss[1] = rss[0] = 0;
  445. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  446. if (!dst_pte)
  447. return -ENOMEM;
  448. src_pte = pte_offset_map_nested(src_pmd, addr);
  449. src_ptl = pte_lockptr(src_mm, src_pmd);
  450. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  451. arch_enter_lazy_mmu_mode();
  452. do {
  453. /*
  454. * We are holding two locks at this point - either of them
  455. * could generate latencies in another task on another CPU.
  456. */
  457. if (progress >= 32) {
  458. progress = 0;
  459. if (need_resched() ||
  460. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  461. break;
  462. }
  463. if (pte_none(*src_pte)) {
  464. progress++;
  465. continue;
  466. }
  467. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  468. progress += 8;
  469. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  470. arch_leave_lazy_mmu_mode();
  471. spin_unlock(src_ptl);
  472. pte_unmap_nested(src_pte - 1);
  473. add_mm_rss(dst_mm, rss[0], rss[1]);
  474. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  475. cond_resched();
  476. if (addr != end)
  477. goto again;
  478. return 0;
  479. }
  480. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  481. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  482. unsigned long addr, unsigned long end)
  483. {
  484. pmd_t *src_pmd, *dst_pmd;
  485. unsigned long next;
  486. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  487. if (!dst_pmd)
  488. return -ENOMEM;
  489. src_pmd = pmd_offset(src_pud, addr);
  490. do {
  491. next = pmd_addr_end(addr, end);
  492. if (pmd_none_or_clear_bad(src_pmd))
  493. continue;
  494. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  495. vma, addr, next))
  496. return -ENOMEM;
  497. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  498. return 0;
  499. }
  500. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  501. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  502. unsigned long addr, unsigned long end)
  503. {
  504. pud_t *src_pud, *dst_pud;
  505. unsigned long next;
  506. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  507. if (!dst_pud)
  508. return -ENOMEM;
  509. src_pud = pud_offset(src_pgd, addr);
  510. do {
  511. next = pud_addr_end(addr, end);
  512. if (pud_none_or_clear_bad(src_pud))
  513. continue;
  514. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  515. vma, addr, next))
  516. return -ENOMEM;
  517. } while (dst_pud++, src_pud++, addr = next, addr != end);
  518. return 0;
  519. }
  520. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  521. struct vm_area_struct *vma)
  522. {
  523. pgd_t *src_pgd, *dst_pgd;
  524. unsigned long next;
  525. unsigned long addr = vma->vm_start;
  526. unsigned long end = vma->vm_end;
  527. /*
  528. * Don't copy ptes where a page fault will fill them correctly.
  529. * Fork becomes much lighter when there are big shared or private
  530. * readonly mappings. The tradeoff is that copy_page_range is more
  531. * efficient than faulting.
  532. */
  533. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  534. if (!vma->anon_vma)
  535. return 0;
  536. }
  537. if (is_vm_hugetlb_page(vma))
  538. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  539. dst_pgd = pgd_offset(dst_mm, addr);
  540. src_pgd = pgd_offset(src_mm, addr);
  541. do {
  542. next = pgd_addr_end(addr, end);
  543. if (pgd_none_or_clear_bad(src_pgd))
  544. continue;
  545. if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  546. vma, addr, next))
  547. return -ENOMEM;
  548. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  549. return 0;
  550. }
  551. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  552. struct vm_area_struct *vma, pmd_t *pmd,
  553. unsigned long addr, unsigned long end,
  554. long *zap_work, struct zap_details *details)
  555. {
  556. struct mm_struct *mm = tlb->mm;
  557. pte_t *pte;
  558. spinlock_t *ptl;
  559. int file_rss = 0;
  560. int anon_rss = 0;
  561. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  562. arch_enter_lazy_mmu_mode();
  563. do {
  564. pte_t ptent = *pte;
  565. if (pte_none(ptent)) {
  566. (*zap_work)--;
  567. continue;
  568. }
  569. (*zap_work) -= PAGE_SIZE;
  570. if (pte_present(ptent)) {
  571. struct page *page;
  572. page = vm_normal_page(vma, addr, ptent);
  573. if (unlikely(details) && page) {
  574. /*
  575. * unmap_shared_mapping_pages() wants to
  576. * invalidate cache without truncating:
  577. * unmap shared but keep private pages.
  578. */
  579. if (details->check_mapping &&
  580. details->check_mapping != page->mapping)
  581. continue;
  582. /*
  583. * Each page->index must be checked when
  584. * invalidating or truncating nonlinear.
  585. */
  586. if (details->nonlinear_vma &&
  587. (page->index < details->first_index ||
  588. page->index > details->last_index))
  589. continue;
  590. }
  591. ptent = ptep_get_and_clear_full(mm, addr, pte,
  592. tlb->fullmm);
  593. tlb_remove_tlb_entry(tlb, pte, addr);
  594. if (unlikely(!page))
  595. continue;
  596. if (unlikely(details) && details->nonlinear_vma
  597. && linear_page_index(details->nonlinear_vma,
  598. addr) != page->index)
  599. set_pte_at(mm, addr, pte,
  600. pgoff_to_pte(page->index));
  601. if (PageAnon(page))
  602. anon_rss--;
  603. else {
  604. if (pte_dirty(ptent))
  605. set_page_dirty(page);
  606. if (pte_young(ptent))
  607. SetPageReferenced(page);
  608. file_rss--;
  609. }
  610. page_remove_rmap(page, vma);
  611. tlb_remove_page(tlb, page);
  612. continue;
  613. }
  614. /*
  615. * If details->check_mapping, we leave swap entries;
  616. * if details->nonlinear_vma, we leave file entries.
  617. */
  618. if (unlikely(details))
  619. continue;
  620. if (!pte_file(ptent))
  621. free_swap_and_cache(pte_to_swp_entry(ptent));
  622. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  623. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  624. add_mm_rss(mm, file_rss, anon_rss);
  625. arch_leave_lazy_mmu_mode();
  626. pte_unmap_unlock(pte - 1, ptl);
  627. return addr;
  628. }
  629. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  630. struct vm_area_struct *vma, pud_t *pud,
  631. unsigned long addr, unsigned long end,
  632. long *zap_work, struct zap_details *details)
  633. {
  634. pmd_t *pmd;
  635. unsigned long next;
  636. pmd = pmd_offset(pud, addr);
  637. do {
  638. next = pmd_addr_end(addr, end);
  639. if (pmd_none_or_clear_bad(pmd)) {
  640. (*zap_work)--;
  641. continue;
  642. }
  643. next = zap_pte_range(tlb, vma, pmd, addr, next,
  644. zap_work, details);
  645. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  646. return addr;
  647. }
  648. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  649. struct vm_area_struct *vma, pgd_t *pgd,
  650. unsigned long addr, unsigned long end,
  651. long *zap_work, struct zap_details *details)
  652. {
  653. pud_t *pud;
  654. unsigned long next;
  655. pud = pud_offset(pgd, addr);
  656. do {
  657. next = pud_addr_end(addr, end);
  658. if (pud_none_or_clear_bad(pud)) {
  659. (*zap_work)--;
  660. continue;
  661. }
  662. next = zap_pmd_range(tlb, vma, pud, addr, next,
  663. zap_work, details);
  664. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  665. return addr;
  666. }
  667. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  668. struct vm_area_struct *vma,
  669. unsigned long addr, unsigned long end,
  670. long *zap_work, struct zap_details *details)
  671. {
  672. pgd_t *pgd;
  673. unsigned long next;
  674. if (details && !details->check_mapping && !details->nonlinear_vma)
  675. details = NULL;
  676. BUG_ON(addr >= end);
  677. tlb_start_vma(tlb, vma);
  678. pgd = pgd_offset(vma->vm_mm, addr);
  679. do {
  680. next = pgd_addr_end(addr, end);
  681. if (pgd_none_or_clear_bad(pgd)) {
  682. (*zap_work)--;
  683. continue;
  684. }
  685. next = zap_pud_range(tlb, vma, pgd, addr, next,
  686. zap_work, details);
  687. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  688. tlb_end_vma(tlb, vma);
  689. return addr;
  690. }
  691. #ifdef CONFIG_PREEMPT
  692. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  693. #else
  694. /* No preempt: go for improved straight-line efficiency */
  695. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  696. #endif
  697. /**
  698. * unmap_vmas - unmap a range of memory covered by a list of vma's
  699. * @tlbp: address of the caller's struct mmu_gather
  700. * @vma: the starting vma
  701. * @start_addr: virtual address at which to start unmapping
  702. * @end_addr: virtual address at which to end unmapping
  703. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  704. * @details: details of nonlinear truncation or shared cache invalidation
  705. *
  706. * Returns the end address of the unmapping (restart addr if interrupted).
  707. *
  708. * Unmap all pages in the vma list.
  709. *
  710. * We aim to not hold locks for too long (for scheduling latency reasons).
  711. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  712. * return the ending mmu_gather to the caller.
