sched.c 167 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/nmi.h>
  23. #include <linux/init.h>
  24. #include <asm/uaccess.h>
  25. #include <linux/highmem.h>
  26. #include <linux/smp_lock.h>
  27. #include <asm/mmu_context.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/capability.h>
  30. #include <linux/completion.h>
  31. #include <linux/kernel_stat.h>
  32. #include <linux/debug_locks.h>
  33. #include <linux/security.h>
  34. #include <linux/notifier.h>
  35. #include <linux/profile.h>
  36. #include <linux/freezer.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/blkdev.h>
  39. #include <linux/delay.h>
  40. #include <linux/smp.h>
  41. #include <linux/threads.h>
  42. #include <linux/timer.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/cpu.h>
  45. #include <linux/cpuset.h>
  46. #include <linux/percpu.h>
  47. #include <linux/kthread.h>
  48. #include <linux/seq_file.h>
  49. #include <linux/syscalls.h>
  50. #include <linux/times.h>
  51. #include <linux/tsacct_kern.h>
  52. #include <linux/kprobes.h>
  53. #include <linux/delayacct.h>
  54. #include <linux/reciprocal_div.h>
  55. #include <asm/tlb.h>
  56. #include <asm/unistd.h>
  57. /*
  58. * Scheduler clock - returns current time in nanosec units.
  59. * This is default implementation.
  60. * Architectures and sub-architectures can override this.
  61. */
  62. unsigned long long __attribute__((weak)) sched_clock(void)
  63. {
  64. return (unsigned long long)jiffies * (1000000000 / HZ);
  65. }
  66. /*
  67. * Convert user-nice values [ -20 ... 0 ... 19 ]
  68. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  69. * and back.
  70. */
  71. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  72. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  73. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  74. /*
  75. * 'User priority' is the nice value converted to something we
  76. * can work with better when scaling various scheduler parameters,
  77. * it's a [ 0 ... 39 ] range.
  78. */
  79. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  80. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  81. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  82. /*
  83. * Some helpers for converting nanosecond timing to jiffy resolution
  84. */
  85. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  86. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  87. #define NICE_0_LOAD SCHED_LOAD_SCALE
  88. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  89. /*
  90. * These are the 'tuning knobs' of the scheduler:
  91. *
  92. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  93. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  94. * Timeslices get refilled after they expire.
  95. */
  96. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  97. #define DEF_TIMESLICE (100 * HZ / 1000)
  98. #define ON_RUNQUEUE_WEIGHT 30
  99. #define CHILD_PENALTY 95
  100. #define PARENT_PENALTY 100
  101. #define EXIT_WEIGHT 3
  102. #define PRIO_BONUS_RATIO 25
  103. #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
  104. #define INTERACTIVE_DELTA 2
  105. #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
  106. #define STARVATION_LIMIT (MAX_SLEEP_AVG)
  107. #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
  108. /*
  109. * If a task is 'interactive' then we reinsert it in the active
  110. * array after it has expired its current timeslice. (it will not
  111. * continue to run immediately, it will still roundrobin with
  112. * other interactive tasks.)
  113. *
  114. * This part scales the interactivity limit depending on niceness.
  115. *
  116. * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
  117. * Here are a few examples of different nice levels:
  118. *
  119. * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
  120. * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
  121. * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
  122. * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
  123. * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
  124. *
  125. * (the X axis represents the possible -5 ... 0 ... +5 dynamic
  126. * priority range a task can explore, a value of '1' means the
  127. * task is rated interactive.)
  128. *
  129. * Ie. nice +19 tasks can never get 'interactive' enough to be
  130. * reinserted into the active array. And only heavily CPU-hog nice -20
  131. * tasks will be expired. Default nice 0 tasks are somewhere between,
  132. * it takes some effort for them to get interactive, but it's not
  133. * too hard.
  134. */
  135. #define CURRENT_BONUS(p) \
  136. (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
  137. MAX_SLEEP_AVG)
  138. #define GRANULARITY (10 * HZ / 1000 ? : 1)
  139. #ifdef CONFIG_SMP
  140. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  141. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
  142. num_online_cpus())
  143. #else
  144. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  145. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
  146. #endif
  147. #define SCALE(v1,v1_max,v2_max) \
  148. (v1) * (v2_max) / (v1_max)
  149. #define DELTA(p) \
  150. (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
  151. INTERACTIVE_DELTA)
  152. #define TASK_INTERACTIVE(p) \
  153. ((p)->prio <= (p)->static_prio - DELTA(p))
  154. #define INTERACTIVE_SLEEP(p) \
  155. (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
  156. (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
  157. #define TASK_PREEMPTS_CURR(p, rq) \
  158. ((p)->prio < (rq)->curr->prio)
  159. #define SCALE_PRIO(x, prio) \
  160. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  161. static unsigned int static_prio_timeslice(int static_prio)
  162. {
  163. if (static_prio < NICE_TO_PRIO(0))
  164. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  165. else
  166. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  167. }
  168. #ifdef CONFIG_SMP
  169. /*
  170. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  171. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  172. */
  173. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  174. {
  175. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  176. }
  177. /*
  178. * Each time a sched group cpu_power is changed,
  179. * we must compute its reciprocal value
  180. */
  181. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  182. {
  183. sg->__cpu_power += val;
  184. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  185. }
  186. #endif
  187. /*
  188. * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  189. * to time slice values: [800ms ... 100ms ... 5ms]
  190. *
  191. * The higher a thread's priority, the bigger timeslices
  192. * it gets during one round of execution. But even the lowest
  193. * priority thread gets MIN_TIMESLICE worth of execution time.
  194. */
  195. static inline unsigned int task_timeslice(struct task_struct *p)
  196. {
  197. return static_prio_timeslice(p->static_prio);
  198. }
  199. static inline int rt_policy(int policy)
  200. {
  201. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  202. return 1;
  203. return 0;
  204. }
  205. static inline int task_has_rt_policy(struct task_struct *p)
  206. {
  207. return rt_policy(p->policy);
  208. }
  209. /*
  210. * This is the priority-queue data structure of the RT scheduling class:
  211. */
  212. struct rt_prio_array {
  213. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  214. struct list_head queue[MAX_RT_PRIO];
  215. };
  216. struct load_stat {
  217. struct load_weight load;
  218. u64 load_update_start, load_update_last;
  219. unsigned long delta_fair, delta_exec, delta_stat;
  220. };
  221. /* CFS-related fields in a runqueue */
  222. struct cfs_rq {
  223. struct load_weight load;
  224. unsigned long nr_running;
  225. s64 fair_clock;
  226. u64 exec_clock;
  227. s64 wait_runtime;
  228. u64 sleeper_bonus;
  229. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  230. struct rb_root tasks_timeline;
  231. struct rb_node *rb_leftmost;
  232. struct rb_node *rb_load_balance_curr;
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* 'curr' points to currently running entity on this cfs_rq.
  235. * It is set to NULL otherwise (i.e when none are currently running).
  236. */
  237. struct sched_entity *curr;
  238. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  239. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  240. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  241. * (like users, containers etc.)
  242. *
  243. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  244. * list is used during load balance.
  245. */
  246. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  247. #endif
  248. };
  249. /* Real-Time classes' related field in a runqueue: */
  250. struct rt_rq {
  251. struct rt_prio_array active;
  252. int rt_load_balance_idx;
  253. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  254. };
  255. /*
  256. * The prio-array type of the old scheduler:
  257. */
  258. struct prio_array {
  259. unsigned int nr_active;
  260. DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
  261. struct list_head queue[MAX_PRIO];
  262. };
  263. /*
  264. * This is the main, per-CPU runqueue data structure.
  265. *
  266. * Locking rule: those places that want to lock multiple runqueues
  267. * (such as the load balancing or the thread migration code), lock
  268. * acquire operations must be ordered by ascending &runqueue.
  269. */
  270. struct rq {
  271. spinlock_t lock; /* runqueue lock */
  272. /*
  273. * nr_running and cpu_load should be in the same cacheline because
  274. * remote CPUs use both these fields when doing load calculation.
