memcontrol.c 180 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830
  1. /* memcontrol.c - Memory Controller
  2. *
  3. * Copyright IBM Corporation, 2007
  4. * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  5. *
  6. * Copyright 2007 OpenVZ SWsoft Inc
  7. * Author: Pavel Emelianov <xemul@openvz.org>
  8. *
  9. * Memory thresholds
  10. * Copyright (C) 2009 Nokia Corporation
  11. * Author: Kirill A. Shutemov
  12. *
  13. * Kernel Memory Controller
  14. * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15. * Authors: Glauber Costa and Suleiman Souhlal
  16. *
  17. * This program is free software; you can redistribute it and/or modify
  18. * it under the terms of the GNU General Public License as published by
  19. * the Free Software Foundation; either version 2 of the License, or
  20. * (at your option) any later version.
  21. *
  22. * This program is distributed in the hope that it will be useful,
  23. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  24. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  25. * GNU General Public License for more details.
  26. */
  27. #include <linux/res_counter.h>
  28. #include <linux/memcontrol.h>
  29. #include <linux/cgroup.h>
  30. #include <linux/mm.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/smp.h>
  34. #include <linux/page-flags.h>
  35. #include <linux/backing-dev.h>
  36. #include <linux/bit_spinlock.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/limits.h>
  39. #include <linux/export.h>
  40. #include <linux/mutex.h>
  41. #include <linux/rbtree.h>
  42. #include <linux/slab.h>
  43. #include <linux/swap.h>
  44. #include <linux/swapops.h>
  45. #include <linux/spinlock.h>
  46. #include <linux/eventfd.h>
  47. #include <linux/sort.h>
  48. #include <linux/fs.h>
  49. #include <linux/seq_file.h>
  50. #include <linux/vmalloc.h>
  51. #include <linux/mm_inline.h>
  52. #include <linux/page_cgroup.h>
  53. #include <linux/cpu.h>
  54. #include <linux/oom.h>
  55. #include "internal.h"
  56. #include <net/sock.h>
  57. #include <net/ip.h>
  58. #include <net/tcp_memcontrol.h>
  59. #include <asm/uaccess.h>
  60. #include <trace/events/vmscan.h>
  61. struct cgroup_subsys mem_cgroup_subsys __read_mostly;
  62. EXPORT_SYMBOL(mem_cgroup_subsys);
  63. #define MEM_CGROUP_RECLAIM_RETRIES 5
  64. static struct mem_cgroup *root_mem_cgroup __read_mostly;
  65. #ifdef CONFIG_MEMCG_SWAP
  66. /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
  67. int do_swap_account __read_mostly;
  68. /* for remember boot option*/
  69. #ifdef CONFIG_MEMCG_SWAP_ENABLED
  70. static int really_do_swap_account __initdata = 1;
  71. #else
  72. static int really_do_swap_account __initdata = 0;
  73. #endif
  74. #else
  75. #define do_swap_account 0
  76. #endif
  77. /*
  78. * Statistics for memory cgroup.
  79. */
  80. enum mem_cgroup_stat_index {
  81. /*
  82. * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
  83. */
  84. MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
  85. MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
  86. MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
  87. MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
  88. MEM_CGROUP_STAT_NSTATS,
  89. };
  90. static const char * const mem_cgroup_stat_names[] = {
  91. "cache",
  92. "rss",
  93. "mapped_file",
  94. "swap",
  95. };
  96. enum mem_cgroup_events_index {
  97. MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
  98. MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
  99. MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
  100. MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
  101. MEM_CGROUP_EVENTS_NSTATS,
  102. };
  103. static const char * const mem_cgroup_events_names[] = {
  104. "pgpgin",
  105. "pgpgout",
  106. "pgfault",
  107. "pgmajfault",
  108. };
  109. static const char * const mem_cgroup_lru_names[] = {
  110. "inactive_anon",
  111. "active_anon",
  112. "inactive_file",
  113. "active_file",
  114. "unevictable",
  115. };
  116. /*
  117. * Per memcg event counter is incremented at every pagein/pageout. With THP,
  118. * it will be incremated by the number of pages. This counter is used for
  119. * for trigger some periodic events. This is straightforward and better
  120. * than using jiffies etc. to handle periodic memcg event.
  121. */
  122. enum mem_cgroup_events_target {
  123. MEM_CGROUP_TARGET_THRESH,
  124. MEM_CGROUP_TARGET_SOFTLIMIT,
  125. MEM_CGROUP_TARGET_NUMAINFO,
  126. MEM_CGROUP_NTARGETS,
  127. };
  128. #define THRESHOLDS_EVENTS_TARGET 128
  129. #define SOFTLIMIT_EVENTS_TARGET 1024
  130. #define NUMAINFO_EVENTS_TARGET 1024
  131. struct mem_cgroup_stat_cpu {
  132. long count[MEM_CGROUP_STAT_NSTATS];
  133. unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
  134. unsigned long nr_page_events;
  135. unsigned long targets[MEM_CGROUP_NTARGETS];
  136. };
  137. struct mem_cgroup_reclaim_iter {
  138. /* css_id of the last scanned hierarchy member */
  139. int position;
  140. /* scan generation, increased every round-trip */
  141. unsigned int generation;
  142. };
  143. /*
  144. * per-zone information in memory controller.
  145. */
  146. struct mem_cgroup_per_zone {
  147. struct lruvec lruvec;
  148. unsigned long lru_size[NR_LRU_LISTS];
  149. struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
  150. struct rb_node tree_node; /* RB tree node */
  151. unsigned long long usage_in_excess;/* Set to the value by which */
  152. /* the soft limit is exceeded*/
  153. bool on_tree;
  154. struct mem_cgroup *memcg; /* Back pointer, we cannot */
  155. /* use container_of */
  156. };
  157. struct mem_cgroup_per_node {
  158. struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
  159. };
  160. struct mem_cgroup_lru_info {
  161. struct mem_cgroup_per_node *nodeinfo[0];
  162. };
  163. /*
  164. * Cgroups above their limits are maintained in a RB-Tree, independent of
  165. * their hierarchy representation
  166. */
  167. struct mem_cgroup_tree_per_zone {
  168. struct rb_root rb_root;
  169. spinlock_t lock;
  170. };
  171. struct mem_cgroup_tree_per_node {
  172. struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
  173. };
  174. struct mem_cgroup_tree {
  175. struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
  176. };
  177. static struct mem_cgroup_tree soft_limit_tree __read_mostly;
  178. struct mem_cgroup_threshold {
  179. struct eventfd_ctx *eventfd;
  180. u64 threshold;
  181. };
  182. /* For threshold */
  183. struct mem_cgroup_threshold_ary {
  184. /* An array index points to threshold just below or equal to usage. */
  185. int current_threshold;
  186. /* Size of entries[] */
  187. unsigned int size;
  188. /* Array of thresholds */
  189. struct mem_cgroup_threshold entries[0];
  190. };
  191. struct mem_cgroup_thresholds {
  192. /* Primary thresholds array */
  193. struct mem_cgroup_threshold_ary *primary;
  194. /*
  195. * Spare threshold array.
  196. * This is needed to make mem_cgroup_unregister_event() "never fail".
  197. * It must be able to store at least primary->size - 1 entries.
  198. */
  199. struct mem_cgroup_threshold_ary *spare;
  200. };
  201. /* for OOM */
  202. struct mem_cgroup_eventfd_list {
  203. struct list_head list;
  204. struct eventfd_ctx *eventfd;
  205. };
  206. static void mem_cgroup_threshold(struct mem_cgroup *memcg);
  207. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
  208. /*
  209. * The memory controller data structure. The memory controller controls both
  210. * page cache and RSS per cgroup. We would eventually like to provide
  211. * statistics based on the statistics developed by Rik Van Riel for clock-pro,
  212. * to help the administrator determine what knobs to tune.
  213. *
  214. * TODO: Add a water mark for the memory controller. Reclaim will begin when
  215. * we hit the water mark. May be even add a low water mark, such that
  216. * no reclaim occurs from a cgroup at it's low water mark, this is
  217. * a feature that will be implemented much later in the future.
  218. */
  219. struct mem_cgroup {
  220. struct cgroup_subsys_state css;
  221. /*
  222. * the counter to account for memory usage
  223. */
  224. struct res_counter res;
  225. union {
  226. /*
  227. * the counter to account for mem+swap usage.
  228. */
  229. struct res_counter memsw;
  230. /*
  231. * rcu_freeing is used only when freeing struct mem_cgroup,
  232. * so put it into a union to avoid wasting more memory.
  233. * It must be disjoint from the css field. It could be
  234. * in a union with the res field, but res plays a much
  235. * larger part in mem_cgroup life than memsw, and might
  236. * be of interest, even at time of free, when debugging.
  237. * So share rcu_head with the less interesting memsw.
  238. */
  239. struct rcu_head rcu_freeing;
  240. /*
  241. * We also need some space for a worker in deferred freeing.
  242. * By the time we call it, rcu_freeing is no longer in use.
  243. */
  244. struct work_struct work_freeing;
  245. };
  246. /*
  247. * the counter to account for kernel memory usage.
  248. */
  249. struct res_counter kmem;
  250. /*
  251. * Should the accounting and control be hierarchical, per subtree?
  252. */
  253. bool use_hierarchy;
  254. unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
  255. bool oom_lock;
  256. atomic_t under_oom;
  257. atomic_t refcnt;
  258. int swappiness;
  259. /* OOM-Killer disable */
  260. int oom_kill_disable;
  261. /* set when res.limit == memsw.limit */
  262. bool memsw_is_minimum;
  263. /* protect arrays of thresholds */
  264. struct mutex thresholds_lock;
  265. /* thresholds for memory usage. RCU-protected */
  266. struct mem_cgroup_thresholds thresholds;
  267. /* thresholds for mem+swap usage. RCU-protected */
  268. struct mem_cgroup_thresholds memsw_thresholds;
  269. /* For oom notifier event fd */
  270. struct list_head oom_notify;
  271. /*
  272. * Should we move charges of a task when a task is moved into this
  273. * mem_cgroup ? And what type of charges should we move ?
  274. */
  275. unsigned long move_charge_at_immigrate;
  276. /*
  277. * set > 0 if pages under this cgroup are moving to other cgroup.
  278. */
  279. atomic_t moving_account;
  280. /* taken only while moving_account > 0 */
  281. spinlock_t move_lock;
  282. /*
  283. * percpu counter.
  284. */
  285. struct mem_cgroup_stat_cpu __percpu *stat;
  286. /*
  287. * used when a cpu is offlined or other synchronizations
  288. * See mem_cgroup_read_stat().
  289. */
  290. struct mem_cgroup_stat_cpu nocpu_base;
  291. spinlock_t pcp_counter_lock;
  292. #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
  293. struct tcp_memcontrol tcp_mem;
  294. #endif
  295. #if defined(CONFIG_MEMCG_KMEM)
  296. /* analogous to slab_common's slab_caches list. per-memcg */
  297. struct list_head memcg_slab_caches;
  298. /* Not a spinlock, we can take a lot of time walking the list */
  299. struct mutex slab_caches_mutex;
  300. /* Index in the kmem_cache->memcg_params->memcg_caches array */
  301. int kmemcg_id;
  302. #endif
  303. int last_scanned_node;
  304. #if MAX_NUMNODES > 1
  305. nodemask_t scan_nodes;
  306. atomic_t numainfo_events;
  307. atomic_t numainfo_updating;
  308. #endif
  309. /*
  310. * Per cgroup active and inactive list, similar to the
  311. * per zone LRU lists.
  312. *
  313. * WARNING: This has to be the last element of the struct. Don't
  314. * add new fields after this point.
  315. */
  316. struct mem_cgroup_lru_info info;
  317. };
  318. static size_t memcg_size(void)
  319. {
  320. return sizeof(struct mem_cgroup) +
  321. nr_node_ids * sizeof(struct mem_cgroup_per_node);
  322. }
  323. /* internal only representation about the status of kmem accounting. */
  324. enum {
  325. KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
  326. KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
  327. KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
  328. };
  329. /* We account when limit is on, but only after call sites are patched */
  330. #define KMEM_ACCOUNTED_MASK \
  331. ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
  332. #ifdef CONFIG_MEMCG_KMEM
  333. static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
  334. {
  335. set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
  336. }
  337. static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
  338. {
  339. return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
  340. }
  341. static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
  342. {
  343. set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
  344. }
  345. static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
  346. {
  347. clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
  348. }
  349. static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
  350. {
  351. if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
  352. set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
  353. }
  354. static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
  355. {
  356. return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
  357. &memcg->kmem_account_flags);
  358. }
  359. #endif
  360. /* Stuffs for move charges at task migration. */
  361. /*
  362. * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
  363. * left-shifted bitmap of these types.
  364. */
  365. enum move_type {
  366. MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
  367. MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
  368. NR_MOVE_TYPE,
  369. };
  370. /* "mc" and its members are protected by cgroup_mutex */
  371. static struct move_charge_struct {
  372. spinlock_t lock; /* for from, to */
  373. struct mem_cgroup *from;
  374. struct mem_cgroup *to;
  375. unsigned long precharge;
  376. unsigned long moved_charge;
  377. unsigned long moved_swap;
  378. struct task_struct *moving_task; /* a task moving charges */
  379. wait_queue_head_t waitq; /* a waitq for other context */
  380. } mc = {
  381. .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
  382. .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
  383. };
  384. static bool move_anon(void)
  385. {
  386. return test_bit(MOVE_CHARGE_TYPE_ANON,
  387. &mc.to->move_charge_at_immigrate);
  388. }
  389. static bool move_file(void)
  390. {
  391. return test_bit(MOVE_CHARGE_TYPE_FILE,
  392. &mc.to->move_charge_at_immigrate);
  393. }
  394. /*
  395. * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
  396. * limit reclaim to prevent infinite loops, if they ever occur.
  397. */
  398. #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
  399. #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
  400. enum charge_type {
  401. MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
  402. MEM_CGROUP_CHARGE_TYPE_ANON,
  403. MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
  404. MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
  405. NR_CHARGE_TYPE,
  406. };
  407. /* for encoding cft->private value on file */
  408. enum res_type {
  409. _MEM,
  410. _MEMSWAP,
  411. _OOM_TYPE,
  412. _KMEM,
  413. };
  414. #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
  415. #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
  416. #define MEMFILE_ATTR(val) ((val) & 0xffff)
  417. /* Used for OOM nofiier */
  418. #define OOM_CONTROL (0)
  419. /*
  420. * Reclaim flags for mem_cgroup_hierarchical_reclaim
  421. */
  422. #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
  423. #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
  424. #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
  425. #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
  426. static void mem_cgroup_get(struct mem_cgroup *memcg);
  427. static void mem_cgroup_put(struct mem_cgroup *memcg);
  428. static inline
  429. struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
  430. {
  431. return container_of(s, struct mem_cgroup, css);
  432. }
  433. static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
  434. {
  435. return (memcg == root_mem_cgroup);
  436. }
  437. /* Writing them here to avoid exposing memcg's inner layout */
  438. #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
  439. void sock_update_memcg(struct sock *sk)
  440. {
  441. if (mem_cgroup_sockets_enabled) {
  442. struct mem_cgroup *memcg;
  443. struct cg_proto *cg_proto;
  444. BUG_ON(!sk->sk_prot->proto_cgroup);
  445. /* Socket cloning can throw us here with sk_cgrp already
  446. * filled. It won't however, necessarily happen from
  447. * process context. So the test for root memcg given
  448. * the current task's memcg won't help us in this case.
  449. *
  450. * Respecting the original socket's memcg is a better
  451. * decision in this case.
  452. */
  453. if (sk->sk_cgrp) {
  454. BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
  455. mem_cgroup_get(sk->sk_cgrp->memcg);
  456. return;
  457. }
  458. rcu_read_lock();
  459. memcg = mem_cgroup_from_task(current);
  460. cg_proto = sk->sk_prot->proto_cgroup(memcg);
  461. if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
  462. mem_cgroup_get(memcg);
  463. sk->sk_cgrp = cg_proto;
  464. }
  465. rcu_read_unlock();
  466. }
  467. }
  468. EXPORT_SYMBOL(sock_update_memcg);
  469. void sock_release_memcg(struct sock *sk)
  470. {
  471. if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
  472. struct mem_cgroup *memcg;
  473. WARN_ON(!sk->sk_cgrp->memcg);
  474. memcg = sk->sk_cgrp->memcg;
  475. mem_cgroup_put(memcg);
  476. }
  477. }
  478. struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
  479. {
  480. if (!memcg || mem_cgroup_is_root(memcg))
  481. return NULL;
  482. return &memcg->tcp_mem.cg_proto;
  483. }
  484. EXPORT_SYMBOL(tcp_proto_cgroup);
  485. static void disarm_sock_keys(struct mem_cgroup *memcg)
  486. {
  487. if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
  488. return;
  489. static_key_slow_dec(&memcg_socket_limit_enabled);
  490. }
  491. #else
  492. static void disarm_sock_keys(struct mem_cgroup *memcg)
  493. {
  494. }
  495. #endif
  496. #ifdef CONFIG_MEMCG_KMEM
  497. /*
  498. * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
  499. * There are two main reasons for not using the css_id for this:
  500. * 1) this works better in sparse environments, where we have a lot of memcgs,
  501. * but only a few kmem-limited. Or also, if we have, for instance, 200
  502. * memcgs, and none but the 200th is kmem-limited, we'd have to have a
  503. * 200 entry array for that.
  504. *
  505. * 2) In order not to violate the cgroup API, we would like to do all memory
  506. * allocation in ->create(). At that point, we haven't yet allocated the
  507. * css_id. Having a separate index prevents us from messing with the cgroup
  508. * core for this
  509. *
  510. * The current size of the caches array is stored in
  511. * memcg_limited_groups_array_size. It will double each time we have to
  512. * increase it.
  513. */
  514. static DEFINE_IDA(kmem_limited_groups);
  515. int memcg_limited_groups_array_size;
  516. /*
  517. * MIN_SIZE is different than 1, because we would like to avoid going through
  518. * the alloc/free process all the time. In a small machine, 4 kmem-limited
  519. * cgroups is a reasonable guess. In the future, it could be a parameter or
  520. * tunable, but that is strictly not necessary.
  521. *
  522. * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
  523. * this constant directly from cgroup, but it is understandable that this is
  524. * better kept as an internal representation in cgroup.c. In any case, the
  525. * css_id space is not getting any smaller, and we don't have to necessarily
  526. * increase ours as well if it increases.
  527. */
  528. #define MEMCG_CACHES_MIN_SIZE 4
  529. #define MEMCG_CACHES_MAX_SIZE 65535
  530. /*
  531. * A lot of the calls to the cache allocation functions are expected to be
  532. * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
  533. * conditional to this static branch, we'll have to allow modules that does
  534. * kmem_cache_alloc and the such to see this symbol as well
  535. */
  536. struct static_key memcg_kmem_enabled_key;
  537. EXPORT_SYMBOL(memcg_kmem_enabled_key);
  538. static void disarm_kmem_keys(struct mem_cgroup *memcg)
  539. {
  540. if (memcg_kmem_is_active(memcg)) {
  541. static_key_slow_dec(&memcg_kmem_enabled_key);
  542. ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
  543. }
  544. /*
  545. * This check can't live in kmem destruction function,
  546. * since the charges will outlive the cgroup
  547. */
  548. WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
  549. }
  550. #else
  551. static void disarm_kmem_keys(struct mem_cgroup *memcg)
  552. {
  553. }
  554. #endif /* CONFIG_MEMCG_KMEM */
  555. static void disarm_static_keys(struct mem_cgroup *memcg)
  556. {
  557. disarm_sock_keys(memcg);
  558. disarm_kmem_keys(memcg);
  559. }
  560. static void drain_all_stock_async(struct mem_cgroup *memcg);
  561. static struct mem_cgroup_per_zone *
  562. mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
  563. {
  564. VM_BUG_ON((unsigned)nid >= nr_node_ids);
  565. return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
  566. }
  567. struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
  568. {
  569. return &memcg->css;
  570. }
  571. static struct mem_cgroup_per_zone *
  572. page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
  573. {
  574. int nid = page_to_nid(page);
  575. int zid = page_zonenum(page);
  576. return mem_cgroup_zoneinfo(memcg, nid, zid);
  577. }
  578. static struct mem_cgroup_tree_per_zone *
  579. soft_limit_tree_node_zone(int nid, int zid)
  580. {
  581. return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
  582. }
  583. static struct mem_cgroup_tree_per_zone *
  584. soft_limit_tree_from_page(struct page *page)
  585. {
  586. int nid = page_to_nid(page);
  587. int zid = page_zonenum(page);
  588. return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
  589. }
  590. static void
  591. __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
  592. struct mem_cgroup_per_zone *mz,
  593. struct mem_cgroup_tree_per_zone *mctz,
  594. unsigned long long new_usage_in_excess)
  595. {
  596. struct rb_node **p = &mctz->rb_root.rb_node;
  597. struct rb_node *parent = NULL;
  598. struct mem_cgroup_per_zone *mz_node;
  599. if (mz->on_tree)
  600. return;
  601. mz->usage_in_excess = new_usage_in_excess;
  602. if (!mz->usage_in_excess)
  603. return;
  604. while (*p) {
  605. parent = *p;
  606. mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
  607. tree_node);
  608. if (mz->usage_in_excess < mz_node->usage_in_excess)
  609. p = &(*p)->rb_left;
  610. /*
  611. * We can't avoid mem cgroups that are over their soft
  612. * limit by the same amount
  613. */
  614. else if (mz->usage_in_excess >= mz_node->usage_in_excess)
  615. p = &(*p)->rb_right;
  616. }
  617. rb_link_node(&mz->tree_node, parent, p);
  618. rb_insert_color(&mz->tree_node, &mctz->rb_root);
  619. mz->on_tree = true;
  620. }
  621. static void
  622. __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
  623. struct mem_cgroup_per_zone *mz,
  624. struct mem_cgroup_tree_per_zone *mctz)
  625. {
  626. if (!mz->on_tree)
  627. return;
  628. rb_erase(&mz->tree_node, &mctz->rb_root);
  629. mz->on_tree = false;
  630. }
  631. static void
  632. mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
  633. struct mem_cgroup_per_zone *mz,
  634. struct mem_cgroup_tree_per_zone *mctz)
  635. {
  636. spin_lock(&mctz->lock);
  637. __mem_cgroup_remove_exceeded(memcg, mz, mctz);
  638. spin_unlock(&mctz->lock);
  639. }
  640. static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
  641. {
  642. unsigned long long excess;
  643. struct mem_cgroup_per_zone *mz;
  644. struct mem_cgroup_tree_per_zone *mctz;
  645. int nid = page_to_nid(page);
  646. int zid = page_zonenum(page);
  647. mctz = soft_limit_tree_from_page(page);
  648. /*
  649. * Necessary to update all ancestors when hierarchy is used.
  650. * because their event counter is not touched.
  651. */
  652. for (; memcg; memcg = parent_mem_cgroup(memcg)) {
  653. mz = mem_cgroup_zoneinfo(memcg, nid, zid);
  654. excess = res_counter_soft_limit_excess(&memcg->res);
  655. /*
  656. * We have to update the tree if mz is on RB-tree or
  657. * mem is over its softlimit.
  658. */
  659. if (excess || mz->on_tree) {
  660. spin_lock(&mctz->lock);
  661. /* if on-tree, remove it */
  662. if (mz->on_tree)
  663. __mem_cgroup_remove_exceeded(memcg, mz, mctz);
  664. /*
  665. * Insert again. mz->usage_in_excess will be updated.
  666. * If excess is 0, no tree ops.
  667. */
  668. __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
  669. spin_unlock(&mctz->lock);
  670. }
  671. }
  672. }
  673. static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
  674. {
  675. int node, zone;
  676. struct mem_cgroup_per_zone *mz;
  677. struct mem_cgroup_tree_per_zone *mctz;
  678. for_each_node(node) {
  679. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  680. mz = mem_cgroup_zoneinfo(memcg, node, zone);
  681. mctz = soft_limit_tree_node_zone(node, zone);
  682. mem_cgroup_remove_exceeded(memcg, mz, mctz);
  683. }
  684. }
  685. }
  686. static struct mem_cgroup_per_zone *
  687. __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
  688. {
  689. struct rb_node *rightmost = NULL;
  690. struct mem_cgroup_per_zone *mz;
  691. retry:
  692. mz = NULL;
  693. rightmost = rb_last(&mctz->rb_root);
  694. if (!rightmost)
  695. goto done; /* Nothing to reclaim from */
  696. mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
  697. /*
  698. * Remove the node now but someone else can add it back,
  699. * we will to add it back at the end of reclaim to its correct
  700. * position in the tree.
  701. */
  702. __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
  703. if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
  704. !css_tryget(&mz->memcg->css))
  705. goto retry;
  706. done:
  707. return mz;
  708. }
  709. static struct mem_cgroup_per_zone *
  710. mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
  711. {
  712. struct mem_cgroup_per_zone *mz;
  713. spin_lock(&mctz->lock);
  714. mz = __mem_cgroup_largest_soft_limit_node(mctz);
  715. spin_unlock(&mctz->lock);
  716. return mz;
  717. }
  718. /*
  719. * Implementation Note: reading percpu statistics for memcg.
  720. *
  721. * Both of vmstat[] and percpu_counter has threshold and do periodic
  722. * synchronization to implement "quick" read. There are trade-off between
  723. * reading cost and precision of value. Then, we may have a chance to implement
  724. * a periodic synchronizion of counter in memcg's counter.
  725. *
  726. * But this _read() function is used for user interface now. The user accounts
  727. * memory usage by memory cgroup and he _always_ requires exact value because
  728. * he accounts memory. Even if we provide quick-and-fuzzy read, we always
  729. * have to visit all online cpus and make sum. So, for now, unnecessary
  730. * synchronization is not implemented. (just implemented for cpu hotplug)
  731. *
  732. * If there are kernel internal actions which can make use of some not-exact
  733. * value, and reading all cpu value can be performance bottleneck in some
  734. * common workload, threashold and synchonization as vmstat[] should be
  735. * implemented.
  736. */
  737. static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
  738. enum mem_cgroup_stat_index idx)
  739. {
  740. long val = 0;
  741. int cpu;
  742. get_online_cpus();
  743. for_each_online_cpu(cpu)
  744. val += per_cpu(memcg->stat->count[idx], cpu);
  745. #ifdef CONFIG_HOTPLUG_CPU
  746. spin_lock(&memcg->pcp_counter_lock);
  747. val += memcg->nocpu_base.count[idx];
  748. spin_unlock(&memcg->pcp_counter_lock);
  749. #endif
  750. put_online_cpus();
  751. return val;
  752. }
  753. static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
  754. bool charge)
  755. {
  756. int val = (charge) ? 1 : -1;
  757. this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
  758. }
  759. static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
  760. enum mem_cgroup_events_index idx)
  761. {
  762. unsigned long val = 0;
  763. int cpu;
  764. for_each_online_cpu(cpu)
  765. val += per_cpu(memcg->stat->events[idx], cpu);
  766. #ifdef CONFIG_HOTPLUG_CPU
  767. spin_lock(&memcg->pcp_counter_lock);
  768. val += memcg->nocpu_base.events[idx];
  769. spin_unlock(&memcg->pcp_counter_lock);
  770. #endif
  771. return val;
  772. }
  773. static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
  774. bool anon, int nr_pages)
  775. {
  776. preempt_disable();
  777. /*
  778. * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
  779. * counted as CACHE even if it's on ANON LRU.