  713. *
  714. * Only addresses between `start' and `end' will be unmapped.
  715. *
  716. * The VMA list must be sorted in ascending virtual address order.
  717. *
  718. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  719. * range after unmap_vmas() returns. So the only responsibility here is to
  720. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  721. * drops the lock and schedules.
  722. */
  723. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  724. struct vm_area_struct *vma, unsigned long start_addr,
  725. unsigned long end_addr, unsigned long *nr_accounted,
  726. struct zap_details *details)
  727. {
  728. long zap_work = ZAP_BLOCK_SIZE;
  729. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  730. int tlb_start_valid = 0;
  731. unsigned long start = start_addr;
  732. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  733. int fullmm = (*tlbp)->fullmm;
  734. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  735. unsigned long end;
  736. start = max(vma->vm_start, start_addr);
  737. if (start >= vma->vm_end)
  738. continue;
  739. end = min(vma->vm_end, end_addr);
  740. if (end <= vma->vm_start)
  741. continue;
  742. if (vma->vm_flags & VM_ACCOUNT)
  743. *nr_accounted += (end - start) >> PAGE_SHIFT;
  744. while (start != end) {
  745. if (!tlb_start_valid) {
  746. tlb_start = start;
  747. tlb_start_valid = 1;
  748. }
  749. if (unlikely(is_vm_hugetlb_page(vma))) {
  750. unmap_hugepage_range(vma, start, end);
  751. zap_work -= (end - start) /
  752. (HPAGE_SIZE / PAGE_SIZE);
  753. start = end;
  754. } else
  755. start = unmap_page_range(*tlbp, vma,
  756. start, end, &zap_work, details);
  757. if (zap_work > 0) {
  758. BUG_ON(start != end);
  759. break;
  760. }
  761. tlb_finish_mmu(*tlbp, tlb_start, start);
  762. if (need_resched() ||
  763. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  764. if (i_mmap_lock) {
  765. *tlbp = NULL;
  766. goto out;
  767. }
  768. cond_resched();
  769. }
  770. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  771. tlb_start_valid = 0;
  772. zap_work = ZAP_BLOCK_SIZE;
  773. }
  774. }
  775. out:
  776. return start; /* which is now the end (or restart) address */
  777. }
  778. /**
  779. * zap_page_range - remove user pages in a given range
  780. * @vma: vm_area_struct holding the applicable pages
  781. * @address: starting address of pages to zap
  782. * @size: number of bytes to zap
  783. * @details: details of nonlinear truncation or shared cache invalidation
  784. */
  785. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  786. unsigned long size, struct zap_details *details)
  787. {
  788. struct mm_struct *mm = vma->vm_mm;
  789. struct mmu_gather *tlb;
  790. unsigned long end = address + size;
  791. unsigned long nr_accounted = 0;
  792. lru_add_drain();
  793. tlb = tlb_gather_mmu(mm, 0);
  794. update_hiwater_rss(mm);
  795. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  796. if (tlb)
  797. tlb_finish_mmu(tlb, address, end);
  798. return end;
  799. }
  800. /*
  801. * Do a quick page-table lookup for a single page.
  802. */
  803. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  804. unsigned int flags)
  805. {
  806. pgd_t *pgd;
  807. pud_t *pud;
  808. pmd_t *pmd;
  809. pte_t *ptep, pte;
  810. spinlock_t *ptl;
  811. struct page *page;
  812. struct mm_struct *mm = vma->vm_mm;
  813. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  814. if (!IS_ERR(page)) {
  815. BUG_ON(flags & FOLL_GET);
  816. goto out;
  817. }
  818. page = NULL;
  819. pgd = pgd_offset(mm, address);
  820. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  821. goto no_page_table;
  822. pud = pud_offset(pgd, address);
  823. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  824. goto no_page_table;
  825. pmd = pmd_offset(pud, address);
  826. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  827. goto no_page_table;
  828. if (pmd_huge(*pmd)) {
  829. BUG_ON(flags & FOLL_GET);
  830. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  831. goto out;
  832. }
  833. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  834. if (!ptep)
  835. goto out;
  836. pte = *ptep;
  837. if (!pte_present(pte))
  838. goto unlock;
  839. if ((flags & FOLL_WRITE) && !pte_write(pte))
  840. goto unlock;
  841. page = vm_normal_page(vma, address, pte);
  842. if (unlikely(!page))
  843. goto unlock;
  844. if (flags & FOLL_GET)
  845. get_page(page);
  846. if (flags & FOLL_TOUCH) {
  847. if ((flags & FOLL_WRITE) &&
  848. !pte_dirty(pte) && !PageDirty(page))
  849. set_page_dirty(page);
  850. mark_page_accessed(page);
  851. }
  852. unlock:
  853. pte_unmap_unlock(ptep, ptl);
  854. out:
  855. return page;
  856. no_page_table:
  857. /*
  858. * When core dumping an enormous anonymous area that nobody
  859. * has touched so far, we don't want to allocate page tables.
  860. */
  861. if (flags & FOLL_ANON) {
  862. page = ZERO_PAGE(0);
  863. if (flags & FOLL_GET)
  864. get_page(page);
  865. BUG_ON(flags & FOLL_WRITE);
  866. }
  867. return page;
  868. }
  869. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  870. unsigned long start, int len, int write, int force,
  871. struct page **pages, struct vm_area_struct **vmas)
  872. {
  873. int i;
  874. unsigned int vm_flags;
  875. /*
  876. * Require read or write permissions.
  877. * If 'force' is set, we only require the "MAY" flags.
  878. */
  879. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  880. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  881. i = 0;
  882. do {
  883. struct vm_area_struct *vma;
  884. unsigned int foll_flags;
  885. vma = find_extend_vma(mm, start);
  886. if (!vma && in_gate_area(tsk, start)) {
  887. unsigned long pg = start & PAGE_MASK;
  888. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  889. pgd_t *pgd;
  890. pud_t *pud;
  891. pmd_t *pmd;
  892. pte_t *pte;
  893. if (write) /* user gate pages are read-only */
  894. return i ? : -EFAULT;
  895. if (pg > TASK_SIZE)
  896. pgd = pgd_offset_k(pg);
  897. else
  898. pgd = pgd_offset_gate(mm, pg);
  899. BUG_ON(pgd_none(*pgd));
  900. pud = pud_offset(pgd, pg);
  901. BUG_ON(pud_none(*pud));
  902. pmd = pmd_offset(pud, pg);
  903. if (pmd_none(*pmd))
  904. return i ? : -EFAULT;
  905. pte = pte_offset_map(pmd, pg);
  906. if (pte_none(*pte)) {
  907. pte_unmap(pte);
  908. return i ? : -EFAULT;
  909. }
  910. if (pages) {
  911. struct page *page = vm_normal_page(gate_vma, start, *pte);
  912. pages[i] = page;
  913. if (page)
  914. get_page(page);
  915. }
  916. pte_unmap(pte);
  917. if (vmas)
  918. vmas[i] = gate_vma;
  919. i++;
  920. start += PAGE_SIZE;
  921. len--;
  922. continue;
  923. }
  924. if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
  925. || !(vm_flags & vma->vm_flags))
  926. return i ? : -EFAULT;
  927. if (is_vm_hugetlb_page(vma)) {
  928. i = follow_hugetlb_page(mm, vma, pages, vmas,
  929. &start, &len, i, write);
  930. continue;
  931. }
  932. foll_flags = FOLL_TOUCH;
  933. if (pages)
  934. foll_flags |= FOLL_GET;
  935. if (!write && !(vma->vm_flags & VM_LOCKED) &&
  936. (!vma->vm_ops || (!vma->vm_ops->nopage &&
  937. !vma->vm_ops->fault)))
  938. foll_flags |= FOLL_ANON;
  939. do {
  940. struct page *page;
  941. /*
  942. * If tsk is ooming, cut off its access to large memory
  943. * allocations. It has a pending SIGKILL, but it can't
  944. * be processed until returning to user space.
  945. */
  946. if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
  947. return -ENOMEM;
  948. if (write)
  949. foll_flags |= FOLL_WRITE;
  950. cond_resched();
  951. while (!(page = follow_page(vma, start, foll_flags))) {
  952. int ret;
  953. ret = handle_mm_fault(mm, vma, start,
  954. foll_flags & FOLL_WRITE);
  955. if (ret & VM_FAULT_ERROR) {
  956. if (ret & VM_FAULT_OOM)
  957. return i ? i : -ENOMEM;
  958. else if (ret & VM_FAULT_SIGBUS)
  959. return i ? i : -EFAULT;
  960. BUG();
  961. }
  962. if (ret & VM_FAULT_MAJOR)
  963. tsk->maj_flt++;
  964. else
  965. tsk->min_flt++;
  966. /*
  967. * The VM_FAULT_WRITE bit tells us that
  968. * do_wp_page has broken COW when necessary,
  969. * even if maybe_mkwrite decided not to set
  970. * pte_write. We can thus safely do subsequent
  971. * page lookups as if they were reads.