  275. */
  276. unsigned long nr_running;
  277. unsigned long raw_weighted_load;
  278. #define CPU_LOAD_IDX_MAX 5
  279. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  280. unsigned char idle_at_tick;
  281. #ifdef CONFIG_NO_HZ
  282. unsigned char in_nohz_recently;
  283. #endif
  284. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  285. unsigned long nr_load_updates;
  286. u64 nr_switches;
  287. struct cfs_rq cfs;
  288. #ifdef CONFIG_FAIR_GROUP_SCHED
  289. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  290. #endif
  291. struct rt_rq rt;
  292. /*
  293. * This is part of a global counter where only the total sum
  294. * over all CPUs matters. A task can increase this counter on
  295. * one CPU and if it got migrated afterwards it may decrease
  296. * it on another CPU. Always updated under the runqueue lock:
  297. */
  298. unsigned long nr_uninterruptible;
  299. unsigned long expired_timestamp;
  300. unsigned long long most_recent_timestamp;
  301. struct task_struct *curr, *idle;
  302. unsigned long next_balance;
  303. struct mm_struct *prev_mm;
  304. struct prio_array *active, *expired, arrays[2];
  305. int best_expired_prio;
  306. u64 clock, prev_clock_raw;
  307. s64 clock_max_delta;
  308. unsigned int clock_warps, clock_overflows;
  309. unsigned int clock_unstable_events;
  310. struct sched_class *load_balance_class;
  311. atomic_t nr_iowait;
  312. #ifdef CONFIG_SMP
  313. struct sched_domain *sd;
  314. /* For active balancing */
  315. int active_balance;
  316. int push_cpu;
  317. int cpu; /* cpu of this runqueue */
  318. struct task_struct *migration_thread;
  319. struct list_head migration_queue;
  320. #endif
  321. #ifdef CONFIG_SCHEDSTATS
  322. /* latency stats */
  323. struct sched_info rq_sched_info;
  324. /* sys_sched_yield() stats */
  325. unsigned long yld_exp_empty;
  326. unsigned long yld_act_empty;
  327. unsigned long yld_both_empty;
  328. unsigned long yld_cnt;
  329. /* schedule() stats */
  330. unsigned long sched_switch;
  331. unsigned long sched_cnt;
  332. unsigned long sched_goidle;
  333. /* try_to_wake_up() stats */
  334. unsigned long ttwu_cnt;
  335. unsigned long ttwu_local;
  336. #endif
  337. struct lock_class_key rq_lock_key;
  338. };
  339. static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
  340. static DEFINE_MUTEX(sched_hotcpu_mutex);
  341. static inline int cpu_of(struct rq *rq)
  342. {
  343. #ifdef CONFIG_SMP
  344. return rq->cpu;
  345. #else
  346. return 0;
  347. #endif
  348. }
  349. /*
  350. * Per-runqueue clock, as finegrained as the platform can give us:
  351. */
  352. static unsigned long long __rq_clock(struct rq *rq)
  353. {
  354. u64 prev_raw = rq->prev_clock_raw;
  355. u64 now = sched_clock();
  356. s64 delta = now - prev_raw;
  357. u64 clock = rq->clock;
  358. /*
  359. * Protect against sched_clock() occasionally going backwards:
  360. */
  361. if (unlikely(delta < 0)) {
  362. clock++;
  363. rq->clock_warps++;
  364. } else {
  365. /*
  366. * Catch too large forward jumps too:
  367. */
  368. if (unlikely(delta > 2*TICK_NSEC)) {
  369. clock++;
  370. rq->clock_overflows++;
  371. } else {
  372. if (unlikely(delta > rq->clock_max_delta))
  373. rq->clock_max_delta = delta;
  374. clock += delta;
  375. }
  376. }
  377. rq->prev_clock_raw = now;
  378. rq->clock = clock;
  379. return clock;
  380. }
  381. static inline unsigned long long rq_clock(struct rq *rq)
  382. {
  383. int this_cpu = smp_processor_id();
  384. if (this_cpu == cpu_of(rq))
  385. return __rq_clock(rq);
  386. return rq->clock;
  387. }
  388. /*
  389. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  390. * See detach_destroy_domains: synchronize_sched for details.
  391. *
  392. * The domain tree of any CPU may only be accessed from within
  393. * preempt-disabled sections.
  394. */
  395. #define for_each_domain(cpu, __sd) \
  396. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  397. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  398. #define this_rq() (&__get_cpu_var(runqueues))
  399. #define task_rq(p) cpu_rq(task_cpu(p))
  400. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  401. #ifdef CONFIG_FAIR_GROUP_SCHED
  402. /* Change a task's ->cfs_rq if it moves across CPUs */
  403. static inline void set_task_cfs_rq(struct task_struct *p)
  404. {
  405. p->se.cfs_rq = &task_rq(p)->cfs;
  406. }
  407. #else
  408. static inline void set_task_cfs_rq(struct task_struct *p)
  409. {
  410. }
  411. #endif
  412. #ifndef prepare_arch_switch
  413. # define prepare_arch_switch(next) do { } while (0)
  414. #endif
  415. #ifndef finish_arch_switch
  416. # define finish_arch_switch(prev) do { } while (0)
  417. #endif
  418. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  419. static inline int task_running(struct rq *rq, struct task_struct *p)
  420. {
  421. return rq->curr == p;
  422. }
  423. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  424. {
  425. }
  426. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  427. {
  428. #ifdef CONFIG_DEBUG_SPINLOCK
  429. /* this is a valid case when another task releases the spinlock */
  430. rq->lock.owner = current;
  431. #endif
  432. /*
  433. * If we are tracking spinlock dependencies then we have to
  434. * fix up the runqueue lock - which gets 'carried over' from
  435. * prev into current:
  436. */
  437. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  438. spin_unlock_irq(&rq->lock);
  439. }
  440. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  441. static inline int task_running(struct rq *rq, struct task_struct *p)
  442. {
  443. #ifdef CONFIG_SMP
  444. return p->oncpu;
  445. #else
  446. return rq->curr == p;
  447. #endif
  448. }
  449. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  450. {
  451. #ifdef CONFIG_SMP
  452. /*
  453. * We can optimise this out completely for !SMP, because the
  454. * SMP rebalancing from interrupt is the only thing that cares
  455. * here.
  456. */
  457. next->oncpu = 1;
  458. #endif
  459. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  460. spin_unlock_irq(&rq->lock);
  461. #else
  462. spin_unlock(&rq->lock);
  463. #endif
  464. }
  465. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  466. {
  467. #ifdef CONFIG_SMP
  468. /*
  469. * After ->oncpu is cleared, the task can be moved to a different CPU.
  470. * We must ensure this doesn't happen until the switch is completely
  471. * finished.
  472. */
  473. smp_wmb();
  474. prev->oncpu = 0;
  475. #endif
  476. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  477. local_irq_enable();
  478. #endif
  479. }
  480. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  481. /*
  482. * __task_rq_lock - lock the runqueue a given task resides on.
  483. * Must be called interrupts disabled.
  484. */
  485. static inline struct rq *__task_rq_lock(struct task_struct *p)
  486. __acquires(rq->lock)
  487. {
  488. struct rq *rq;
  489. repeat_lock_task:
  490. rq = task_rq(p);
  491. spin_lock(&rq->lock);
  492. if (unlikely(rq != task_rq(p))) {
  493. spin_unlock(&rq->lock);
  494. goto repeat_lock_task;
  495. }
  496. return rq;
  497. }
  498. /*
  499. * task_rq_lock - lock the runqueue a given task resides on and disable
  500. * interrupts. Note the ordering: we can safely lookup the task_rq without
  501. * explicitly disabling preemption.
  502. */
  503. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  504. __acquires(rq->lock)
  505. {
  506. struct rq *rq;
  507. repeat_lock_task:
  508. local_irq_save(*flags);
  509. rq = task_rq(p);
  510. spin_lock(&rq->lock);
  511. if (unlikely(rq != task_rq(p))) {
  512. spin_unlock_irqrestore(&rq->lock, *flags);
  513. goto repeat_lock_task;
  514. }
  515. return rq;
  516. }
  517. static inline void __task_rq_unlock(struct rq *rq)
  518. __releases(rq->lock)
  519. {
  520. spin_unlock(&rq->lock);
  521. }
  522. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  523. __releases(rq->lock)
  524. {
  525. spin_unlock_irqrestore(&rq->lock, *flags);
  526. }
  527. /*
  528. * this_rq_lock - lock this runqueue and disable interrupts.
  529. */
  530. static inline struct rq *this_rq_lock(void)
  531. __acquires(rq->lock)
  532. {
  533. struct rq *rq;
  534. local_irq_disable();
  535. rq = this_rq();
  536. spin_lock(&rq->lock);
  537. return rq;
  538. }
  539. /*
  540. * resched_task - mark a task 'to be rescheduled now'.
  541. *
  542. * On UP this means the setting of the need_resched flag, on SMP it
  543. * might also involve a cross-CPU call to trigger the scheduler on
  544. * the target CPU.