  780. */
  781. if (anon)
  782. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
  783. nr_pages);
  784. else
  785. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
  786. nr_pages);
  787. /* pagein of a big page is an event. So, ignore page size */
  788. if (nr_pages > 0)
  789. __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
  790. else {
  791. __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
  792. nr_pages = -nr_pages; /* for event */
  793. }
  794. __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
  795. preempt_enable();
  796. }
  797. unsigned long
  798. mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
  799. {
  800. struct mem_cgroup_per_zone *mz;
  801. mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
  802. return mz->lru_size[lru];
  803. }
  804. static unsigned long
  805. mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
  806. unsigned int lru_mask)
  807. {
  808. struct mem_cgroup_per_zone *mz;
  809. enum lru_list lru;
  810. unsigned long ret = 0;
  811. mz = mem_cgroup_zoneinfo(memcg, nid, zid);
  812. for_each_lru(lru) {
  813. if (BIT(lru) & lru_mask)
  814. ret += mz->lru_size[lru];
  815. }
  816. return ret;
  817. }
  818. static unsigned long
  819. mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
  820. int nid, unsigned int lru_mask)
  821. {
  822. u64 total = 0;
  823. int zid;
  824. for (zid = 0; zid < MAX_NR_ZONES; zid++)
  825. total += mem_cgroup_zone_nr_lru_pages(memcg,
  826. nid, zid, lru_mask);
  827. return total;
  828. }
  829. static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
  830. unsigned int lru_mask)
  831. {
  832. int nid;
  833. u64 total = 0;
  834. for_each_node_state(nid, N_MEMORY)
  835. total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
  836. return total;
  837. }
  838. static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
  839. enum mem_cgroup_events_target target)
  840. {
  841. unsigned long val, next;
  842. val = __this_cpu_read(memcg->stat->nr_page_events);
  843. next = __this_cpu_read(memcg->stat->targets[target]);
  844. /* from time_after() in jiffies.h */
  845. if ((long)next - (long)val < 0) {
  846. switch (target) {
  847. case MEM_CGROUP_TARGET_THRESH:
  848. next = val + THRESHOLDS_EVENTS_TARGET;
  849. break;
  850. case MEM_CGROUP_TARGET_SOFTLIMIT:
  851. next = val + SOFTLIMIT_EVENTS_TARGET;
  852. break;
  853. case MEM_CGROUP_TARGET_NUMAINFO:
  854. next = val + NUMAINFO_EVENTS_TARGET;
  855. break;
  856. default:
  857. break;
  858. }
  859. __this_cpu_write(memcg->stat->targets[target], next);
  860. return true;
  861. }
  862. return false;
  863. }
  864. /*
  865. * Check events in order.
  866. *
  867. */
  868. static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
  869. {
  870. preempt_disable();
  871. /* threshold event is triggered in finer grain than soft limit */
  872. if (unlikely(mem_cgroup_event_ratelimit(memcg,
  873. MEM_CGROUP_TARGET_THRESH))) {
  874. bool do_softlimit;
  875. bool do_numainfo __maybe_unused;
  876. do_softlimit = mem_cgroup_event_ratelimit(memcg,
  877. MEM_CGROUP_TARGET_SOFTLIMIT);
  878. #if MAX_NUMNODES > 1
  879. do_numainfo = mem_cgroup_event_ratelimit(memcg,
  880. MEM_CGROUP_TARGET_NUMAINFO);
  881. #endif
  882. preempt_enable();
  883. mem_cgroup_threshold(memcg);
  884. if (unlikely(do_softlimit))
  885. mem_cgroup_update_tree(memcg, page);
  886. #if MAX_NUMNODES > 1
  887. if (unlikely(do_numainfo))
  888. atomic_inc(&memcg->numainfo_events);
  889. #endif
  890. } else
  891. preempt_enable();
  892. }
  893. struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
  894. {
  895. return mem_cgroup_from_css(
  896. cgroup_subsys_state(cont, mem_cgroup_subsys_id));
  897. }
  898. struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
  899. {
  900. /*
  901. * mm_update_next_owner() may clear mm->owner to NULL
  902. * if it races with swapoff, page migration, etc.
  903. * So this can be called with p == NULL.
  904. */
  905. if (unlikely(!p))
  906. return NULL;
  907. return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
  908. }
  909. struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
  910. {
  911. struct mem_cgroup *memcg = NULL;
  912. if (!mm)
  913. return NULL;
  914. /*
  915. * Because we have no locks, mm->owner's may be being moved to other
  916. * cgroup. We use css_tryget() here even if this looks
  917. * pessimistic (rather than adding locks here).
  918. */
  919. rcu_read_lock();
  920. do {
  921. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  922. if (unlikely(!memcg))
  923. break;
  924. } while (!css_tryget(&memcg->css));
  925. rcu_read_unlock();
  926. return memcg;
  927. }
  928. /**
  929. * mem_cgroup_iter - iterate over memory cgroup hierarchy
  930. * @root: hierarchy root
  931. * @prev: previously returned memcg, NULL on first invocation
  932. * @reclaim: cookie for shared reclaim walks, NULL for full walks
  933. *
  934. * Returns references to children of the hierarchy below @root, or
  935. * @root itself, or %NULL after a full round-trip.
  936. *
  937. * Caller must pass the return value in @prev on subsequent
  938. * invocations for reference counting, or use mem_cgroup_iter_break()
  939. * to cancel a hierarchy walk before the round-trip is complete.
  940. *
  941. * Reclaimers can specify a zone and a priority level in @reclaim to
  942. * divide up the memcgs in the hierarchy among all concurrent
  943. * reclaimers operating on the same zone and priority.
  944. */
  945. struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
  946. struct mem_cgroup *prev,
  947. struct mem_cgroup_reclaim_cookie *reclaim)
  948. {
  949. struct mem_cgroup *memcg = NULL;
  950. int id = 0;
  951. if (mem_cgroup_disabled())
  952. return NULL;
  953. if (!root)
  954. root = root_mem_cgroup;
  955. if (prev && !reclaim)
  956. id = css_id(&prev->css);
  957. if (prev && prev != root)
  958. css_put(&prev->css);
  959. if (!root->use_hierarchy && root != root_mem_cgroup) {
  960. if (prev)
  961. return NULL;
  962. return root;
  963. }
  964. while (!memcg) {
  965. struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
  966. struct cgroup_subsys_state *css;
  967. if (reclaim) {
  968. int nid = zone_to_nid(reclaim->zone);
  969. int zid = zone_idx(reclaim->zone);
  970. struct mem_cgroup_per_zone *mz;
  971. mz = mem_cgroup_zoneinfo(root, nid, zid);
  972. iter = &mz->reclaim_iter[reclaim->priority];
  973. if (prev && reclaim->generation != iter->generation)
  974. return NULL;
  975. id = iter->position;
  976. }
  977. rcu_read_lock();
  978. css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
  979. if (css) {
  980. if (css == &root->css || css_tryget(css))
  981. memcg = mem_cgroup_from_css(css);
  982. } else
  983. id = 0;
  984. rcu_read_unlock();
  985. if (reclaim) {
  986. iter->position = id;
  987. if (!css)
  988. iter->generation++;
  989. else if (!prev && memcg)
  990. reclaim->generation = iter->generation;
  991. }
  992. if (prev && !css)
  993. return NULL;
  994. }
  995. return memcg;
  996. }
  997. /**
  998. * mem_cgroup_iter_break - abort a hierarchy walk prematurely
  999. * @root: hierarchy root
  1000. * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
  1001. */
  1002. void mem_cgroup_iter_break(struct mem_cgroup *root,
  1003. struct mem_cgroup *prev)
  1004. {
  1005. if (!root)
  1006. root = root_mem_cgroup;
  1007. if (prev && prev != root)
  1008. css_put(&prev->css);
  1009. }
  1010. /*
  1011. * Iteration constructs for visiting all cgroups (under a tree). If
  1012. * loops are exited prematurely (break), mem_cgroup_iter_break() must
  1013. * be used for reference counting.
  1014. */
  1015. #define for_each_mem_cgroup_tree(iter, root) \
  1016. for (iter = mem_cgroup_iter(root, NULL, NULL); \
  1017. iter != NULL; \
  1018. iter = mem_cgroup_iter(root, iter, NULL))
  1019. #define for_each_mem_cgroup(iter) \
  1020. for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
  1021. iter != NULL; \
  1022. iter = mem_cgroup_iter(NULL, iter, NULL))
  1023. void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
  1024. {
  1025. struct mem_cgroup *memcg;
  1026. rcu_read_lock();
  1027. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  1028. if (unlikely(!memcg))
  1029. goto out;
  1030. switch (idx) {
  1031. case PGFAULT:
  1032. this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
  1033. break;
  1034. case PGMAJFAULT:
  1035. this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
  1036. break;
  1037. default:
  1038. BUG();
  1039. }
  1040. out:
  1041. rcu_read_unlock();
  1042. }
  1043. EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
  1044. /**
  1045. * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
  1046. * @zone: zone of the wanted lruvec
  1047. * @memcg: memcg of the wanted lruvec
  1048. *
  1049. * Returns the lru list vector holding pages for the given @zone and
  1050. * @mem. This can be the global zone lruvec, if the memory controller
  1051. * is disabled.
  1052. */
  1053. struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
  1054. struct mem_cgroup *memcg)
  1055. {
  1056. struct mem_cgroup_per_zone *mz;
  1057. struct lruvec *lruvec;
  1058. if (mem_cgroup_disabled()) {
  1059. lruvec = &zone->lruvec;
  1060. goto out;
  1061. }
  1062. mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
  1063. lruvec = &mz->lruvec;
  1064. out:
  1065. /*
  1066. * Since a node can be onlined after the mem_cgroup was created,
  1067. * we have to be prepared to initialize lruvec->zone here;
  1068. * and if offlined then reonlined, we need to reinitialize it.
  1069. */
  1070. if (unlikely(lruvec->zone != zone))
  1071. lruvec->zone = zone;
  1072. return lruvec;
  1073. }
  1074. /*
  1075. * Following LRU functions are allowed to be used without PCG_LOCK.
  1076. * Operations are called by routine of global LRU independently from memcg.
  1077. * What we have to take care of here is validness of pc->mem_cgroup.
  1078. *
  1079. * Changes to pc->mem_cgroup happens when
  1080. * 1. charge
  1081. * 2. moving account
  1082. * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
  1083. * It is added to LRU before charge.
  1084. * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
  1085. * When moving account, the page is not on LRU. It's isolated.
  1086. */
  1087. /**
  1088. * mem_cgroup_page_lruvec - return lruvec for adding an lru page
  1089. * @page: the page
  1090. * @zone: zone of the page
  1091. */
  1092. struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
  1093. {
  1094. struct mem_cgroup_per_zone *mz;
  1095. struct mem_cgroup *memcg;
  1096. struct page_cgroup *pc;
  1097. struct lruvec *lruvec;
  1098. if (mem_cgroup_disabled()) {
  1099. lruvec = &zone->lruvec;
  1100. goto out;
  1101. }
  1102. pc = lookup_page_cgroup(page);
  1103. memcg = pc->mem_cgroup;
  1104. /*
  1105. * Surreptitiously switch any uncharged offlist page to root:
  1106. * an uncharged page off lru does nothing to secure
  1107. * its former mem_cgroup from sudden removal.
  1108. *
  1109. * Our caller holds lru_lock, and PageCgroupUsed is updated
  1110. * under page_cgroup lock: between them, they make all uses
  1111. * of pc->mem_cgroup safe.
  1112. */
  1113. if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
  1114. pc->mem_cgroup = memcg = root_mem_cgroup;
  1115. mz = page_cgroup_zoneinfo(memcg, page);
  1116. lruvec = &mz->lruvec;
  1117. out:
  1118. /*
  1119. * Since a node can be onlined after the mem_cgroup was created,
  1120. * we have to be prepared to initialize lruvec->zone here;
  1121. * and if offlined then reonlined, we need to reinitialize it.
  1122. */
  1123. if (unlikely(lruvec->zone != zone))
  1124. lruvec->zone = zone;
  1125. return lruvec;
  1126. }
  1127. /**
  1128. * mem_cgroup_update_lru_size - account for adding or removing an lru page
  1129. * @lruvec: mem_cgroup per zone lru vector
  1130. * @lru: index of lru list the page is sitting on
  1131. * @nr_pages: positive when adding or negative when removing
  1132. *
  1133. * This function must be called when a page is added to or removed from an
  1134. * lru list.
  1135. */
  1136. void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
  1137. int nr_pages)
  1138. {
  1139. struct mem_cgroup_per_zone *mz;
  1140. unsigned long *lru_size;
  1141. if (mem_cgroup_disabled())
  1142. return;
  1143. mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
  1144. lru_size = mz->lru_size + lru;
  1145. *lru_size += nr_pages;
  1146. VM_BUG_ON((long)(*lru_size) < 0);
  1147. }
  1148. /*
  1149. * Checks whether given mem is same or in the root_mem_cgroup's
  1150. * hierarchy subtree
  1151. */
  1152. bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
  1153. struct mem_cgroup *memcg)
  1154. {
  1155. if (root_memcg == memcg)
  1156. return true;
  1157. if (!root_memcg->use_hierarchy || !memcg)
  1158. return false;
  1159. return css_is_ancestor(&memcg->css, &root_memcg->css);
  1160. }
  1161. static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
  1162. struct mem_cgroup *memcg)
  1163. {
  1164. bool ret;
  1165. rcu_read_lock();
  1166. ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
  1167. rcu_read_unlock();
  1168. return ret;
  1169. }
  1170. int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
  1171. {
  1172. int ret;
  1173. struct mem_cgroup *curr = NULL;
  1174. struct task_struct *p;
  1175. p = find_lock_task_mm(task);
  1176. if (p) {
  1177. curr = try_get_mem_cgroup_from_mm(p->mm);
  1178. task_unlock(p);
  1179. } else {
  1180. /*
  1181. * All threads may have already detached their mm's, but the oom
  1182. * killer still needs to detect if they have already been oom
  1183. * killed to prevent needlessly killing additional tasks.
  1184. */
  1185. task_lock(task);
  1186. curr = mem_cgroup_from_task(task);
  1187. if (curr)
  1188. css_get(&curr->css);
  1189. task_unlock(task);
  1190. }
  1191. if (!curr)
  1192. return 0;
  1193. /*
  1194. * We should check use_hierarchy of "memcg" not "curr". Because checking
  1195. * use_hierarchy of "curr" here make this function true if hierarchy is
  1196. * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
  1197. * hierarchy(even if use_hierarchy is disabled in "memcg").
  1198. */
  1199. ret = mem_cgroup_same_or_subtree(memcg, curr);
  1200. css_put(&curr->css);
  1201. return ret;
  1202. }
  1203. int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
  1204. {
  1205. unsigned long inactive_ratio;
  1206. unsigned long inactive;
  1207. unsigned long active;
  1208. unsigned long gb;
  1209. inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
  1210. active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
  1211. gb = (inactive + active) >> (30 - PAGE_SHIFT);
  1212. if (gb)
  1213. inactive_ratio = int_sqrt(10 * gb);
  1214. else
  1215. inactive_ratio = 1;
  1216. return inactive * inactive_ratio < active;
  1217. }
  1218. int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
  1219. {
  1220. unsigned long active;
  1221. unsigned long inactive;
  1222. inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
  1223. active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
  1224. return (active > inactive);
  1225. }
  1226. #define mem_cgroup_from_res_counter(counter, member) \
  1227. container_of(counter, struct mem_cgroup, member)
  1228. /**
  1229. * mem_cgroup_margin - calculate chargeable space of a memory cgroup
  1230. * @memcg: the memory cgroup
  1231. *
  1232. * Returns the maximum amount of memory @mem can be charged with, in
  1233. * pages.
  1234. */
  1235. static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
  1236. {
  1237. unsigned long long margin;
  1238. margin = res_counter_margin(&memcg->res);
  1239. if (do_swap_account)
  1240. margin = min(margin, res_counter_margin(&memcg->memsw));
  1241. return margin >> PAGE_SHIFT;
  1242. }
  1243. int mem_cgroup_swappiness(struct mem_cgroup *memcg)
  1244. {
  1245. struct cgroup *cgrp = memcg->css.cgroup;
  1246. /* root ? */
  1247. if (cgrp->parent == NULL)
  1248. return vm_swappiness;
  1249. return memcg->swappiness;
  1250. }
  1251. /*
  1252. * memcg->moving_account is used for checking possibility that some thread is
  1253. * calling move_account(). When a thread on CPU-A starts moving pages under
  1254. * a memcg, other threads should check memcg->moving_account under
  1255. * rcu_read_lock(), like this:
  1256. *
  1257. * CPU-A CPU-B
  1258. * rcu_read_lock()
  1259. * memcg->moving_account+1 if (memcg->mocing_account)
  1260. * take heavy locks.
  1261. * synchronize_rcu() update something.
  1262. * rcu_read_unlock()
  1263. * start move here.
  1264. */
  1265. /* for quick checking without looking up memcg */
  1266. atomic_t memcg_moving __read_mostly;
  1267. static void mem_cgroup_start_move(struct mem_cgroup *memcg)
  1268. {
  1269. atomic_inc(&memcg_moving);
  1270. atomic_inc(&memcg->moving_account);
  1271. synchronize_rcu();
  1272. }
  1273. static void mem_cgroup_end_move(struct mem_cgroup *memcg)
  1274. {
  1275. /*
  1276. * Now, mem_cgroup_clear_mc() may call this function with NULL.
  1277. * We check NULL in callee rather than caller.
  1278. */
  1279. if (memcg) {
  1280. atomic_dec(&memcg_moving);
  1281. atomic_dec(&memcg->moving_account);
  1282. }
  1283. }
  1284. /*
  1285. * 2 routines for checking "mem" is under move_account() or not.
  1286. *
  1287. * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
  1288. * is used for avoiding races in accounting. If true,
  1289. * pc->mem_cgroup may be overwritten.
  1290. *
  1291. * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
  1292. * under hierarchy of moving cgroups. This is for
  1293. * waiting at hith-memory prressure caused by "move".
  1294. */
  1295. static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
  1296. {
  1297. VM_BUG_ON(!rcu_read_lock_held());
  1298. return atomic_read(&memcg->moving_account) > 0;
  1299. }
  1300. static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
  1301. {
  1302. struct mem_cgroup *from;
  1303. struct mem_cgroup *to;
  1304. bool ret = false;
  1305. /*
  1306. * Unlike task_move routines, we access mc.to, mc.from not under
  1307. * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
  1308. */
  1309. spin_lock(&mc.lock);
  1310. from = mc.from;
  1311. to = mc.to;
  1312. if (!from)
  1313. goto unlock;
  1314. ret = mem_cgroup_same_or_subtree(memcg, from)
  1315. || mem_cgroup_same_or_subtree(memcg, to);
  1316. unlock:
  1317. spin_unlock(&mc.lock);
  1318. return ret;
  1319. }
  1320. static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
  1321. {
  1322. if (mc.moving_task && current != mc.moving_task) {
  1323. if (mem_cgroup_under_move(memcg)) {
  1324. DEFINE_WAIT(wait);
  1325. prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
  1326. /* moving charge context might have finished. */
  1327. if (mc.moving_task)
  1328. schedule();
  1329. finish_wait(&mc.waitq, &wait);
  1330. return true;
  1331. }
  1332. }
  1333. return false;
  1334. }
  1335. /*
  1336. * Take this lock when
  1337. * - a code tries to modify page's memcg while it's USED.
  1338. * - a code tries to modify page state accounting in a memcg.
  1339. * see mem_cgroup_stolen(), too.
  1340. */
  1341. static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
  1342. unsigned long *flags)
  1343. {
  1344. spin_lock_irqsave(&memcg->move_lock, *flags);
  1345. }
  1346. static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
  1347. unsigned long *flags)
  1348. {
  1349. spin_unlock_irqrestore(&memcg->move_lock, *flags);
  1350. }
  1351. #define K(x) ((x) << (PAGE_SHIFT-10))
  1352. /**
  1353. * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
  1354. * @memcg: The memory cgroup that went over limit
  1355. * @p: Task that is going to be killed
  1356. *
  1357. * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
  1358. * enabled
  1359. */
  1360. void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
  1361. {
  1362. struct cgroup *task_cgrp;
  1363. struct cgroup *mem_cgrp;
  1364. /*
  1365. * Need a buffer in BSS, can't rely on allocations. The code relies
  1366. * on the assumption that OOM is serialized for memory controller.
  1367. * If this assumption is broken, revisit this code.
  1368. */
  1369. static char memcg_name[PATH_MAX];
  1370. int ret;
  1371. struct mem_cgroup *iter;
  1372. unsigned int i;
  1373. if (!p)
  1374. return;
  1375. rcu_read_lock();
  1376. mem_cgrp = memcg->css.cgroup;
  1377. task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
  1378. ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
  1379. if (ret < 0) {
  1380. /*
  1381. * Unfortunately, we are unable to convert to a useful name
  1382. * But we'll still print out the usage information
  1383. */
  1384. rcu_read_unlock();
  1385. goto done;
  1386. }
  1387. rcu_read_unlock();
  1388. pr_info("Task in %s killed", memcg_name);
  1389. rcu_read_lock();
  1390. ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
  1391. if (ret < 0) {
  1392. rcu_read_unlock();
  1393. goto done;
  1394. }
  1395. rcu_read_unlock();
  1396. /*
  1397. * Continues from above, so we don't need an KERN_ level
  1398. */
  1399. pr_cont(" as a result of limit of %s\n", memcg_name);
  1400. done:
  1401. pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
  1402. res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
  1403. res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
  1404. res_counter_read_u64(&memcg->res, RES_FAILCNT));
  1405. pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
  1406. res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
  1407. res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
  1408. res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
  1409. pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
  1410. res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
  1411. res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
  1412. res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
  1413. for_each_mem_cgroup_tree(iter, memcg) {
  1414. pr_info("Memory cgroup stats");
  1415. rcu_read_lock();
  1416. ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
  1417. if (!ret)
  1418. pr_cont(" for %s", memcg_name);
  1419. rcu_read_unlock();
  1420. pr_cont(":");
  1421. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  1422. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  1423. continue;
  1424. pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
  1425. K(mem_cgroup_read_stat(iter, i)));
  1426. }
  1427. for (i = 0; i < NR_LRU_LISTS; i++)
  1428. pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
  1429. K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
  1430. pr_cont("\n");
  1431. }
  1432. }
  1433. /*
  1434. * This function returns the number of memcg under hierarchy tree. Returns
  1435. * 1(self count) if no children.
  1436. */
  1437. static int mem_cgroup_count_children(struct mem_cgroup *memcg)
  1438. {
  1439. int num = 0;
  1440. struct mem_cgroup *iter;
  1441. for_each_mem_cgroup_tree(iter, memcg)
  1442. num++;
  1443. return num;
  1444. }
  1445. /*
  1446. * Return the memory (and swap, if configured) limit for a memcg.
  1447. */
  1448. static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
  1449. {
  1450. u64 limit;
  1451. limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
  1452. /*
  1453. * Do not consider swap space if we cannot swap due to swappiness
  1454. */
  1455. if (mem_cgroup_swappiness(memcg)) {
  1456. u64 memsw;
  1457. limit += total_swap_pages << PAGE_SHIFT;
  1458. memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  1459. /*
  1460. * If memsw is finite and limits the amount of swap space
  1461. * available to this memcg, return that limit.
  1462. */
  1463. limit = min(limit, memsw);
  1464. }
  1465. return limit;
  1466. }
  1467. static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1468. int order)
  1469. {
  1470. struct mem_cgroup *iter;
  1471. unsigned long chosen_points = 0;
  1472. unsigned long totalpages;
  1473. unsigned int points = 0;
  1474. struct task_struct *chosen = NULL;
  1475. /*
  1476. * If current has a pending SIGKILL, then automatically select it. The
  1477. * goal is to allow it to allocate so that it may quickly exit and free
  1478. * its memory.
  1479. */
  1480. if (fatal_signal_pending(current)) {
  1481. set_thread_flag(TIF_MEMDIE);
  1482. return;
  1483. }
  1484. check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
  1485. totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
  1486. for_each_mem_cgroup_tree(iter, memcg) {
  1487. struct cgroup *cgroup = iter->css.cgroup;
  1488. struct cgroup_iter it;
  1489. struct task_struct *task;
  1490. cgroup_iter_start(cgroup, &it);
  1491. while ((task = cgroup_iter_next(cgroup, &it))) {
  1492. switch (oom_scan_process_thread(task, totalpages, NULL,
  1493. false)) {
  1494. case OOM_SCAN_SELECT:
  1495. if (chosen)
  1496. put_task_struct(chosen);
  1497. chosen = task;
  1498. chosen_points = ULONG_MAX;
  1499. get_task_struct(chosen);
  1500. /* fall through */
  1501. case OOM_SCAN_CONTINUE:
  1502. continue;
  1503. case OOM_SCAN_ABORT:
  1504. cgroup_iter_end(cgroup, &it);
  1505. mem_cgroup_iter_break(memcg, iter);
  1506. if (chosen)
  1507. put_task_struct(chosen);
  1508. return;
  1509. case OOM_SCAN_OK:
  1510. break;
  1511. };
  1512. points = oom_badness(task, memcg, NULL, totalpages);
  1513. if (points > chosen_points) {
  1514. if (chosen)
  1515. put_task_struct(chosen);
  1516. chosen = task;
  1517. chosen_points = points;
  1518. get_task_struct(chosen);
  1519. }
  1520. }
  1521. cgroup_iter_end(cgroup, &it);
  1522. }
  1523. if (!chosen)
  1524. return;
  1525. points = chosen_points * 1000 / totalpages;
  1526. oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
  1527. NULL, "Memory cgroup out of memory");
  1528. }
  1529. static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
  1530. gfp_t gfp_mask,
  1531. unsigned long flags)
  1532. {
  1533. unsigned long total = 0;
  1534. bool noswap = false;
  1535. int loop;
  1536. if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
  1537. noswap = true;
  1538. if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
  1539. noswap = true;
  1540. for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
  1541. if (loop)
  1542. drain_all_stock_async(memcg);
  1543. total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
  1544. /*
  1545. * Allow limit shrinkers, which are triggered directly
  1546. * by userspace, to catch signals and stop reclaim
  1547. * after minimal progress, regardless of the margin.
  1548. */
  1549. if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
  1550. break;
  1551. if (mem_cgroup_margin(memcg))
  1552. break;
  1553. /*
  1554. * If nothing was reclaimed after two attempts, there
  1555. * may be no reclaimable pages in this hierarchy.
  1556. */
  1557. if (loop && !total)
  1558. break;
  1559. }
  1560. return total;
  1561. }
  1562. /**
  1563. * test_mem_cgroup_node_reclaimable
  1564. * @memcg: the target memcg
  1565. * @nid: the node ID to be checked.
  1566. * @noswap : specify true here if the user wants flle only information.
  1567. *
  1568. * This function returns whether the specified memcg contains any
  1569. * reclaimable pages on a node. Returns true if there are any reclaimable
  1570. * pages in the node.
  1571. */
  1572. static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
  1573. int nid, bool noswap)
  1574. {
  1575. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
  1576. return true;
  1577. if (noswap || !total_swap_pages)
  1578. return false;
  1579. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
  1580. return true;
  1581. return false;
  1582. }
  1583. #if MAX_NUMNODES > 1
  1584. /*
  1585. * Always updating the nodemask is not very good - even if we have an empty
  1586. * list or the wrong list here, we can start from some node and traverse all
  1587. * nodes based on the zonelist. So update the list loosely once per 10 secs.