  972. */
  973. if (ret & VM_FAULT_WRITE)
  974. foll_flags &= ~FOLL_WRITE;
  975. cond_resched();
  976. }
  977. if (pages) {
  978. pages[i] = page;
  979. flush_anon_page(vma, page, start);
  980. flush_dcache_page(page);
  981. }
  982. if (vmas)
  983. vmas[i] = vma;
  984. i++;
  985. start += PAGE_SIZE;
  986. len--;
  987. } while (len && start < vma->vm_end);
  988. } while (len);
  989. return i;
  990. }
  991. EXPORT_SYMBOL(get_user_pages);
  992. pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
  993. {
  994. pgd_t * pgd = pgd_offset(mm, addr);
  995. pud_t * pud = pud_alloc(mm, pgd, addr);
  996. if (pud) {
  997. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  998. if (pmd)
  999. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1000. }
  1001. return NULL;
  1002. }
  1003. /*
  1004. * This is the old fallback for page remapping.
  1005. *
  1006. * For historical reasons, it only allows reserved pages. Only
  1007. * old drivers should use this, and they needed to mark their
  1008. * pages reserved for the old functions anyway.
  1009. */
  1010. static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
  1011. {
  1012. int retval;
  1013. pte_t *pte;
  1014. spinlock_t *ptl;
  1015. retval = -EINVAL;
  1016. if (PageAnon(page))
  1017. goto out;
  1018. retval = -ENOMEM;
  1019. flush_dcache_page(page);
  1020. pte = get_locked_pte(mm, addr, &ptl);
  1021. if (!pte)
  1022. goto out;
  1023. retval = -EBUSY;
  1024. if (!pte_none(*pte))
  1025. goto out_unlock;
  1026. /* Ok, finally just insert the thing.. */
  1027. get_page(page);
  1028. inc_mm_counter(mm, file_rss);
  1029. page_add_file_rmap(page);
  1030. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1031. retval = 0;
  1032. out_unlock:
  1033. pte_unmap_unlock(pte, ptl);
  1034. out:
  1035. return retval;
  1036. }
  1037. /**
  1038. * vm_insert_page - insert single page into user vma
  1039. * @vma: user vma to map to
  1040. * @addr: target user address of this page
  1041. * @page: source kernel page
  1042. *
  1043. * This allows drivers to insert individual pages they've allocated
  1044. * into a user vma.
  1045. *
  1046. * The page has to be a nice clean _individual_ kernel allocation.
  1047. * If you allocate a compound page, you need to have marked it as
  1048. * such (__GFP_COMP), or manually just split the page up yourself
  1049. * (see split_page()).
  1050. *
  1051. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1052. * took an arbitrary page protection parameter. This doesn't allow
  1053. * that. Your vma protection will have to be set up correctly, which
  1054. * means that if you want a shared writable mapping, you'd better
  1055. * ask for a shared writable mapping!
  1056. *
  1057. * The page does not need to be reserved.
  1058. */
  1059. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
  1060. {
  1061. if (addr < vma->vm_start || addr >= vma->vm_end)
  1062. return -EFAULT;
  1063. if (!page_count(page))
  1064. return -EINVAL;
  1065. vma->vm_flags |= VM_INSERTPAGE;
  1066. return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
  1067. }
  1068. EXPORT_SYMBOL(vm_insert_page);
  1069. /**
  1070. * vm_insert_pfn - insert single pfn into user vma
  1071. * @vma: user vma to map to
  1072. * @addr: target user address of this page
  1073. * @pfn: source kernel pfn
  1074. *
  1075. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1076. * they've allocated into a user vma. Same comments apply.
  1077. *
  1078. * This function should only be called from a vm_ops->fault handler, and
  1079. * in that case the handler should return NULL.
  1080. */
  1081. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1082. unsigned long pfn)
  1083. {
  1084. struct mm_struct *mm = vma->vm_mm;
  1085. int retval;
  1086. pte_t *pte, entry;
  1087. spinlock_t *ptl;
  1088. BUG_ON(!(vma->vm_flags & VM_PFNMAP));
  1089. BUG_ON(is_cow_mapping(vma->vm_flags));
  1090. retval = -ENOMEM;
  1091. pte = get_locked_pte(mm, addr, &ptl);
  1092. if (!pte)
  1093. goto out;
  1094. retval = -EBUSY;
  1095. if (!pte_none(*pte))
  1096. goto out_unlock;
  1097. /* Ok, finally just insert the thing.. */
  1098. entry = pfn_pte(pfn, vma->vm_page_prot);
  1099. set_pte_at(mm, addr, pte, entry);
  1100. update_mmu_cache(vma, addr, entry);
  1101. retval = 0;
  1102. out_unlock:
  1103. pte_unmap_unlock(pte, ptl);
  1104. out:
  1105. return retval;
  1106. }
  1107. EXPORT_SYMBOL(vm_insert_pfn);
  1108. /*
  1109. * maps a range of physical memory into the requested pages. the old
  1110. * mappings are removed. any references to nonexistent pages results
  1111. * in null mappings (currently treated as "copy-on-access")
  1112. */
  1113. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1114. unsigned long addr, unsigned long end,
  1115. unsigned long pfn, pgprot_t prot)
  1116. {
  1117. pte_t *pte;
  1118. spinlock_t *ptl;
  1119. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1120. if (!pte)
  1121. return -ENOMEM;
  1122. arch_enter_lazy_mmu_mode();
  1123. do {
  1124. BUG_ON(!pte_none(*pte));
  1125. set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
  1126. pfn++;
  1127. } while (pte++, addr += PAGE_SIZE, addr != end);
  1128. arch_leave_lazy_mmu_mode();
  1129. pte_unmap_unlock(pte - 1, ptl);
  1130. return 0;
  1131. }
  1132. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1133. unsigned long addr, unsigned long end,
  1134. unsigned long pfn, pgprot_t prot)
  1135. {
  1136. pmd_t *pmd;
  1137. unsigned long next;
  1138. pfn -= addr >> PAGE_SHIFT;
  1139. pmd = pmd_alloc(mm, pud, addr);
  1140. if (!pmd)
  1141. return -ENOMEM;
  1142. do {
  1143. next = pmd_addr_end(addr, end);
  1144. if (remap_pte_range(mm, pmd, addr, next,
  1145. pfn + (addr >> PAGE_SHIFT), prot))
  1146. return -ENOMEM;
  1147. } while (pmd++, addr = next, addr != end);
  1148. return 0;
  1149. }
  1150. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1151. unsigned long addr, unsigned long end,
  1152. unsigned long pfn, pgprot_t prot)
  1153. {
  1154. pud_t *pud;
  1155. unsigned long next;
  1156. pfn -= addr >> PAGE_SHIFT;
  1157. pud = pud_alloc(mm, pgd, addr);
  1158. if (!pud)
  1159. return -ENOMEM;
  1160. do {
  1161. next = pud_addr_end(addr, end);
  1162. if (remap_pmd_range(mm, pud, addr, next,
  1163. pfn + (addr >> PAGE_SHIFT), prot))
  1164. return -ENOMEM;
  1165. } while (pud++, addr = next, addr != end);
  1166. return 0;
  1167. }
  1168. /**
  1169. * remap_pfn_range - remap kernel memory to userspace
  1170. * @vma: user vma to map to
  1171. * @addr: target user address to start at
  1172. * @pfn: physical address of kernel memory
  1173. * @size: size of map area
  1174. * @prot: page protection flags for this mapping
  1175. *
  1176. * Note: this is only safe if the mm semaphore is held when called.
  1177. */
  1178. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1179. unsigned long pfn, unsigned long size, pgprot_t prot)
  1180. {
  1181. pgd_t *pgd;
  1182. unsigned long next;
  1183. unsigned long end = addr + PAGE_ALIGN(size);
  1184. struct mm_struct *mm = vma->vm_mm;
  1185. int err;
  1186. /*
  1187. * Physically remapped pages are special. Tell the
  1188. * rest of the world about it:
  1189. * VM_IO tells people not to look at these pages
  1190. * (accesses can have side effects).
  1191. * VM_RESERVED is specified all over the place, because
  1192. * in 2.4 it kept swapout's vma scan off this vma; but
  1193. * in 2.6 the LRU scan won't even find its pages, so this
  1194. * flag means no more than count its pages in reserved_vm,
  1195. * and omit it from core dump, even when VM_IO turned off.
  1196. * VM_PFNMAP tells the core MM that the base pages are just
  1197. * raw PFN mappings, and do not have a "struct page" associated
  1198. * with them.