  545. */
  546. #ifdef CONFIG_SMP
  547. #ifndef tsk_is_polling
  548. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  549. #endif
  550. static void resched_task(struct task_struct *p)
  551. {
  552. int cpu;
  553. assert_spin_locked(&task_rq(p)->lock);
  554. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  555. return;
  556. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  557. cpu = task_cpu(p);
  558. if (cpu == smp_processor_id())
  559. return;
  560. /* NEED_RESCHED must be visible before we test polling */
  561. smp_mb();
  562. if (!tsk_is_polling(p))
  563. smp_send_reschedule(cpu);
  564. }
  565. static void resched_cpu(int cpu)
  566. {
  567. struct rq *rq = cpu_rq(cpu);
  568. unsigned long flags;
  569. if (!spin_trylock_irqsave(&rq->lock, flags))
  570. return;
  571. resched_task(cpu_curr(cpu));
  572. spin_unlock_irqrestore(&rq->lock, flags);
  573. }
  574. #else
  575. static inline void resched_task(struct task_struct *p)
  576. {
  577. assert_spin_locked(&task_rq(p)->lock);
  578. set_tsk_need_resched(p);
  579. }
  580. #endif
  581. #include "sched_stats.h"
  582. static u64 div64_likely32(u64 divident, unsigned long divisor)
  583. {
  584. #if BITS_PER_LONG == 32
  585. if (likely(divident <= 0xffffffffULL))
  586. return (u32)divident / divisor;
  587. do_div(divident, divisor);
  588. return divident;
  589. #else
  590. return divident / divisor;
  591. #endif
  592. }
  593. #if BITS_PER_LONG == 32
  594. # define WMULT_CONST (~0UL)
  595. #else
  596. # define WMULT_CONST (1UL << 32)
  597. #endif
  598. #define WMULT_SHIFT 32
  599. static inline unsigned long
  600. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  601. struct load_weight *lw)
  602. {
  603. u64 tmp;
  604. if (unlikely(!lw->inv_weight))
  605. lw->inv_weight = WMULT_CONST / lw->weight;
  606. tmp = (u64)delta_exec * weight;
  607. /*
  608. * Check whether we'd overflow the 64-bit multiplication:
  609. */
  610. if (unlikely(tmp > WMULT_CONST)) {
  611. tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
  612. >> (WMULT_SHIFT/2);
  613. } else {
  614. tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
  615. }
  616. return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
  617. }
  618. static inline unsigned long
  619. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  620. {
  621. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  622. }
  623. static void update_load_add(struct load_weight *lw, unsigned long inc)
  624. {
  625. lw->weight += inc;
  626. lw->inv_weight = 0;
  627. }
  628. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  629. {
  630. lw->weight -= dec;
  631. lw->inv_weight = 0;
  632. }
  633. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  634. {
  635. if (rq->curr != rq->idle && ls->load.weight) {
  636. ls->delta_exec += ls->delta_stat;
  637. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  638. ls->delta_stat = 0;
  639. }
  640. }
  641. /*
  642. * Update delta_exec, delta_fair fields for rq.
  643. *
  644. * delta_fair clock advances at a rate inversely proportional to
  645. * total load (rq->ls.load.weight) on the runqueue, while
  646. * delta_exec advances at the same rate as wall-clock (provided
  647. * cpu is not idle).
  648. *
  649. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  650. * runqueue over any given interval. This (smoothened) load is used
  651. * during load balance.
  652. *
  653. * This function is called /before/ updating rq->ls.load
  654. * and when switching tasks.
  655. */
  656. static void update_curr_load(struct rq *rq, u64 now)
  657. {
  658. struct load_stat *ls = &rq->ls;
  659. u64 start;
  660. start = ls->load_update_start;
  661. ls->load_update_start = now;
  662. ls->delta_stat += now - start;
  663. /*
  664. * Stagger updates to ls->delta_fair. Very frequent updates
  665. * can be expensive.
  666. */
  667. if (ls->delta_stat >= sysctl_sched_stat_granularity)
  668. __update_curr_load(rq, ls);
  669. }
  670. /*
  671. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  672. * of tasks with abnormal "nice" values across CPUs the contribution that
  673. * each task makes to its run queue's load is weighted according to its
  674. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  675. * scaled version of the new time slice allocation that they receive on time
  676. * slice expiry etc.
  677. */
  678. /*
  679. * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
  680. * If static_prio_timeslice() is ever changed to break this assumption then
  681. * this code will need modification
  682. */
  683. #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
  684. #define LOAD_WEIGHT(lp) \
  685. (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
  686. #define PRIO_TO_LOAD_WEIGHT(prio) \
  687. LOAD_WEIGHT(static_prio_timeslice(prio))
  688. #define RTPRIO_TO_LOAD_WEIGHT(rp) \
  689. (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
  690. static inline void
  691. inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  692. {
  693. rq->raw_weighted_load += p->load_weight;
  694. }
  695. static inline void
  696. dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  697. {
  698. rq->raw_weighted_load -= p->load_weight;
  699. }
  700. static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
  701. {
  702. rq->nr_running++;
  703. inc_raw_weighted_load(rq, p);
  704. }
  705. static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
  706. {
  707. rq->nr_running--;
  708. dec_raw_weighted_load(rq, p);
  709. }
  710. static void set_load_weight(struct task_struct *p)
  711. {
  712. if (task_has_rt_policy(p)) {
  713. #ifdef CONFIG_SMP
  714. if (p == task_rq(p)->migration_thread)
  715. /*
  716. * The migration thread does the actual balancing.
  717. * Giving its load any weight will skew balancing
  718. * adversely.
  719. */
  720. p->load_weight = 0;
  721. else
  722. #endif
  723. p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
  724. } else
  725. p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
  726. }
  727. /*
  728. * Adding/removing a task to/from a priority array:
  729. */
  730. static void dequeue_task(struct task_struct *p, struct prio_array *array)
  731. {
  732. array->nr_active--;
  733. list_del(&p->run_list);
  734. if (list_empty(array->queue + p->prio))
  735. __clear_bit(p->prio, array->bitmap);
  736. }
  737. static void enqueue_task(struct task_struct *p, struct prio_array *array)
  738. {
  739. sched_info_queued(p);
  740. list_add_tail(&p->run_list, array->queue + p->prio);
  741. __set_bit(p->prio, array->bitmap);
  742. array->nr_active++;
  743. p->array = array;
  744. }
  745. /*
  746. * Put task to the end of the run list without the overhead of dequeue
  747. * followed by enqueue.
  748. */
  749. static void requeue_task(struct task_struct *p, struct prio_array *array)
  750. {
  751. list_move_tail(&p->run_list, array->queue + p->prio);
  752. }
  753. static inline void
  754. enqueue_task_head(struct task_struct *p, struct prio_array *array)
  755. {
  756. list_add(&p->run_list, array->queue + p->prio);
  757. __set_bit(p->prio, array->bitmap);
  758. array->nr_active++;
  759. p->array = array;
  760. }
  761. /*
  762. * __normal_prio - return the priority that is based on the static
  763. * priority but is modified by bonuses/penalties.
  764. *
  765. * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
  766. * into the -5 ... 0 ... +5 bonus/penalty range.
  767. *
  768. * We use 25% of the full 0...39 priority range so that:
  769. *
  770. * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
  771. * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
  772. *
  773. * Both properties are important to certain workloads.
  774. */
  775. static inline int __normal_prio(struct task_struct *p)
  776. {
  777. int bonus, prio;
  778. bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
  779. prio = p->static_prio - bonus;
  780. if (prio < MAX_RT_PRIO)
  781. prio = MAX_RT_PRIO;
  782. if (prio > MAX_PRIO-1)
  783. prio = MAX_PRIO-1;
  784. return prio;
  785. }
  786. /*
  787. * Calculate the expected normal priority: i.e. priority
  788. * without taking RT-inheritance into account. Might be
  789. * boosted by interactivity modifiers. Changes upon fork,
  790. * setprio syscalls, and whenever the interactivity
  791. * estimator recalculates.
  792. */
  793. static inline int normal_prio(struct task_struct *p)
  794. {
  795. int prio;
  796. if (task_has_rt_policy(p))
  797. prio = MAX_RT_PRIO-1 - p->rt_priority;
  798. else
  799. prio = __normal_prio(p);
  800. return prio;
  801. }
  802. /*
  803. * Calculate the current priority, i.e. the priority
  804. * taken into account by the scheduler. This value might
  805. * be boosted by RT tasks, or might be boosted by
  806. * interactivity modifiers. Will be RT if the task got
  807. * RT-boosted. If not then it returns p->normal_prio.
  808. */
  809. static int effective_prio(struct task_struct *p)
  810. {
  811. p->normal_prio = normal_prio(p);
  812. /*
  813. * If we are RT tasks or we were boosted to RT priority,
  814. * keep the priority unchanged. Otherwise, update priority
  815. * to the normal priority:
  816. */
  817. if (!rt_prio(p->prio))
  818. return p->normal_prio;
  819. return p->prio;
  820. }
  821. /*
  822. * __activate_task - move a task to the runqueue.