  1588. *
  1589. */
  1590. static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
  1591. {
  1592. int nid;
  1593. /*
  1594. * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
  1595. * pagein/pageout changes since the last update.
  1596. */
  1597. if (!atomic_read(&memcg->numainfo_events))
  1598. return;
  1599. if (atomic_inc_return(&memcg->numainfo_updating) > 1)
  1600. return;
  1601. /* make a nodemask where this memcg uses memory from */
  1602. memcg->scan_nodes = node_states[N_MEMORY];
  1603. for_each_node_mask(nid, node_states[N_MEMORY]) {
  1604. if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
  1605. node_clear(nid, memcg->scan_nodes);
  1606. }
  1607. atomic_set(&memcg->numainfo_events, 0);
  1608. atomic_set(&memcg->numainfo_updating, 0);
  1609. }
  1610. /*
  1611. * Selecting a node where we start reclaim from. Because what we need is just
  1612. * reducing usage counter, start from anywhere is O,K. Considering
  1613. * memory reclaim from current node, there are pros. and cons.
  1614. *
  1615. * Freeing memory from current node means freeing memory from a node which
  1616. * we'll use or we've used. So, it may make LRU bad. And if several threads
  1617. * hit limits, it will see a contention on a node. But freeing from remote
  1618. * node means more costs for memory reclaim because of memory latency.
  1619. *
  1620. * Now, we use round-robin. Better algorithm is welcomed.
  1621. */
  1622. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1623. {
  1624. int node;
  1625. mem_cgroup_may_update_nodemask(memcg);
  1626. node = memcg->last_scanned_node;
  1627. node = next_node(node, memcg->scan_nodes);
  1628. if (node == MAX_NUMNODES)
  1629. node = first_node(memcg->scan_nodes);
  1630. /*
  1631. * We call this when we hit limit, not when pages are added to LRU.
  1632. * No LRU may hold pages because all pages are UNEVICTABLE or
  1633. * memcg is too small and all pages are not on LRU. In that case,
  1634. * we use curret node.
  1635. */
  1636. if (unlikely(node == MAX_NUMNODES))
  1637. node = numa_node_id();
  1638. memcg->last_scanned_node = node;
  1639. return node;
  1640. }
  1641. /*
  1642. * Check all nodes whether it contains reclaimable pages or not.
  1643. * For quick scan, we make use of scan_nodes. This will allow us to skip
  1644. * unused nodes. But scan_nodes is lazily updated and may not cotain
  1645. * enough new information. We need to do double check.
  1646. */
  1647. static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
  1648. {
  1649. int nid;
  1650. /*
  1651. * quick check...making use of scan_node.
  1652. * We can skip unused nodes.
  1653. */
  1654. if (!nodes_empty(memcg->scan_nodes)) {
  1655. for (nid = first_node(memcg->scan_nodes);
  1656. nid < MAX_NUMNODES;
  1657. nid = next_node(nid, memcg->scan_nodes)) {
  1658. if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
  1659. return true;
  1660. }
  1661. }
  1662. /*
  1663. * Check rest of nodes.
  1664. */
  1665. for_each_node_state(nid, N_MEMORY) {
  1666. if (node_isset(nid, memcg->scan_nodes))
  1667. continue;
  1668. if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
  1669. return true;
  1670. }
  1671. return false;
  1672. }
  1673. #else
  1674. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1675. {
  1676. return 0;
  1677. }
  1678. static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
  1679. {
  1680. return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
  1681. }
  1682. #endif
  1683. static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
  1684. struct zone *zone,
  1685. gfp_t gfp_mask,
  1686. unsigned long *total_scanned)
  1687. {
  1688. struct mem_cgroup *victim = NULL;
  1689. int total = 0;
  1690. int loop = 0;
  1691. unsigned long excess;
  1692. unsigned long nr_scanned;
  1693. struct mem_cgroup_reclaim_cookie reclaim = {
  1694. .zone = zone,
  1695. .priority = 0,
  1696. };
  1697. excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
  1698. while (1) {
  1699. victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
  1700. if (!victim) {
  1701. loop++;
  1702. if (loop >= 2) {
  1703. /*
  1704. * If we have not been able to reclaim
  1705. * anything, it might because there are
  1706. * no reclaimable pages under this hierarchy
  1707. */
  1708. if (!total)
  1709. break;
  1710. /*
  1711. * We want to do more targeted reclaim.
  1712. * excess >> 2 is not to excessive so as to
  1713. * reclaim too much, nor too less that we keep
  1714. * coming back to reclaim from this cgroup
  1715. */
  1716. if (total >= (excess >> 2) ||
  1717. (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
  1718. break;
  1719. }
  1720. continue;
  1721. }
  1722. if (!mem_cgroup_reclaimable(victim, false))
  1723. continue;
  1724. total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
  1725. zone, &nr_scanned);
  1726. *total_scanned += nr_scanned;
  1727. if (!res_counter_soft_limit_excess(&root_memcg->res))
  1728. break;
  1729. }
  1730. mem_cgroup_iter_break(root_memcg, victim);
  1731. return total;
  1732. }
  1733. /*
  1734. * Check OOM-Killer is already running under our hierarchy.
  1735. * If someone is running, return false.
  1736. * Has to be called with memcg_oom_lock
  1737. */
  1738. static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
  1739. {
  1740. struct mem_cgroup *iter, *failed = NULL;
  1741. for_each_mem_cgroup_tree(iter, memcg) {
  1742. if (iter->oom_lock) {
  1743. /*
  1744. * this subtree of our hierarchy is already locked
  1745. * so we cannot give a lock.
  1746. */
  1747. failed = iter;
  1748. mem_cgroup_iter_break(memcg, iter);
  1749. break;
  1750. } else
  1751. iter->oom_lock = true;
  1752. }
  1753. if (!failed)
  1754. return true;
  1755. /*
  1756. * OK, we failed to lock the whole subtree so we have to clean up
  1757. * what we set up to the failing subtree
  1758. */
  1759. for_each_mem_cgroup_tree(iter, memcg) {
  1760. if (iter == failed) {
  1761. mem_cgroup_iter_break(memcg, iter);
  1762. break;
  1763. }
  1764. iter->oom_lock = false;
  1765. }
  1766. return false;
  1767. }
  1768. /*
  1769. * Has to be called with memcg_oom_lock
  1770. */
  1771. static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
  1772. {
  1773. struct mem_cgroup *iter;
  1774. for_each_mem_cgroup_tree(iter, memcg)
  1775. iter->oom_lock = false;
  1776. return 0;
  1777. }
  1778. static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
  1779. {
  1780. struct mem_cgroup *iter;
  1781. for_each_mem_cgroup_tree(iter, memcg)
  1782. atomic_inc(&iter->under_oom);
  1783. }
  1784. static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
  1785. {
  1786. struct mem_cgroup *iter;
  1787. /*
  1788. * When a new child is created while the hierarchy is under oom,
  1789. * mem_cgroup_oom_lock() may not be called. We have to use
  1790. * atomic_add_unless() here.
  1791. */
  1792. for_each_mem_cgroup_tree(iter, memcg)
  1793. atomic_add_unless(&iter->under_oom, -1, 0);
  1794. }
  1795. static DEFINE_SPINLOCK(memcg_oom_lock);
  1796. static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
  1797. struct oom_wait_info {
  1798. struct mem_cgroup *memcg;
  1799. wait_queue_t wait;
  1800. };
  1801. static int memcg_oom_wake_function(wait_queue_t *wait,
  1802. unsigned mode, int sync, void *arg)
  1803. {
  1804. struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
  1805. struct mem_cgroup *oom_wait_memcg;
  1806. struct oom_wait_info *oom_wait_info;
  1807. oom_wait_info = container_of(wait, struct oom_wait_info, wait);
  1808. oom_wait_memcg = oom_wait_info->memcg;
  1809. /*
  1810. * Both of oom_wait_info->memcg and wake_memcg are stable under us.
  1811. * Then we can use css_is_ancestor without taking care of RCU.
  1812. */
  1813. if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
  1814. && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
  1815. return 0;
  1816. return autoremove_wake_function(wait, mode, sync, arg);
  1817. }
  1818. static void memcg_wakeup_oom(struct mem_cgroup *memcg)
  1819. {
  1820. /* for filtering, pass "memcg" as argument. */
  1821. __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
  1822. }
  1823. static void memcg_oom_recover(struct mem_cgroup *memcg)
  1824. {
  1825. if (memcg && atomic_read(&memcg->under_oom))
  1826. memcg_wakeup_oom(memcg);
  1827. }
  1828. /*
  1829. * try to call OOM killer. returns false if we should exit memory-reclaim loop.
  1830. */
  1831. static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
  1832. int order)
  1833. {
  1834. struct oom_wait_info owait;
  1835. bool locked, need_to_kill;
  1836. owait.memcg = memcg;
  1837. owait.wait.flags = 0;
  1838. owait.wait.func = memcg_oom_wake_function;
  1839. owait.wait.private = current;
  1840. INIT_LIST_HEAD(&owait.wait.task_list);
  1841. need_to_kill = true;
  1842. mem_cgroup_mark_under_oom(memcg);
  1843. /* At first, try to OOM lock hierarchy under memcg.*/
  1844. spin_lock(&memcg_oom_lock);
  1845. locked = mem_cgroup_oom_lock(memcg);
  1846. /*
  1847. * Even if signal_pending(), we can't quit charge() loop without
  1848. * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
  1849. * under OOM is always welcomed, use TASK_KILLABLE here.
  1850. */
  1851. prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
  1852. if (!locked || memcg->oom_kill_disable)
  1853. need_to_kill = false;
  1854. if (locked)
  1855. mem_cgroup_oom_notify(memcg);
  1856. spin_unlock(&memcg_oom_lock);
  1857. if (need_to_kill) {
  1858. finish_wait(&memcg_oom_waitq, &owait.wait);
  1859. mem_cgroup_out_of_memory(memcg, mask, order);
  1860. } else {
  1861. schedule();
  1862. finish_wait(&memcg_oom_waitq, &owait.wait);
  1863. }
  1864. spin_lock(&memcg_oom_lock);
  1865. if (locked)
  1866. mem_cgroup_oom_unlock(memcg);
  1867. memcg_wakeup_oom(memcg);
  1868. spin_unlock(&memcg_oom_lock);
  1869. mem_cgroup_unmark_under_oom(memcg);
  1870. if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
  1871. return false;
  1872. /* Give chance to dying process */
  1873. schedule_timeout_uninterruptible(1);
  1874. return true;
  1875. }
  1876. /*
  1877. * Currently used to update mapped file statistics, but the routine can be
  1878. * generalized to update other statistics as well.
  1879. *
  1880. * Notes: Race condition
  1881. *
  1882. * We usually use page_cgroup_lock() for accessing page_cgroup member but
  1883. * it tends to be costly. But considering some conditions, we doesn't need
  1884. * to do so _always_.
  1885. *
  1886. * Considering "charge", lock_page_cgroup() is not required because all
  1887. * file-stat operations happen after a page is attached to radix-tree. There
  1888. * are no race with "charge".
  1889. *
  1890. * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
  1891. * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
  1892. * if there are race with "uncharge". Statistics itself is properly handled
  1893. * by flags.
  1894. *
  1895. * Considering "move", this is an only case we see a race. To make the race
  1896. * small, we check mm->moving_account and detect there are possibility of race
  1897. * If there is, we take a lock.
  1898. */
  1899. void __mem_cgroup_begin_update_page_stat(struct page *page,
  1900. bool *locked, unsigned long *flags)
  1901. {
  1902. struct mem_cgroup *memcg;
  1903. struct page_cgroup *pc;
  1904. pc = lookup_page_cgroup(page);
  1905. again:
  1906. memcg = pc->mem_cgroup;
  1907. if (unlikely(!memcg || !PageCgroupUsed(pc)))
  1908. return;
  1909. /*
  1910. * If this memory cgroup is not under account moving, we don't
  1911. * need to take move_lock_mem_cgroup(). Because we already hold
  1912. * rcu_read_lock(), any calls to move_account will be delayed until
  1913. * rcu_read_unlock() if mem_cgroup_stolen() == true.
  1914. */
  1915. if (!mem_cgroup_stolen(memcg))
  1916. return;
  1917. move_lock_mem_cgroup(memcg, flags);
  1918. if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
  1919. move_unlock_mem_cgroup(memcg, flags);
  1920. goto again;
  1921. }
  1922. *locked = true;
  1923. }
  1924. void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
  1925. {
  1926. struct page_cgroup *pc = lookup_page_cgroup(page);
  1927. /*
  1928. * It's guaranteed that pc->mem_cgroup never changes while
  1929. * lock is held because a routine modifies pc->mem_cgroup
  1930. * should take move_lock_mem_cgroup().
  1931. */
  1932. move_unlock_mem_cgroup(pc->mem_cgroup, flags);
  1933. }
  1934. void mem_cgroup_update_page_stat(struct page *page,
  1935. enum mem_cgroup_page_stat_item idx, int val)
  1936. {
  1937. struct mem_cgroup *memcg;
  1938. struct page_cgroup *pc = lookup_page_cgroup(page);
  1939. unsigned long uninitialized_var(flags);
  1940. if (mem_cgroup_disabled())
  1941. return;
  1942. memcg = pc->mem_cgroup;
  1943. if (unlikely(!memcg || !PageCgroupUsed(pc)))
  1944. return;
  1945. switch (idx) {
  1946. case MEMCG_NR_FILE_MAPPED:
  1947. idx = MEM_CGROUP_STAT_FILE_MAPPED;
  1948. break;
  1949. default:
  1950. BUG();
  1951. }
  1952. this_cpu_add(memcg->stat->count[idx], val);
  1953. }
  1954. /*
  1955. * size of first charge trial. "32" comes from vmscan.c's magic value.
  1956. * TODO: maybe necessary to use big numbers in big irons.
  1957. */
  1958. #define CHARGE_BATCH 32U
  1959. struct memcg_stock_pcp {
  1960. struct mem_cgroup *cached; /* this never be root cgroup */
  1961. unsigned int nr_pages;
  1962. struct work_struct work;
  1963. unsigned long flags;
  1964. #define FLUSHING_CACHED_CHARGE 0
  1965. };
  1966. static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
  1967. static DEFINE_MUTEX(percpu_charge_mutex);
  1968. /**
  1969. * consume_stock: Try to consume stocked charge on this cpu.
  1970. * @memcg: memcg to consume from.
  1971. * @nr_pages: how many pages to charge.
  1972. *
  1973. * The charges will only happen if @memcg matches the current cpu's memcg
  1974. * stock, and at least @nr_pages are available in that stock. Failure to
  1975. * service an allocation will refill the stock.
  1976. *
  1977. * returns true if successful, false otherwise.
  1978. */
  1979. static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  1980. {
  1981. struct memcg_stock_pcp *stock;
  1982. bool ret = true;
  1983. if (nr_pages > CHARGE_BATCH)
  1984. return false;
  1985. stock = &get_cpu_var(memcg_stock);
  1986. if (memcg == stock->cached && stock->nr_pages >= nr_pages)
  1987. stock->nr_pages -= nr_pages;
  1988. else /* need to call res_counter_charge */
  1989. ret = false;
  1990. put_cpu_var(memcg_stock);
  1991. return ret;
  1992. }
  1993. /*
  1994. * Returns stocks cached in percpu to res_counter and reset cached information.
  1995. */
  1996. static void drain_stock(struct memcg_stock_pcp *stock)
  1997. {
  1998. struct mem_cgroup *old = stock->cached;
  1999. if (stock->nr_pages) {
  2000. unsigned long bytes = stock->nr_pages * PAGE_SIZE;
  2001. res_counter_uncharge(&old->res, bytes);
  2002. if (do_swap_account)
  2003. res_counter_uncharge(&old->memsw, bytes);
  2004. stock->nr_pages = 0;
  2005. }
  2006. stock->cached = NULL;
  2007. }
  2008. /*
  2009. * This must be called under preempt disabled or must be called by
  2010. * a thread which is pinned to local cpu.
  2011. */
  2012. static void drain_local_stock(struct work_struct *dummy)
  2013. {
  2014. struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
  2015. drain_stock(stock);
  2016. clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
  2017. }
  2018. /*
  2019. * Cache charges(val) which is from res_counter, to local per_cpu area.
  2020. * This will be consumed by consume_stock() function, later.
  2021. */
  2022. static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  2023. {
  2024. struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
  2025. if (stock->cached != memcg) { /* reset if necessary */
  2026. drain_stock(stock);
  2027. stock->cached = memcg;
  2028. }
  2029. stock->nr_pages += nr_pages;
  2030. put_cpu_var(memcg_stock);
  2031. }
  2032. /*
  2033. * Drains all per-CPU charge caches for given root_memcg resp. subtree
  2034. * of the hierarchy under it. sync flag says whether we should block
  2035. * until the work is done.
  2036. */
  2037. static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
  2038. {
  2039. int cpu, curcpu;
  2040. /* Notify other cpus that system-wide "drain" is running */
  2041. get_online_cpus();
  2042. curcpu = get_cpu();
  2043. for_each_online_cpu(cpu) {
  2044. struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
  2045. struct mem_cgroup *memcg;
  2046. memcg = stock->cached;
  2047. if (!memcg || !stock->nr_pages)
  2048. continue;
  2049. if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
  2050. continue;
  2051. if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
  2052. if (cpu == curcpu)
  2053. drain_local_stock(&stock->work);
  2054. else
  2055. schedule_work_on(cpu, &stock->work);
  2056. }
  2057. }
  2058. put_cpu();
  2059. if (!sync)
  2060. goto out;
  2061. for_each_online_cpu(cpu) {
  2062. struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
  2063. if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
  2064. flush_work(&stock->work);
  2065. }
  2066. out:
  2067. put_online_cpus();
  2068. }
  2069. /*
  2070. * Tries to drain stocked charges in other cpus. This function is asynchronous
  2071. * and just put a work per cpu for draining localy on each cpu. Caller can
  2072. * expects some charges will be back to res_counter later but cannot wait for
  2073. * it.
  2074. */
  2075. static void drain_all_stock_async(struct mem_cgroup *root_memcg)
  2076. {
  2077. /*
  2078. * If someone calls draining, avoid adding more kworker runs.
  2079. */
  2080. if (!mutex_trylock(&percpu_charge_mutex))
  2081. return;
  2082. drain_all_stock(root_memcg, false);
  2083. mutex_unlock(&percpu_charge_mutex);
  2084. }
  2085. /* This is a synchronous drain interface. */
  2086. static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
  2087. {
  2088. /* called when force_empty is called */
  2089. mutex_lock(&percpu_charge_mutex);
  2090. drain_all_stock(root_memcg, true);
  2091. mutex_unlock(&percpu_charge_mutex);
  2092. }
  2093. /*
  2094. * This function drains percpu counter value from DEAD cpu and
  2095. * move it to local cpu. Note that this function can be preempted.
  2096. */
  2097. static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
  2098. {
  2099. int i;
  2100. spin_lock(&memcg->pcp_counter_lock);
  2101. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  2102. long x = per_cpu(memcg->stat->count[i], cpu);
  2103. per_cpu(memcg->stat->count[i], cpu) = 0;
  2104. memcg->nocpu_base.count[i] += x;
  2105. }
  2106. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
  2107. unsigned long x = per_cpu(memcg->stat->events[i], cpu);
  2108. per_cpu(memcg->stat->events[i], cpu) = 0;
  2109. memcg->nocpu_base.events[i] += x;
  2110. }
  2111. spin_unlock(&memcg->pcp_counter_lock);
  2112. }
  2113. static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
  2114. unsigned long action,
  2115. void *hcpu)
  2116. {
  2117. int cpu = (unsigned long)hcpu;
  2118. struct memcg_stock_pcp *stock;
  2119. struct mem_cgroup *iter;
  2120. if (action == CPU_ONLINE)
  2121. return NOTIFY_OK;
  2122. if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
  2123. return NOTIFY_OK;
  2124. for_each_mem_cgroup(iter)
  2125. mem_cgroup_drain_pcp_counter(iter, cpu);
  2126. stock = &per_cpu(memcg_stock, cpu);
  2127. drain_stock(stock);
  2128. return NOTIFY_OK;
  2129. }
  2130. /* See __mem_cgroup_try_charge() for details */
  2131. enum {
  2132. CHARGE_OK, /* success */
  2133. CHARGE_RETRY, /* need to retry but retry is not bad */
  2134. CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
  2135. CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
  2136. CHARGE_OOM_DIE, /* the current is killed because of OOM */
  2137. };
  2138. static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
  2139. unsigned int nr_pages, unsigned int min_pages,
  2140. bool oom_check)
  2141. {
  2142. unsigned long csize = nr_pages * PAGE_SIZE;
  2143. struct mem_cgroup *mem_over_limit;
  2144. struct res_counter *fail_res;
  2145. unsigned long flags = 0;
  2146. int ret;
  2147. ret = res_counter_charge(&memcg->res, csize, &fail_res);
  2148. if (likely(!ret)) {
  2149. if (!do_swap_account)
  2150. return CHARGE_OK;
  2151. ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
  2152. if (likely(!ret))
  2153. return CHARGE_OK;
  2154. res_counter_uncharge(&memcg->res, csize);
  2155. mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
  2156. flags |= MEM_CGROUP_RECLAIM_NOSWAP;
  2157. } else
  2158. mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
  2159. /*
  2160. * Never reclaim on behalf of optional batching, retry with a
  2161. * single page instead.
  2162. */
  2163. if (nr_pages > min_pages)
  2164. return CHARGE_RETRY;
  2165. if (!(gfp_mask & __GFP_WAIT))
  2166. return CHARGE_WOULDBLOCK;
  2167. if (gfp_mask & __GFP_NORETRY)
  2168. return CHARGE_NOMEM;
  2169. ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
  2170. if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
  2171. return CHARGE_RETRY;
  2172. /*
  2173. * Even though the limit is exceeded at this point, reclaim
  2174. * may have been able to free some pages. Retry the charge
  2175. * before killing the task.
  2176. *
  2177. * Only for regular pages, though: huge pages are rather
  2178. * unlikely to succeed so close to the limit, and we fall back
  2179. * to regular pages anyway in case of failure.
  2180. */
  2181. if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
  2182. return CHARGE_RETRY;
  2183. /*
  2184. * At task move, charge accounts can be doubly counted. So, it's
  2185. * better to wait until the end of task_move if something is going on.
  2186. */
  2187. if (mem_cgroup_wait_acct_move(mem_over_limit))
  2188. return CHARGE_RETRY;
  2189. /* If we don't need to call oom-killer at el, return immediately */
  2190. if (!oom_check)
  2191. return CHARGE_NOMEM;
  2192. /* check OOM */
  2193. if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
  2194. return CHARGE_OOM_DIE;
  2195. return CHARGE_RETRY;
  2196. }
  2197. /*
  2198. * __mem_cgroup_try_charge() does
  2199. * 1. detect memcg to be charged against from passed *mm and *ptr,
  2200. * 2. update res_counter
  2201. * 3. call memory reclaim if necessary.
  2202. *
  2203. * In some special case, if the task is fatal, fatal_signal_pending() or
  2204. * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
  2205. * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
  2206. * as possible without any hazards. 2: all pages should have a valid
  2207. * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
  2208. * pointer, that is treated as a charge to root_mem_cgroup.
  2209. *
  2210. * So __mem_cgroup_try_charge() will return
  2211. * 0 ... on success, filling *ptr with a valid memcg pointer.
  2212. * -ENOMEM ... charge failure because of resource limits.
  2213. * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
  2214. *
  2215. * Unlike the exported interface, an "oom" parameter is added. if oom==true,
  2216. * the oom-killer can be invoked.
  2217. */
  2218. static int __mem_cgroup_try_charge(struct mm_struct *mm,
  2219. gfp_t gfp_mask,
  2220. unsigned int nr_pages,
  2221. struct mem_cgroup **ptr,
  2222. bool oom)
  2223. {
  2224. unsigned int batch = max(CHARGE_BATCH, nr_pages);
  2225. int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
  2226. struct mem_cgroup *memcg = NULL;
  2227. int ret;
  2228. /*
  2229. * Unlike gloval-vm's OOM-kill, we're not in memory shortage
  2230. * in system level. So, allow to go ahead dying process in addition to
  2231. * MEMDIE process.
  2232. */
  2233. if (unlikely(test_thread_flag(TIF_MEMDIE)
  2234. || fatal_signal_pending(current)))
  2235. goto bypass;
  2236. /*
  2237. * We always charge the cgroup the mm_struct belongs to.
  2238. * The mm_struct's mem_cgroup changes on task migration if the
  2239. * thread group leader migrates. It's possible that mm is not
  2240. * set, if so charge the root memcg (happens for pagecache usage).
  2241. */
  2242. if (!*ptr && !mm)
  2243. *ptr = root_mem_cgroup;
  2244. again:
  2245. if (*ptr) { /* css should be a valid one */
  2246. memcg = *ptr;
  2247. if (mem_cgroup_is_root(memcg))
  2248. goto done;
  2249. if (consume_stock(memcg, nr_pages))
  2250. goto done;
  2251. css_get(&memcg->css);
  2252. } else {
  2253. struct task_struct *p;
  2254. rcu_read_lock();
  2255. p = rcu_dereference(mm->owner);
  2256. /*
  2257. * Because we don't have task_lock(), "p" can exit.
  2258. * In that case, "memcg" can point to root or p can be NULL with
  2259. * race with swapoff. Then, we have small risk of mis-accouning.
  2260. * But such kind of mis-account by race always happens because
  2261. * we don't have cgroup_mutex(). It's overkill and we allo that
  2262. * small race, here.
  2263. * (*) swapoff at el will charge against mm-struct not against
  2264. * task-struct. So, mm->owner can be NULL.
  2265. */
  2266. memcg = mem_cgroup_from_task(p);
  2267. if (!memcg)
  2268. memcg = root_mem_cgroup;
  2269. if (mem_cgroup_is_root(memcg)) {
  2270. rcu_read_unlock();
  2271. goto done;
  2272. }
  2273. if (consume_stock(memcg, nr_pages)) {
  2274. /*
  2275. * It seems dagerous to access memcg without css_get().
  2276. * But considering how consume_stok works, it's not
  2277. * necessary. If consume_stock success, some charges
  2278. * from this memcg are cached on this cpu. So, we
  2279. * don't need to call css_get()/css_tryget() before
  2280. * calling consume_stock().
  2281. */
  2282. rcu_read_unlock();
  2283. goto done;
  2284. }
  2285. /* after here, we may be blocked. we need to get refcnt */
  2286. if (!css_tryget(&memcg->css)) {
  2287. rcu_read_unlock();
  2288. goto again;
  2289. }
  2290. rcu_read_unlock();
  2291. }
  2292. do {
  2293. bool oom_check;
  2294. /* If killed, bypass charge */
  2295. if (fatal_signal_pending(current)) {
  2296. css_put(&memcg->css);
  2297. goto bypass;
  2298. }
  2299. oom_check = false;
  2300. if (oom && !nr_oom_retries) {
  2301. oom_check = true;
  2302. nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
  2303. }
  2304. ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
  2305. oom_check);
  2306. switch (ret) {
  2307. case CHARGE_OK:
  2308. break;
  2309. case CHARGE_RETRY: /* not in OOM situation but retry */
  2310. batch = nr_pages;
  2311. css_put(&memcg->css);
  2312. memcg = NULL;
  2313. goto again;
  2314. case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
  2315. css_put(&memcg->css);
  2316. goto nomem;
  2317. case CHARGE_NOMEM: /* OOM routine works */
  2318. if (!oom) {
  2319. css_put(&memcg->css);
  2320. goto nomem;
  2321. }
  2322. /* If oom, we never return -ENOMEM */
  2323. nr_oom_retries--;
  2324. break;
  2325. case CHARGE_OOM_DIE: /* Killed by OOM Killer */
  2326. css_put(&memcg->css);
  2327. goto bypass;
  2328. }
  2329. } while (ret != CHARGE_OK);
  2330. if (batch > nr_pages)
  2331. refill_stock(memcg, batch - nr_pages);
  2332. css_put(&memcg->css);
  2333. done:
  2334. *ptr = memcg;
  2335. return 0;
  2336. nomem:
  2337. *ptr = NULL;
  2338. return -ENOMEM;
  2339. bypass:
  2340. *ptr = root_mem_cgroup;
  2341. return -EINTR;
  2342. }
  2343. /*
  2344. * Somemtimes we have to undo a charge we got by try_charge().