  1199. *
  1200. * There's a horrible special case to handle copy-on-write
  1201. * behaviour that some programs depend on. We mark the "original"
  1202. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1203. */
  1204. if (is_cow_mapping(vma->vm_flags)) {
  1205. if (addr != vma->vm_start || end != vma->vm_end)
  1206. return -EINVAL;
  1207. vma->vm_pgoff = pfn;
  1208. }
  1209. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1210. BUG_ON(addr >= end);
  1211. pfn -= addr >> PAGE_SHIFT;
  1212. pgd = pgd_offset(mm, addr);
  1213. flush_cache_range(vma, addr, end);
  1214. do {
  1215. next = pgd_addr_end(addr, end);
  1216. err = remap_pud_range(mm, pgd, addr, next,
  1217. pfn + (addr >> PAGE_SHIFT), prot);
  1218. if (err)
  1219. break;
  1220. } while (pgd++, addr = next, addr != end);
  1221. return err;
  1222. }
  1223. EXPORT_SYMBOL(remap_pfn_range);
  1224. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1225. unsigned long addr, unsigned long end,
  1226. pte_fn_t fn, void *data)
  1227. {
  1228. pte_t *pte;
  1229. int err;
  1230. struct page *pmd_page;
  1231. spinlock_t *uninitialized_var(ptl);
  1232. pte = (mm == &init_mm) ?
  1233. pte_alloc_kernel(pmd, addr) :
  1234. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1235. if (!pte)
  1236. return -ENOMEM;
  1237. BUG_ON(pmd_huge(*pmd));
  1238. pmd_page = pmd_page(*pmd);
  1239. do {
  1240. err = fn(pte, pmd_page, addr, data);
  1241. if (err)
  1242. break;
  1243. } while (pte++, addr += PAGE_SIZE, addr != end);
  1244. if (mm != &init_mm)
  1245. pte_unmap_unlock(pte-1, ptl);
  1246. return err;
  1247. }
  1248. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1249. unsigned long addr, unsigned long end,
  1250. pte_fn_t fn, void *data)
  1251. {
  1252. pmd_t *pmd;
  1253. unsigned long next;
  1254. int err;
  1255. pmd = pmd_alloc(mm, pud, addr);
  1256. if (!pmd)
  1257. return -ENOMEM;
  1258. do {
  1259. next = pmd_addr_end(addr, end);
  1260. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1261. if (err)
  1262. break;
  1263. } while (pmd++, addr = next, addr != end);
  1264. return err;
  1265. }
  1266. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1267. unsigned long addr, unsigned long end,
  1268. pte_fn_t fn, void *data)
  1269. {
  1270. pud_t *pud;
  1271. unsigned long next;
  1272. int err;
  1273. pud = pud_alloc(mm, pgd, addr);
  1274. if (!pud)
  1275. return -ENOMEM;
  1276. do {
  1277. next = pud_addr_end(addr, end);
  1278. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1279. if (err)
  1280. break;
  1281. } while (pud++, addr = next, addr != end);
  1282. return err;
  1283. }
  1284. /*
  1285. * Scan a region of virtual memory, filling in page tables as necessary
  1286. * and calling a provided function on each leaf page table.
  1287. */
  1288. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1289. unsigned long size, pte_fn_t fn, void *data)
  1290. {
  1291. pgd_t *pgd;
  1292. unsigned long next;
  1293. unsigned long end = addr + size;
  1294. int err;
  1295. BUG_ON(addr >= end);
  1296. pgd = pgd_offset(mm, addr);
  1297. do {
  1298. next = pgd_addr_end(addr, end);
  1299. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1300. if (err)
  1301. break;
  1302. } while (pgd++, addr = next, addr != end);
  1303. return err;
  1304. }
  1305. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1306. /*
  1307. * handle_pte_fault chooses page fault handler according to an entry
  1308. * which was read non-atomically. Before making any commitment, on
  1309. * those architectures or configurations (e.g. i386 with PAE) which
  1310. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1311. * must check under lock before unmapping the pte and proceeding
  1312. * (but do_wp_page is only called after already making such a check;
  1313. * and do_anonymous_page and do_no_page can safely check later on).
  1314. */
  1315. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1316. pte_t *page_table, pte_t orig_pte)
  1317. {
  1318. int same = 1;
  1319. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1320. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1321. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1322. spin_lock(ptl);
  1323. same = pte_same(*page_table, orig_pte);
  1324. spin_unlock(ptl);
  1325. }
  1326. #endif
  1327. pte_unmap(page_table);
  1328. return same;
  1329. }
  1330. /*
  1331. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1332. * servicing faults for write access. In the normal case, do always want
  1333. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1334. * that do not have writing enabled, when used by access_process_vm.
  1335. */
  1336. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1337. {
  1338. if (likely(vma->vm_flags & VM_WRITE))
  1339. pte = pte_mkwrite(pte);
  1340. return pte;
  1341. }
  1342. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1343. {
  1344. /*
  1345. * If the source page was a PFN mapping, we don't have
  1346. * a "struct page" for it. We do a best-effort copy by
  1347. * just copying from the original user address. If that
  1348. * fails, we just zero-fill it. Live with it.
  1349. */
  1350. if (unlikely(!src)) {
  1351. void *kaddr = kmap_atomic(dst, KM_USER0);
  1352. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1353. /*
  1354. * This really shouldn't fail, because the page is there
  1355. * in the page tables. But it might just be unreadable,
  1356. * in which case we just give up and fill the result with
  1357. * zeroes.
  1358. */
  1359. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1360. memset(kaddr, 0, PAGE_SIZE);
  1361. kunmap_atomic(kaddr, KM_USER0);
  1362. flush_dcache_page(dst);
  1363. return;
  1364. }
  1365. copy_user_highpage(dst, src, va, vma);
  1366. }
  1367. /*
  1368. * This routine handles present pages, when users try to write
  1369. * to a shared page. It is done by copying the page to a new address
  1370. * and decrementing the shared-page counter for the old page.
  1371. *
  1372. * Note that this routine assumes that the protection checks have been
  1373. * done by the caller (the low-level page fault routine in most cases).
  1374. * Thus we can safely just mark it writable once we've done any necessary
  1375. * COW.
  1376. *
  1377. * We also mark the page dirty at this point even though the page will
  1378. * change only once the write actually happens. This avoids a few races,
  1379. * and potentially makes it more efficient.
  1380. *
  1381. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1382. * but allow concurrent faults), with pte both mapped and locked.
  1383. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1384. */
  1385. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1386. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1387. spinlock_t *ptl, pte_t orig_pte)
  1388. {
  1389. struct page *old_page, *new_page;
  1390. pte_t entry;
  1391. int reuse = 0, ret = 0;
  1392. int page_mkwrite = 0;
  1393. struct page *dirty_page = NULL;
  1394. old_page = vm_normal_page(vma, address, orig_pte);
  1395. if (!old_page)
  1396. goto gotten;
  1397. /*
  1398. * Take out anonymous pages first, anonymous shared vmas are
  1399. * not dirty accountable.
  1400. */
  1401. if (PageAnon(old_page)) {
  1402. if (!TestSetPageLocked(old_page)) {
  1403. reuse = can_share_swap_page(old_page);
  1404. unlock_page(old_page);
  1405. }
  1406. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1407. (VM_WRITE|VM_SHARED))) {
  1408. /*
  1409. * Only catch write-faults on shared writable pages,
  1410. * read-only shared pages can get COWed by
  1411. * get_user_pages(.write=1, .force=1).
  1412. */
  1413. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1414. /*
  1415. * Notify the address space that the page is about to
  1416. * become writable so that it can prohibit this or wait
  1417. * for the page to get into an appropriate state.
  1418. *
  1419. * We do this without the lock held, so that it can
  1420. * sleep if it needs to.
  1421. */
  1422. page_cache_get(old_page);
  1423. pte_unmap_unlock(page_table, ptl);
  1424. if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
  1425. goto unwritable_page;
  1426. /*
  1427. * Since we dropped the lock we need to revalidate
  1428. * the PTE as someone else may have changed it. If
  1429. * they did, we just return, as we can count on the
  1430. * MMU to tell us if they didn't also make it writable.
  1431. */
  1432. page_table = pte_offset_map_lock(mm, pmd, address,
  1433. &ptl);
  1434. page_cache_release(old_page);
  1435. if (!pte_same(*page_table, orig_pte))
  1436. goto unlock;
  1437. page_mkwrite = 1;
  1438. }
  1439. dirty_page = old_page;
  1440. get_page(dirty_page);
  1441. reuse = 1;
  1442. }
  1443. if (reuse) {
  1444. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1445. entry = pte_mkyoung(orig_pte);
  1446. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1447. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1448. update_mmu_cache(vma, address, entry);
  1449. ret |= VM_FAULT_WRITE;
  1450. goto unlock;
  1451. }
  1452. /*
  1453. * Ok, we need to copy. Oh, well..