  823. */
  824. static void __activate_task(struct task_struct *p, struct rq *rq)
  825. {
  826. struct prio_array *target = rq->active;
  827. if (batch_task(p))
  828. target = rq->expired;
  829. enqueue_task(p, target);
  830. inc_nr_running(p, rq);
  831. }
  832. /*
  833. * __activate_idle_task - move idle task to the _front_ of runqueue.
  834. */
  835. static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
  836. {
  837. enqueue_task_head(p, rq->active);
  838. inc_nr_running(p, rq);
  839. }
  840. /*
  841. * Recalculate p->normal_prio and p->prio after having slept,
  842. * updating the sleep-average too:
  843. */
  844. static int recalc_task_prio(struct task_struct *p, unsigned long long now)
  845. {
  846. /* Caller must always ensure 'now >= p->timestamp' */
  847. unsigned long sleep_time = now - p->timestamp;
  848. if (batch_task(p))
  849. sleep_time = 0;
  850. if (likely(sleep_time > 0)) {
  851. /*
  852. * This ceiling is set to the lowest priority that would allow
  853. * a task to be reinserted into the active array on timeslice
  854. * completion.
  855. */
  856. unsigned long ceiling = INTERACTIVE_SLEEP(p);
  857. if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
  858. /*
  859. * Prevents user tasks from achieving best priority
  860. * with one single large enough sleep.
  861. */
  862. p->sleep_avg = ceiling;
  863. /*
  864. * Using INTERACTIVE_SLEEP() as a ceiling places a
  865. * nice(0) task 1ms sleep away from promotion, and
  866. * gives it 700ms to round-robin with no chance of
  867. * being demoted. This is more than generous, so
  868. * mark this sleep as non-interactive to prevent the
  869. * on-runqueue bonus logic from intervening should
  870. * this task not receive cpu immediately.
  871. */
  872. p->sleep_type = SLEEP_NONINTERACTIVE;
  873. } else {
  874. /*
  875. * Tasks waking from uninterruptible sleep are
  876. * limited in their sleep_avg rise as they
  877. * are likely to be waiting on I/O
  878. */
  879. if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
  880. if (p->sleep_avg >= ceiling)
  881. sleep_time = 0;
  882. else if (p->sleep_avg + sleep_time >=
  883. ceiling) {
  884. p->sleep_avg = ceiling;
  885. sleep_time = 0;
  886. }
  887. }
  888. /*
  889. * This code gives a bonus to interactive tasks.
  890. *
  891. * The boost works by updating the 'average sleep time'
  892. * value here, based on ->timestamp. The more time a
  893. * task spends sleeping, the higher the average gets -
  894. * and the higher the priority boost gets as well.
  895. */
  896. p->sleep_avg += sleep_time;
  897. }
  898. if (p->sleep_avg > NS_MAX_SLEEP_AVG)
  899. p->sleep_avg = NS_MAX_SLEEP_AVG;
  900. }
  901. return effective_prio(p);
  902. }
  903. /*
  904. * activate_task - move a task to the runqueue and do priority recalculation
  905. *
  906. * Update all the scheduling statistics stuff. (sleep average
  907. * calculation, priority modifiers, etc.)
  908. */
  909. static void activate_task(struct task_struct *p, struct rq *rq, int local)
  910. {
  911. unsigned long long now;
  912. if (rt_task(p))
  913. goto out;
  914. now = sched_clock();
  915. #ifdef CONFIG_SMP
  916. if (!local) {
  917. /* Compensate for drifting sched_clock */
  918. struct rq *this_rq = this_rq();
  919. now = (now - this_rq->most_recent_timestamp)
  920. + rq->most_recent_timestamp;
  921. }
  922. #endif
  923. /*
  924. * Sleep time is in units of nanosecs, so shift by 20 to get a
  925. * milliseconds-range estimation of the amount of time that the task
  926. * spent sleeping:
  927. */
  928. if (unlikely(prof_on == SLEEP_PROFILING)) {
  929. if (p->state == TASK_UNINTERRUPTIBLE)
  930. profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
  931. (now - p->timestamp) >> 20);
  932. }
  933. p->prio = recalc_task_prio(p, now);
  934. /*
  935. * This checks to make sure it's not an uninterruptible task
  936. * that is now waking up.
  937. */
  938. if (p->sleep_type == SLEEP_NORMAL) {
  939. /*
  940. * Tasks which were woken up by interrupts (ie. hw events)
  941. * are most likely of interactive nature. So we give them
  942. * the credit of extending their sleep time to the period
  943. * of time they spend on the runqueue, waiting for execution
  944. * on a CPU, first time around:
  945. */
  946. if (in_interrupt())
  947. p->sleep_type = SLEEP_INTERRUPTED;
  948. else {
  949. /*
  950. * Normal first-time wakeups get a credit too for
  951. * on-runqueue time, but it will be weighted down:
  952. */
  953. p->sleep_type = SLEEP_INTERACTIVE;
  954. }
  955. }
  956. p->timestamp = now;
  957. out:
  958. __activate_task(p, rq);
  959. }
  960. /*
  961. * deactivate_task - remove a task from the runqueue.
  962. */
  963. static void deactivate_task(struct task_struct *p, struct rq *rq)
  964. {
  965. dec_nr_running(p, rq);
  966. dequeue_task(p, p->array);
  967. p->array = NULL;
  968. }
  969. /**
  970. * task_curr - is this task currently executing on a CPU?
  971. * @p: the task in question.
  972. */
  973. inline int task_curr(const struct task_struct *p)
  974. {
  975. return cpu_curr(task_cpu(p)) == p;
  976. }
  977. /* Used instead of source_load when we know the type == 0 */
  978. unsigned long weighted_cpuload(const int cpu)
  979. {
  980. return cpu_rq(cpu)->raw_weighted_load;
  981. }
  982. #ifdef CONFIG_SMP
  983. void set_task_cpu(struct task_struct *p, unsigned int cpu)
  984. {
  985. task_thread_info(p)->cpu = cpu;
  986. }
  987. struct migration_req {
  988. struct list_head list;
  989. struct task_struct *task;
  990. int dest_cpu;
  991. struct completion done;
  992. };
  993. /*
  994. * The task's runqueue lock must be held.
  995. * Returns true if you have to wait for migration thread.
  996. */
  997. static int
  998. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  999. {
  1000. struct rq *rq = task_rq(p);
  1001. /*
  1002. * If the task is not on a runqueue (and not running), then
  1003. * it is sufficient to simply update the task's cpu field.
  1004. */
  1005. if (!p->array && !task_running(rq, p)) {
  1006. set_task_cpu(p, dest_cpu);
  1007. return 0;
  1008. }
  1009. init_completion(&req->done);
  1010. req->task = p;
  1011. req->dest_cpu = dest_cpu;
  1012. list_add(&req->list, &rq->migration_queue);
  1013. return 1;
  1014. }
  1015. /*
  1016. * wait_task_inactive - wait for a thread to unschedule.
  1017. *
  1018. * The caller must ensure that the task *will* unschedule sometime soon,
  1019. * else this function might spin for a *long* time. This function can't
  1020. * be called with interrupts off, or it may introduce deadlock with
  1021. * smp_call_function() if an IPI is sent by the same process we are
  1022. * waiting to become inactive.
  1023. */
  1024. void wait_task_inactive(struct task_struct *p)
  1025. {
  1026. unsigned long flags;
  1027. struct rq *rq;
  1028. struct prio_array *array;
  1029. int running;
  1030. repeat:
  1031. /*
  1032. * We do the initial early heuristics without holding
  1033. * any task-queue locks at all. We'll only try to get
  1034. * the runqueue lock when things look like they will
  1035. * work out!
  1036. */
  1037. rq = task_rq(p);
  1038. /*
  1039. * If the task is actively running on another CPU
  1040. * still, just relax and busy-wait without holding
  1041. * any locks.
  1042. *
  1043. * NOTE! Since we don't hold any locks, it's not
  1044. * even sure that "rq" stays as the right runqueue!
  1045. * But we don't care, since "task_running()" will
  1046. * return false if the runqueue has changed and p
  1047. * is actually now running somewhere else!
  1048. */
  1049. while (task_running(rq, p))
  1050. cpu_relax();
  1051. /*
  1052. * Ok, time to look more closely! We need the rq
  1053. * lock now, to be *sure*. If we're wrong, we'll
  1054. * just go back and repeat.