  2345. * This function is for that and do uncharge, put css's refcnt.
  2346. * gotten by try_charge().
  2347. */
  2348. static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
  2349. unsigned int nr_pages)
  2350. {
  2351. if (!mem_cgroup_is_root(memcg)) {
  2352. unsigned long bytes = nr_pages * PAGE_SIZE;
  2353. res_counter_uncharge(&memcg->res, bytes);
  2354. if (do_swap_account)
  2355. res_counter_uncharge(&memcg->memsw, bytes);
  2356. }
  2357. }
  2358. /*
  2359. * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
  2360. * This is useful when moving usage to parent cgroup.
  2361. */
  2362. static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
  2363. unsigned int nr_pages)
  2364. {
  2365. unsigned long bytes = nr_pages * PAGE_SIZE;
  2366. if (mem_cgroup_is_root(memcg))
  2367. return;
  2368. res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
  2369. if (do_swap_account)
  2370. res_counter_uncharge_until(&memcg->memsw,
  2371. memcg->memsw.parent, bytes);
  2372. }
  2373. /*
  2374. * A helper function to get mem_cgroup from ID. must be called under
  2375. * rcu_read_lock(). The caller is responsible for calling css_tryget if
  2376. * the mem_cgroup is used for charging. (dropping refcnt from swap can be
  2377. * called against removed memcg.)
  2378. */
  2379. static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
  2380. {
  2381. struct cgroup_subsys_state *css;
  2382. /* ID 0 is unused ID */
  2383. if (!id)
  2384. return NULL;
  2385. css = css_lookup(&mem_cgroup_subsys, id);
  2386. if (!css)
  2387. return NULL;
  2388. return mem_cgroup_from_css(css);
  2389. }
  2390. struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
  2391. {
  2392. struct mem_cgroup *memcg = NULL;
  2393. struct page_cgroup *pc;
  2394. unsigned short id;
  2395. swp_entry_t ent;
  2396. VM_BUG_ON(!PageLocked(page));
  2397. pc = lookup_page_cgroup(page);
  2398. lock_page_cgroup(pc);
  2399. if (PageCgroupUsed(pc)) {
  2400. memcg = pc->mem_cgroup;
  2401. if (memcg && !css_tryget(&memcg->css))
  2402. memcg = NULL;
  2403. } else if (PageSwapCache(page)) {
  2404. ent.val = page_private(page);
  2405. id = lookup_swap_cgroup_id(ent);
  2406. rcu_read_lock();
  2407. memcg = mem_cgroup_lookup(id);
  2408. if (memcg && !css_tryget(&memcg->css))
  2409. memcg = NULL;
  2410. rcu_read_unlock();
  2411. }
  2412. unlock_page_cgroup(pc);
  2413. return memcg;
  2414. }
  2415. static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
  2416. struct page *page,
  2417. unsigned int nr_pages,
  2418. enum charge_type ctype,
  2419. bool lrucare)
  2420. {
  2421. struct page_cgroup *pc = lookup_page_cgroup(page);
  2422. struct zone *uninitialized_var(zone);
  2423. struct lruvec *lruvec;
  2424. bool was_on_lru = false;
  2425. bool anon;
  2426. lock_page_cgroup(pc);
  2427. VM_BUG_ON(PageCgroupUsed(pc));
  2428. /*
  2429. * we don't need page_cgroup_lock about tail pages, becase they are not
  2430. * accessed by any other context at this point.
  2431. */
  2432. /*
  2433. * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
  2434. * may already be on some other mem_cgroup's LRU. Take care of it.
  2435. */
  2436. if (lrucare) {
  2437. zone = page_zone(page);
  2438. spin_lock_irq(&zone->lru_lock);
  2439. if (PageLRU(page)) {
  2440. lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
  2441. ClearPageLRU(page);
  2442. del_page_from_lru_list(page, lruvec, page_lru(page));
  2443. was_on_lru = true;
  2444. }
  2445. }
  2446. pc->mem_cgroup = memcg;
  2447. /*
  2448. * We access a page_cgroup asynchronously without lock_page_cgroup().
  2449. * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
  2450. * is accessed after testing USED bit. To make pc->mem_cgroup visible
  2451. * before USED bit, we need memory barrier here.
  2452. * See mem_cgroup_add_lru_list(), etc.
  2453. */
  2454. smp_wmb();
  2455. SetPageCgroupUsed(pc);
  2456. if (lrucare) {
  2457. if (was_on_lru) {
  2458. lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
  2459. VM_BUG_ON(PageLRU(page));
  2460. SetPageLRU(page);
  2461. add_page_to_lru_list(page, lruvec, page_lru(page));
  2462. }
  2463. spin_unlock_irq(&zone->lru_lock);
  2464. }
  2465. if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
  2466. anon = true;
  2467. else
  2468. anon = false;
  2469. mem_cgroup_charge_statistics(memcg, anon, nr_pages);
  2470. unlock_page_cgroup(pc);
  2471. /*
  2472. * "charge_statistics" updated event counter. Then, check it.
  2473. * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
  2474. * if they exceeds softlimit.
  2475. */
  2476. memcg_check_events(memcg, page);
  2477. }
  2478. static DEFINE_MUTEX(set_limit_mutex);
  2479. #ifdef CONFIG_MEMCG_KMEM
  2480. static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
  2481. {
  2482. return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
  2483. (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
  2484. }
  2485. /*
  2486. * This is a bit cumbersome, but it is rarely used and avoids a backpointer
  2487. * in the memcg_cache_params struct.
  2488. */
  2489. static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
  2490. {
  2491. struct kmem_cache *cachep;
  2492. VM_BUG_ON(p->is_root_cache);
  2493. cachep = p->root_cache;
  2494. return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
  2495. }
  2496. #ifdef CONFIG_SLABINFO
  2497. static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
  2498. struct seq_file *m)
  2499. {
  2500. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  2501. struct memcg_cache_params *params;
  2502. if (!memcg_can_account_kmem(memcg))
  2503. return -EIO;
  2504. print_slabinfo_header(m);
  2505. mutex_lock(&memcg->slab_caches_mutex);
  2506. list_for_each_entry(params, &memcg->memcg_slab_caches, list)
  2507. cache_show(memcg_params_to_cache(params), m);
  2508. mutex_unlock(&memcg->slab_caches_mutex);
  2509. return 0;
  2510. }
  2511. #endif
  2512. static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
  2513. {
  2514. struct res_counter *fail_res;
  2515. struct mem_cgroup *_memcg;
  2516. int ret = 0;
  2517. bool may_oom;
  2518. ret = res_counter_charge(&memcg->kmem, size, &fail_res);
  2519. if (ret)
  2520. return ret;
  2521. /*
  2522. * Conditions under which we can wait for the oom_killer. Those are
  2523. * the same conditions tested by the core page allocator
  2524. */
  2525. may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
  2526. _memcg = memcg;
  2527. ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
  2528. &_memcg, may_oom);
  2529. if (ret == -EINTR) {
  2530. /*
  2531. * __mem_cgroup_try_charge() chosed to bypass to root due to
  2532. * OOM kill or fatal signal. Since our only options are to
  2533. * either fail the allocation or charge it to this cgroup, do
  2534. * it as a temporary condition. But we can't fail. From a
  2535. * kmem/slab perspective, the cache has already been selected,
  2536. * by mem_cgroup_kmem_get_cache(), so it is too late to change
  2537. * our minds.
  2538. *
  2539. * This condition will only trigger if the task entered
  2540. * memcg_charge_kmem in a sane state, but was OOM-killed during
  2541. * __mem_cgroup_try_charge() above. Tasks that were already
  2542. * dying when the allocation triggers should have been already
  2543. * directed to the root cgroup in memcontrol.h
  2544. */
  2545. res_counter_charge_nofail(&memcg->res, size, &fail_res);
  2546. if (do_swap_account)
  2547. res_counter_charge_nofail(&memcg->memsw, size,
  2548. &fail_res);
  2549. ret = 0;
  2550. } else if (ret)
  2551. res_counter_uncharge(&memcg->kmem, size);
  2552. return ret;
  2553. }
  2554. static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
  2555. {
  2556. res_counter_uncharge(&memcg->res, size);
  2557. if (do_swap_account)
  2558. res_counter_uncharge(&memcg->memsw, size);
  2559. /* Not down to 0 */
  2560. if (res_counter_uncharge(&memcg->kmem, size))
  2561. return;
  2562. if (memcg_kmem_test_and_clear_dead(memcg))
  2563. mem_cgroup_put(memcg);
  2564. }
  2565. void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
  2566. {
  2567. if (!memcg)
  2568. return;
  2569. mutex_lock(&memcg->slab_caches_mutex);
  2570. list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
  2571. mutex_unlock(&memcg->slab_caches_mutex);
  2572. }
  2573. /*
  2574. * helper for acessing a memcg's index. It will be used as an index in the
  2575. * child cache array in kmem_cache, and also to derive its name. This function
  2576. * will return -1 when this is not a kmem-limited memcg.
  2577. */
  2578. int memcg_cache_id(struct mem_cgroup *memcg)
  2579. {
  2580. return memcg ? memcg->kmemcg_id : -1;
  2581. }
  2582. /*
  2583. * This ends up being protected by the set_limit mutex, during normal
  2584. * operation, because that is its main call site.
  2585. *
  2586. * But when we create a new cache, we can call this as well if its parent
  2587. * is kmem-limited. That will have to hold set_limit_mutex as well.
  2588. */
  2589. int memcg_update_cache_sizes(struct mem_cgroup *memcg)
  2590. {
  2591. int num, ret;
  2592. num = ida_simple_get(&kmem_limited_groups,
  2593. 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
  2594. if (num < 0)
  2595. return num;
  2596. /*
  2597. * After this point, kmem_accounted (that we test atomically in
  2598. * the beginning of this conditional), is no longer 0. This
  2599. * guarantees only one process will set the following boolean
  2600. * to true. We don't need test_and_set because we're protected
  2601. * by the set_limit_mutex anyway.
  2602. */
  2603. memcg_kmem_set_activated(memcg);
  2604. ret = memcg_update_all_caches(num+1);
  2605. if (ret) {
  2606. ida_simple_remove(&kmem_limited_groups, num);
  2607. memcg_kmem_clear_activated(memcg);
  2608. return ret;
  2609. }
  2610. memcg->kmemcg_id = num;
  2611. INIT_LIST_HEAD(&memcg->memcg_slab_caches);
  2612. mutex_init(&memcg->slab_caches_mutex);
  2613. return 0;
  2614. }
  2615. static size_t memcg_caches_array_size(int num_groups)
  2616. {
  2617. ssize_t size;
  2618. if (num_groups <= 0)
  2619. return 0;
  2620. size = 2 * num_groups;
  2621. if (size < MEMCG_CACHES_MIN_SIZE)
  2622. size = MEMCG_CACHES_MIN_SIZE;
  2623. else if (size > MEMCG_CACHES_MAX_SIZE)
  2624. size = MEMCG_CACHES_MAX_SIZE;
  2625. return size;
  2626. }
  2627. /*
  2628. * We should update the current array size iff all caches updates succeed. This
  2629. * can only be done from the slab side. The slab mutex needs to be held when
  2630. * calling this.
  2631. */
  2632. void memcg_update_array_size(int num)
  2633. {
  2634. if (num > memcg_limited_groups_array_size)
  2635. memcg_limited_groups_array_size = memcg_caches_array_size(num);
  2636. }
  2637. int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
  2638. {
  2639. struct memcg_cache_params *cur_params = s->memcg_params;
  2640. VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
  2641. if (num_groups > memcg_limited_groups_array_size) {
  2642. int i;
  2643. ssize_t size = memcg_caches_array_size(num_groups);
  2644. size *= sizeof(void *);
  2645. size += sizeof(struct memcg_cache_params);
  2646. s->memcg_params = kzalloc(size, GFP_KERNEL);
  2647. if (!s->memcg_params) {
  2648. s->memcg_params = cur_params;
  2649. return -ENOMEM;
  2650. }
  2651. s->memcg_params->is_root_cache = true;
  2652. /*
  2653. * There is the chance it will be bigger than
  2654. * memcg_limited_groups_array_size, if we failed an allocation
  2655. * in a cache, in which case all caches updated before it, will
  2656. * have a bigger array.
  2657. *
  2658. * But if that is the case, the data after
  2659. * memcg_limited_groups_array_size is certainly unused
  2660. */
  2661. for (i = 0; i < memcg_limited_groups_array_size; i++) {
  2662. if (!cur_params->memcg_caches[i])
  2663. continue;
  2664. s->memcg_params->memcg_caches[i] =
  2665. cur_params->memcg_caches[i];
  2666. }
  2667. /*
  2668. * Ideally, we would wait until all caches succeed, and only
  2669. * then free the old one. But this is not worth the extra
  2670. * pointer per-cache we'd have to have for this.
  2671. *
  2672. * It is not a big deal if some caches are left with a size
  2673. * bigger than the others. And all updates will reset this
  2674. * anyway.
  2675. */
  2676. kfree(cur_params);
  2677. }
  2678. return 0;
  2679. }
  2680. int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
  2681. struct kmem_cache *root_cache)
  2682. {
  2683. size_t size = sizeof(struct memcg_cache_params);
  2684. if (!memcg_kmem_enabled())
  2685. return 0;
  2686. if (!memcg)
  2687. size += memcg_limited_groups_array_size * sizeof(void *);
  2688. s->memcg_params = kzalloc(size, GFP_KERNEL);
  2689. if (!s->memcg_params)
  2690. return -ENOMEM;
  2691. if (memcg) {
  2692. s->memcg_params->memcg = memcg;
  2693. s->memcg_params->root_cache = root_cache;
  2694. } else
  2695. s->memcg_params->is_root_cache = true;
  2696. return 0;
  2697. }
  2698. void memcg_release_cache(struct kmem_cache *s)
  2699. {
  2700. struct kmem_cache *root;
  2701. struct mem_cgroup *memcg;
  2702. int id;
  2703. /*
  2704. * This happens, for instance, when a root cache goes away before we
  2705. * add any memcg.
  2706. */
  2707. if (!s->memcg_params)
  2708. return;
  2709. if (s->memcg_params->is_root_cache)
  2710. goto out;
  2711. memcg = s->memcg_params->memcg;
  2712. id = memcg_cache_id(memcg);
  2713. root = s->memcg_params->root_cache;
  2714. root->memcg_params->memcg_caches[id] = NULL;
  2715. mem_cgroup_put(memcg);
  2716. mutex_lock(&memcg->slab_caches_mutex);
  2717. list_del(&s->memcg_params->list);
  2718. mutex_unlock(&memcg->slab_caches_mutex);
  2719. out:
  2720. kfree(s->memcg_params);
  2721. }
  2722. /*
  2723. * During the creation a new cache, we need to disable our accounting mechanism
  2724. * altogether. This is true even if we are not creating, but rather just
  2725. * enqueing new caches to be created.
  2726. *
  2727. * This is because that process will trigger allocations; some visible, like
  2728. * explicit kmallocs to auxiliary data structures, name strings and internal
  2729. * cache structures; some well concealed, like INIT_WORK() that can allocate
  2730. * objects during debug.
  2731. *
  2732. * If any allocation happens during memcg_kmem_get_cache, we will recurse back
  2733. * to it. This may not be a bounded recursion: since the first cache creation
  2734. * failed to complete (waiting on the allocation), we'll just try to create the
  2735. * cache again, failing at the same point.
  2736. *
  2737. * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
  2738. * memcg_kmem_skip_account. So we enclose anything that might allocate memory
  2739. * inside the following two functions.
  2740. */
  2741. static inline void memcg_stop_kmem_account(void)
  2742. {
  2743. VM_BUG_ON(!current->mm);
  2744. current->memcg_kmem_skip_account++;
  2745. }
  2746. static inline void memcg_resume_kmem_account(void)
  2747. {
  2748. VM_BUG_ON(!current->mm);
  2749. current->memcg_kmem_skip_account--;
  2750. }
  2751. static void kmem_cache_destroy_work_func(struct work_struct *w)
  2752. {
  2753. struct kmem_cache *cachep;
  2754. struct memcg_cache_params *p;
  2755. p = container_of(w, struct memcg_cache_params, destroy);
  2756. cachep = memcg_params_to_cache(p);
  2757. /*
  2758. * If we get down to 0 after shrink, we could delete right away.
  2759. * However, memcg_release_pages() already puts us back in the workqueue
  2760. * in that case. If we proceed deleting, we'll get a dangling
  2761. * reference, and removing the object from the workqueue in that case
  2762. * is unnecessary complication. We are not a fast path.
  2763. *
  2764. * Note that this case is fundamentally different from racing with
  2765. * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
  2766. * kmem_cache_shrink, not only we would be reinserting a dead cache
  2767. * into the queue, but doing so from inside the worker racing to
  2768. * destroy it.
  2769. *
  2770. * So if we aren't down to zero, we'll just schedule a worker and try
  2771. * again
  2772. */
  2773. if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
  2774. kmem_cache_shrink(cachep);
  2775. if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
  2776. return;
  2777. } else
  2778. kmem_cache_destroy(cachep);
  2779. }
  2780. void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
  2781. {
  2782. if (!cachep->memcg_params->dead)
  2783. return;
  2784. /*
  2785. * There are many ways in which we can get here.
  2786. *
  2787. * We can get to a memory-pressure situation while the delayed work is
  2788. * still pending to run. The vmscan shrinkers can then release all
  2789. * cache memory and get us to destruction. If this is the case, we'll
  2790. * be executed twice, which is a bug (the second time will execute over
  2791. * bogus data). In this case, cancelling the work should be fine.
  2792. *
  2793. * But we can also get here from the worker itself, if
  2794. * kmem_cache_shrink is enough to shake all the remaining objects and
  2795. * get the page count to 0. In this case, we'll deadlock if we try to
  2796. * cancel the work (the worker runs with an internal lock held, which
  2797. * is the same lock we would hold for cancel_work_sync().)
  2798. *
  2799. * Since we can't possibly know who got us here, just refrain from
  2800. * running if there is already work pending
  2801. */
  2802. if (work_pending(&cachep->memcg_params->destroy))
  2803. return;
  2804. /*
  2805. * We have to defer the actual destroying to a workqueue, because
  2806. * we might currently be in a context that cannot sleep.
  2807. */
  2808. schedule_work(&cachep->memcg_params->destroy);
  2809. }
  2810. static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
  2811. {
  2812. char *name;
  2813. struct dentry *dentry;
  2814. rcu_read_lock();
  2815. dentry = rcu_dereference(memcg->css.cgroup->dentry);
  2816. rcu_read_unlock();
  2817. BUG_ON(dentry == NULL);
  2818. name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
  2819. memcg_cache_id(memcg), dentry->d_name.name);
  2820. return name;
  2821. }
  2822. static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
  2823. struct kmem_cache *s)
  2824. {
  2825. char *name;
  2826. struct kmem_cache *new;
  2827. name = memcg_cache_name(memcg, s);
  2828. if (!name)
  2829. return NULL;
  2830. new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
  2831. (s->flags & ~SLAB_PANIC), s->ctor, s);
  2832. if (new)
  2833. new->allocflags |= __GFP_KMEMCG;
  2834. kfree(name);
  2835. return new;
  2836. }
  2837. /*
  2838. * This lock protects updaters, not readers. We want readers to be as fast as
  2839. * they can, and they will either see NULL or a valid cache value. Our model
  2840. * allow them to see NULL, in which case the root memcg will be selected.
  2841. *
  2842. * We need this lock because multiple allocations to the same cache from a non
  2843. * will span more than one worker. Only one of them can create the cache.
  2844. */
  2845. static DEFINE_MUTEX(memcg_cache_mutex);
  2846. static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
  2847. struct kmem_cache *cachep)
  2848. {
  2849. struct kmem_cache *new_cachep;
  2850. int idx;
  2851. BUG_ON(!memcg_can_account_kmem(memcg));
  2852. idx = memcg_cache_id(memcg);
  2853. mutex_lock(&memcg_cache_mutex);
  2854. new_cachep = cachep->memcg_params->memcg_caches[idx];
  2855. if (new_cachep)
  2856. goto out;
  2857. new_cachep = kmem_cache_dup(memcg, cachep);
  2858. if (new_cachep == NULL) {
  2859. new_cachep = cachep;
  2860. goto out;
  2861. }
  2862. mem_cgroup_get(memcg);
  2863. atomic_set(&new_cachep->memcg_params->nr_pages , 0);
  2864. cachep->memcg_params->memcg_caches[idx] = new_cachep;
  2865. /*
  2866. * the readers won't lock, make sure everybody sees the updated value,
  2867. * so they won't put stuff in the queue again for no reason
  2868. */
  2869. wmb();
  2870. out:
  2871. mutex_unlock(&memcg_cache_mutex);
  2872. return new_cachep;
  2873. }
  2874. void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
  2875. {
  2876. struct kmem_cache *c;
  2877. int i;
  2878. if (!s->memcg_params)
  2879. return;
  2880. if (!s->memcg_params->is_root_cache)
  2881. return;
  2882. /*
  2883. * If the cache is being destroyed, we trust that there is no one else
  2884. * requesting objects from it. Even if there are, the sanity checks in
  2885. * kmem_cache_destroy should caught this ill-case.
  2886. *
  2887. * Still, we don't want anyone else freeing memcg_caches under our
  2888. * noses, which can happen if a new memcg comes to life. As usual,
  2889. * we'll take the set_limit_mutex to protect ourselves against this.
  2890. */
  2891. mutex_lock(&set_limit_mutex);
  2892. for (i = 0; i < memcg_limited_groups_array_size; i++) {
  2893. c = s->memcg_params->memcg_caches[i];
  2894. if (!c)
  2895. continue;
  2896. /*
  2897. * We will now manually delete the caches, so to avoid races
  2898. * we need to cancel all pending destruction workers and
  2899. * proceed with destruction ourselves.
  2900. *
  2901. * kmem_cache_destroy() will call kmem_cache_shrink internally,
  2902. * and that could spawn the workers again: it is likely that
  2903. * the cache still have active pages until this very moment.
  2904. * This would lead us back to mem_cgroup_destroy_cache.
  2905. *
  2906. * But that will not execute at all if the "dead" flag is not
  2907. * set, so flip it down to guarantee we are in control.
  2908. */
  2909. c->memcg_params->dead = false;
  2910. cancel_work_sync(&c->memcg_params->destroy);
  2911. kmem_cache_destroy(c);
  2912. }
  2913. mutex_unlock(&set_limit_mutex);
  2914. }
  2915. struct create_work {
  2916. struct mem_cgroup *memcg;
  2917. struct kmem_cache *cachep;
  2918. struct work_struct work;
  2919. };
  2920. static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
  2921. {
  2922. struct kmem_cache *cachep;
  2923. struct memcg_cache_params *params;
  2924. if (!memcg_kmem_is_active(memcg))
  2925. return;
  2926. mutex_lock(&memcg->slab_caches_mutex);
  2927. list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
  2928. cachep = memcg_params_to_cache(params);
  2929. cachep->memcg_params->dead = true;
  2930. INIT_WORK(&cachep->memcg_params->destroy,
  2931. kmem_cache_destroy_work_func);
  2932. schedule_work(&cachep->memcg_params->destroy);
  2933. }
  2934. mutex_unlock(&memcg->slab_caches_mutex);
  2935. }
  2936. static void memcg_create_cache_work_func(struct work_struct *w)
  2937. {
  2938. struct create_work *cw;
  2939. cw = container_of(w, struct create_work, work);
  2940. memcg_create_kmem_cache(cw->memcg, cw->cachep);
  2941. /* Drop the reference gotten when we enqueued. */
  2942. css_put(&cw->memcg->css);
  2943. kfree(cw);
  2944. }
  2945. /*
  2946. * Enqueue the creation of a per-memcg kmem_cache.
  2947. * Called with rcu_read_lock.
  2948. */
  2949. static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
  2950. struct kmem_cache *cachep)
  2951. {
  2952. struct create_work *cw;
  2953. cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
  2954. if (cw == NULL)
  2955. return;
  2956. /* The corresponding put will be done in the workqueue. */
  2957. if (!css_tryget(&memcg->css)) {
  2958. kfree(cw);
  2959. return;
  2960. }
  2961. cw->memcg = memcg;
  2962. cw->cachep = cachep;
  2963. INIT_WORK(&cw->work, memcg_create_cache_work_func);
  2964. schedule_work(&cw->work);
  2965. }
  2966. static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
  2967. struct kmem_cache *cachep)
  2968. {
  2969. /*
  2970. * We need to stop accounting when we kmalloc, because if the
  2971. * corresponding kmalloc cache is not yet created, the first allocation
  2972. * in __memcg_create_cache_enqueue will recurse.
  2973. *
  2974. * However, it is better to enclose the whole function. Depending on
  2975. * the debugging options enabled, INIT_WORK(), for instance, can
  2976. * trigger an allocation. This too, will make us recurse. Because at
  2977. * this point we can't allow ourselves back into memcg_kmem_get_cache,
  2978. * the safest choice is to do it like this, wrapping the whole function.
  2979. */
  2980. memcg_stop_kmem_account();
  2981. __memcg_create_cache_enqueue(memcg, cachep);
  2982. memcg_resume_kmem_account();
  2983. }
  2984. /*
  2985. * Return the kmem_cache we're supposed to use for a slab allocation.
  2986. * We try to use the current memcg's version of the cache.
  2987. *
  2988. * If the cache does not exist yet, if we are the first user of it,
  2989. * we either create it immediately, if possible, or create it asynchronously
  2990. * in a workqueue.
  2991. * In the latter case, we will let the current allocation go through with
  2992. * the original cache.
  2993. *
  2994. * Can't be called in interrupt context or from kernel threads.
  2995. * This function needs to be called with rcu_read_lock() held.
  2996. */
  2997. struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
  2998. gfp_t gfp)
  2999. {
  3000. struct mem_cgroup *memcg;
  3001. int idx;
  3002. VM_BUG_ON(!cachep->memcg_params);
  3003. VM_BUG_ON(!cachep->memcg_params->is_root_cache);
  3004. if (!current->mm || current->memcg_kmem_skip_account)
  3005. return cachep;
  3006. rcu_read_lock();
  3007. memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
  3008. rcu_read_unlock();
  3009. if (!memcg_can_account_kmem(memcg))
  3010. return cachep;
  3011. idx = memcg_cache_id(memcg);
  3012. /*
  3013. * barrier to mare sure we're always seeing the up to date value. The
  3014. * code updating memcg_caches will issue a write barrier to match this.
  3015. */
  3016. read_barrier_depends();
  3017. if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
  3018. /*
  3019. * If we are in a safe context (can wait, and not in interrupt
  3020. * context), we could be be predictable and return right away.