  1454. */
  1455. page_cache_get(old_page);
  1456. gotten:
  1457. pte_unmap_unlock(page_table, ptl);
  1458. if (unlikely(anon_vma_prepare(vma)))
  1459. goto oom;
  1460. VM_BUG_ON(old_page == ZERO_PAGE(0));
  1461. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1462. if (!new_page)
  1463. goto oom;
  1464. cow_user_page(new_page, old_page, address, vma);
  1465. /*
  1466. * Re-check the pte - we dropped the lock
  1467. */
  1468. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1469. if (likely(pte_same(*page_table, orig_pte))) {
  1470. if (old_page) {
  1471. page_remove_rmap(old_page, vma);
  1472. if (!PageAnon(old_page)) {
  1473. dec_mm_counter(mm, file_rss);
  1474. inc_mm_counter(mm, anon_rss);
  1475. }
  1476. } else
  1477. inc_mm_counter(mm, anon_rss);
  1478. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1479. entry = mk_pte(new_page, vma->vm_page_prot);
  1480. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1481. /*
  1482. * Clear the pte entry and flush it first, before updating the
  1483. * pte with the new entry. This will avoid a race condition
  1484. * seen in the presence of one thread doing SMC and another
  1485. * thread doing COW.
  1486. */
  1487. ptep_clear_flush(vma, address, page_table);
  1488. set_pte_at(mm, address, page_table, entry);
  1489. update_mmu_cache(vma, address, entry);
  1490. lru_cache_add_active(new_page);
  1491. page_add_new_anon_rmap(new_page, vma, address);
  1492. /* Free the old page.. */
  1493. new_page = old_page;
  1494. ret |= VM_FAULT_WRITE;
  1495. }
  1496. if (new_page)
  1497. page_cache_release(new_page);
  1498. if (old_page)
  1499. page_cache_release(old_page);
  1500. unlock:
  1501. pte_unmap_unlock(page_table, ptl);
  1502. if (dirty_page) {
  1503. if (vma->vm_file)
  1504. file_update_time(vma->vm_file);
  1505. /*
  1506. * Yes, Virginia, this is actually required to prevent a race
  1507. * with clear_page_dirty_for_io() from clearing the page dirty
  1508. * bit after it clear all dirty ptes, but before a racing
  1509. * do_wp_page installs a dirty pte.
  1510. *
  1511. * do_no_page is protected similarly.
  1512. */
  1513. wait_on_page_locked(dirty_page);
  1514. set_page_dirty_balance(dirty_page, page_mkwrite);
  1515. put_page(dirty_page);
  1516. }
  1517. return ret;
  1518. oom:
  1519. if (old_page)
  1520. page_cache_release(old_page);
  1521. return VM_FAULT_OOM;
  1522. unwritable_page:
  1523. page_cache_release(old_page);
  1524. return VM_FAULT_SIGBUS;
  1525. }
  1526. /*
  1527. * Helper functions for unmap_mapping_range().
  1528. *
  1529. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1530. *
  1531. * We have to restart searching the prio_tree whenever we drop the lock,
  1532. * since the iterator is only valid while the lock is held, and anyway
  1533. * a later vma might be split and reinserted earlier while lock dropped.
  1534. *
  1535. * The list of nonlinear vmas could be handled more efficiently, using
  1536. * a placeholder, but handle it in the same way until a need is shown.
  1537. * It is important to search the prio_tree before nonlinear list: a vma
  1538. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1539. * while the lock is dropped; but never shifted from list to prio_tree.
  1540. *
  1541. * In order to make forward progress despite restarting the search,
  1542. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1543. * quickly skip it next time around. Since the prio_tree search only
  1544. * shows us those vmas affected by unmapping the range in question, we
  1545. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1546. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1547. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1548. * i_mmap_lock.
  1549. *
  1550. * In order to make forward progress despite repeatedly restarting some
  1551. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1552. * and restart from that address when we reach that vma again. It might
  1553. * have been split or merged, shrunk or extended, but never shifted: so
  1554. * restart_addr remains valid so long as it remains in the vma's range.
  1555. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1556. * values so we can save vma's restart_addr in its truncate_count field.
  1557. */
  1558. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1559. static void reset_vma_truncate_counts(struct address_space *mapping)
  1560. {
  1561. struct vm_area_struct *vma;
  1562. struct prio_tree_iter iter;
  1563. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1564. vma->vm_truncate_count = 0;
  1565. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1566. vma->vm_truncate_count = 0;
  1567. }
  1568. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1569. unsigned long start_addr, unsigned long end_addr,
  1570. struct zap_details *details)
  1571. {
  1572. unsigned long restart_addr;
  1573. int need_break;
  1574. /*
  1575. * files that support invalidating or truncating portions of the
  1576. * file from under mmaped areas must have their ->fault function
  1577. * return a locked page (and set VM_FAULT_LOCKED in the return).
  1578. * This provides synchronisation against concurrent unmapping here.
  1579. */
  1580. again:
  1581. restart_addr = vma->vm_truncate_count;
  1582. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1583. start_addr = restart_addr;
  1584. if (start_addr >= end_addr) {
  1585. /* Top of vma has been split off since last time */
  1586. vma->vm_truncate_count = details->truncate_count;
  1587. return 0;
  1588. }
  1589. }
  1590. restart_addr = zap_page_range(vma, start_addr,
  1591. end_addr - start_addr, details);
  1592. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  1593. if (restart_addr >= end_addr) {
  1594. /* We have now completed this vma: mark it so */
  1595. vma->vm_truncate_count = details->truncate_count;
  1596. if (!need_break)
  1597. return 0;
  1598. } else {
  1599. /* Note restart_addr in vma's truncate_count field */
  1600. vma->vm_truncate_count = restart_addr;
  1601. if (!need_break)
  1602. goto again;
  1603. }
  1604. spin_unlock(details->i_mmap_lock);
  1605. cond_resched();
  1606. spin_lock(details->i_mmap_lock);
  1607. return -EINTR;
  1608. }
  1609. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1610. struct zap_details *details)
  1611. {
  1612. struct vm_area_struct *vma;
  1613. struct prio_tree_iter iter;
  1614. pgoff_t vba, vea, zba, zea;
  1615. restart:
  1616. vma_prio_tree_foreach(vma, &iter, root,
  1617. details->first_index, details->last_index) {
  1618. /* Skip quickly over those we have already dealt with */
  1619. if (vma->vm_truncate_count == details->truncate_count)
  1620. continue;
  1621. vba = vma->vm_pgoff;
  1622. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1623. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1624. zba = details->first_index;
  1625. if (zba < vba)
  1626. zba = vba;
  1627. zea = details->last_index;
  1628. if (zea > vea)
  1629. zea = vea;
  1630. if (unmap_mapping_range_vma(vma,
  1631. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  1632. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  1633. details) < 0)
  1634. goto restart;
  1635. }
  1636. }
  1637. static inline void unmap_mapping_range_list(struct list_head *head,
  1638. struct zap_details *details)
  1639. {
  1640. struct vm_area_struct *vma;
  1641. /*
  1642. * In nonlinear VMAs there is no correspondence between virtual address
  1643. * offset and file offset. So we must perform an exhaustive search
  1644. * across *all* the pages in each nonlinear VMA, not just the pages
  1645. * whose virtual address lies outside the file truncation point.
  1646. */
  1647. restart:
  1648. list_for_each_entry(vma, head, shared.vm_set.list) {
  1649. /* Skip quickly over those we have already dealt with */
  1650. if (vma->vm_truncate_count == details->truncate_count)
  1651. continue;
  1652. details->nonlinear_vma = vma;
  1653. if (unmap_mapping_range_vma(vma, vma->vm_start,
  1654. vma->vm_end, details) < 0)
  1655. goto restart;
  1656. }
  1657. }
  1658. /**
  1659. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  1660. * @mapping: the address space containing mmaps to be unmapped.
  1661. * @holebegin: byte in first page to unmap, relative to the start of
  1662. * the underlying file. This will be rounded down to a PAGE_SIZE
  1663. * boundary. Note that this is different from vmtruncate(), which
  1664. * must keep the partial page. In contrast, we must get rid of
  1665. * partial pages.
  1666. * @holelen: size of prospective hole in bytes. This will be rounded
  1667. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  1668. * end of the file.
  1669. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  1670. * but 0 when invalidating pagecache, don't throw away private data.
  1671. */
  1672. void unmap_mapping_range(struct address_space *mapping,
  1673. loff_t const holebegin, loff_t const holelen, int even_cows)
  1674. {
  1675. struct zap_details details;
  1676. pgoff_t hba = holebegin >> PAGE_SHIFT;
  1677. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1678. /* Check for overflow. */
  1679. if (sizeof(holelen) > sizeof(hlen)) {
  1680. long long holeend =
  1681. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1682. if (holeend & ~(long long)ULONG_MAX)
  1683. hlen = ULONG_MAX - hba + 1;
  1684. }
  1685. details.check_mapping = even_cows? NULL: mapping;
  1686. details.nonlinear_vma = NULL;
  1687. details.first_index = hba;
  1688. details.last_index = hba + hlen - 1;
  1689. if (details.last_index < details.first_index)
  1690. details.last_index = ULONG_MAX;
  1691. details.i_mmap_lock = &mapping->i_mmap_lock;
  1692. spin_lock(&mapping->i_mmap_lock);
  1693. /* Protect against endless unmapping loops */
  1694. mapping->truncate_count++;
  1695. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  1696. if (mapping->truncate_count == 0)
  1697. reset_vma_truncate_counts(mapping);
  1698. mapping->truncate_count++;
  1699. }
  1700. details.truncate_count = mapping->truncate_count;
  1701. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  1702. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  1703. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  1704. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  1705. spin_unlock(&mapping->i_mmap_lock);
  1706. }
  1707. EXPORT_SYMBOL(unmap_mapping_range);
  1708. /**
  1709. * vmtruncate - unmap mappings "freed" by truncate() syscall
  1710. * @inode: inode of the file used
  1711. * @offset: file offset to start truncating
  1712. *
  1713. * NOTE! We have to be ready to update the memory sharing
  1714. * between the file and the memory map for a potential last
  1715. * incomplete page. Ugly, but necessary.