  1055. */
  1056. rq = task_rq_lock(p, &flags);
  1057. running = task_running(rq, p);
  1058. array = p->array;
  1059. task_rq_unlock(rq, &flags);
  1060. /*
  1061. * Was it really running after all now that we
  1062. * checked with the proper locks actually held?
  1063. *
  1064. * Oops. Go back and try again..
  1065. */
  1066. if (unlikely(running)) {
  1067. cpu_relax();
  1068. goto repeat;
  1069. }
  1070. /*
  1071. * It's not enough that it's not actively running,
  1072. * it must be off the runqueue _entirely_, and not
  1073. * preempted!
  1074. *
  1075. * So if it wa still runnable (but just not actively
  1076. * running right now), it's preempted, and we should
  1077. * yield - it could be a while.
  1078. */
  1079. if (unlikely(array)) {
  1080. yield();
  1081. goto repeat;
  1082. }
  1083. /*
  1084. * Ahh, all good. It wasn't running, and it wasn't
  1085. * runnable, which means that it will never become
  1086. * running in the future either. We're all done!
  1087. */
  1088. }
  1089. /***
  1090. * kick_process - kick a running thread to enter/exit the kernel
  1091. * @p: the to-be-kicked thread
  1092. *
  1093. * Cause a process which is running on another CPU to enter
  1094. * kernel-mode, without any delay. (to get signals handled.)
  1095. *
  1096. * NOTE: this function doesnt have to take the runqueue lock,
  1097. * because all it wants to ensure is that the remote task enters
  1098. * the kernel. If the IPI races and the task has been migrated
  1099. * to another CPU then no harm is done and the purpose has been
  1100. * achieved as well.
  1101. */
  1102. void kick_process(struct task_struct *p)
  1103. {
  1104. int cpu;
  1105. preempt_disable();
  1106. cpu = task_cpu(p);
  1107. if ((cpu != smp_processor_id()) && task_curr(p))
  1108. smp_send_reschedule(cpu);
  1109. preempt_enable();
  1110. }
  1111. /*
  1112. * Return a low guess at the load of a migration-source cpu weighted
  1113. * according to the scheduling class and "nice" value.
  1114. *
  1115. * We want to under-estimate the load of migration sources, to
  1116. * balance conservatively.
  1117. */
  1118. static inline unsigned long source_load(int cpu, int type)
  1119. {
  1120. struct rq *rq = cpu_rq(cpu);
  1121. if (type == 0)
  1122. return rq->raw_weighted_load;
  1123. return min(rq->cpu_load[type-1], rq->raw_weighted_load);
  1124. }
  1125. /*
  1126. * Return a high guess at the load of a migration-target cpu weighted
  1127. * according to the scheduling class and "nice" value.
  1128. */
  1129. static inline unsigned long target_load(int cpu, int type)
  1130. {
  1131. struct rq *rq = cpu_rq(cpu);
  1132. if (type == 0)
  1133. return rq->raw_weighted_load;
  1134. return max(rq->cpu_load[type-1], rq->raw_weighted_load);
  1135. }
  1136. /*
  1137. * Return the average load per task on the cpu's run queue
  1138. */
  1139. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1140. {
  1141. struct rq *rq = cpu_rq(cpu);
  1142. unsigned long n = rq->nr_running;
  1143. return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
  1144. }
  1145. /*
  1146. * find_idlest_group finds and returns the least busy CPU group within the
  1147. * domain.
  1148. */
  1149. static struct sched_group *
  1150. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1151. {
  1152. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1153. unsigned long min_load = ULONG_MAX, this_load = 0;
  1154. int load_idx = sd->forkexec_idx;
  1155. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1156. do {
  1157. unsigned long load, avg_load;
  1158. int local_group;
  1159. int i;
  1160. /* Skip over this group if it has no CPUs allowed */
  1161. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1162. goto nextgroup;
  1163. local_group = cpu_isset(this_cpu, group->cpumask);
  1164. /* Tally up the load of all CPUs in the group */
  1165. avg_load = 0;
  1166. for_each_cpu_mask(i, group->cpumask) {
  1167. /* Bias balancing toward cpus of our domain */
  1168. if (local_group)
  1169. load = source_load(i, load_idx);
  1170. else
  1171. load = target_load(i, load_idx);
  1172. avg_load += load;
  1173. }
  1174. /* Adjust by relative CPU power of the group */
  1175. avg_load = sg_div_cpu_power(group,
  1176. avg_load * SCHED_LOAD_SCALE);
  1177. if (local_group) {
  1178. this_load = avg_load;
  1179. this = group;
  1180. } else if (avg_load < min_load) {
  1181. min_load = avg_load;
  1182. idlest = group;
  1183. }
  1184. nextgroup:
  1185. group = group->next;
  1186. } while (group != sd->groups);
  1187. if (!idlest || 100*this_load < imbalance*min_load)
  1188. return NULL;
  1189. return idlest;
  1190. }
  1191. /*
  1192. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1193. */
  1194. static int
  1195. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1196. {
  1197. cpumask_t tmp;
  1198. unsigned long load, min_load = ULONG_MAX;
  1199. int idlest = -1;
  1200. int i;
  1201. /* Traverse only the allowed CPUs */
  1202. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1203. for_each_cpu_mask(i, tmp) {
  1204. load = weighted_cpuload(i);
  1205. if (load < min_load || (load == min_load && i == this_cpu)) {
  1206. min_load = load;
  1207. idlest = i;
  1208. }
  1209. }
  1210. return idlest;
  1211. }
  1212. /*
  1213. * sched_balance_self: balance the current task (running on cpu) in domains
  1214. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1215. * SD_BALANCE_EXEC.
  1216. *
  1217. * Balance, ie. select the least loaded group.
  1218. *
  1219. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1220. *
  1221. * preempt must be disabled.
  1222. */
  1223. static int sched_balance_self(int cpu, int flag)
  1224. {
  1225. struct task_struct *t = current;
  1226. struct sched_domain *tmp, *sd = NULL;
  1227. for_each_domain(cpu, tmp) {
  1228. /*
  1229. * If power savings logic is enabled for a domain, stop there.
  1230. */
  1231. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1232. break;
  1233. if (tmp->flags & flag)
  1234. sd = tmp;
  1235. }
  1236. while (sd) {
  1237. cpumask_t span;
  1238. struct sched_group *group;
  1239. int new_cpu, weight;
  1240. if (!(sd->flags & flag)) {
  1241. sd = sd->child;
  1242. continue;
  1243. }
  1244. span = sd->span;
  1245. group = find_idlest_group(sd, t, cpu);
  1246. if (!group) {
  1247. sd = sd->child;
  1248. continue;
  1249. }
  1250. new_cpu = find_idlest_cpu(group, t, cpu);
  1251. if (new_cpu == -1 || new_cpu == cpu) {
  1252. /* Now try balancing at a lower domain level of cpu */
  1253. sd = sd->child;
  1254. continue;
  1255. }
  1256. /* Now try balancing at a lower domain level of new_cpu */
  1257. cpu = new_cpu;
  1258. sd = NULL;
  1259. weight = cpus_weight(span);
  1260. for_each_domain(cpu, tmp) {
  1261. if (weight <= cpus_weight(tmp->span))
  1262. break;
  1263. if (tmp->flags & flag)
  1264. sd = tmp;
  1265. }
  1266. /* while loop will break here if sd == NULL */
  1267. }
  1268. return cpu;
  1269. }
  1270. #endif /* CONFIG_SMP */
  1271. /*
  1272. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1273. * not idle and an idle cpu is available. The span of cpus to
  1274. * search starts with cpus closest then further out as needed,
  1275. * so we always favor a closer, idle cpu.
  1276. *
  1277. * Returns the CPU we should wake onto.
  1278. */
  1279. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1280. static int wake_idle(int cpu, struct task_struct *p)
  1281. {
  1282. cpumask_t tmp;
  1283. struct sched_domain *sd;
  1284. int i;
  1285. /*
  1286. * If it is idle, then it is the best cpu to run this task.
  1287. *
  1288. * This cpu is also the best, if it has more than one task already.
  1289. * Siblings must be also busy(in most cases) as they didn't already
  1290. * pickup the extra load from this cpu and hence we need not check
  1291. * sibling runqueue info. This will avoid the checks and cache miss
  1292. * penalities associated with that.
  1293. */
  1294. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1295. return cpu;
  1296. for_each_domain(cpu, sd) {
  1297. if (sd->flags & SD_WAKE_IDLE) {
  1298. cpus_and(tmp, sd->span, p->cpus_allowed);
  1299. for_each_cpu_mask(i, tmp) {
  1300. if (idle_cpu(i))
  1301. return i;
  1302. }
  1303. }
  1304. else
  1305. break;
  1306. }
  1307. return cpu;
  1308. }
  1309. #else
  1310. static inline int wake_idle(int cpu, struct task_struct *p)
  1311. {
  1312. return cpu;
  1313. }
  1314. #endif
  1315. /***
  1316. * try_to_wake_up - wake up a thread
  1317. * @p: the to-be-woken-up thread
  1318. * @state: the mask of task states that can be woken
  1319. * @sync: do a synchronous wakeup?