  3021. * This would guarantee that the allocation being performed
  3022. * already belongs in the new cache.
  3023. *
  3024. * However, there are some clashes that can arrive from locking.
  3025. * For instance, because we acquire the slab_mutex while doing
  3026. * kmem_cache_dup, this means no further allocation could happen
  3027. * with the slab_mutex held.
  3028. *
  3029. * Also, because cache creation issue get_online_cpus(), this
  3030. * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
  3031. * that ends up reversed during cpu hotplug. (cpuset allocates
  3032. * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
  3033. * better to defer everything.
  3034. */
  3035. memcg_create_cache_enqueue(memcg, cachep);
  3036. return cachep;
  3037. }
  3038. return cachep->memcg_params->memcg_caches[idx];
  3039. }
  3040. EXPORT_SYMBOL(__memcg_kmem_get_cache);
  3041. /*
  3042. * We need to verify if the allocation against current->mm->owner's memcg is
  3043. * possible for the given order. But the page is not allocated yet, so we'll
  3044. * need a further commit step to do the final arrangements.
  3045. *
  3046. * It is possible for the task to switch cgroups in this mean time, so at
  3047. * commit time, we can't rely on task conversion any longer. We'll then use
  3048. * the handle argument to return to the caller which cgroup we should commit
  3049. * against. We could also return the memcg directly and avoid the pointer
  3050. * passing, but a boolean return value gives better semantics considering
  3051. * the compiled-out case as well.
  3052. *
  3053. * Returning true means the allocation is possible.
  3054. */
  3055. bool
  3056. __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
  3057. {
  3058. struct mem_cgroup *memcg;
  3059. int ret;
  3060. *_memcg = NULL;
  3061. memcg = try_get_mem_cgroup_from_mm(current->mm);
  3062. /*
  3063. * very rare case described in mem_cgroup_from_task. Unfortunately there
  3064. * isn't much we can do without complicating this too much, and it would
  3065. * be gfp-dependent anyway. Just let it go
  3066. */
  3067. if (unlikely(!memcg))
  3068. return true;
  3069. if (!memcg_can_account_kmem(memcg)) {
  3070. css_put(&memcg->css);
  3071. return true;
  3072. }
  3073. ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
  3074. if (!ret)
  3075. *_memcg = memcg;
  3076. css_put(&memcg->css);
  3077. return (ret == 0);
  3078. }
  3079. void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
  3080. int order)
  3081. {
  3082. struct page_cgroup *pc;
  3083. VM_BUG_ON(mem_cgroup_is_root(memcg));
  3084. /* The page allocation failed. Revert */
  3085. if (!page) {
  3086. memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
  3087. return;
  3088. }
  3089. pc = lookup_page_cgroup(page);
  3090. lock_page_cgroup(pc);
  3091. pc->mem_cgroup = memcg;
  3092. SetPageCgroupUsed(pc);
  3093. unlock_page_cgroup(pc);
  3094. }
  3095. void __memcg_kmem_uncharge_pages(struct page *page, int order)
  3096. {
  3097. struct mem_cgroup *memcg = NULL;
  3098. struct page_cgroup *pc;
  3099. pc = lookup_page_cgroup(page);
  3100. /*
  3101. * Fast unlocked return. Theoretically might have changed, have to
  3102. * check again after locking.
  3103. */
  3104. if (!PageCgroupUsed(pc))
  3105. return;
  3106. lock_page_cgroup(pc);
  3107. if (PageCgroupUsed(pc)) {
  3108. memcg = pc->mem_cgroup;
  3109. ClearPageCgroupUsed(pc);
  3110. }
  3111. unlock_page_cgroup(pc);
  3112. /*
  3113. * We trust that only if there is a memcg associated with the page, it
  3114. * is a valid allocation
  3115. */
  3116. if (!memcg)
  3117. return;
  3118. VM_BUG_ON(mem_cgroup_is_root(memcg));
  3119. memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
  3120. }
  3121. #else
  3122. static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
  3123. {
  3124. }
  3125. #endif /* CONFIG_MEMCG_KMEM */
  3126. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3127. #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
  3128. /*
  3129. * Because tail pages are not marked as "used", set it. We're under
  3130. * zone->lru_lock, 'splitting on pmd' and compound_lock.
  3131. * charge/uncharge will be never happen and move_account() is done under
  3132. * compound_lock(), so we don't have to take care of races.
  3133. */
  3134. void mem_cgroup_split_huge_fixup(struct page *head)
  3135. {
  3136. struct page_cgroup *head_pc = lookup_page_cgroup(head);
  3137. struct page_cgroup *pc;
  3138. int i;
  3139. if (mem_cgroup_disabled())
  3140. return;
  3141. for (i = 1; i < HPAGE_PMD_NR; i++) {
  3142. pc = head_pc + i;
  3143. pc->mem_cgroup = head_pc->mem_cgroup;
  3144. smp_wmb();/* see __commit_charge() */
  3145. pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
  3146. }
  3147. }
  3148. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  3149. /**
  3150. * mem_cgroup_move_account - move account of the page
  3151. * @page: the page
  3152. * @nr_pages: number of regular pages (>1 for huge pages)
  3153. * @pc: page_cgroup of the page.
  3154. * @from: mem_cgroup which the page is moved from.
  3155. * @to: mem_cgroup which the page is moved to. @from != @to.
  3156. *
  3157. * The caller must confirm following.
  3158. * - page is not on LRU (isolate_page() is useful.)
  3159. * - compound_lock is held when nr_pages > 1
  3160. *
  3161. * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
  3162. * from old cgroup.
  3163. */
  3164. static int mem_cgroup_move_account(struct page *page,
  3165. unsigned int nr_pages,
  3166. struct page_cgroup *pc,
  3167. struct mem_cgroup *from,
  3168. struct mem_cgroup *to)
  3169. {
  3170. unsigned long flags;
  3171. int ret;
  3172. bool anon = PageAnon(page);
  3173. VM_BUG_ON(from == to);
  3174. VM_BUG_ON(PageLRU(page));
  3175. /*
  3176. * The page is isolated from LRU. So, collapse function
  3177. * will not handle this page. But page splitting can happen.
  3178. * Do this check under compound_page_lock(). The caller should
  3179. * hold it.
  3180. */
  3181. ret = -EBUSY;
  3182. if (nr_pages > 1 && !PageTransHuge(page))
  3183. goto out;
  3184. lock_page_cgroup(pc);
  3185. ret = -EINVAL;
  3186. if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
  3187. goto unlock;
  3188. move_lock_mem_cgroup(from, &flags);
  3189. if (!anon && page_mapped(page)) {
  3190. /* Update mapped_file data for mem_cgroup */
  3191. preempt_disable();
  3192. __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
  3193. __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
  3194. preempt_enable();
  3195. }
  3196. mem_cgroup_charge_statistics(from, anon, -nr_pages);
  3197. /* caller should have done css_get */
  3198. pc->mem_cgroup = to;
  3199. mem_cgroup_charge_statistics(to, anon, nr_pages);
  3200. move_unlock_mem_cgroup(from, &flags);
  3201. ret = 0;
  3202. unlock:
  3203. unlock_page_cgroup(pc);
  3204. /*
  3205. * check events
  3206. */
  3207. memcg_check_events(to, page);
  3208. memcg_check_events(from, page);
  3209. out:
  3210. return ret;
  3211. }
  3212. /**
  3213. * mem_cgroup_move_parent - moves page to the parent group
  3214. * @page: the page to move
  3215. * @pc: page_cgroup of the page
  3216. * @child: page's cgroup
  3217. *
  3218. * move charges to its parent or the root cgroup if the group has no
  3219. * parent (aka use_hierarchy==0).
  3220. * Although this might fail (get_page_unless_zero, isolate_lru_page or
  3221. * mem_cgroup_move_account fails) the failure is always temporary and
  3222. * it signals a race with a page removal/uncharge or migration. In the
  3223. * first case the page is on the way out and it will vanish from the LRU
  3224. * on the next attempt and the call should be retried later.
  3225. * Isolation from the LRU fails only if page has been isolated from
  3226. * the LRU since we looked at it and that usually means either global
  3227. * reclaim or migration going on. The page will either get back to the
  3228. * LRU or vanish.
  3229. * Finaly mem_cgroup_move_account fails only if the page got uncharged
  3230. * (!PageCgroupUsed) or moved to a different group. The page will
  3231. * disappear in the next attempt.
  3232. */
  3233. static int mem_cgroup_move_parent(struct page *page,
  3234. struct page_cgroup *pc,
  3235. struct mem_cgroup *child)
  3236. {
  3237. struct mem_cgroup *parent;
  3238. unsigned int nr_pages;
  3239. unsigned long uninitialized_var(flags);
  3240. int ret;
  3241. VM_BUG_ON(mem_cgroup_is_root(child));
  3242. ret = -EBUSY;
  3243. if (!get_page_unless_zero(page))
  3244. goto out;
  3245. if (isolate_lru_page(page))
  3246. goto put;
  3247. nr_pages = hpage_nr_pages(page);
  3248. parent = parent_mem_cgroup(child);
  3249. /*
  3250. * If no parent, move charges to root cgroup.
  3251. */
  3252. if (!parent)
  3253. parent = root_mem_cgroup;
  3254. if (nr_pages > 1) {
  3255. VM_BUG_ON(!PageTransHuge(page));
  3256. flags = compound_lock_irqsave(page);
  3257. }
  3258. ret = mem_cgroup_move_account(page, nr_pages,
  3259. pc, child, parent);
  3260. if (!ret)
  3261. __mem_cgroup_cancel_local_charge(child, nr_pages);
  3262. if (nr_pages > 1)
  3263. compound_unlock_irqrestore(page, flags);
  3264. putback_lru_page(page);
  3265. put:
  3266. put_page(page);
  3267. out:
  3268. return ret;
  3269. }
  3270. /*
  3271. * Charge the memory controller for page usage.
  3272. * Return
  3273. * 0 if the charge was successful
  3274. * < 0 if the cgroup is over its limit
  3275. */
  3276. static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
  3277. gfp_t gfp_mask, enum charge_type ctype)
  3278. {
  3279. struct mem_cgroup *memcg = NULL;
  3280. unsigned int nr_pages = 1;
  3281. bool oom = true;
  3282. int ret;
  3283. if (PageTransHuge(page)) {
  3284. nr_pages <<= compound_order(page);
  3285. VM_BUG_ON(!PageTransHuge(page));
  3286. /*
  3287. * Never OOM-kill a process for a huge page. The
  3288. * fault handler will fall back to regular pages.
  3289. */
  3290. oom = false;
  3291. }
  3292. ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
  3293. if (ret == -ENOMEM)
  3294. return ret;
  3295. __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
  3296. return 0;
  3297. }
  3298. int mem_cgroup_newpage_charge(struct page *page,
  3299. struct mm_struct *mm, gfp_t gfp_mask)
  3300. {
  3301. if (mem_cgroup_disabled())
  3302. return 0;
  3303. VM_BUG_ON(page_mapped(page));
  3304. VM_BUG_ON(page->mapping && !PageAnon(page));
  3305. VM_BUG_ON(!mm);
  3306. return mem_cgroup_charge_common(page, mm, gfp_mask,
  3307. MEM_CGROUP_CHARGE_TYPE_ANON);
  3308. }
  3309. /*
  3310. * While swap-in, try_charge -> commit or cancel, the page is locked.
  3311. * And when try_charge() successfully returns, one refcnt to memcg without
  3312. * struct page_cgroup is acquired. This refcnt will be consumed by
  3313. * "commit()" or removed by "cancel()"
  3314. */
  3315. static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
  3316. struct page *page,
  3317. gfp_t mask,
  3318. struct mem_cgroup **memcgp)
  3319. {
  3320. struct mem_cgroup *memcg;
  3321. struct page_cgroup *pc;
  3322. int ret;
  3323. pc = lookup_page_cgroup(page);
  3324. /*
  3325. * Every swap fault against a single page tries to charge the
  3326. * page, bail as early as possible. shmem_unuse() encounters
  3327. * already charged pages, too. The USED bit is protected by
  3328. * the page lock, which serializes swap cache removal, which
  3329. * in turn serializes uncharging.
  3330. */
  3331. if (PageCgroupUsed(pc))
  3332. return 0;
  3333. if (!do_swap_account)
  3334. goto charge_cur_mm;
  3335. memcg = try_get_mem_cgroup_from_page(page);
  3336. if (!memcg)
  3337. goto charge_cur_mm;
  3338. *memcgp = memcg;
  3339. ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
  3340. css_put(&memcg->css);
  3341. if (ret == -EINTR)
  3342. ret = 0;
  3343. return ret;
  3344. charge_cur_mm:
  3345. ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
  3346. if (ret == -EINTR)
  3347. ret = 0;
  3348. return ret;
  3349. }
  3350. int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
  3351. gfp_t gfp_mask, struct mem_cgroup **memcgp)
  3352. {
  3353. *memcgp = NULL;
  3354. if (mem_cgroup_disabled())
  3355. return 0;
  3356. /*
  3357. * A racing thread's fault, or swapoff, may have already
  3358. * updated the pte, and even removed page from swap cache: in
  3359. * those cases unuse_pte()'s pte_same() test will fail; but
  3360. * there's also a KSM case which does need to charge the page.
  3361. */
  3362. if (!PageSwapCache(page)) {
  3363. int ret;
  3364. ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
  3365. if (ret == -EINTR)
  3366. ret = 0;
  3367. return ret;
  3368. }
  3369. return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
  3370. }
  3371. void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
  3372. {
  3373. if (mem_cgroup_disabled())
  3374. return;
  3375. if (!memcg)
  3376. return;
  3377. __mem_cgroup_cancel_charge(memcg, 1);
  3378. }
  3379. static void
  3380. __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
  3381. enum charge_type ctype)
  3382. {
  3383. if (mem_cgroup_disabled())
  3384. return;
  3385. if (!memcg)
  3386. return;
  3387. __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
  3388. /*
  3389. * Now swap is on-memory. This means this page may be
  3390. * counted both as mem and swap....double count.
  3391. * Fix it by uncharging from memsw. Basically, this SwapCache is stable
  3392. * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
  3393. * may call delete_from_swap_cache() before reach here.
  3394. */
  3395. if (do_swap_account && PageSwapCache(page)) {
  3396. swp_entry_t ent = {.val = page_private(page)};
  3397. mem_cgroup_uncharge_swap(ent);
  3398. }
  3399. }
  3400. void mem_cgroup_commit_charge_swapin(struct page *page,
  3401. struct mem_cgroup *memcg)
  3402. {
  3403. __mem_cgroup_commit_charge_swapin(page, memcg,
  3404. MEM_CGROUP_CHARGE_TYPE_ANON);
  3405. }
  3406. int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
  3407. gfp_t gfp_mask)
  3408. {
  3409. struct mem_cgroup *memcg = NULL;
  3410. enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
  3411. int ret;
  3412. if (mem_cgroup_disabled())
  3413. return 0;
  3414. if (PageCompound(page))
  3415. return 0;
  3416. if (!PageSwapCache(page))
  3417. ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
  3418. else { /* page is swapcache/shmem */
  3419. ret = __mem_cgroup_try_charge_swapin(mm, page,
  3420. gfp_mask, &memcg);
  3421. if (!ret)
  3422. __mem_cgroup_commit_charge_swapin(page, memcg, type);
  3423. }
  3424. return ret;
  3425. }
  3426. static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
  3427. unsigned int nr_pages,
  3428. const enum charge_type ctype)
  3429. {
  3430. struct memcg_batch_info *batch = NULL;
  3431. bool uncharge_memsw = true;
  3432. /* If swapout, usage of swap doesn't decrease */
  3433. if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
  3434. uncharge_memsw = false;
  3435. batch = &current->memcg_batch;
  3436. /*
  3437. * In usual, we do css_get() when we remember memcg pointer.
  3438. * But in this case, we keep res->usage until end of a series of
  3439. * uncharges. Then, it's ok to ignore memcg's refcnt.
  3440. */
  3441. if (!batch->memcg)
  3442. batch->memcg = memcg;
  3443. /*
  3444. * do_batch > 0 when unmapping pages or inode invalidate/truncate.
  3445. * In those cases, all pages freed continuously can be expected to be in
  3446. * the same cgroup and we have chance to coalesce uncharges.
  3447. * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
  3448. * because we want to do uncharge as soon as possible.
  3449. */
  3450. if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
  3451. goto direct_uncharge;
  3452. if (nr_pages > 1)
  3453. goto direct_uncharge;
  3454. /*
  3455. * In typical case, batch->memcg == mem. This means we can
  3456. * merge a series of uncharges to an uncharge of res_counter.
  3457. * If not, we uncharge res_counter ony by one.
  3458. */
  3459. if (batch->memcg != memcg)
  3460. goto direct_uncharge;
  3461. /* remember freed charge and uncharge it later */
  3462. batch->nr_pages++;
  3463. if (uncharge_memsw)
  3464. batch->memsw_nr_pages++;
  3465. return;
  3466. direct_uncharge:
  3467. res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
  3468. if (uncharge_memsw)
  3469. res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
  3470. if (unlikely(batch->memcg != memcg))
  3471. memcg_oom_recover(memcg);
  3472. }
  3473. /*
  3474. * uncharge if !page_mapped(page)
  3475. */
  3476. static struct mem_cgroup *
  3477. __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
  3478. bool end_migration)
  3479. {
  3480. struct mem_cgroup *memcg = NULL;
  3481. unsigned int nr_pages = 1;
  3482. struct page_cgroup *pc;
  3483. bool anon;
  3484. if (mem_cgroup_disabled())
  3485. return NULL;
  3486. VM_BUG_ON(PageSwapCache(page));
  3487. if (PageTransHuge(page)) {
  3488. nr_pages <<= compound_order(page);
  3489. VM_BUG_ON(!PageTransHuge(page));
  3490. }
  3491. /*
  3492. * Check if our page_cgroup is valid
  3493. */
  3494. pc = lookup_page_cgroup(page);
  3495. if (unlikely(!PageCgroupUsed(pc)))
  3496. return NULL;
  3497. lock_page_cgroup(pc);
  3498. memcg = pc->mem_cgroup;
  3499. if (!PageCgroupUsed(pc))
  3500. goto unlock_out;
  3501. anon = PageAnon(page);
  3502. switch (ctype) {
  3503. case MEM_CGROUP_CHARGE_TYPE_ANON:
  3504. /*
  3505. * Generally PageAnon tells if it's the anon statistics to be
  3506. * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
  3507. * used before page reached the stage of being marked PageAnon.
  3508. */
  3509. anon = true;
  3510. /* fallthrough */
  3511. case MEM_CGROUP_CHARGE_TYPE_DROP:
  3512. /* See mem_cgroup_prepare_migration() */
  3513. if (page_mapped(page))
  3514. goto unlock_out;
  3515. /*
  3516. * Pages under migration may not be uncharged. But
  3517. * end_migration() /must/ be the one uncharging the
  3518. * unused post-migration page and so it has to call
  3519. * here with the migration bit still set. See the
  3520. * res_counter handling below.
  3521. */
  3522. if (!end_migration && PageCgroupMigration(pc))
  3523. goto unlock_out;
  3524. break;
  3525. case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
  3526. if (!PageAnon(page)) { /* Shared memory */
  3527. if (page->mapping && !page_is_file_cache(page))
  3528. goto unlock_out;
  3529. } else if (page_mapped(page)) /* Anon */
  3530. goto unlock_out;
  3531. break;
  3532. default:
  3533. break;
  3534. }
  3535. mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
  3536. ClearPageCgroupUsed(pc);
  3537. /*
  3538. * pc->mem_cgroup is not cleared here. It will be accessed when it's
  3539. * freed from LRU. This is safe because uncharged page is expected not
  3540. * to be reused (freed soon). Exception is SwapCache, it's handled by
  3541. * special functions.
  3542. */
  3543. unlock_page_cgroup(pc);
  3544. /*
  3545. * even after unlock, we have memcg->res.usage here and this memcg
  3546. * will never be freed.
  3547. */
  3548. memcg_check_events(memcg, page);
  3549. if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
  3550. mem_cgroup_swap_statistics(memcg, true);
  3551. mem_cgroup_get(memcg);
  3552. }
  3553. /*
  3554. * Migration does not charge the res_counter for the
  3555. * replacement page, so leave it alone when phasing out the
  3556. * page that is unused after the migration.
  3557. */
  3558. if (!end_migration && !mem_cgroup_is_root(memcg))
  3559. mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
  3560. return memcg;
  3561. unlock_out:
  3562. unlock_page_cgroup(pc);
  3563. return NULL;
  3564. }
  3565. void mem_cgroup_uncharge_page(struct page *page)
  3566. {
  3567. /* early check. */
  3568. if (page_mapped(page))
  3569. return;
  3570. VM_BUG_ON(page->mapping && !PageAnon(page));
  3571. if (PageSwapCache(page))
  3572. return;
  3573. __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
  3574. }
  3575. void mem_cgroup_uncharge_cache_page(struct page *page)
  3576. {
  3577. VM_BUG_ON(page_mapped(page));
  3578. VM_BUG_ON(page->mapping);
  3579. __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
  3580. }
  3581. /*
  3582. * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
  3583. * In that cases, pages are freed continuously and we can expect pages
  3584. * are in the same memcg. All these calls itself limits the number of
  3585. * pages freed at once, then uncharge_start/end() is called properly.
  3586. * This may be called prural(2) times in a context,
  3587. */
  3588. void mem_cgroup_uncharge_start(void)
  3589. {
  3590. current->memcg_batch.do_batch++;
  3591. /* We can do nest. */
  3592. if (current->memcg_batch.do_batch == 1) {
  3593. current->memcg_batch.memcg = NULL;
  3594. current->memcg_batch.nr_pages = 0;
  3595. current->memcg_batch.memsw_nr_pages = 0;
  3596. }
  3597. }
  3598. void mem_cgroup_uncharge_end(void)
  3599. {
  3600. struct memcg_batch_info *batch = &current->memcg_batch;
  3601. if (!batch->do_batch)
  3602. return;
  3603. batch->do_batch--;
  3604. if (batch->do_batch) /* If stacked, do nothing. */
  3605. return;
  3606. if (!batch->memcg)
  3607. return;
  3608. /*
  3609. * This "batch->memcg" is valid without any css_get/put etc...
  3610. * bacause we hide charges behind us.
  3611. */
  3612. if (batch->nr_pages)
  3613. res_counter_uncharge(&batch->memcg->res,
  3614. batch->nr_pages * PAGE_SIZE);
  3615. if (batch->memsw_nr_pages)
  3616. res_counter_uncharge(&batch->memcg->memsw,
  3617. batch->memsw_nr_pages * PAGE_SIZE);
  3618. memcg_oom_recover(batch->memcg);
  3619. /* forget this pointer (for sanity check) */
  3620. batch->memcg = NULL;
  3621. }
  3622. #ifdef CONFIG_SWAP
  3623. /*
  3624. * called after __delete_from_swap_cache() and drop "page" account.
  3625. * memcg information is recorded to swap_cgroup of "ent"
  3626. */
  3627. void
  3628. mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
  3629. {
  3630. struct mem_cgroup *memcg;
  3631. int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
  3632. if (!swapout) /* this was a swap cache but the swap is unused ! */
  3633. ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
  3634. memcg = __mem_cgroup_uncharge_common(page, ctype, false);
  3635. /*
  3636. * record memcg information, if swapout && memcg != NULL,
  3637. * mem_cgroup_get() was called in uncharge().
  3638. */
  3639. if (do_swap_account && swapout && memcg)
  3640. swap_cgroup_record(ent, css_id(&memcg->css));
  3641. }
  3642. #endif
  3643. #ifdef CONFIG_MEMCG_SWAP
  3644. /*
  3645. * called from swap_entry_free(). remove record in swap_cgroup and
  3646. * uncharge "memsw" account.
  3647. */
  3648. void mem_cgroup_uncharge_swap(swp_entry_t ent)
  3649. {
  3650. struct mem_cgroup *memcg;
  3651. unsigned short id;
  3652. if (!do_swap_account)
  3653. return;
  3654. id = swap_cgroup_record(ent, 0);
  3655. rcu_read_lock();
  3656. memcg = mem_cgroup_lookup(id);
  3657. if (memcg) {
  3658. /*
  3659. * We uncharge this because swap is freed.
  3660. * This memcg can be obsolete one. We avoid calling css_tryget
  3661. */
  3662. if (!mem_cgroup_is_root(memcg))
  3663. res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
  3664. mem_cgroup_swap_statistics(memcg, false);
  3665. mem_cgroup_put(memcg);
  3666. }
  3667. rcu_read_unlock();
  3668. }
  3669. /**
  3670. * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
  3671. * @entry: swap entry to be moved
  3672. * @from: mem_cgroup which the entry is moved from
  3673. * @to: mem_cgroup which the entry is moved to
  3674. *
  3675. * It succeeds only when the swap_cgroup's record for this entry is the same
  3676. * as the mem_cgroup's id of @from.
  3677. *
  3678. * Returns 0 on success, -EINVAL on failure.
  3679. *
  3680. * The caller must have charged to @to, IOW, called res_counter_charge() about
  3681. * both res and memsw, and called css_get().
  3682. */
  3683. static int mem_cgroup_move_swap_account(swp_entry_t entry,
  3684. struct mem_cgroup *from, struct mem_cgroup *to)
  3685. {
  3686. unsigned short old_id, new_id;
  3687. old_id = css_id(&from->css);
  3688. new_id = css_id(&to->css);
  3689. if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
  3690. mem_cgroup_swap_statistics(from, false);
  3691. mem_cgroup_swap_statistics(to, true);
  3692. /*
  3693. * This function is only called from task migration context now.
  3694. * It postpones res_counter and refcount handling till the end
  3695. * of task migration(mem_cgroup_clear_mc()) for performance
  3696. * improvement. But we cannot postpone mem_cgroup_get(to)
  3697. * because if the process that has been moved to @to does
  3698. * swap-in, the refcount of @to might be decreased to 0.
  3699. */
  3700. mem_cgroup_get(to);
  3701. return 0;
  3702. }
  3703. return -EINVAL;
  3704. }
  3705. #else
  3706. static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
  3707. struct mem_cgroup *from, struct mem_cgroup *to)
  3708. {
  3709. return -EINVAL;
  3710. }
  3711. #endif
  3712. /*
  3713. * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
  3714. * page belongs to.
  3715. */
  3716. void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
  3717. struct mem_cgroup **memcgp)
  3718. {
  3719. struct mem_cgroup *memcg = NULL;
  3720. unsigned int nr_pages = 1;
  3721. struct page_cgroup *pc;
  3722. enum charge_type ctype;
  3723. *memcgp = NULL;
  3724. if (mem_cgroup_disabled())
  3725. return;
  3726. if (PageTransHuge(page))
  3727. nr_pages <<= compound_order(page);
  3728. pc = lookup_page_cgroup(page);
  3729. lock_page_cgroup(pc);
  3730. if (PageCgroupUsed(pc)) {
  3731. memcg = pc->mem_cgroup;
  3732. css_get(&memcg->css);
  3733. /*
  3734. * At migrating an anonymous page, its mapcount goes down
  3735. * to 0 and uncharge() will be called. But, even if it's fully
  3736. * unmapped, migration may fail and this page has to be
  3737. * charged again. We set MIGRATION flag here and delay uncharge
  3738. * until end_migration() is called
  3739. *
  3740. * Corner Case Thinking
  3741. * A)
  3742. * When the old page was mapped as Anon and it's unmap-and-freed
  3743. * while migration was ongoing.