  1716. */
  1717. int vmtruncate(struct inode * inode, loff_t offset)
  1718. {
  1719. struct address_space *mapping = inode->i_mapping;
  1720. unsigned long limit;
  1721. if (inode->i_size < offset)
  1722. goto do_expand;
  1723. /*
  1724. * truncation of in-use swapfiles is disallowed - it would cause
  1725. * subsequent swapout to scribble on the now-freed blocks.
  1726. */
  1727. if (IS_SWAPFILE(inode))
  1728. goto out_busy;
  1729. i_size_write(inode, offset);
  1730. /*
  1731. * unmap_mapping_range is called twice, first simply for efficiency
  1732. * so that truncate_inode_pages does fewer single-page unmaps. However
  1733. * after this first call, and before truncate_inode_pages finishes,
  1734. * it is possible for private pages to be COWed, which remain after
  1735. * truncate_inode_pages finishes, hence the second unmap_mapping_range
  1736. * call must be made for correctness.
  1737. */
  1738. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1739. truncate_inode_pages(mapping, offset);
  1740. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1741. goto out_truncate;
  1742. do_expand:
  1743. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  1744. if (limit != RLIM_INFINITY && offset > limit)
  1745. goto out_sig;
  1746. if (offset > inode->i_sb->s_maxbytes)
  1747. goto out_big;
  1748. i_size_write(inode, offset);
  1749. out_truncate:
  1750. if (inode->i_op && inode->i_op->truncate)
  1751. inode->i_op->truncate(inode);
  1752. return 0;
  1753. out_sig:
  1754. send_sig(SIGXFSZ, current, 0);
  1755. out_big:
  1756. return -EFBIG;
  1757. out_busy:
  1758. return -ETXTBSY;
  1759. }
  1760. EXPORT_SYMBOL(vmtruncate);
  1761. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  1762. {
  1763. struct address_space *mapping = inode->i_mapping;
  1764. /*
  1765. * If the underlying filesystem is not going to provide
  1766. * a way to truncate a range of blocks (punch a hole) -
  1767. * we should return failure right now.
  1768. */
  1769. if (!inode->i_op || !inode->i_op->truncate_range)
  1770. return -ENOSYS;
  1771. mutex_lock(&inode->i_mutex);
  1772. down_write(&inode->i_alloc_sem);
  1773. unmap_mapping_range(mapping, offset, (end - offset), 1);
  1774. truncate_inode_pages_range(mapping, offset, end);
  1775. unmap_mapping_range(mapping, offset, (end - offset), 1);
  1776. inode->i_op->truncate_range(inode, offset, end);
  1777. up_write(&inode->i_alloc_sem);
  1778. mutex_unlock(&inode->i_mutex);
  1779. return 0;
  1780. }
  1781. /*
  1782. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1783. * but allow concurrent faults), and pte mapped but not yet locked.
  1784. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1785. */
  1786. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1787. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1788. int write_access, pte_t orig_pte)
  1789. {
  1790. spinlock_t *ptl;
  1791. struct page *page;
  1792. swp_entry_t entry;
  1793. pte_t pte;
  1794. int ret = 0;
  1795. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  1796. goto out;
  1797. entry = pte_to_swp_entry(orig_pte);
  1798. if (is_migration_entry(entry)) {
  1799. migration_entry_wait(mm, pmd, address);
  1800. goto out;
  1801. }
  1802. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  1803. page = lookup_swap_cache(entry);
  1804. if (!page) {
  1805. grab_swap_token(); /* Contend for token _before_ read-in */
  1806. page = swapin_readahead(entry, vma, address);
  1807. if (!page) {
  1808. /*
  1809. * Back out if somebody else faulted in this pte
  1810. * while we released the pte lock.
  1811. */
  1812. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1813. if (likely(pte_same(*page_table, orig_pte)))
  1814. ret = VM_FAULT_OOM;
  1815. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  1816. goto unlock;
  1817. }
  1818. /* Had to read the page from swap area: Major fault */
  1819. ret = VM_FAULT_MAJOR;
  1820. count_vm_event(PGMAJFAULT);
  1821. }
  1822. mark_page_accessed(page);
  1823. lock_page(page);
  1824. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  1825. /*
  1826. * Back out if somebody else already faulted in this pte.
  1827. */
  1828. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1829. if (unlikely(!pte_same(*page_table, orig_pte)))
  1830. goto out_nomap;
  1831. if (unlikely(!PageUptodate(page))) {
  1832. ret = VM_FAULT_SIGBUS;
  1833. goto out_nomap;
  1834. }
  1835. /* The page isn't present yet, go ahead with the fault. */
  1836. inc_mm_counter(mm, anon_rss);
  1837. pte = mk_pte(page, vma->vm_page_prot);
  1838. if (write_access && can_share_swap_page(page)) {
  1839. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  1840. write_access = 0;
  1841. }
  1842. flush_icache_page(vma, page);
  1843. set_pte_at(mm, address, page_table, pte);
  1844. page_add_anon_rmap(page, vma, address);
  1845. swap_free(entry);
  1846. if (vm_swap_full())
  1847. remove_exclusive_swap_page(page);
  1848. unlock_page(page);
  1849. if (write_access) {
  1850. /* XXX: We could OR the do_wp_page code with this one? */
  1851. if (do_wp_page(mm, vma, address,
  1852. page_table, pmd, ptl, pte) & VM_FAULT_OOM)
  1853. ret = VM_FAULT_OOM;
  1854. goto out;
  1855. }
  1856. /* No need to invalidate - it was non-present before */
  1857. update_mmu_cache(vma, address, pte);
  1858. unlock:
  1859. pte_unmap_unlock(page_table, ptl);
  1860. out:
  1861. return ret;
  1862. out_nomap:
  1863. pte_unmap_unlock(page_table, ptl);
  1864. unlock_page(page);
  1865. page_cache_release(page);
  1866. return ret;
  1867. }
  1868. /*
  1869. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1870. * but allow concurrent faults), and pte mapped but not yet locked.
  1871. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1872. */
  1873. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1874. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1875. int write_access)
  1876. {
  1877. struct page *page;
  1878. spinlock_t *ptl;
  1879. pte_t entry;
  1880. /* Allocate our own private page. */
  1881. pte_unmap(page_table);
  1882. if (unlikely(anon_vma_prepare(vma)))
  1883. goto oom;
  1884. page = alloc_zeroed_user_highpage_movable(vma, address);
  1885. if (!page)
  1886. goto oom;
  1887. entry = mk_pte(page, vma->vm_page_prot);
  1888. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1889. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1890. if (!pte_none(*page_table))
  1891. goto release;
  1892. inc_mm_counter(mm, anon_rss);
  1893. lru_cache_add_active(page);
  1894. page_add_new_anon_rmap(page, vma, address);
  1895. set_pte_at(mm, address, page_table, entry);
  1896. /* No need to invalidate - it was non-present before */
  1897. update_mmu_cache(vma, address, entry);
  1898. unlock:
  1899. pte_unmap_unlock(page_table, ptl);
  1900. return 0;
  1901. release:
  1902. page_cache_release(page);
  1903. goto unlock;
  1904. oom:
  1905. return VM_FAULT_OOM;
  1906. }
  1907. /*
  1908. * __do_fault() tries to create a new page mapping. It aggressively
  1909. * tries to share with existing pages, but makes a separate copy if
  1910. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  1911. * the next page fault.
  1912. *
  1913. * As this is called only for pages that do not currently exist, we
  1914. * do not need to flush old virtual caches or the TLB.
  1915. *
  1916. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1917. * but allow concurrent faults), and pte neither mapped nor locked.