  1320. *
  1321. * Put it on the run-queue if it's not already there. The "current"
  1322. * thread is always on the run-queue (except when the actual
  1323. * re-schedule is in progress), and as such you're allowed to do
  1324. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1325. * runnable without the overhead of this.
  1326. *
  1327. * returns failure only if the task is already active.
  1328. */
  1329. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1330. {
  1331. int cpu, this_cpu, success = 0;
  1332. unsigned long flags;
  1333. long old_state;
  1334. struct rq *rq;
  1335. #ifdef CONFIG_SMP
  1336. struct sched_domain *sd, *this_sd = NULL;
  1337. unsigned long load, this_load;
  1338. int new_cpu;
  1339. #endif
  1340. rq = task_rq_lock(p, &flags);
  1341. old_state = p->state;
  1342. if (!(old_state & state))
  1343. goto out;
  1344. if (p->array)
  1345. goto out_running;
  1346. cpu = task_cpu(p);
  1347. this_cpu = smp_processor_id();
  1348. #ifdef CONFIG_SMP
  1349. if (unlikely(task_running(rq, p)))
  1350. goto out_activate;
  1351. new_cpu = cpu;
  1352. schedstat_inc(rq, ttwu_cnt);
  1353. if (cpu == this_cpu) {
  1354. schedstat_inc(rq, ttwu_local);
  1355. goto out_set_cpu;
  1356. }
  1357. for_each_domain(this_cpu, sd) {
  1358. if (cpu_isset(cpu, sd->span)) {
  1359. schedstat_inc(sd, ttwu_wake_remote);
  1360. this_sd = sd;
  1361. break;
  1362. }
  1363. }
  1364. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1365. goto out_set_cpu;
  1366. /*
  1367. * Check for affine wakeup and passive balancing possibilities.
  1368. */
  1369. if (this_sd) {
  1370. int idx = this_sd->wake_idx;
  1371. unsigned int imbalance;
  1372. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1373. load = source_load(cpu, idx);
  1374. this_load = target_load(this_cpu, idx);
  1375. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1376. if (this_sd->flags & SD_WAKE_AFFINE) {
  1377. unsigned long tl = this_load;
  1378. unsigned long tl_per_task;
  1379. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1380. /*
  1381. * If sync wakeup then subtract the (maximum possible)
  1382. * effect of the currently running task from the load
  1383. * of the current CPU:
  1384. */
  1385. if (sync)
  1386. tl -= current->load_weight;
  1387. if ((tl <= load &&
  1388. tl + target_load(cpu, idx) <= tl_per_task) ||
  1389. 100*(tl + p->load_weight) <= imbalance*load) {
  1390. /*
  1391. * This domain has SD_WAKE_AFFINE and
  1392. * p is cache cold in this domain, and
  1393. * there is no bad imbalance.
  1394. */
  1395. schedstat_inc(this_sd, ttwu_move_affine);
  1396. goto out_set_cpu;
  1397. }
  1398. }
  1399. /*
  1400. * Start passive balancing when half the imbalance_pct
  1401. * limit is reached.
  1402. */
  1403. if (this_sd->flags & SD_WAKE_BALANCE) {
  1404. if (imbalance*this_load <= 100*load) {
  1405. schedstat_inc(this_sd, ttwu_move_balance);
  1406. goto out_set_cpu;
  1407. }
  1408. }
  1409. }
  1410. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1411. out_set_cpu:
  1412. new_cpu = wake_idle(new_cpu, p);
  1413. if (new_cpu != cpu) {
  1414. set_task_cpu(p, new_cpu);
  1415. task_rq_unlock(rq, &flags);
  1416. /* might preempt at this point */
  1417. rq = task_rq_lock(p, &flags);
  1418. old_state = p->state;
  1419. if (!(old_state & state))
  1420. goto out;
  1421. if (p->array)
  1422. goto out_running;
  1423. this_cpu = smp_processor_id();
  1424. cpu = task_cpu(p);
  1425. }
  1426. out_activate:
  1427. #endif /* CONFIG_SMP */
  1428. if (old_state == TASK_UNINTERRUPTIBLE) {
  1429. rq->nr_uninterruptible--;
  1430. /*
  1431. * Tasks on involuntary sleep don't earn
  1432. * sleep_avg beyond just interactive state.
  1433. */
  1434. p->sleep_type = SLEEP_NONINTERACTIVE;
  1435. } else
  1436. /*
  1437. * Tasks that have marked their sleep as noninteractive get
  1438. * woken up with their sleep average not weighted in an
  1439. * interactive way.
  1440. */
  1441. if (old_state & TASK_NONINTERACTIVE)
  1442. p->sleep_type = SLEEP_NONINTERACTIVE;
  1443. activate_task(p, rq, cpu == this_cpu);
  1444. /*
  1445. * Sync wakeups (i.e. those types of wakeups where the waker
  1446. * has indicated that it will leave the CPU in short order)
  1447. * don't trigger a preemption, if the woken up task will run on
  1448. * this cpu. (in this case the 'I will reschedule' promise of
  1449. * the waker guarantees that the freshly woken up task is going
  1450. * to be considered on this CPU.)
  1451. */
  1452. if (!sync || cpu != this_cpu) {
  1453. if (TASK_PREEMPTS_CURR(p, rq))
  1454. resched_task(rq->curr);
  1455. }
  1456. success = 1;
  1457. out_running:
  1458. p->state = TASK_RUNNING;
  1459. out:
  1460. task_rq_unlock(rq, &flags);
  1461. return success;
  1462. }
  1463. int fastcall wake_up_process(struct task_struct *p)
  1464. {
  1465. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1466. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1467. }
  1468. EXPORT_SYMBOL(wake_up_process);
  1469. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1470. {
  1471. return try_to_wake_up(p, state, 0);
  1472. }
  1473. static void task_running_tick(struct rq *rq, struct task_struct *p);
  1474. /*
  1475. * Perform scheduler related setup for a newly forked process p.
  1476. * p is forked by current.
  1477. */
  1478. void fastcall sched_fork(struct task_struct *p, int clone_flags)
  1479. {
  1480. int cpu = get_cpu();
  1481. #ifdef CONFIG_SMP
  1482. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1483. #endif
  1484. set_task_cpu(p, cpu);
  1485. /*
  1486. * We mark the process as running here, but have not actually
  1487. * inserted it onto the runqueue yet. This guarantees that
  1488. * nobody will actually run it, and a signal or other external
  1489. * event cannot wake it up and insert it on the runqueue either.
  1490. */
  1491. p->state = TASK_RUNNING;
  1492. /*
  1493. * Make sure we do not leak PI boosting priority to the child:
  1494. */
  1495. p->prio = current->normal_prio;
  1496. INIT_LIST_HEAD(&p->run_list);
  1497. p->array = NULL;
  1498. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1499. if (unlikely(sched_info_on()))
  1500. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1501. #endif
  1502. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1503. p->oncpu = 0;
  1504. #endif
  1505. #ifdef CONFIG_PREEMPT
  1506. /* Want to start with kernel preemption disabled. */
  1507. task_thread_info(p)->preempt_count = 1;
  1508. #endif
  1509. /*
  1510. * Share the timeslice between parent and child, thus the
  1511. * total amount of pending timeslices in the system doesn't change,
  1512. * resulting in more scheduling fairness.
  1513. */
  1514. local_irq_disable();
  1515. p->time_slice = (current->time_slice + 1) >> 1;
  1516. /*
  1517. * The remainder of the first timeslice might be recovered by
  1518. * the parent if the child exits early enough.
  1519. */
  1520. p->first_time_slice = 1;
  1521. current->time_slice >>= 1;
  1522. p->timestamp = sched_clock();
  1523. if (unlikely(!current->time_slice)) {
  1524. /*
  1525. * This case is rare, it happens when the parent has only
  1526. * a single jiffy left from its timeslice. Taking the
  1527. * runqueue lock is not a problem.
  1528. */
  1529. current->time_slice = 1;
  1530. task_running_tick(cpu_rq(cpu), current);
  1531. }
  1532. local_irq_enable();
  1533. put_cpu();
  1534. }
  1535. /*
  1536. * wake_up_new_task - wake up a newly created task for the first time.
  1537. *
  1538. * This function will do some initial scheduler statistics housekeeping
  1539. * that must be done for every newly created context, then puts the task
  1540. * on the runqueue and wakes it.