  3744. * If unmap finds the old page, uncharge() of it will be delayed
  3745. * until end_migration(). If unmap finds a new page, it's
  3746. * uncharged when it make mapcount to be 1->0. If unmap code
  3747. * finds swap_migration_entry, the new page will not be mapped
  3748. * and end_migration() will find it(mapcount==0).
  3749. *
  3750. * B)
  3751. * When the old page was mapped but migraion fails, the kernel
  3752. * remaps it. A charge for it is kept by MIGRATION flag even
  3753. * if mapcount goes down to 0. We can do remap successfully
  3754. * without charging it again.
  3755. *
  3756. * C)
  3757. * The "old" page is under lock_page() until the end of
  3758. * migration, so, the old page itself will not be swapped-out.
  3759. * If the new page is swapped out before end_migraton, our
  3760. * hook to usual swap-out path will catch the event.
  3761. */
  3762. if (PageAnon(page))
  3763. SetPageCgroupMigration(pc);
  3764. }
  3765. unlock_page_cgroup(pc);
  3766. /*
  3767. * If the page is not charged at this point,
  3768. * we return here.
  3769. */
  3770. if (!memcg)
  3771. return;
  3772. *memcgp = memcg;
  3773. /*
  3774. * We charge new page before it's used/mapped. So, even if unlock_page()
  3775. * is called before end_migration, we can catch all events on this new
  3776. * page. In the case new page is migrated but not remapped, new page's
  3777. * mapcount will be finally 0 and we call uncharge in end_migration().
  3778. */
  3779. if (PageAnon(page))
  3780. ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
  3781. else
  3782. ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
  3783. /*
  3784. * The page is committed to the memcg, but it's not actually
  3785. * charged to the res_counter since we plan on replacing the
  3786. * old one and only one page is going to be left afterwards.
  3787. */
  3788. __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
  3789. }
  3790. /* remove redundant charge if migration failed*/
  3791. void mem_cgroup_end_migration(struct mem_cgroup *memcg,
  3792. struct page *oldpage, struct page *newpage, bool migration_ok)
  3793. {
  3794. struct page *used, *unused;
  3795. struct page_cgroup *pc;
  3796. bool anon;
  3797. if (!memcg)
  3798. return;
  3799. if (!migration_ok) {
  3800. used = oldpage;
  3801. unused = newpage;
  3802. } else {
  3803. used = newpage;
  3804. unused = oldpage;
  3805. }
  3806. anon = PageAnon(used);
  3807. __mem_cgroup_uncharge_common(unused,
  3808. anon ? MEM_CGROUP_CHARGE_TYPE_ANON
  3809. : MEM_CGROUP_CHARGE_TYPE_CACHE,
  3810. true);
  3811. css_put(&memcg->css);
  3812. /*
  3813. * We disallowed uncharge of pages under migration because mapcount
  3814. * of the page goes down to zero, temporarly.
  3815. * Clear the flag and check the page should be charged.
  3816. */
  3817. pc = lookup_page_cgroup(oldpage);
  3818. lock_page_cgroup(pc);
  3819. ClearPageCgroupMigration(pc);
  3820. unlock_page_cgroup(pc);
  3821. /*
  3822. * If a page is a file cache, radix-tree replacement is very atomic
  3823. * and we can skip this check. When it was an Anon page, its mapcount
  3824. * goes down to 0. But because we added MIGRATION flage, it's not
  3825. * uncharged yet. There are several case but page->mapcount check
  3826. * and USED bit check in mem_cgroup_uncharge_page() will do enough
  3827. * check. (see prepare_charge() also)
  3828. */
  3829. if (anon)
  3830. mem_cgroup_uncharge_page(used);
  3831. }
  3832. /*
  3833. * At replace page cache, newpage is not under any memcg but it's on
  3834. * LRU. So, this function doesn't touch res_counter but handles LRU
  3835. * in correct way. Both pages are locked so we cannot race with uncharge.
  3836. */
  3837. void mem_cgroup_replace_page_cache(struct page *oldpage,
  3838. struct page *newpage)
  3839. {
  3840. struct mem_cgroup *memcg = NULL;
  3841. struct page_cgroup *pc;
  3842. enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
  3843. if (mem_cgroup_disabled())
  3844. return;
  3845. pc = lookup_page_cgroup(oldpage);
  3846. /* fix accounting on old pages */
  3847. lock_page_cgroup(pc);
  3848. if (PageCgroupUsed(pc)) {
  3849. memcg = pc->mem_cgroup;
  3850. mem_cgroup_charge_statistics(memcg, false, -1);
  3851. ClearPageCgroupUsed(pc);
  3852. }
  3853. unlock_page_cgroup(pc);
  3854. /*
  3855. * When called from shmem_replace_page(), in some cases the
  3856. * oldpage has already been charged, and in some cases not.
  3857. */
  3858. if (!memcg)
  3859. return;
  3860. /*
  3861. * Even if newpage->mapping was NULL before starting replacement,
  3862. * the newpage may be on LRU(or pagevec for LRU) already. We lock
  3863. * LRU while we overwrite pc->mem_cgroup.
  3864. */
  3865. __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
  3866. }
  3867. #ifdef CONFIG_DEBUG_VM
  3868. static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
  3869. {
  3870. struct page_cgroup *pc;
  3871. pc = lookup_page_cgroup(page);
  3872. /*
  3873. * Can be NULL while feeding pages into the page allocator for
  3874. * the first time, i.e. during boot or memory hotplug;
  3875. * or when mem_cgroup_disabled().
  3876. */
  3877. if (likely(pc) && PageCgroupUsed(pc))
  3878. return pc;
  3879. return NULL;
  3880. }
  3881. bool mem_cgroup_bad_page_check(struct page *page)
  3882. {
  3883. if (mem_cgroup_disabled())
  3884. return false;
  3885. return lookup_page_cgroup_used(page) != NULL;
  3886. }
  3887. void mem_cgroup_print_bad_page(struct page *page)
  3888. {
  3889. struct page_cgroup *pc;
  3890. pc = lookup_page_cgroup_used(page);
  3891. if (pc) {
  3892. pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
  3893. pc, pc->flags, pc->mem_cgroup);
  3894. }
  3895. }
  3896. #endif
  3897. static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
  3898. unsigned long long val)
  3899. {
  3900. int retry_count;
  3901. u64 memswlimit, memlimit;
  3902. int ret = 0;
  3903. int children = mem_cgroup_count_children(memcg);
  3904. u64 curusage, oldusage;
  3905. int enlarge;
  3906. /*
  3907. * For keeping hierarchical_reclaim simple, how long we should retry
  3908. * is depends on callers. We set our retry-count to be function
  3909. * of # of children which we should visit in this loop.
  3910. */
  3911. retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
  3912. oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
  3913. enlarge = 0;
  3914. while (retry_count) {
  3915. if (signal_pending(current)) {
  3916. ret = -EINTR;
  3917. break;
  3918. }
  3919. /*
  3920. * Rather than hide all in some function, I do this in
  3921. * open coded manner. You see what this really does.
  3922. * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
  3923. */
  3924. mutex_lock(&set_limit_mutex);
  3925. memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  3926. if (memswlimit < val) {
  3927. ret = -EINVAL;
  3928. mutex_unlock(&set_limit_mutex);
  3929. break;
  3930. }
  3931. memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
  3932. if (memlimit < val)
  3933. enlarge = 1;
  3934. ret = res_counter_set_limit(&memcg->res, val);
  3935. if (!ret) {
  3936. if (memswlimit == val)
  3937. memcg->memsw_is_minimum = true;
  3938. else
  3939. memcg->memsw_is_minimum = false;
  3940. }
  3941. mutex_unlock(&set_limit_mutex);
  3942. if (!ret)
  3943. break;
  3944. mem_cgroup_reclaim(memcg, GFP_KERNEL,
  3945. MEM_CGROUP_RECLAIM_SHRINK);
  3946. curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
  3947. /* Usage is reduced ? */
  3948. if (curusage >= oldusage)
  3949. retry_count--;
  3950. else
  3951. oldusage = curusage;
  3952. }
  3953. if (!ret && enlarge)
  3954. memcg_oom_recover(memcg);
  3955. return ret;
  3956. }
  3957. static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
  3958. unsigned long long val)
  3959. {
  3960. int retry_count;
  3961. u64 memlimit, memswlimit, oldusage, curusage;
  3962. int children = mem_cgroup_count_children(memcg);
  3963. int ret = -EBUSY;
  3964. int enlarge = 0;
  3965. /* see mem_cgroup_resize_res_limit */
  3966. retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
  3967. oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
  3968. while (retry_count) {
  3969. if (signal_pending(current)) {
  3970. ret = -EINTR;
  3971. break;
  3972. }
  3973. /*
  3974. * Rather than hide all in some function, I do this in
  3975. * open coded manner. You see what this really does.
  3976. * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
  3977. */
  3978. mutex_lock(&set_limit_mutex);
  3979. memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
  3980. if (memlimit > val) {
  3981. ret = -EINVAL;
  3982. mutex_unlock(&set_limit_mutex);
  3983. break;
  3984. }
  3985. memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  3986. if (memswlimit < val)
  3987. enlarge = 1;
  3988. ret = res_counter_set_limit(&memcg->memsw, val);
  3989. if (!ret) {
  3990. if (memlimit == val)
  3991. memcg->memsw_is_minimum = true;
  3992. else
  3993. memcg->memsw_is_minimum = false;
  3994. }
  3995. mutex_unlock(&set_limit_mutex);
  3996. if (!ret)
  3997. break;
  3998. mem_cgroup_reclaim(memcg, GFP_KERNEL,
  3999. MEM_CGROUP_RECLAIM_NOSWAP |
  4000. MEM_CGROUP_RECLAIM_SHRINK);
  4001. curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
  4002. /* Usage is reduced ? */
  4003. if (curusage >= oldusage)
  4004. retry_count--;
  4005. else
  4006. oldusage = curusage;
  4007. }
  4008. if (!ret && enlarge)
  4009. memcg_oom_recover(memcg);
  4010. return ret;
  4011. }
  4012. unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
  4013. gfp_t gfp_mask,
  4014. unsigned long *total_scanned)
  4015. {
  4016. unsigned long nr_reclaimed = 0;
  4017. struct mem_cgroup_per_zone *mz, *next_mz = NULL;
  4018. unsigned long reclaimed;
  4019. int loop = 0;
  4020. struct mem_cgroup_tree_per_zone *mctz;
  4021. unsigned long long excess;
  4022. unsigned long nr_scanned;
  4023. if (order > 0)
  4024. return 0;
  4025. mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
  4026. /*
  4027. * This loop can run a while, specially if mem_cgroup's continuously
  4028. * keep exceeding their soft limit and putting the system under
  4029. * pressure
  4030. */
  4031. do {
  4032. if (next_mz)
  4033. mz = next_mz;
  4034. else
  4035. mz = mem_cgroup_largest_soft_limit_node(mctz);
  4036. if (!mz)
  4037. break;
  4038. nr_scanned = 0;
  4039. reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
  4040. gfp_mask, &nr_scanned);
  4041. nr_reclaimed += reclaimed;
  4042. *total_scanned += nr_scanned;
  4043. spin_lock(&mctz->lock);
  4044. /*
  4045. * If we failed to reclaim anything from this memory cgroup
  4046. * it is time to move on to the next cgroup
  4047. */
  4048. next_mz = NULL;
  4049. if (!reclaimed) {
  4050. do {
  4051. /*
  4052. * Loop until we find yet another one.
  4053. *
  4054. * By the time we get the soft_limit lock
  4055. * again, someone might have aded the
  4056. * group back on the RB tree. Iterate to
  4057. * make sure we get a different mem.
  4058. * mem_cgroup_largest_soft_limit_node returns
  4059. * NULL if no other cgroup is present on
  4060. * the tree
  4061. */
  4062. next_mz =
  4063. __mem_cgroup_largest_soft_limit_node(mctz);
  4064. if (next_mz == mz)
  4065. css_put(&next_mz->memcg->css);
  4066. else /* next_mz == NULL or other memcg */
  4067. break;
  4068. } while (1);
  4069. }
  4070. __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
  4071. excess = res_counter_soft_limit_excess(&mz->memcg->res);
  4072. /*
  4073. * One school of thought says that we should not add
  4074. * back the node to the tree if reclaim returns 0.
  4075. * But our reclaim could return 0, simply because due
  4076. * to priority we are exposing a smaller subset of
  4077. * memory to reclaim from. Consider this as a longer
  4078. * term TODO.
  4079. */
  4080. /* If excess == 0, no tree ops */
  4081. __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
  4082. spin_unlock(&mctz->lock);
  4083. css_put(&mz->memcg->css);
  4084. loop++;
  4085. /*
  4086. * Could not reclaim anything and there are no more
  4087. * mem cgroups to try or we seem to be looping without
  4088. * reclaiming anything.
  4089. */
  4090. if (!nr_reclaimed &&
  4091. (next_mz == NULL ||
  4092. loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
  4093. break;
  4094. } while (!nr_reclaimed);
  4095. if (next_mz)
  4096. css_put(&next_mz->memcg->css);
  4097. return nr_reclaimed;
  4098. }
  4099. /**
  4100. * mem_cgroup_force_empty_list - clears LRU of a group
  4101. * @memcg: group to clear
  4102. * @node: NUMA node
  4103. * @zid: zone id
  4104. * @lru: lru to to clear
  4105. *
  4106. * Traverse a specified page_cgroup list and try to drop them all. This doesn't
  4107. * reclaim the pages page themselves - pages are moved to the parent (or root)
  4108. * group.
  4109. */
  4110. static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
  4111. int node, int zid, enum lru_list lru)
  4112. {
  4113. struct lruvec *lruvec;
  4114. unsigned long flags;
  4115. struct list_head *list;
  4116. struct page *busy;
  4117. struct zone *zone;
  4118. zone = &NODE_DATA(node)->node_zones[zid];
  4119. lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  4120. list = &lruvec->lists[lru];
  4121. busy = NULL;
  4122. do {
  4123. struct page_cgroup *pc;
  4124. struct page *page;
  4125. spin_lock_irqsave(&zone->lru_lock, flags);
  4126. if (list_empty(list)) {
  4127. spin_unlock_irqrestore(&zone->lru_lock, flags);
  4128. break;
  4129. }
  4130. page = list_entry(list->prev, struct page, lru);
  4131. if (busy == page) {
  4132. list_move(&page->lru, list);
  4133. busy = NULL;
  4134. spin_unlock_irqrestore(&zone->lru_lock, flags);
  4135. continue;
  4136. }
  4137. spin_unlock_irqrestore(&zone->lru_lock, flags);
  4138. pc = lookup_page_cgroup(page);
  4139. if (mem_cgroup_move_parent(page, pc, memcg)) {
  4140. /* found lock contention or "pc" is obsolete. */
  4141. busy = page;
  4142. cond_resched();
  4143. } else
  4144. busy = NULL;
  4145. } while (!list_empty(list));
  4146. }
  4147. /*
  4148. * make mem_cgroup's charge to be 0 if there is no task by moving
  4149. * all the charges and pages to the parent.
  4150. * This enables deleting this mem_cgroup.
  4151. *
  4152. * Caller is responsible for holding css reference on the memcg.
  4153. */
  4154. static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
  4155. {
  4156. int node, zid;
  4157. u64 usage;
  4158. do {
  4159. /* This is for making all *used* pages to be on LRU. */
  4160. lru_add_drain_all();
  4161. drain_all_stock_sync(memcg);
  4162. mem_cgroup_start_move(memcg);
  4163. for_each_node_state(node, N_MEMORY) {
  4164. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  4165. enum lru_list lru;
  4166. for_each_lru(lru) {
  4167. mem_cgroup_force_empty_list(memcg,
  4168. node, zid, lru);
  4169. }
  4170. }
  4171. }
  4172. mem_cgroup_end_move(memcg);
  4173. memcg_oom_recover(memcg);
  4174. cond_resched();
  4175. /*
  4176. * Kernel memory may not necessarily be trackable to a specific
  4177. * process. So they are not migrated, and therefore we can't
  4178. * expect their value to drop to 0 here.
  4179. * Having res filled up with kmem only is enough.
  4180. *
  4181. * This is a safety check because mem_cgroup_force_empty_list
  4182. * could have raced with mem_cgroup_replace_page_cache callers
  4183. * so the lru seemed empty but the page could have been added
  4184. * right after the check. RES_USAGE should be safe as we always
  4185. * charge before adding to the LRU.
  4186. */
  4187. usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
  4188. res_counter_read_u64(&memcg->kmem, RES_USAGE);
  4189. } while (usage > 0);
  4190. }
  4191. /*
  4192. * Reclaims as many pages from the given memcg as possible and moves
  4193. * the rest to the parent.
  4194. *
  4195. * Caller is responsible for holding css reference for memcg.
  4196. */
  4197. static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
  4198. {
  4199. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  4200. struct cgroup *cgrp = memcg->css.cgroup;
  4201. /* returns EBUSY if there is a task or if we come here twice. */
  4202. if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
  4203. return -EBUSY;
  4204. /* we call try-to-free pages for make this cgroup empty */
  4205. lru_add_drain_all();
  4206. /* try to free all pages in this cgroup */
  4207. while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
  4208. int progress;
  4209. if (signal_pending(current))
  4210. return -EINTR;
  4211. progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
  4212. false);
  4213. if (!progress) {
  4214. nr_retries--;
  4215. /* maybe some writeback is necessary */
  4216. congestion_wait(BLK_RW_ASYNC, HZ/10);
  4217. }
  4218. }
  4219. lru_add_drain();
  4220. mem_cgroup_reparent_charges(memcg);
  4221. return 0;
  4222. }
  4223. static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
  4224. {
  4225. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4226. int ret;
  4227. if (mem_cgroup_is_root(memcg))
  4228. return -EINVAL;
  4229. css_get(&memcg->css);
  4230. ret = mem_cgroup_force_empty(memcg);
  4231. css_put(&memcg->css);
  4232. return ret;
  4233. }
  4234. static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
  4235. {
  4236. return mem_cgroup_from_cont(cont)->use_hierarchy;
  4237. }
  4238. static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
  4239. u64 val)
  4240. {
  4241. int retval = 0;
  4242. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4243. struct cgroup *parent = cont->parent;
  4244. struct mem_cgroup *parent_memcg = NULL;
  4245. if (parent)
  4246. parent_memcg = mem_cgroup_from_cont(parent);
  4247. cgroup_lock();
  4248. if (memcg->use_hierarchy == val)
  4249. goto out;
  4250. /*
  4251. * If parent's use_hierarchy is set, we can't make any modifications
  4252. * in the child subtrees. If it is unset, then the change can
  4253. * occur, provided the current cgroup has no children.
  4254. *
  4255. * For the root cgroup, parent_mem is NULL, we allow value to be
  4256. * set if there are no children.
  4257. */
  4258. if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
  4259. (val == 1 || val == 0)) {
  4260. if (list_empty(&cont->children))
  4261. memcg->use_hierarchy = val;
  4262. else
  4263. retval = -EBUSY;
  4264. } else
  4265. retval = -EINVAL;
  4266. out:
  4267. cgroup_unlock();
  4268. return retval;
  4269. }
  4270. static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
  4271. enum mem_cgroup_stat_index idx)
  4272. {
  4273. struct mem_cgroup *iter;
  4274. long val = 0;
  4275. /* Per-cpu values can be negative, use a signed accumulator */
  4276. for_each_mem_cgroup_tree(iter, memcg)
  4277. val += mem_cgroup_read_stat(iter, idx);
  4278. if (val < 0) /* race ? */
  4279. val = 0;
  4280. return val;
  4281. }
  4282. static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
  4283. {
  4284. u64 val;
  4285. if (!mem_cgroup_is_root(memcg)) {
  4286. if (!swap)
  4287. return res_counter_read_u64(&memcg->res, RES_USAGE);
  4288. else
  4289. return res_counter_read_u64(&memcg->memsw, RES_USAGE);
  4290. }
  4291. val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
  4292. val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
  4293. if (swap)
  4294. val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
  4295. return val << PAGE_SHIFT;
  4296. }
  4297. static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
  4298. struct file *file, char __user *buf,
  4299. size_t nbytes, loff_t *ppos)
  4300. {
  4301. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4302. char str[64];
  4303. u64 val;
  4304. int name, len;
  4305. enum res_type type;
  4306. type = MEMFILE_TYPE(cft->private);
  4307. name = MEMFILE_ATTR(cft->private);
  4308. if (!do_swap_account && type == _MEMSWAP)
  4309. return -EOPNOTSUPP;
  4310. switch (type) {
  4311. case _MEM:
  4312. if (name == RES_USAGE)
  4313. val = mem_cgroup_usage(memcg, false);
  4314. else
  4315. val = res_counter_read_u64(&memcg->res, name);
  4316. break;
  4317. case _MEMSWAP:
  4318. if (name == RES_USAGE)
  4319. val = mem_cgroup_usage(memcg, true);
  4320. else
  4321. val = res_counter_read_u64(&memcg->memsw, name);
  4322. break;
  4323. case _KMEM:
  4324. val = res_counter_read_u64(&memcg->kmem, name);
  4325. break;
  4326. default:
  4327. BUG();
  4328. }
  4329. len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
  4330. return simple_read_from_buffer(buf, nbytes, ppos, str, len);
  4331. }
  4332. static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
  4333. {
  4334. int ret = -EINVAL;
  4335. #ifdef CONFIG_MEMCG_KMEM
  4336. bool must_inc_static_branch = false;
  4337. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4338. /*
  4339. * For simplicity, we won't allow this to be disabled. It also can't
  4340. * be changed if the cgroup has children already, or if tasks had
  4341. * already joined.
  4342. *
  4343. * If tasks join before we set the limit, a person looking at
  4344. * kmem.usage_in_bytes will have no way to determine when it took
  4345. * place, which makes the value quite meaningless.
  4346. *
  4347. * After it first became limited, changes in the value of the limit are
  4348. * of course permitted.
  4349. *
  4350. * Taking the cgroup_lock is really offensive, but it is so far the only
  4351. * way to guarantee that no children will appear. There are plenty of
  4352. * other offenders, and they should all go away. Fine grained locking
  4353. * is probably the way to go here. When we are fully hierarchical, we
  4354. * can also get rid of the use_hierarchy check.
  4355. */
  4356. cgroup_lock();
  4357. mutex_lock(&set_limit_mutex);
  4358. if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
  4359. if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
  4360. !list_empty(&cont->children))) {
  4361. ret = -EBUSY;
  4362. goto out;
  4363. }
  4364. ret = res_counter_set_limit(&memcg->kmem, val);
  4365. VM_BUG_ON(ret);
  4366. ret = memcg_update_cache_sizes(memcg);
  4367. if (ret) {
  4368. res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
  4369. goto out;
  4370. }
  4371. must_inc_static_branch = true;
  4372. /*
  4373. * kmem charges can outlive the cgroup. In the case of slab
  4374. * pages, for instance, a page contain objects from various
  4375. * processes, so it is unfeasible to migrate them away. We
  4376. * need to reference count the memcg because of that.
  4377. */
  4378. mem_cgroup_get(memcg);
  4379. } else
  4380. ret = res_counter_set_limit(&memcg->kmem, val);
  4381. out:
  4382. mutex_unlock(&set_limit_mutex);
  4383. cgroup_unlock();
  4384. /*
  4385. * We are by now familiar with the fact that we can't inc the static
  4386. * branch inside cgroup_lock. See disarm functions for details. A
  4387. * worker here is overkill, but also wrong: After the limit is set, we
  4388. * must start accounting right away. Since this operation can't fail,
  4389. * we can safely defer it to here - no rollback will be needed.
  4390. *
  4391. * The boolean used to control this is also safe, because
  4392. * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
  4393. * able to set it to true;
  4394. */
  4395. if (must_inc_static_branch) {
  4396. static_key_slow_inc(&memcg_kmem_enabled_key);
  4397. /*
  4398. * setting the active bit after the inc will guarantee no one
  4399. * starts accounting before all call sites are patched
  4400. */
  4401. memcg_kmem_set_active(memcg);
  4402. }
  4403. #endif
  4404. return ret;
  4405. }
  4406. static int memcg_propagate_kmem(struct mem_cgroup *memcg)
  4407. {
  4408. int ret = 0;
  4409. struct mem_cgroup *parent = parent_mem_cgroup(memcg);
  4410. if (!parent)
  4411. goto out;
  4412. memcg->kmem_account_flags = parent->kmem_account_flags;
  4413. #ifdef CONFIG_MEMCG_KMEM
  4414. /*
  4415. * When that happen, we need to disable the static branch only on those
  4416. * memcgs that enabled it. To achieve this, we would be forced to
  4417. * complicate the code by keeping track of which memcgs were the ones
  4418. * that actually enabled limits, and which ones got it from its
  4419. * parents.
  4420. *
  4421. * It is a lot simpler just to do static_key_slow_inc() on every child
  4422. * that is accounted.
  4423. */
  4424. if (!memcg_kmem_is_active(memcg))
  4425. goto out;
  4426. /*
  4427. * destroy(), called if we fail, will issue static_key_slow_inc() and
  4428. * mem_cgroup_put() if kmem is enabled. We have to either call them
  4429. * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
  4430. * this more consistent, since it always leads to the same destroy path
  4431. */
  4432. mem_cgroup_get(memcg);
  4433. static_key_slow_inc(&memcg_kmem_enabled_key);
  4434. mutex_lock(&set_limit_mutex);
  4435. ret = memcg_update_cache_sizes(memcg);
  4436. mutex_unlock(&set_limit_mutex);
  4437. #endif
  4438. out:
  4439. return ret;
  4440. }
  4441. /*
  4442. * The user of this function is...
  4443. * RES_LIMIT.