  1918. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1919. */
  1920. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  1921. unsigned long address, pmd_t *pmd,
  1922. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  1923. {
  1924. pte_t *page_table;
  1925. spinlock_t *ptl;
  1926. struct page *page;
  1927. pte_t entry;
  1928. int anon = 0;
  1929. struct page *dirty_page = NULL;
  1930. struct vm_fault vmf;
  1931. int ret;
  1932. int page_mkwrite = 0;
  1933. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  1934. vmf.pgoff = pgoff;
  1935. vmf.flags = flags;
  1936. vmf.page = NULL;
  1937. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1938. if (likely(vma->vm_ops->fault)) {
  1939. ret = vma->vm_ops->fault(vma, &vmf);
  1940. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  1941. return ret;
  1942. } else {
  1943. /* Legacy ->nopage path */
  1944. ret = 0;
  1945. vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
  1946. /* no page was available -- either SIGBUS or OOM */
  1947. if (unlikely(vmf.page == NOPAGE_SIGBUS))
  1948. return VM_FAULT_SIGBUS;
  1949. else if (unlikely(vmf.page == NOPAGE_OOM))
  1950. return VM_FAULT_OOM;
  1951. }
  1952. /*
  1953. * For consistency in subsequent calls, make the faulted page always
  1954. * locked.
  1955. */
  1956. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  1957. lock_page(vmf.page);
  1958. else
  1959. VM_BUG_ON(!PageLocked(vmf.page));
  1960. /*
  1961. * Should we do an early C-O-W break?
  1962. */
  1963. page = vmf.page;
  1964. if (flags & FAULT_FLAG_WRITE) {
  1965. if (!(vma->vm_flags & VM_SHARED)) {
  1966. anon = 1;
  1967. if (unlikely(anon_vma_prepare(vma))) {
  1968. ret = VM_FAULT_OOM;
  1969. goto out;
  1970. }
  1971. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  1972. vma, address);
  1973. if (!page) {
  1974. ret = VM_FAULT_OOM;
  1975. goto out;
  1976. }
  1977. copy_user_highpage(page, vmf.page, address, vma);
  1978. } else {
  1979. /*
  1980. * If the page will be shareable, see if the backing
  1981. * address space wants to know that the page is about
  1982. * to become writable
  1983. */
  1984. if (vma->vm_ops->page_mkwrite) {
  1985. unlock_page(page);
  1986. if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
  1987. ret = VM_FAULT_SIGBUS;
  1988. anon = 1; /* no anon but release vmf.page */
  1989. goto out_unlocked;
  1990. }
  1991. lock_page(page);
  1992. /*
  1993. * XXX: this is not quite right (racy vs
  1994. * invalidate) to unlock and relock the page
  1995. * like this, however a better fix requires
  1996. * reworking page_mkwrite locking API, which
  1997. * is better done later.
  1998. */
  1999. if (!page->mapping) {
  2000. ret = 0;
  2001. anon = 1; /* no anon but release vmf.page */
  2002. goto out;
  2003. }
  2004. page_mkwrite = 1;
  2005. }
  2006. }
  2007. }
  2008. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2009. /*
  2010. * This silly early PAGE_DIRTY setting removes a race
  2011. * due to the bad i386 page protection. But it's valid
  2012. * for other architectures too.
  2013. *
  2014. * Note that if write_access is true, we either now have
  2015. * an exclusive copy of the page, or this is a shared mapping,
  2016. * so we can make it writable and dirty to avoid having to
  2017. * handle that later.
  2018. */
  2019. /* Only go through if we didn't race with anybody else... */
  2020. if (likely(pte_same(*page_table, orig_pte))) {
  2021. flush_icache_page(vma, page);
  2022. entry = mk_pte(page, vma->vm_page_prot);
  2023. if (flags & FAULT_FLAG_WRITE)
  2024. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2025. set_pte_at(mm, address, page_table, entry);
  2026. if (anon) {
  2027. inc_mm_counter(mm, anon_rss);
  2028. lru_cache_add_active(page);
  2029. page_add_new_anon_rmap(page, vma, address);
  2030. } else {
  2031. inc_mm_counter(mm, file_rss);
  2032. page_add_file_rmap(page);
  2033. if (flags & FAULT_FLAG_WRITE) {
  2034. dirty_page = page;
  2035. get_page(dirty_page);
  2036. }
  2037. }
  2038. /* no need to invalidate: a not-present page won't be cached */
  2039. update_mmu_cache(vma, address, entry);
  2040. } else {
  2041. if (anon)
  2042. page_cache_release(page);
  2043. else
  2044. anon = 1; /* no anon but release faulted_page */
  2045. }
  2046. pte_unmap_unlock(page_table, ptl);
  2047. out:
  2048. unlock_page(vmf.page);
  2049. out_unlocked:
  2050. if (anon)
  2051. page_cache_release(vmf.page);
  2052. else if (dirty_page) {
  2053. if (vma->vm_file)
  2054. file_update_time(vma->vm_file);
  2055. set_page_dirty_balance(dirty_page, page_mkwrite);
  2056. put_page(dirty_page);
  2057. }
  2058. return ret;
  2059. }
  2060. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2061. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2062. int write_access, pte_t orig_pte)
  2063. {
  2064. pgoff_t pgoff = (((address & PAGE_MASK)
  2065. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2066. unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
  2067. pte_unmap(page_table);
  2068. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2069. }
  2070. /*
  2071. * do_no_pfn() tries to create a new page mapping for a page without
  2072. * a struct_page backing it
  2073. *
  2074. * As this is called only for pages that do not currently exist, we
  2075. * do not need to flush old virtual caches or the TLB.
  2076. *
  2077. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2078. * but allow concurrent faults), and pte mapped but not yet locked.
  2079. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2080. *
  2081. * It is expected that the ->nopfn handler always returns the same pfn
  2082. * for a given virtual mapping.
  2083. *
  2084. * Mark this `noinline' to prevent it from bloating the main pagefault code.
  2085. */
  2086. static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
  2087. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2088. int write_access)
  2089. {
  2090. spinlock_t *ptl;
  2091. pte_t entry;
  2092. unsigned long pfn;
  2093. pte_unmap(page_table);
  2094. BUG_ON(!(vma->vm_flags & VM_PFNMAP));
  2095. BUG_ON(is_cow_mapping(vma->vm_flags));
  2096. pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
  2097. if (unlikely(pfn == NOPFN_OOM))
  2098. return VM_FAULT_OOM;
  2099. else if (unlikely(pfn == NOPFN_SIGBUS))
  2100. return VM_FAULT_SIGBUS;
  2101. else if (unlikely(pfn == NOPFN_REFAULT))
  2102. return 0;
  2103. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2104. /* Only go through if we didn't race with anybody else... */
  2105. if (pte_none(*page_table)) {
  2106. entry = pfn_pte(pfn, vma->vm_page_prot);
  2107. if (write_access)
  2108. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2109. set_pte_at(mm, address, page_table, entry);
  2110. }
  2111. pte_unmap_unlock(page_table, ptl);
  2112. return 0;
  2113. }
  2114. /*
  2115. * Fault of a previously existing named mapping. Repopulate the pte
  2116. * from the encoded file_pte if possible. This enables swappable
  2117. * nonlinear vmas.
  2118. *
  2119. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2120. * but allow concurrent faults), and pte mapped but not yet locked.
  2121. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2122. */
  2123. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2124. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2125. int write_access, pte_t orig_pte)
  2126. {
  2127. unsigned int flags = FAULT_FLAG_NONLINEAR |
  2128. (write_access ? FAULT_FLAG_WRITE : 0);
  2129. pgoff_t pgoff;
  2130. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2131. return 0;
  2132. if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
  2133. !(vma->vm_flags & VM_CAN_NONLINEAR))) {
  2134. /*
  2135. * Page table corrupted: show pte and kill process.
  2136. */
  2137. print_bad_pte(vma, orig_pte, address);
  2138. return VM_FAULT_OOM;
  2139. }
  2140. pgoff = pte_to_pgoff(orig_pte);
  2141. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2142. }
  2143. /*
  2144. * These routines also need to handle stuff like marking pages dirty
  2145. * and/or accessed for architectures that don't do it in hardware (most
  2146. * RISC architectures). The early dirtying is also good on the i386.
  2147. *
  2148. * There is also a hook called "update_mmu_cache()" that architectures
  2149. * with external mmu caches can use to update those (ie the Sparc or
  2150. * PowerPC hashed page tables that act as extended TLBs).
  2151. *
  2152. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2153. * but allow concurrent faults), and pte mapped but not yet locked.