  1541. */
  1542. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1543. {
  1544. struct rq *rq, *this_rq;
  1545. unsigned long flags;
  1546. int this_cpu, cpu;
  1547. rq = task_rq_lock(p, &flags);
  1548. BUG_ON(p->state != TASK_RUNNING);
  1549. this_cpu = smp_processor_id();
  1550. cpu = task_cpu(p);
  1551. /*
  1552. * We decrease the sleep average of forking parents
  1553. * and children as well, to keep max-interactive tasks
  1554. * from forking tasks that are max-interactive. The parent
  1555. * (current) is done further down, under its lock.
  1556. */
  1557. p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
  1558. CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1559. p->prio = effective_prio(p);
  1560. if (likely(cpu == this_cpu)) {
  1561. if (!(clone_flags & CLONE_VM)) {
  1562. /*
  1563. * The VM isn't cloned, so we're in a good position to
  1564. * do child-runs-first in anticipation of an exec. This
  1565. * usually avoids a lot of COW overhead.
  1566. */
  1567. if (unlikely(!current->array))
  1568. __activate_task(p, rq);
  1569. else {
  1570. p->prio = current->prio;
  1571. p->normal_prio = current->normal_prio;
  1572. list_add_tail(&p->run_list, &current->run_list);
  1573. p->array = current->array;
  1574. p->array->nr_active++;
  1575. inc_nr_running(p, rq);
  1576. }
  1577. set_need_resched();
  1578. } else
  1579. /* Run child last */
  1580. __activate_task(p, rq);
  1581. /*
  1582. * We skip the following code due to cpu == this_cpu
  1583. *
  1584. * task_rq_unlock(rq, &flags);
  1585. * this_rq = task_rq_lock(current, &flags);
  1586. */
  1587. this_rq = rq;
  1588. } else {
  1589. this_rq = cpu_rq(this_cpu);
  1590. /*
  1591. * Not the local CPU - must adjust timestamp. This should
  1592. * get optimised away in the !CONFIG_SMP case.
  1593. */
  1594. p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
  1595. + rq->most_recent_timestamp;
  1596. __activate_task(p, rq);
  1597. if (TASK_PREEMPTS_CURR(p, rq))
  1598. resched_task(rq->curr);
  1599. /*
  1600. * Parent and child are on different CPUs, now get the
  1601. * parent runqueue to update the parent's ->sleep_avg:
  1602. */
  1603. task_rq_unlock(rq, &flags);
  1604. this_rq = task_rq_lock(current, &flags);
  1605. }
  1606. current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
  1607. PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1608. task_rq_unlock(this_rq, &flags);
  1609. }
  1610. /**
  1611. * prepare_task_switch - prepare to switch tasks
  1612. * @rq: the runqueue preparing to switch
  1613. * @next: the task we are going to switch to.
  1614. *
  1615. * This is called with the rq lock held and interrupts off. It must
  1616. * be paired with a subsequent finish_task_switch after the context
  1617. * switch.
  1618. *
  1619. * prepare_task_switch sets up locking and calls architecture specific
  1620. * hooks.
  1621. */
  1622. static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
  1623. {
  1624. prepare_lock_switch(rq, next);
  1625. prepare_arch_switch(next);
  1626. }
  1627. /**
  1628. * finish_task_switch - clean up after a task-switch
  1629. * @rq: runqueue associated with task-switch
  1630. * @prev: the thread we just switched away from.
  1631. *
  1632. * finish_task_switch must be called after the context switch, paired
  1633. * with a prepare_task_switch call before the context switch.
  1634. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1635. * and do any other architecture-specific cleanup actions.
  1636. *
  1637. * Note that we may have delayed dropping an mm in context_switch(). If
  1638. * so, we finish that here outside of the runqueue lock. (Doing it
  1639. * with the lock held can cause deadlocks; see schedule() for
  1640. * details.)
  1641. */
  1642. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1643. __releases(rq->lock)
  1644. {
  1645. struct mm_struct *mm = rq->prev_mm;
  1646. long prev_state;
  1647. rq->prev_mm = NULL;
  1648. /*
  1649. * A task struct has one reference for the use as "current".
  1650. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1651. * schedule one last time. The schedule call will never return, and
  1652. * the scheduled task must drop that reference.
  1653. * The test for TASK_DEAD must occur while the runqueue locks are
  1654. * still held, otherwise prev could be scheduled on another cpu, die
  1655. * there before we look at prev->state, and then the reference would
  1656. * be dropped twice.
  1657. * Manfred Spraul <manfred@colorfullife.com>
  1658. */
  1659. prev_state = prev->state;
  1660. finish_arch_switch(prev);
  1661. finish_lock_switch(rq, prev);
  1662. if (mm)
  1663. mmdrop(mm);
  1664. if (unlikely(prev_state == TASK_DEAD)) {
  1665. /*
  1666. * Remove function-return probe instances associated with this
  1667. * task and put them back on the free list.
  1668. */
  1669. kprobe_flush_task(prev);
  1670. put_task_struct(prev);
  1671. }
  1672. }
  1673. /**
  1674. * schedule_tail - first thing a freshly forked thread must call.
  1675. * @prev: the thread we just switched away from.
  1676. */
  1677. asmlinkage void schedule_tail(struct task_struct *prev)
  1678. __releases(rq->lock)
  1679. {
  1680. struct rq *rq = this_rq();
  1681. finish_task_switch(rq, prev);
  1682. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1683. /* In this case, finish_task_switch does not reenable preemption */
  1684. preempt_enable();
  1685. #endif
  1686. if (current->set_child_tid)
  1687. put_user(current->pid, current->set_child_tid);
  1688. }
  1689. /*
  1690. * context_switch - switch to the new MM and the new
  1691. * thread's register state.
  1692. */
  1693. static inline struct task_struct *
  1694. context_switch(struct rq *rq, struct task_struct *prev,
  1695. struct task_struct *next)
  1696. {
  1697. struct mm_struct *mm = next->mm;
  1698. struct mm_struct *oldmm = prev->active_mm;
  1699. /*
  1700. * For paravirt, this is coupled with an exit in switch_to to
  1701. * combine the page table reload and the switch backend into
  1702. * one hypercall.
  1703. */
  1704. arch_enter_lazy_cpu_mode();
  1705. if (!mm) {
  1706. next->active_mm = oldmm;
  1707. atomic_inc(&oldmm->mm_count);
  1708. enter_lazy_tlb(oldmm, next);
  1709. } else
  1710. switch_mm(oldmm, mm, next);
  1711. if (!prev->mm) {
  1712. prev->active_mm = NULL;
  1713. WARN_ON(rq->prev_mm);
  1714. rq->prev_mm = oldmm;
  1715. }
  1716. /*
  1717. * Since the runqueue lock will be released by the next
  1718. * task (which is an invalid locking op but in the case
  1719. * of the scheduler it's an obvious special-case), so we
  1720. * do an early lockdep release here:
  1721. */
  1722. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1723. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1724. #endif
  1725. /* Here we just switch the register state and the stack. */
  1726. switch_to(prev, next, prev);
  1727. return prev;
  1728. }
  1729. /*
  1730. * nr_running, nr_uninterruptible and nr_context_switches:
  1731. *
  1732. * externally visible scheduler statistics: current number of runnable
  1733. * threads, current number of uninterruptible-sleeping threads, total
  1734. * number of context switches performed since bootup.
  1735. */
  1736. unsigned long nr_running(void)
  1737. {
  1738. unsigned long i, sum = 0;
  1739. for_each_online_cpu(i)
  1740. sum += cpu_rq(i)->nr_running;
  1741. return sum;
  1742. }
  1743. unsigned long nr_uninterruptible(void)
  1744. {
  1745. unsigned long i, sum = 0;
  1746. for_each_possible_cpu(i)
  1747. sum += cpu_rq(i)->nr_uninterruptible;
  1748. /*
  1749. * Since we read the counters lockless, it might be slightly
  1750. * inaccurate. Do not allow it to go below zero though:
  1751. */
  1752. if (unlikely((long)sum < 0))
  1753. sum = 0;
  1754. return sum;
  1755. }
  1756. unsigned long long nr_context_switches(void)
  1757. {
  1758. int i;
  1759. unsigned long long sum = 0;
  1760. for_each_possible_cpu(i)
  1761. sum += cpu_rq(i)->nr_switches;
  1762. return sum;
  1763. }
  1764. unsigned long nr_iowait(void)
  1765. {
  1766. unsigned long i, sum = 0;
  1767. for_each_possible_cpu(i)
  1768. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1769. return sum;
  1770. }
  1771. unsigned long nr_active(void)
  1772. {
  1773. unsigned long i, running = 0, uninterruptible = 0;
  1774. for_each_online_cpu(i) {
  1775. running += cpu_rq(i)->nr_running;
  1776. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1777. }
  1778. if (unlikely((long)uninterruptible < 0))
  1779. uninterruptible = 0;
  1780. return running + uninterruptible;
  1781. }
  1782. #ifdef CONFIG_SMP
  1783. /*
  1784. * Is this task likely cache-hot:
  1785. */
  1786. static inline int
  1787. task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
  1788. {
  1789. return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
  1790. }
  1791. /*
  1792. * double_rq_lock - safely lock two runqueues
  1793. *
  1794. * Note this does not disable interrupts like task_rq_lock,
  1795. * you need to do so manually before calling.