  4444. */
  4445. static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
  4446. const char *buffer)
  4447. {
  4448. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4449. enum res_type type;
  4450. int name;
  4451. unsigned long long val;
  4452. int ret;
  4453. type = MEMFILE_TYPE(cft->private);
  4454. name = MEMFILE_ATTR(cft->private);
  4455. if (!do_swap_account && type == _MEMSWAP)
  4456. return -EOPNOTSUPP;
  4457. switch (name) {
  4458. case RES_LIMIT:
  4459. if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
  4460. ret = -EINVAL;
  4461. break;
  4462. }
  4463. /* This function does all necessary parse...reuse it */
  4464. ret = res_counter_memparse_write_strategy(buffer, &val);
  4465. if (ret)
  4466. break;
  4467. if (type == _MEM)
  4468. ret = mem_cgroup_resize_limit(memcg, val);
  4469. else if (type == _MEMSWAP)
  4470. ret = mem_cgroup_resize_memsw_limit(memcg, val);
  4471. else if (type == _KMEM)
  4472. ret = memcg_update_kmem_limit(cont, val);
  4473. else
  4474. return -EINVAL;
  4475. break;
  4476. case RES_SOFT_LIMIT:
  4477. ret = res_counter_memparse_write_strategy(buffer, &val);
  4478. if (ret)
  4479. break;
  4480. /*
  4481. * For memsw, soft limits are hard to implement in terms
  4482. * of semantics, for now, we support soft limits for
  4483. * control without swap
  4484. */
  4485. if (type == _MEM)
  4486. ret = res_counter_set_soft_limit(&memcg->res, val);
  4487. else
  4488. ret = -EINVAL;
  4489. break;
  4490. default:
  4491. ret = -EINVAL; /* should be BUG() ? */
  4492. break;
  4493. }
  4494. return ret;
  4495. }
  4496. static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
  4497. unsigned long long *mem_limit, unsigned long long *memsw_limit)
  4498. {
  4499. struct cgroup *cgroup;
  4500. unsigned long long min_limit, min_memsw_limit, tmp;
  4501. min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
  4502. min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  4503. cgroup = memcg->css.cgroup;
  4504. if (!memcg->use_hierarchy)
  4505. goto out;
  4506. while (cgroup->parent) {
  4507. cgroup = cgroup->parent;
  4508. memcg = mem_cgroup_from_cont(cgroup);
  4509. if (!memcg->use_hierarchy)
  4510. break;
  4511. tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
  4512. min_limit = min(min_limit, tmp);
  4513. tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  4514. min_memsw_limit = min(min_memsw_limit, tmp);
  4515. }
  4516. out:
  4517. *mem_limit = min_limit;
  4518. *memsw_limit = min_memsw_limit;
  4519. }
  4520. static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
  4521. {
  4522. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4523. int name;
  4524. enum res_type type;
  4525. type = MEMFILE_TYPE(event);
  4526. name = MEMFILE_ATTR(event);
  4527. if (!do_swap_account && type == _MEMSWAP)
  4528. return -EOPNOTSUPP;
  4529. switch (name) {
  4530. case RES_MAX_USAGE:
  4531. if (type == _MEM)
  4532. res_counter_reset_max(&memcg->res);
  4533. else if (type == _MEMSWAP)
  4534. res_counter_reset_max(&memcg->memsw);
  4535. else if (type == _KMEM)
  4536. res_counter_reset_max(&memcg->kmem);
  4537. else
  4538. return -EINVAL;
  4539. break;
  4540. case RES_FAILCNT:
  4541. if (type == _MEM)
  4542. res_counter_reset_failcnt(&memcg->res);
  4543. else if (type == _MEMSWAP)
  4544. res_counter_reset_failcnt(&memcg->memsw);
  4545. else if (type == _KMEM)
  4546. res_counter_reset_failcnt(&memcg->kmem);
  4547. else
  4548. return -EINVAL;
  4549. break;
  4550. }
  4551. return 0;
  4552. }
  4553. static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
  4554. struct cftype *cft)
  4555. {
  4556. return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
  4557. }
  4558. #ifdef CONFIG_MMU
  4559. static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
  4560. struct cftype *cft, u64 val)
  4561. {
  4562. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4563. if (val >= (1 << NR_MOVE_TYPE))
  4564. return -EINVAL;
  4565. /*
  4566. * We check this value several times in both in can_attach() and
  4567. * attach(), so we need cgroup lock to prevent this value from being
  4568. * inconsistent.
  4569. */
  4570. cgroup_lock();
  4571. memcg->move_charge_at_immigrate = val;
  4572. cgroup_unlock();
  4573. return 0;
  4574. }
  4575. #else
  4576. static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
  4577. struct cftype *cft, u64 val)
  4578. {
  4579. return -ENOSYS;
  4580. }
  4581. #endif
  4582. #ifdef CONFIG_NUMA
  4583. static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
  4584. struct seq_file *m)
  4585. {
  4586. int nid;
  4587. unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
  4588. unsigned long node_nr;
  4589. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4590. total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
  4591. seq_printf(m, "total=%lu", total_nr);
  4592. for_each_node_state(nid, N_MEMORY) {
  4593. node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
  4594. seq_printf(m, " N%d=%lu", nid, node_nr);
  4595. }
  4596. seq_putc(m, '\n');
  4597. file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
  4598. seq_printf(m, "file=%lu", file_nr);
  4599. for_each_node_state(nid, N_MEMORY) {
  4600. node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  4601. LRU_ALL_FILE);
  4602. seq_printf(m, " N%d=%lu", nid, node_nr);
  4603. }
  4604. seq_putc(m, '\n');
  4605. anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
  4606. seq_printf(m, "anon=%lu", anon_nr);
  4607. for_each_node_state(nid, N_MEMORY) {
  4608. node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  4609. LRU_ALL_ANON);
  4610. seq_printf(m, " N%d=%lu", nid, node_nr);
  4611. }
  4612. seq_putc(m, '\n');
  4613. unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
  4614. seq_printf(m, "unevictable=%lu", unevictable_nr);
  4615. for_each_node_state(nid, N_MEMORY) {
  4616. node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  4617. BIT(LRU_UNEVICTABLE));
  4618. seq_printf(m, " N%d=%lu", nid, node_nr);
  4619. }
  4620. seq_putc(m, '\n');
  4621. return 0;
  4622. }
  4623. #endif /* CONFIG_NUMA */
  4624. static inline void mem_cgroup_lru_names_not_uptodate(void)
  4625. {
  4626. BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
  4627. }
  4628. static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
  4629. struct seq_file *m)
  4630. {
  4631. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4632. struct mem_cgroup *mi;
  4633. unsigned int i;
  4634. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  4635. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  4636. continue;
  4637. seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
  4638. mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
  4639. }
  4640. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
  4641. seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
  4642. mem_cgroup_read_events(memcg, i));
  4643. for (i = 0; i < NR_LRU_LISTS; i++)
  4644. seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
  4645. mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
  4646. /* Hierarchical information */
  4647. {
  4648. unsigned long long limit, memsw_limit;
  4649. memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
  4650. seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
  4651. if (do_swap_account)
  4652. seq_printf(m, "hierarchical_memsw_limit %llu\n",
  4653. memsw_limit);
  4654. }
  4655. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  4656. long long val = 0;
  4657. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  4658. continue;
  4659. for_each_mem_cgroup_tree(mi, memcg)
  4660. val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
  4661. seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
  4662. }
  4663. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
  4664. unsigned long long val = 0;
  4665. for_each_mem_cgroup_tree(mi, memcg)
  4666. val += mem_cgroup_read_events(mi, i);
  4667. seq_printf(m, "total_%s %llu\n",
  4668. mem_cgroup_events_names[i], val);
  4669. }
  4670. for (i = 0; i < NR_LRU_LISTS; i++) {
  4671. unsigned long long val = 0;
  4672. for_each_mem_cgroup_tree(mi, memcg)
  4673. val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
  4674. seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
  4675. }
  4676. #ifdef CONFIG_DEBUG_VM
  4677. {
  4678. int nid, zid;
  4679. struct mem_cgroup_per_zone *mz;
  4680. struct zone_reclaim_stat *rstat;
  4681. unsigned long recent_rotated[2] = {0, 0};
  4682. unsigned long recent_scanned[2] = {0, 0};
  4683. for_each_online_node(nid)
  4684. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  4685. mz = mem_cgroup_zoneinfo(memcg, nid, zid);
  4686. rstat = &mz->lruvec.reclaim_stat;
  4687. recent_rotated[0] += rstat->recent_rotated[0];
  4688. recent_rotated[1] += rstat->recent_rotated[1];
  4689. recent_scanned[0] += rstat->recent_scanned[0];
  4690. recent_scanned[1] += rstat->recent_scanned[1];
  4691. }
  4692. seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
  4693. seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
  4694. seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
  4695. seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
  4696. }
  4697. #endif
  4698. return 0;
  4699. }
  4700. static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
  4701. {
  4702. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4703. return mem_cgroup_swappiness(memcg);
  4704. }
  4705. static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
  4706. u64 val)
  4707. {
  4708. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4709. struct mem_cgroup *parent;
  4710. if (val > 100)
  4711. return -EINVAL;
  4712. if (cgrp->parent == NULL)
  4713. return -EINVAL;
  4714. parent = mem_cgroup_from_cont(cgrp->parent);
  4715. cgroup_lock();
  4716. /* If under hierarchy, only empty-root can set this value */
  4717. if ((parent->use_hierarchy) ||
  4718. (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
  4719. cgroup_unlock();
  4720. return -EINVAL;
  4721. }
  4722. memcg->swappiness = val;
  4723. cgroup_unlock();
  4724. return 0;
  4725. }
  4726. static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
  4727. {
  4728. struct mem_cgroup_threshold_ary *t;
  4729. u64 usage;
  4730. int i;
  4731. rcu_read_lock();
  4732. if (!swap)
  4733. t = rcu_dereference(memcg->thresholds.primary);
  4734. else
  4735. t = rcu_dereference(memcg->memsw_thresholds.primary);
  4736. if (!t)
  4737. goto unlock;
  4738. usage = mem_cgroup_usage(memcg, swap);
  4739. /*
  4740. * current_threshold points to threshold just below or equal to usage.
  4741. * If it's not true, a threshold was crossed after last
  4742. * call of __mem_cgroup_threshold().
  4743. */
  4744. i = t->current_threshold;
  4745. /*
  4746. * Iterate backward over array of thresholds starting from
  4747. * current_threshold and check if a threshold is crossed.
  4748. * If none of thresholds below usage is crossed, we read
  4749. * only one element of the array here.
  4750. */
  4751. for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
  4752. eventfd_signal(t->entries[i].eventfd, 1);
  4753. /* i = current_threshold + 1 */
  4754. i++;
  4755. /*
  4756. * Iterate forward over array of thresholds starting from
  4757. * current_threshold+1 and check if a threshold is crossed.
  4758. * If none of thresholds above usage is crossed, we read
  4759. * only one element of the array here.
  4760. */
  4761. for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
  4762. eventfd_signal(t->entries[i].eventfd, 1);
  4763. /* Update current_threshold */
  4764. t->current_threshold = i - 1;
  4765. unlock:
  4766. rcu_read_unlock();
  4767. }
  4768. static void mem_cgroup_threshold(struct mem_cgroup *memcg)
  4769. {
  4770. while (memcg) {
  4771. __mem_cgroup_threshold(memcg, false);
  4772. if (do_swap_account)
  4773. __mem_cgroup_threshold(memcg, true);
  4774. memcg = parent_mem_cgroup(memcg);
  4775. }
  4776. }
  4777. static int compare_thresholds(const void *a, const void *b)
  4778. {
  4779. const struct mem_cgroup_threshold *_a = a;
  4780. const struct mem_cgroup_threshold *_b = b;
  4781. return _a->threshold - _b->threshold;
  4782. }
  4783. static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
  4784. {
  4785. struct mem_cgroup_eventfd_list *ev;
  4786. list_for_each_entry(ev, &memcg->oom_notify, list)
  4787. eventfd_signal(ev->eventfd, 1);
  4788. return 0;
  4789. }
  4790. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
  4791. {
  4792. struct mem_cgroup *iter;
  4793. for_each_mem_cgroup_tree(iter, memcg)
  4794. mem_cgroup_oom_notify_cb(iter);
  4795. }
  4796. static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
  4797. struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
  4798. {
  4799. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4800. struct mem_cgroup_thresholds *thresholds;
  4801. struct mem_cgroup_threshold_ary *new;
  4802. enum res_type type = MEMFILE_TYPE(cft->private);
  4803. u64 threshold, usage;
  4804. int i, size, ret;
  4805. ret = res_counter_memparse_write_strategy(args, &threshold);
  4806. if (ret)
  4807. return ret;
  4808. mutex_lock(&memcg->thresholds_lock);
  4809. if (type == _MEM)
  4810. thresholds = &memcg->thresholds;
  4811. else if (type == _MEMSWAP)
  4812. thresholds = &memcg->memsw_thresholds;
  4813. else
  4814. BUG();
  4815. usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
  4816. /* Check if a threshold crossed before adding a new one */
  4817. if (thresholds->primary)
  4818. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  4819. size = thresholds->primary ? thresholds->primary->size + 1 : 1;
  4820. /* Allocate memory for new array of thresholds */
  4821. new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
  4822. GFP_KERNEL);
  4823. if (!new) {
  4824. ret = -ENOMEM;
  4825. goto unlock;
  4826. }
  4827. new->size = size;
  4828. /* Copy thresholds (if any) to new array */
  4829. if (thresholds->primary) {
  4830. memcpy(new->entries, thresholds->primary->entries, (size - 1) *
  4831. sizeof(struct mem_cgroup_threshold));
  4832. }
  4833. /* Add new threshold */
  4834. new->entries[size - 1].eventfd = eventfd;
  4835. new->entries[size - 1].threshold = threshold;
  4836. /* Sort thresholds. Registering of new threshold isn't time-critical */
  4837. sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
  4838. compare_thresholds, NULL);
  4839. /* Find current threshold */
  4840. new->current_threshold = -1;
  4841. for (i = 0; i < size; i++) {
  4842. if (new->entries[i].threshold <= usage) {
  4843. /*
  4844. * new->current_threshold will not be used until
  4845. * rcu_assign_pointer(), so it's safe to increment
  4846. * it here.
  4847. */
  4848. ++new->current_threshold;
  4849. } else
  4850. break;
  4851. }
  4852. /* Free old spare buffer and save old primary buffer as spare */
  4853. kfree(thresholds->spare);
  4854. thresholds->spare = thresholds->primary;
  4855. rcu_assign_pointer(thresholds->primary, new);
  4856. /* To be sure that nobody uses thresholds */
  4857. synchronize_rcu();
  4858. unlock:
  4859. mutex_unlock(&memcg->thresholds_lock);
  4860. return ret;
  4861. }
  4862. static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
  4863. struct cftype *cft, struct eventfd_ctx *eventfd)
  4864. {
  4865. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4866. struct mem_cgroup_thresholds *thresholds;
  4867. struct mem_cgroup_threshold_ary *new;
  4868. enum res_type type = MEMFILE_TYPE(cft->private);
  4869. u64 usage;
  4870. int i, j, size;
  4871. mutex_lock(&memcg->thresholds_lock);
  4872. if (type == _MEM)
  4873. thresholds = &memcg->thresholds;
  4874. else if (type == _MEMSWAP)
  4875. thresholds = &memcg->memsw_thresholds;
  4876. else
  4877. BUG();
  4878. if (!thresholds->primary)
  4879. goto unlock;
  4880. usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
  4881. /* Check if a threshold crossed before removing */
  4882. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  4883. /* Calculate new number of threshold */
  4884. size = 0;
  4885. for (i = 0; i < thresholds->primary->size; i++) {
  4886. if (thresholds->primary->entries[i].eventfd != eventfd)
  4887. size++;
  4888. }
  4889. new = thresholds->spare;
  4890. /* Set thresholds array to NULL if we don't have thresholds */
  4891. if (!size) {
  4892. kfree(new);
  4893. new = NULL;
  4894. goto swap_buffers;
  4895. }
  4896. new->size = size;
  4897. /* Copy thresholds and find current threshold */
  4898. new->current_threshold = -1;
  4899. for (i = 0, j = 0; i < thresholds->primary->size; i++) {
  4900. if (thresholds->primary->entries[i].eventfd == eventfd)
  4901. continue;
  4902. new->entries[j] = thresholds->primary->entries[i];
  4903. if (new->entries[j].threshold <= usage) {
  4904. /*
  4905. * new->current_threshold will not be used
  4906. * until rcu_assign_pointer(), so it's safe to increment
  4907. * it here.
  4908. */
  4909. ++new->current_threshold;
  4910. }
  4911. j++;
  4912. }
  4913. swap_buffers:
  4914. /* Swap primary and spare array */
  4915. thresholds->spare = thresholds->primary;
  4916. /* If all events are unregistered, free the spare array */
  4917. if (!new) {
  4918. kfree(thresholds->spare);
  4919. thresholds->spare = NULL;
  4920. }
  4921. rcu_assign_pointer(thresholds->primary, new);
  4922. /* To be sure that nobody uses thresholds */
  4923. synchronize_rcu();
  4924. unlock:
  4925. mutex_unlock(&memcg->thresholds_lock);
  4926. }
  4927. static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
  4928. struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
  4929. {
  4930. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4931. struct mem_cgroup_eventfd_list *event;
  4932. enum res_type type = MEMFILE_TYPE(cft->private);
  4933. BUG_ON(type != _OOM_TYPE);
  4934. event = kmalloc(sizeof(*event), GFP_KERNEL);
  4935. if (!event)
  4936. return -ENOMEM;
  4937. spin_lock(&memcg_oom_lock);
  4938. event->eventfd = eventfd;
  4939. list_add(&event->list, &memcg->oom_notify);
  4940. /* already in OOM ? */
  4941. if (atomic_read(&memcg->under_oom))
  4942. eventfd_signal(eventfd, 1);
  4943. spin_unlock(&memcg_oom_lock);
  4944. return 0;
  4945. }
  4946. static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
  4947. struct cftype *cft, struct eventfd_ctx *eventfd)
  4948. {
  4949. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4950. struct mem_cgroup_eventfd_list *ev, *tmp;
  4951. enum res_type type = MEMFILE_TYPE(cft->private);
  4952. BUG_ON(type != _OOM_TYPE);
  4953. spin_lock(&memcg_oom_lock);
  4954. list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
  4955. if (ev->eventfd == eventfd) {
  4956. list_del(&ev->list);
  4957. kfree(ev);
  4958. }
  4959. }
  4960. spin_unlock(&memcg_oom_lock);
  4961. }
  4962. static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
  4963. struct cftype *cft, struct cgroup_map_cb *cb)
  4964. {
  4965. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4966. cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
  4967. if (atomic_read(&memcg->under_oom))
  4968. cb->fill(cb, "under_oom", 1);
  4969. else
  4970. cb->fill(cb, "under_oom", 0);
  4971. return 0;
  4972. }
  4973. static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
  4974. struct cftype *cft, u64 val)
  4975. {
  4976. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4977. struct mem_cgroup *parent;
  4978. /* cannot set to root cgroup and only 0 and 1 are allowed */
  4979. if (!cgrp->parent || !((val == 0) || (val == 1)))
  4980. return -EINVAL;
  4981. parent = mem_cgroup_from_cont(cgrp->parent);
  4982. cgroup_lock();
  4983. /* oom-kill-disable is a flag for subhierarchy. */
  4984. if ((parent->use_hierarchy) ||
  4985. (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
  4986. cgroup_unlock();
  4987. return -EINVAL;
  4988. }
  4989. memcg->oom_kill_disable = val;
  4990. if (!val)
  4991. memcg_oom_recover(memcg);
  4992. cgroup_unlock();
  4993. return 0;
  4994. }
  4995. #ifdef CONFIG_MEMCG_KMEM
  4996. static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  4997. {
  4998. int ret;
  4999. memcg->kmemcg_id = -1;
  5000. ret = memcg_propagate_kmem(memcg);
  5001. if (ret)
  5002. return ret;
  5003. return mem_cgroup_sockets_init(memcg, ss);
  5004. };
  5005. static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
  5006. {
  5007. mem_cgroup_sockets_destroy(memcg);
  5008. memcg_kmem_mark_dead(memcg);
  5009. if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
  5010. return;
  5011. /*
  5012. * Charges already down to 0, undo mem_cgroup_get() done in the charge
  5013. * path here, being careful not to race with memcg_uncharge_kmem: it is
  5014. * possible that the charges went down to 0 between mark_dead and the
  5015. * res_counter read, so in that case, we don't need the put
  5016. */
  5017. if (memcg_kmem_test_and_clear_dead(memcg))
  5018. mem_cgroup_put(memcg);
  5019. }
  5020. #else
  5021. static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  5022. {
  5023. return 0;
  5024. }
  5025. static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
  5026. {
  5027. }
  5028. #endif
  5029. static struct cftype mem_cgroup_files[] = {
  5030. {
  5031. .name = "usage_in_bytes",
  5032. .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
  5033. .read = mem_cgroup_read,
  5034. .register_event = mem_cgroup_usage_register_event,
  5035. .unregister_event = mem_cgroup_usage_unregister_event,
  5036. },
  5037. {
  5038. .name = "max_usage_in_bytes",
  5039. .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
  5040. .trigger = mem_cgroup_reset,
  5041. .read = mem_cgroup_read,
  5042. },
  5043. {
  5044. .name = "limit_in_bytes",
  5045. .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
  5046. .write_string = mem_cgroup_write,
  5047. .read = mem_cgroup_read,
  5048. },
  5049. {
  5050. .name = "soft_limit_in_bytes",
  5051. .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
  5052. .write_string = mem_cgroup_write,
  5053. .read = mem_cgroup_read,
  5054. },
  5055. {
  5056. .name = "failcnt",
  5057. .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
  5058. .trigger = mem_cgroup_reset,
  5059. .read = mem_cgroup_read,
  5060. },
  5061. {
  5062. .name = "stat",
  5063. .read_seq_string = memcg_stat_show,
  5064. },
  5065. {
  5066. .name = "force_empty",
  5067. .trigger = mem_cgroup_force_empty_write,
  5068. },
  5069. {
  5070. .name = "use_hierarchy",
  5071. .write_u64 = mem_cgroup_hierarchy_write,
  5072. .read_u64 = mem_cgroup_hierarchy_read,
  5073. },
  5074. {
  5075. .name = "swappiness",
  5076. .read_u64 = mem_cgroup_swappiness_read,
  5077. .write_u64 = mem_cgroup_swappiness_write,
  5078. },
  5079. {
  5080. .name = "move_charge_at_immigrate",
  5081. .read_u64 = mem_cgroup_move_charge_read,
  5082. .write_u64 = mem_cgroup_move_charge_write,
  5083. },
  5084. {
  5085. .name = "oom_control",
  5086. .read_map = mem_cgroup_oom_control_read,
  5087. .write_u64 = mem_cgroup_oom_control_write,
  5088. .register_event = mem_cgroup_oom_register_event,
  5089. .unregister_event = mem_cgroup_oom_unregister_event,
  5090. .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
  5091. },
  5092. #ifdef CONFIG_NUMA
  5093. {
  5094. .name = "numa_stat",
  5095. .read_seq_string = memcg_numa_stat_show,
  5096. },
  5097. #endif
  5098. #ifdef CONFIG_MEMCG_KMEM
  5099. {
  5100. .name = "kmem.limit_in_bytes",
  5101. .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
  5102. .write_string = mem_cgroup_write,
  5103. .read = mem_cgroup_read,
  5104. },
  5105. {
  5106. .name = "kmem.usage_in_bytes",
  5107. .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
  5108. .read = mem_cgroup_read,
  5109. },
  5110. {
  5111. .name = "kmem.failcnt",
  5112. .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
  5113. .trigger = mem_cgroup_reset,
  5114. .read = mem_cgroup_read,
  5115. },
  5116. {
  5117. .name = "kmem.max_usage_in_bytes",
  5118. .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
  5119. .trigger = mem_cgroup_reset,
  5120. .read = mem_cgroup_read,
  5121. },
  5122. #ifdef CONFIG_SLABINFO
  5123. {
  5124. .name = "kmem.slabinfo",
  5125. .read_seq_string = mem_cgroup_slabinfo_read,
  5126. },
  5127. #endif
  5128. #endif
  5129. { }, /* terminate */
  5130. };
  5131. #ifdef CONFIG_MEMCG_SWAP
  5132. static struct cftype memsw_cgroup_files[] = {
  5133. {
  5134. .name = "memsw.usage_in_bytes",
  5135. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
  5136. .read = mem_cgroup_read,
  5137. .register_event = mem_cgroup_usage_register_event,
  5138. .unregister_event = mem_cgroup_usage_unregister_event,
  5139. },
  5140. {
  5141. .name = "memsw.max_usage_in_bytes",
  5142. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
  5143. .trigger = mem_cgroup_reset,
  5144. .read = mem_cgroup_read,
  5145. },
  5146. {
  5147. .name = "memsw.limit_in_bytes",
  5148. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
  5149. .write_string = mem_cgroup_write,
  5150. .read = mem_cgroup_read,
  5151. },
  5152. {
  5153. .name = "memsw.failcnt",
  5154. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
  5155. .trigger = mem_cgroup_reset,
  5156. .read = mem_cgroup_read,
  5157. },
  5158. { }, /* terminate */
  5159. };
  5160. #endif
  5161. static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
  5162. {
  5163. struct mem_cgroup_per_node *pn;
  5164. struct mem_cgroup_per_zone *mz;
  5165. int zone, tmp = node;
  5166. /*
  5167. * This routine is called against possible nodes.
  5168. * But it's BUG to call kmalloc() against offline node.
  5169. *
  5170. * TODO: this routine can waste much memory for nodes which will
  5171. * never be onlined. It's better to use memory hotplug callback
  5172. * function.
  5173. */
  5174. if (!node_state(node, N_NORMAL_MEMORY))
  5175. tmp = -1;
  5176. pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
  5177. if (!pn)
  5178. return 1;
  5179. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  5180. mz = &pn->zoneinfo[zone];
  5181. lruvec_init(&mz->lruvec);
  5182. mz->usage_in_excess = 0;
  5183. mz->on_tree = false;
  5184. mz->memcg = memcg;
  5185. }
  5186. memcg->info.nodeinfo[node] = pn;
  5187. return 0;
  5188. }
  5189. static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
  5190. {
  5191. kfree(memcg->info.nodeinfo[node]);
  5192. }
  5193. static struct mem_cgroup *mem_cgroup_alloc(void)
  5194. {
  5195. struct mem_cgroup *memcg;
  5196. size_t size = memcg_size();
  5197. /* Can be very big if nr_node_ids is very big */
  5198. if (size < PAGE_SIZE)
  5199. memcg = kzalloc(size, GFP_KERNEL);
  5200. else
  5201. memcg = vzalloc(size);
  5202. if (!memcg)
  5203. return NULL;
  5204. memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
  5205. if (!memcg->stat)
  5206. goto out_free;
  5207. spin_lock_init(&memcg->pcp_counter_lock);
  5208. return memcg;
  5209. out_free:
  5210. if (size < PAGE_SIZE)
  5211. kfree(memcg);
  5212. else
  5213. vfree(memcg);
  5214. return NULL;
  5215. }
  5216. /*
  5217. * At destroying mem_cgroup, references from swap_cgroup can remain.
  5218. * (scanning all at force_empty is too costly...)
  5219. *
  5220. * Instead of clearing all references at force_empty, we remember
  5221. * the number of reference from swap_cgroup and free mem_cgroup when
  5222. * it goes down to 0.
  5223. *
  5224. * Removal of cgroup itself succeeds regardless of refs from swap.
  5225. */
  5226. static void __mem_cgroup_free(struct mem_cgroup *memcg)
  5227. {
  5228. int node;
  5229. size_t size = memcg_size();
  5230. mem_cgroup_remove_from_trees(memcg);
  5231. free_css_id(&mem_cgroup_subsys, &memcg->css);
  5232. for_each_node(node)
  5233. free_mem_cgroup_per_zone_info(memcg, node);
  5234. free_percpu(memcg->stat);
  5235. /*
  5236. * We need to make sure that (at least for now), the jump label
  5237. * destruction code runs outside of the cgroup lock. This is because
  5238. * get_online_cpus(), which is called from the static_branch update,
  5239. * can't be called inside the cgroup_lock. cpusets are the ones
  5240. * enforcing this dependency, so if they ever change, we might as well.
  5241. *
  5242. * schedule_work() will guarantee this happens. Be careful if you need
  5243. * to move this code around, and make sure it is outside
  5244. * the cgroup_lock.
  5245. */
  5246. disarm_static_keys(memcg);
  5247. if (size < PAGE_SIZE)
  5248. kfree(memcg);
  5249. else
  5250. vfree(memcg);
  5251. }
  5252. /*
  5253. * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
  5254. * but in process context. The work_freeing structure is overlaid
  5255. * on the rcu_freeing structure, which itself is overlaid on memsw.