  2154. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2155. */
  2156. static inline int handle_pte_fault(struct mm_struct *mm,
  2157. struct vm_area_struct *vma, unsigned long address,
  2158. pte_t *pte, pmd_t *pmd, int write_access)
  2159. {
  2160. pte_t entry;
  2161. spinlock_t *ptl;
  2162. entry = *pte;
  2163. if (!pte_present(entry)) {
  2164. if (pte_none(entry)) {
  2165. if (vma->vm_ops) {
  2166. if (vma->vm_ops->fault || vma->vm_ops->nopage)
  2167. return do_linear_fault(mm, vma, address,
  2168. pte, pmd, write_access, entry);
  2169. if (unlikely(vma->vm_ops->nopfn))
  2170. return do_no_pfn(mm, vma, address, pte,
  2171. pmd, write_access);
  2172. }
  2173. return do_anonymous_page(mm, vma, address,
  2174. pte, pmd, write_access);
  2175. }
  2176. if (pte_file(entry))
  2177. return do_nonlinear_fault(mm, vma, address,
  2178. pte, pmd, write_access, entry);
  2179. return do_swap_page(mm, vma, address,
  2180. pte, pmd, write_access, entry);
  2181. }
  2182. ptl = pte_lockptr(mm, pmd);
  2183. spin_lock(ptl);
  2184. if (unlikely(!pte_same(*pte, entry)))
  2185. goto unlock;
  2186. if (write_access) {
  2187. if (!pte_write(entry))
  2188. return do_wp_page(mm, vma, address,
  2189. pte, pmd, ptl, entry);
  2190. entry = pte_mkdirty(entry);
  2191. }
  2192. entry = pte_mkyoung(entry);
  2193. if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
  2194. update_mmu_cache(vma, address, entry);
  2195. } else {
  2196. /*
  2197. * This is needed only for protection faults but the arch code
  2198. * is not yet telling us if this is a protection fault or not.
  2199. * This still avoids useless tlb flushes for .text page faults
  2200. * with threads.
  2201. */
  2202. if (write_access)
  2203. flush_tlb_page(vma, address);
  2204. }
  2205. unlock:
  2206. pte_unmap_unlock(pte, ptl);
  2207. return 0;
  2208. }
  2209. /*
  2210. * By the time we get here, we already hold the mm semaphore
  2211. */
  2212. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2213. unsigned long address, int write_access)
  2214. {
  2215. pgd_t *pgd;
  2216. pud_t *pud;
  2217. pmd_t *pmd;
  2218. pte_t *pte;
  2219. __set_current_state(TASK_RUNNING);
  2220. count_vm_event(PGFAULT);
  2221. if (unlikely(is_vm_hugetlb_page(vma)))
  2222. return hugetlb_fault(mm, vma, address, write_access);
  2223. pgd = pgd_offset(mm, address);
  2224. pud = pud_alloc(mm, pgd, address);
  2225. if (!pud)
  2226. return VM_FAULT_OOM;
  2227. pmd = pmd_alloc(mm, pud, address);
  2228. if (!pmd)
  2229. return VM_FAULT_OOM;
  2230. pte = pte_alloc_map(mm, pmd, address);
  2231. if (!pte)
  2232. return VM_FAULT_OOM;
  2233. return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
  2234. }
  2235. #ifndef __PAGETABLE_PUD_FOLDED
  2236. /*
  2237. * Allocate page upper directory.
  2238. * We've already handled the fast-path in-line.
  2239. */
  2240. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2241. {
  2242. pud_t *new = pud_alloc_one(mm, address);
  2243. if (!new)
  2244. return -ENOMEM;
  2245. spin_lock(&mm->page_table_lock);
  2246. if (pgd_present(*pgd)) /* Another has populated it */
  2247. pud_free(new);
  2248. else
  2249. pgd_populate(mm, pgd, new);
  2250. spin_unlock(&mm->page_table_lock);
  2251. return 0;
  2252. }
  2253. #endif /* __PAGETABLE_PUD_FOLDED */
  2254. #ifndef __PAGETABLE_PMD_FOLDED
  2255. /*
  2256. * Allocate page middle directory.
  2257. * We've already handled the fast-path in-line.
  2258. */
  2259. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2260. {
  2261. pmd_t *new = pmd_alloc_one(mm, address);
  2262. if (!new)
  2263. return -ENOMEM;
  2264. spin_lock(&mm->page_table_lock);
  2265. #ifndef __ARCH_HAS_4LEVEL_HACK
  2266. if (pud_present(*pud)) /* Another has populated it */
  2267. pmd_free(new);
  2268. else
  2269. pud_populate(mm, pud, new);
  2270. #else
  2271. if (pgd_present(*pud)) /* Another has populated it */
  2272. pmd_free(new);
  2273. else
  2274. pgd_populate(mm, pud, new);
  2275. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2276. spin_unlock(&mm->page_table_lock);
  2277. return 0;
  2278. }
  2279. #endif /* __PAGETABLE_PMD_FOLDED */
  2280. int make_pages_present(unsigned long addr, unsigned long end)
  2281. {
  2282. int ret, len, write;
  2283. struct vm_area_struct * vma;
  2284. vma = find_vma(current->mm, addr);
  2285. if (!vma)
  2286. return -1;
  2287. write = (vma->vm_flags & VM_WRITE) != 0;
  2288. BUG_ON(addr >= end);
  2289. BUG_ON(end > vma->vm_end);
  2290. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2291. ret = get_user_pages(current, current->mm, addr,
  2292. len, write, 0, NULL, NULL);
  2293. if (ret < 0)
  2294. return ret;
  2295. return ret == len ? 0 : -1;
  2296. }
  2297. #if !defined(__HAVE_ARCH_GATE_AREA)
  2298. #if defined(AT_SYSINFO_EHDR)
  2299. static struct vm_area_struct gate_vma;
  2300. static int __init gate_vma_init(void)
  2301. {
  2302. gate_vma.vm_mm = NULL;
  2303. gate_vma.vm_start = FIXADDR_USER_START;
  2304. gate_vma.vm_end = FIXADDR_USER_END;
  2305. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2306. gate_vma.vm_page_prot = __P101;
  2307. /*
  2308. * Make sure the vDSO gets into every core dump.
  2309. * Dumping its contents makes post-mortem fully interpretable later
  2310. * without matching up the same kernel and hardware config to see
  2311. * what PC values meant.
  2312. */
  2313. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2314. return 0;
  2315. }
  2316. __initcall(gate_vma_init);
  2317. #endif
  2318. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2319. {
  2320. #ifdef AT_SYSINFO_EHDR
  2321. return &gate_vma;
  2322. #else
  2323. return NULL;
  2324. #endif
  2325. }
  2326. int in_gate_area_no_task(unsigned long addr)
  2327. {
  2328. #ifdef AT_SYSINFO_EHDR
  2329. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2330. return 1;
  2331. #endif
  2332. return 0;
  2333. }
  2334. #endif /* __HAVE_ARCH_GATE_AREA */
  2335. /*
  2336. * Access another process' address space.
  2337. * Source/target buffer must be kernel space,
  2338. * Do not walk the page table directly, use get_user_pages
  2339. */
  2340. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2341. {
  2342. struct mm_struct *mm;
  2343. struct vm_area_struct *vma;
  2344. struct page *page;
  2345. void *old_buf = buf;
  2346. mm = get_task_mm(tsk);
  2347. if (!mm)
  2348. return 0;
  2349. down_read(&mm->mmap_sem);
  2350. /* ignore errors, just check how much was successfully transferred */
  2351. while (len) {
  2352. int bytes, ret, offset;
  2353. void *maddr;
  2354. ret = get_user_pages(tsk, mm, addr, 1,
  2355. write, 1, &page, &vma);
  2356. if (ret <= 0)
  2357. break;
  2358. bytes = len;
  2359. offset = addr & (PAGE_SIZE-1);
  2360. if (bytes > PAGE_SIZE-offset)
  2361. bytes = PAGE_SIZE-offset;
  2362. maddr = kmap(page);
  2363. if (write) {
  2364. copy_to_user_page(vma, page, addr,
  2365. maddr + offset, buf, bytes);
  2366. set_page_dirty_lock(page);
  2367. } else {
  2368. copy_from_user_page(vma, page, addr,
  2369. buf, maddr + offset, bytes);
  2370. }
  2371. kunmap(page);
  2372. page_cache_release(page);
  2373. len -= bytes;
  2374. buf += bytes;
  2375. addr += bytes;
  2376. }
  2377. up_read(&mm->mmap_sem);
  2378. mmput(mm);
  2379. return buf - old_buf;
  2380. }
  2381. /*
  2382. * Print the name of a VMA.
  2383. */
  2384. void print_vma_addr(char *prefix, unsigned long ip)
  2385. {
  2386. struct mm_struct *mm = current->mm;
  2387. struct vm_area_struct *vma;
  2388. down_read(&mm->mmap_sem);
  2389. vma = find_vma(mm, ip);
  2390. if (vma && vma->vm_file) {
  2391. struct file *f = vma->vm_file;
  2392. char *buf = (char *)__get_free_page(GFP_KERNEL);
  2393. if (buf) {
  2394. char *p, *s;
  2395. p = d_path(f->f_dentry, f->f_vfsmnt, buf, PAGE_SIZE);
  2396. if (IS_ERR(p))
  2397. p = "?";
  2398. s = strrchr(p, '/');
  2399. if (s)
  2400. p = s+1;
  2401. printk("%s%s[%lx+%lx]", prefix, p,
  2402. vma->vm_start,
  2403. vma->vm_end - vma->vm_start);
  2404. free_page((unsigned long)buf);
  2405. }
  2406. }
  2407. up_read(&current->mm->mmap_sem);
  2408. }