  5256. */
  5257. static void free_work(struct work_struct *work)
  5258. {
  5259. struct mem_cgroup *memcg;
  5260. memcg = container_of(work, struct mem_cgroup, work_freeing);
  5261. __mem_cgroup_free(memcg);
  5262. }
  5263. static void free_rcu(struct rcu_head *rcu_head)
  5264. {
  5265. struct mem_cgroup *memcg;
  5266. memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
  5267. INIT_WORK(&memcg->work_freeing, free_work);
  5268. schedule_work(&memcg->work_freeing);
  5269. }
  5270. static void mem_cgroup_get(struct mem_cgroup *memcg)
  5271. {
  5272. atomic_inc(&memcg->refcnt);
  5273. }
  5274. static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
  5275. {
  5276. if (atomic_sub_and_test(count, &memcg->refcnt)) {
  5277. struct mem_cgroup *parent = parent_mem_cgroup(memcg);
  5278. call_rcu(&memcg->rcu_freeing, free_rcu);
  5279. if (parent)
  5280. mem_cgroup_put(parent);
  5281. }
  5282. }
  5283. static void mem_cgroup_put(struct mem_cgroup *memcg)
  5284. {
  5285. __mem_cgroup_put(memcg, 1);
  5286. }
  5287. /*
  5288. * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
  5289. */
  5290. struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
  5291. {
  5292. if (!memcg->res.parent)
  5293. return NULL;
  5294. return mem_cgroup_from_res_counter(memcg->res.parent, res);
  5295. }
  5296. EXPORT_SYMBOL(parent_mem_cgroup);
  5297. static int mem_cgroup_soft_limit_tree_init(void)
  5298. {
  5299. struct mem_cgroup_tree_per_node *rtpn;
  5300. struct mem_cgroup_tree_per_zone *rtpz;
  5301. int tmp, node, zone;
  5302. for_each_node(node) {
  5303. tmp = node;
  5304. if (!node_state(node, N_NORMAL_MEMORY))
  5305. tmp = -1;
  5306. rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
  5307. if (!rtpn)
  5308. goto err_cleanup;
  5309. soft_limit_tree.rb_tree_per_node[node] = rtpn;
  5310. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  5311. rtpz = &rtpn->rb_tree_per_zone[zone];
  5312. rtpz->rb_root = RB_ROOT;
  5313. spin_lock_init(&rtpz->lock);
  5314. }
  5315. }
  5316. return 0;
  5317. err_cleanup:
  5318. for_each_node(node) {
  5319. if (!soft_limit_tree.rb_tree_per_node[node])
  5320. break;
  5321. kfree(soft_limit_tree.rb_tree_per_node[node]);
  5322. soft_limit_tree.rb_tree_per_node[node] = NULL;
  5323. }
  5324. return 1;
  5325. }
  5326. static struct cgroup_subsys_state * __ref
  5327. mem_cgroup_css_alloc(struct cgroup *cont)
  5328. {
  5329. struct mem_cgroup *memcg, *parent;
  5330. long error = -ENOMEM;
  5331. int node;
  5332. memcg = mem_cgroup_alloc();
  5333. if (!memcg)
  5334. return ERR_PTR(error);
  5335. for_each_node(node)
  5336. if (alloc_mem_cgroup_per_zone_info(memcg, node))
  5337. goto free_out;
  5338. /* root ? */
  5339. if (cont->parent == NULL) {
  5340. int cpu;
  5341. parent = NULL;
  5342. if (mem_cgroup_soft_limit_tree_init())
  5343. goto free_out;
  5344. root_mem_cgroup = memcg;
  5345. for_each_possible_cpu(cpu) {
  5346. struct memcg_stock_pcp *stock =
  5347. &per_cpu(memcg_stock, cpu);
  5348. INIT_WORK(&stock->work, drain_local_stock);
  5349. }
  5350. } else {
  5351. parent = mem_cgroup_from_cont(cont->parent);
  5352. memcg->use_hierarchy = parent->use_hierarchy;
  5353. memcg->oom_kill_disable = parent->oom_kill_disable;
  5354. }
  5355. if (parent && parent->use_hierarchy) {
  5356. res_counter_init(&memcg->res, &parent->res);
  5357. res_counter_init(&memcg->memsw, &parent->memsw);
  5358. res_counter_init(&memcg->kmem, &parent->kmem);
  5359. /*
  5360. * We increment refcnt of the parent to ensure that we can
  5361. * safely access it on res_counter_charge/uncharge.
  5362. * This refcnt will be decremented when freeing this
  5363. * mem_cgroup(see mem_cgroup_put).
  5364. */
  5365. mem_cgroup_get(parent);
  5366. } else {
  5367. res_counter_init(&memcg->res, NULL);
  5368. res_counter_init(&memcg->memsw, NULL);
  5369. res_counter_init(&memcg->kmem, NULL);
  5370. /*
  5371. * Deeper hierachy with use_hierarchy == false doesn't make
  5372. * much sense so let cgroup subsystem know about this
  5373. * unfortunate state in our controller.
  5374. */
  5375. if (parent && parent != root_mem_cgroup)
  5376. mem_cgroup_subsys.broken_hierarchy = true;
  5377. }
  5378. memcg->last_scanned_node = MAX_NUMNODES;
  5379. INIT_LIST_HEAD(&memcg->oom_notify);
  5380. if (parent)
  5381. memcg->swappiness = mem_cgroup_swappiness(parent);
  5382. atomic_set(&memcg->refcnt, 1);
  5383. memcg->move_charge_at_immigrate = 0;
  5384. mutex_init(&memcg->thresholds_lock);
  5385. spin_lock_init(&memcg->move_lock);
  5386. error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
  5387. if (error) {
  5388. /*
  5389. * We call put now because our (and parent's) refcnts
  5390. * are already in place. mem_cgroup_put() will internally
  5391. * call __mem_cgroup_free, so return directly
  5392. */
  5393. mem_cgroup_put(memcg);
  5394. return ERR_PTR(error);
  5395. }
  5396. return &memcg->css;
  5397. free_out:
  5398. __mem_cgroup_free(memcg);
  5399. return ERR_PTR(error);
  5400. }
  5401. static void mem_cgroup_css_offline(struct cgroup *cont)
  5402. {
  5403. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  5404. mem_cgroup_reparent_charges(memcg);
  5405. mem_cgroup_destroy_all_caches(memcg);
  5406. }
  5407. static void mem_cgroup_css_free(struct cgroup *cont)
  5408. {
  5409. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  5410. kmem_cgroup_destroy(memcg);
  5411. mem_cgroup_put(memcg);
  5412. }
  5413. #ifdef CONFIG_MMU
  5414. /* Handlers for move charge at task migration. */
  5415. #define PRECHARGE_COUNT_AT_ONCE 256
  5416. static int mem_cgroup_do_precharge(unsigned long count)
  5417. {
  5418. int ret = 0;
  5419. int batch_count = PRECHARGE_COUNT_AT_ONCE;
  5420. struct mem_cgroup *memcg = mc.to;
  5421. if (mem_cgroup_is_root(memcg)) {
  5422. mc.precharge += count;
  5423. /* we don't need css_get for root */
  5424. return ret;
  5425. }
  5426. /* try to charge at once */
  5427. if (count > 1) {
  5428. struct res_counter *dummy;
  5429. /*
  5430. * "memcg" cannot be under rmdir() because we've already checked
  5431. * by cgroup_lock_live_cgroup() that it is not removed and we
  5432. * are still under the same cgroup_mutex. So we can postpone
  5433. * css_get().
  5434. */
  5435. if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
  5436. goto one_by_one;
  5437. if (do_swap_account && res_counter_charge(&memcg->memsw,
  5438. PAGE_SIZE * count, &dummy)) {
  5439. res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
  5440. goto one_by_one;
  5441. }
  5442. mc.precharge += count;
  5443. return ret;
  5444. }
  5445. one_by_one:
  5446. /* fall back to one by one charge */
  5447. while (count--) {
  5448. if (signal_pending(current)) {
  5449. ret = -EINTR;
  5450. break;
  5451. }
  5452. if (!batch_count--) {
  5453. batch_count = PRECHARGE_COUNT_AT_ONCE;
  5454. cond_resched();
  5455. }
  5456. ret = __mem_cgroup_try_charge(NULL,
  5457. GFP_KERNEL, 1, &memcg, false);
  5458. if (ret)
  5459. /* mem_cgroup_clear_mc() will do uncharge later */
  5460. return ret;
  5461. mc.precharge++;
  5462. }
  5463. return ret;
  5464. }
  5465. /**
  5466. * get_mctgt_type - get target type of moving charge
  5467. * @vma: the vma the pte to be checked belongs
  5468. * @addr: the address corresponding to the pte to be checked
  5469. * @ptent: the pte to be checked
  5470. * @target: the pointer the target page or swap ent will be stored(can be NULL)
  5471. *
  5472. * Returns
  5473. * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
  5474. * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
  5475. * move charge. if @target is not NULL, the page is stored in target->page
  5476. * with extra refcnt got(Callers should handle it).
  5477. * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
  5478. * target for charge migration. if @target is not NULL, the entry is stored
  5479. * in target->ent.
  5480. *
  5481. * Called with pte lock held.
  5482. */
  5483. union mc_target {
  5484. struct page *page;
  5485. swp_entry_t ent;
  5486. };
  5487. enum mc_target_type {
  5488. MC_TARGET_NONE = 0,
  5489. MC_TARGET_PAGE,
  5490. MC_TARGET_SWAP,
  5491. };
  5492. static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
  5493. unsigned long addr, pte_t ptent)
  5494. {
  5495. struct page *page = vm_normal_page(vma, addr, ptent);
  5496. if (!page || !page_mapped(page))
  5497. return NULL;
  5498. if (PageAnon(page)) {
  5499. /* we don't move shared anon */
  5500. if (!move_anon())
  5501. return NULL;
  5502. } else if (!move_file())
  5503. /* we ignore mapcount for file pages */
  5504. return NULL;
  5505. if (!get_page_unless_zero(page))
  5506. return NULL;
  5507. return page;
  5508. }
  5509. #ifdef CONFIG_SWAP
  5510. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  5511. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  5512. {
  5513. struct page *page = NULL;
  5514. swp_entry_t ent = pte_to_swp_entry(ptent);
  5515. if (!move_anon() || non_swap_entry(ent))
  5516. return NULL;
  5517. /*
  5518. * Because lookup_swap_cache() updates some statistics counter,
  5519. * we call find_get_page() with swapper_space directly.
  5520. */
  5521. page = find_get_page(swap_address_space(ent), ent.val);
  5522. if (do_swap_account)
  5523. entry->val = ent.val;
  5524. return page;
  5525. }
  5526. #else
  5527. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  5528. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  5529. {
  5530. return NULL;
  5531. }
  5532. #endif
  5533. static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
  5534. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  5535. {
  5536. struct page *page = NULL;
  5537. struct address_space *mapping;
  5538. pgoff_t pgoff;
  5539. if (!vma->vm_file) /* anonymous vma */
  5540. return NULL;
  5541. if (!move_file())
  5542. return NULL;
  5543. mapping = vma->vm_file->f_mapping;
  5544. if (pte_none(ptent))
  5545. pgoff = linear_page_index(vma, addr);
  5546. else /* pte_file(ptent) is true */
  5547. pgoff = pte_to_pgoff(ptent);
  5548. /* page is moved even if it's not RSS of this task(page-faulted). */
  5549. page = find_get_page(mapping, pgoff);
  5550. #ifdef CONFIG_SWAP
  5551. /* shmem/tmpfs may report page out on swap: account for that too. */
  5552. if (radix_tree_exceptional_entry(page)) {
  5553. swp_entry_t swap = radix_to_swp_entry(page);
  5554. if (do_swap_account)
  5555. *entry = swap;
  5556. page = find_get_page(swap_address_space(swap), swap.val);
  5557. }
  5558. #endif
  5559. return page;
  5560. }
  5561. static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
  5562. unsigned long addr, pte_t ptent, union mc_target *target)
  5563. {
  5564. struct page *page = NULL;
  5565. struct page_cgroup *pc;
  5566. enum mc_target_type ret = MC_TARGET_NONE;
  5567. swp_entry_t ent = { .val = 0 };
  5568. if (pte_present(ptent))
  5569. page = mc_handle_present_pte(vma, addr, ptent);
  5570. else if (is_swap_pte(ptent))
  5571. page = mc_handle_swap_pte(vma, addr, ptent, &ent);
  5572. else if (pte_none(ptent) || pte_file(ptent))
  5573. page = mc_handle_file_pte(vma, addr, ptent, &ent);
  5574. if (!page && !ent.val)
  5575. return ret;
  5576. if (page) {
  5577. pc = lookup_page_cgroup(page);
  5578. /*
  5579. * Do only loose check w/o page_cgroup lock.
  5580. * mem_cgroup_move_account() checks the pc is valid or not under
  5581. * the lock.
  5582. */
  5583. if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
  5584. ret = MC_TARGET_PAGE;
  5585. if (target)
  5586. target->page = page;
  5587. }
  5588. if (!ret || !target)
  5589. put_page(page);
  5590. }
  5591. /* There is a swap entry and a page doesn't exist or isn't charged */
  5592. if (ent.val && !ret &&
  5593. css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
  5594. ret = MC_TARGET_SWAP;
  5595. if (target)
  5596. target->ent = ent;
  5597. }
  5598. return ret;
  5599. }
  5600. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5601. /*
  5602. * We don't consider swapping or file mapped pages because THP does not
  5603. * support them for now.
  5604. * Caller should make sure that pmd_trans_huge(pmd) is true.
  5605. */
  5606. static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  5607. unsigned long addr, pmd_t pmd, union mc_target *target)
  5608. {
  5609. struct page *page = NULL;
  5610. struct page_cgroup *pc;
  5611. enum mc_target_type ret = MC_TARGET_NONE;
  5612. page = pmd_page(pmd);
  5613. VM_BUG_ON(!page || !PageHead(page));
  5614. if (!move_anon())
  5615. return ret;
  5616. pc = lookup_page_cgroup(page);
  5617. if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
  5618. ret = MC_TARGET_PAGE;
  5619. if (target) {
  5620. get_page(page);
  5621. target->page = page;
  5622. }
  5623. }
  5624. return ret;
  5625. }
  5626. #else
  5627. static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  5628. unsigned long addr, pmd_t pmd, union mc_target *target)
  5629. {
  5630. return MC_TARGET_NONE;
  5631. }
  5632. #endif
  5633. static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
  5634. unsigned long addr, unsigned long end,
  5635. struct mm_walk *walk)
  5636. {
  5637. struct vm_area_struct *vma = walk->private;
  5638. pte_t *pte;
  5639. spinlock_t *ptl;
  5640. if (pmd_trans_huge_lock(pmd, vma) == 1) {
  5641. if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
  5642. mc.precharge += HPAGE_PMD_NR;
  5643. spin_unlock(&vma->vm_mm->page_table_lock);
  5644. return 0;
  5645. }
  5646. if (pmd_trans_unstable(pmd))
  5647. return 0;
  5648. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  5649. for (; addr != end; pte++, addr += PAGE_SIZE)
  5650. if (get_mctgt_type(vma, addr, *pte, NULL))
  5651. mc.precharge++; /* increment precharge temporarily */
  5652. pte_unmap_unlock(pte - 1, ptl);
  5653. cond_resched();
  5654. return 0;
  5655. }
  5656. static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
  5657. {
  5658. unsigned long precharge;
  5659. struct vm_area_struct *vma;
  5660. down_read(&mm->mmap_sem);
  5661. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  5662. struct mm_walk mem_cgroup_count_precharge_walk = {
  5663. .pmd_entry = mem_cgroup_count_precharge_pte_range,
  5664. .mm = mm,
  5665. .private = vma,
  5666. };
  5667. if (is_vm_hugetlb_page(vma))
  5668. continue;
  5669. walk_page_range(vma->vm_start, vma->vm_end,
  5670. &mem_cgroup_count_precharge_walk);
  5671. }
  5672. up_read(&mm->mmap_sem);
  5673. precharge = mc.precharge;
  5674. mc.precharge = 0;
  5675. return precharge;
  5676. }
  5677. static int mem_cgroup_precharge_mc(struct mm_struct *mm)
  5678. {
  5679. unsigned long precharge = mem_cgroup_count_precharge(mm);
  5680. VM_BUG_ON(mc.moving_task);
  5681. mc.moving_task = current;
  5682. return mem_cgroup_do_precharge(precharge);
  5683. }
  5684. /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
  5685. static void __mem_cgroup_clear_mc(void)
  5686. {
  5687. struct mem_cgroup *from = mc.from;
  5688. struct mem_cgroup *to = mc.to;
  5689. /* we must uncharge all the leftover precharges from mc.to */
  5690. if (mc.precharge) {
  5691. __mem_cgroup_cancel_charge(mc.to, mc.precharge);
  5692. mc.precharge = 0;
  5693. }
  5694. /*
  5695. * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
  5696. * we must uncharge here.
  5697. */
  5698. if (mc.moved_charge) {
  5699. __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
  5700. mc.moved_charge = 0;
  5701. }
  5702. /* we must fixup refcnts and charges */
  5703. if (mc.moved_swap) {
  5704. /* uncharge swap account from the old cgroup */
  5705. if (!mem_cgroup_is_root(mc.from))
  5706. res_counter_uncharge(&mc.from->memsw,
  5707. PAGE_SIZE * mc.moved_swap);
  5708. __mem_cgroup_put(mc.from, mc.moved_swap);
  5709. if (!mem_cgroup_is_root(mc.to)) {
  5710. /*
  5711. * we charged both to->res and to->memsw, so we should
  5712. * uncharge to->res.
  5713. */
  5714. res_counter_uncharge(&mc.to->res,
  5715. PAGE_SIZE * mc.moved_swap);
  5716. }
  5717. /* we've already done mem_cgroup_get(mc.to) */
  5718. mc.moved_swap = 0;
  5719. }
  5720. memcg_oom_recover(from);
  5721. memcg_oom_recover(to);
  5722. wake_up_all(&mc.waitq);
  5723. }
  5724. static void mem_cgroup_clear_mc(void)
  5725. {
  5726. struct mem_cgroup *from = mc.from;
  5727. /*
  5728. * we must clear moving_task before waking up waiters at the end of
  5729. * task migration.
  5730. */
  5731. mc.moving_task = NULL;
  5732. __mem_cgroup_clear_mc();
  5733. spin_lock(&mc.lock);
  5734. mc.from = NULL;
  5735. mc.to = NULL;
  5736. spin_unlock(&mc.lock);
  5737. mem_cgroup_end_move(from);
  5738. }
  5739. static int mem_cgroup_can_attach(struct cgroup *cgroup,
  5740. struct cgroup_taskset *tset)
  5741. {
  5742. struct task_struct *p = cgroup_taskset_first(tset);
  5743. int ret = 0;
  5744. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
  5745. if (memcg->move_charge_at_immigrate) {
  5746. struct mm_struct *mm;
  5747. struct mem_cgroup *from = mem_cgroup_from_task(p);
  5748. VM_BUG_ON(from == memcg);
  5749. mm = get_task_mm(p);
  5750. if (!mm)
  5751. return 0;
  5752. /* We move charges only when we move a owner of the mm */
  5753. if (mm->owner == p) {
  5754. VM_BUG_ON(mc.from);
  5755. VM_BUG_ON(mc.to);
  5756. VM_BUG_ON(mc.precharge);
  5757. VM_BUG_ON(mc.moved_charge);
  5758. VM_BUG_ON(mc.moved_swap);
  5759. mem_cgroup_start_move(from);
  5760. spin_lock(&mc.lock);
  5761. mc.from = from;
  5762. mc.to = memcg;
  5763. spin_unlock(&mc.lock);
  5764. /* We set mc.moving_task later */
  5765. ret = mem_cgroup_precharge_mc(mm);
  5766. if (ret)
  5767. mem_cgroup_clear_mc();
  5768. }
  5769. mmput(mm);
  5770. }
  5771. return ret;
  5772. }
  5773. static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
  5774. struct cgroup_taskset *tset)
  5775. {
  5776. mem_cgroup_clear_mc();
  5777. }
  5778. static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
  5779. unsigned long addr, unsigned long end,
  5780. struct mm_walk *walk)
  5781. {
  5782. int ret = 0;
  5783. struct vm_area_struct *vma = walk->private;
  5784. pte_t *pte;
  5785. spinlock_t *ptl;
  5786. enum mc_target_type target_type;
  5787. union mc_target target;
  5788. struct page *page;
  5789. struct page_cgroup *pc;
  5790. /*
  5791. * We don't take compound_lock() here but no race with splitting thp
  5792. * happens because:
  5793. * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
  5794. * under splitting, which means there's no concurrent thp split,
  5795. * - if another thread runs into split_huge_page() just after we
  5796. * entered this if-block, the thread must wait for page table lock
  5797. * to be unlocked in __split_huge_page_splitting(), where the main
  5798. * part of thp split is not executed yet.
  5799. */
  5800. if (pmd_trans_huge_lock(pmd, vma) == 1) {
  5801. if (mc.precharge < HPAGE_PMD_NR) {
  5802. spin_unlock(&vma->vm_mm->page_table_lock);
  5803. return 0;
  5804. }
  5805. target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
  5806. if (target_type == MC_TARGET_PAGE) {
  5807. page = target.page;
  5808. if (!isolate_lru_page(page)) {
  5809. pc = lookup_page_cgroup(page);
  5810. if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
  5811. pc, mc.from, mc.to)) {
  5812. mc.precharge -= HPAGE_PMD_NR;
  5813. mc.moved_charge += HPAGE_PMD_NR;
  5814. }
  5815. putback_lru_page(page);
  5816. }
  5817. put_page(page);
  5818. }
  5819. spin_unlock(&vma->vm_mm->page_table_lock);
  5820. return 0;
  5821. }
  5822. if (pmd_trans_unstable(pmd))
  5823. return 0;
  5824. retry:
  5825. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  5826. for (; addr != end; addr += PAGE_SIZE) {
  5827. pte_t ptent = *(pte++);
  5828. swp_entry_t ent;
  5829. if (!mc.precharge)
  5830. break;
  5831. switch (get_mctgt_type(vma, addr, ptent, &target)) {
  5832. case MC_TARGET_PAGE:
  5833. page = target.page;
  5834. if (isolate_lru_page(page))
  5835. goto put;
  5836. pc = lookup_page_cgroup(page);
  5837. if (!mem_cgroup_move_account(page, 1, pc,
  5838. mc.from, mc.to)) {
  5839. mc.precharge--;
  5840. /* we uncharge from mc.from later. */
  5841. mc.moved_charge++;
  5842. }
  5843. putback_lru_page(page);
  5844. put: /* get_mctgt_type() gets the page */
  5845. put_page(page);
  5846. break;
  5847. case MC_TARGET_SWAP:
  5848. ent = target.ent;
  5849. if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
  5850. mc.precharge--;
  5851. /* we fixup refcnts and charges later. */
  5852. mc.moved_swap++;
  5853. }
  5854. break;
  5855. default:
  5856. break;
  5857. }
  5858. }
  5859. pte_unmap_unlock(pte - 1, ptl);
  5860. cond_resched();
  5861. if (addr != end) {
  5862. /*
  5863. * We have consumed all precharges we got in can_attach().
  5864. * We try charge one by one, but don't do any additional
  5865. * charges to mc.to if we have failed in charge once in attach()
  5866. * phase.
  5867. */
  5868. ret = mem_cgroup_do_precharge(1);
  5869. if (!ret)
  5870. goto retry;
  5871. }
  5872. return ret;
  5873. }
  5874. static void mem_cgroup_move_charge(struct mm_struct *mm)
  5875. {
  5876. struct vm_area_struct *vma;
  5877. lru_add_drain_all();
  5878. retry:
  5879. if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
  5880. /*
  5881. * Someone who are holding the mmap_sem might be waiting in
  5882. * waitq. So we cancel all extra charges, wake up all waiters,
  5883. * and retry. Because we cancel precharges, we might not be able
  5884. * to move enough charges, but moving charge is a best-effort
  5885. * feature anyway, so it wouldn't be a big problem.
  5886. */
  5887. __mem_cgroup_clear_mc();
  5888. cond_resched();
  5889. goto retry;
  5890. }
  5891. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  5892. int ret;
  5893. struct mm_walk mem_cgroup_move_charge_walk = {
  5894. .pmd_entry = mem_cgroup_move_charge_pte_range,
  5895. .mm = mm,
  5896. .private = vma,
  5897. };
  5898. if (is_vm_hugetlb_page(vma))
  5899. continue;
  5900. ret = walk_page_range(vma->vm_start, vma->vm_end,
  5901. &mem_cgroup_move_charge_walk);
  5902. if (ret)
  5903. /*
  5904. * means we have consumed all precharges and failed in
  5905. * doing additional charge. Just abandon here.
  5906. */
  5907. break;
  5908. }
  5909. up_read(&mm->mmap_sem);
  5910. }
  5911. static void mem_cgroup_move_task(struct cgroup *cont,
  5912. struct cgroup_taskset *tset)
  5913. {
  5914. struct task_struct *p = cgroup_taskset_first(tset);
  5915. struct mm_struct *mm = get_task_mm(p);
  5916. if (mm) {
  5917. if (mc.to)
  5918. mem_cgroup_move_charge(mm);
  5919. mmput(mm);
  5920. }
  5921. if (mc.to)
  5922. mem_cgroup_clear_mc();
  5923. }
  5924. #else /* !CONFIG_MMU */
  5925. static int mem_cgroup_can_attach(struct cgroup *cgroup,
  5926. struct cgroup_taskset *tset)
  5927. {
  5928. return 0;
  5929. }
  5930. static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
  5931. struct cgroup_taskset *tset)
  5932. {
  5933. }
  5934. static void mem_cgroup_move_task(struct cgroup *cont,
  5935. struct cgroup_taskset *tset)
  5936. {
  5937. }
  5938. #endif
  5939. struct cgroup_subsys mem_cgroup_subsys = {
  5940. .name = "memory",
  5941. .subsys_id = mem_cgroup_subsys_id,
  5942. .css_alloc = mem_cgroup_css_alloc,
  5943. .css_offline = mem_cgroup_css_offline,
  5944. .css_free = mem_cgroup_css_free,
  5945. .can_attach = mem_cgroup_can_attach,
  5946. .cancel_attach = mem_cgroup_cancel_attach,
  5947. .attach = mem_cgroup_move_task,
  5948. .base_cftypes = mem_cgroup_files,
  5949. .early_init = 0,
  5950. .use_id = 1,
  5951. };
  5952. #ifdef CONFIG_MEMCG_SWAP
  5953. static int __init enable_swap_account(char *s)
  5954. {
  5955. /* consider enabled if no parameter or 1 is given */
  5956. if (!strcmp(s, "1"))
  5957. really_do_swap_account = 1;
  5958. else if (!strcmp(s, "0"))
  5959. really_do_swap_account = 0;
  5960. return 1;
  5961. }
  5962. __setup("swapaccount=", enable_swap_account);
  5963. static void __init memsw_file_init(void)
  5964. {
  5965. WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
  5966. }
  5967. static void __init enable_swap_cgroup(void)
  5968. {
  5969. if (!mem_cgroup_disabled() && really_do_swap_account) {
  5970. do_swap_account = 1;
  5971. memsw_file_init();
  5972. }
  5973. }
  5974. #else
  5975. static void __init enable_swap_cgroup(void)
  5976. {
  5977. }
  5978. #endif
  5979. /*
  5980. * The rest of init is performed during ->css_alloc() for root css which
  5981. * happens before initcalls. hotcpu_notifier() can't be done together as
  5982. * it would introduce circular locking by adding cgroup_lock -> cpu hotplug
  5983. * dependency. Do it from a subsys_initcall().
  5984. */
  5985. static int __init mem_cgroup_init(void)
  5986. {
  5987. hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
  5988. enable_swap_cgroup();
  5989. return 0;
  5990. }
  5991. subsys_initcall(mem_cgroup_init);