  1796. */
  1797. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1798. __acquires(rq1->lock)
  1799. __acquires(rq2->lock)
  1800. {
  1801. BUG_ON(!irqs_disabled());
  1802. if (rq1 == rq2) {
  1803. spin_lock(&rq1->lock);
  1804. __acquire(rq2->lock); /* Fake it out ;) */
  1805. } else {
  1806. if (rq1 < rq2) {
  1807. spin_lock(&rq1->lock);
  1808. spin_lock(&rq2->lock);
  1809. } else {
  1810. spin_lock(&rq2->lock);
  1811. spin_lock(&rq1->lock);
  1812. }
  1813. }
  1814. }
  1815. /*
  1816. * double_rq_unlock - safely unlock two runqueues
  1817. *
  1818. * Note this does not restore interrupts like task_rq_unlock,
  1819. * you need to do so manually after calling.
  1820. */
  1821. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1822. __releases(rq1->lock)
  1823. __releases(rq2->lock)
  1824. {
  1825. spin_unlock(&rq1->lock);
  1826. if (rq1 != rq2)
  1827. spin_unlock(&rq2->lock);
  1828. else
  1829. __release(rq2->lock);
  1830. }
  1831. /*
  1832. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1833. */
  1834. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1835. __releases(this_rq->lock)
  1836. __acquires(busiest->lock)
  1837. __acquires(this_rq->lock)
  1838. {
  1839. if (unlikely(!irqs_disabled())) {
  1840. /* printk() doesn't work good under rq->lock */
  1841. spin_unlock(&this_rq->lock);
  1842. BUG_ON(1);
  1843. }
  1844. if (unlikely(!spin_trylock(&busiest->lock))) {
  1845. if (busiest < this_rq) {
  1846. spin_unlock(&this_rq->lock);
  1847. spin_lock(&busiest->lock);
  1848. spin_lock(&this_rq->lock);
  1849. } else
  1850. spin_lock(&busiest->lock);
  1851. }
  1852. }
  1853. /*
  1854. * If dest_cpu is allowed for this process, migrate the task to it.
  1855. * This is accomplished by forcing the cpu_allowed mask to only
  1856. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1857. * the cpu_allowed mask is restored.
  1858. */
  1859. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1860. {
  1861. struct migration_req req;
  1862. unsigned long flags;
  1863. struct rq *rq;
  1864. rq = task_rq_lock(p, &flags);
  1865. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1866. || unlikely(cpu_is_offline(dest_cpu)))
  1867. goto out;
  1868. /* force the process onto the specified CPU */
  1869. if (migrate_task(p, dest_cpu, &req)) {
  1870. /* Need to wait for migration thread (might exit: take ref). */
  1871. struct task_struct *mt = rq->migration_thread;
  1872. get_task_struct(mt);
  1873. task_rq_unlock(rq, &flags);
  1874. wake_up_process(mt);
  1875. put_task_struct(mt);
  1876. wait_for_completion(&req.done);
  1877. return;
  1878. }
  1879. out:
  1880. task_rq_unlock(rq, &flags);
  1881. }
  1882. /*
  1883. * sched_exec - execve() is a valuable balancing opportunity, because at
  1884. * this point the task has the smallest effective memory and cache footprint.
  1885. */
  1886. void sched_exec(void)
  1887. {
  1888. int new_cpu, this_cpu = get_cpu();
  1889. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1890. put_cpu();
  1891. if (new_cpu != this_cpu)
  1892. sched_migrate_task(current, new_cpu);
  1893. }
  1894. /*
  1895. * pull_task - move a task from a remote runqueue to the local runqueue.
  1896. * Both runqueues must be locked.
  1897. */
  1898. static void pull_task(struct rq *src_rq, struct prio_array *src_array,
  1899. struct task_struct *p, struct rq *this_rq,
  1900. struct prio_array *this_array, int this_cpu)
  1901. {
  1902. dequeue_task(p, src_array);
  1903. dec_nr_running(p, src_rq);
  1904. set_task_cpu(p, this_cpu);
  1905. inc_nr_running(p, this_rq);
  1906. enqueue_task(p, this_array);
  1907. p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
  1908. + this_rq->most_recent_timestamp;
  1909. /*
  1910. * Note that idle threads have a prio of MAX_PRIO, for this test
  1911. * to be always true for them.
  1912. */
  1913. if (TASK_PREEMPTS_CURR(p, this_rq))
  1914. resched_task(this_rq->curr);
  1915. }
  1916. /*
  1917. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1918. */
  1919. static
  1920. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1921. struct sched_domain *sd, enum cpu_idle_type idle,
  1922. int *all_pinned)
  1923. {
  1924. /*
  1925. * We do not migrate tasks that are:
  1926. * 1) running (obviously), or
  1927. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1928. * 3) are cache-hot on their current CPU.
  1929. */
  1930. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1931. return 0;
  1932. *all_pinned = 0;
  1933. if (task_running(rq, p))
  1934. return 0;
  1935. /*
  1936. * Aggressive migration if:
  1937. * 1) task is cache cold, or
  1938. * 2) too many balance attempts have failed.
  1939. */
  1940. if (sd->nr_balance_failed > sd->cache_nice_tries) {
  1941. #ifdef CONFIG_SCHEDSTATS
  1942. if (task_hot(p, rq->most_recent_timestamp, sd))
  1943. schedstat_inc(sd, lb_hot_gained[idle]);
  1944. #endif
  1945. return 1;
  1946. }
  1947. if (task_hot(p, rq->most_recent_timestamp, sd))
  1948. return 0;
  1949. return 1;
  1950. }
  1951. #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
  1952. /*
  1953. * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
  1954. * load from busiest to this_rq, as part of a balancing operation within
  1955. * "domain". Returns the number of tasks moved.
  1956. *
  1957. * Called with both runqueues locked.
  1958. */
  1959. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1960. unsigned long max_nr_move, unsigned long max_load_move,
  1961. struct sched_domain *sd, enum cpu_idle_type idle,
  1962. int *all_pinned)
  1963. {
  1964. int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
  1965. best_prio_seen, skip_for_load;
  1966. struct prio_array *array, *dst_array;
  1967. struct list_head *head, *curr;
  1968. struct task_struct *tmp;
  1969. long rem_load_move;
  1970. if (max_nr_move == 0 || max_load_move == 0)
  1971. goto out;
  1972. rem_load_move = max_load_move;
  1973. pinned = 1;
  1974. this_best_prio = rq_best_prio(this_rq);
  1975. best_prio = rq_best_prio(busiest);
  1976. /*
  1977. * Enable handling of the case where there is more than one task
  1978. * with the best priority. If the current running task is one
  1979. * of those with prio==best_prio we know it won't be moved
  1980. * and therefore it's safe to override the skip (based on load) of
  1981. * any task we find with that prio.
  1982. */
  1983. best_prio_seen = best_prio == busiest->curr->prio;
  1984. /*
  1985. * We first consider expired tasks. Those will likely not be
  1986. * executed in the near future, and they are most likely to
  1987. * be cache-cold, thus switching CPUs has the least effect
  1988. * on them.
  1989. */
  1990. if (busiest->expired->nr_active) {
  1991. array = busiest->expired;
  1992. dst_array = this_rq->expired;
  1993. } else {
  1994. array = busiest->active;
  1995. dst_array = this_rq->active;
  1996. }
  1997. new_array:
  1998. /* Start searching at priority 0: */
  1999. idx = 0;
  2000. skip_bitmap:
  2001. if (!idx)
  2002. idx = sched_find_first_bit(array->bitmap);
  2003. else
  2004. idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
  2005. if (idx >= MAX_PRIO) {
  2006. if (array == busiest->expired && busiest->active->nr_active) {
  2007. array = busiest->active;
  2008. dst_array = this_rq->active;
  2009. goto new_array;
  2010. }
  2011. goto out;
  2012. }
  2013. head = array->queue + idx;
  2014. curr = head->prev;
  2015. skip_queue:
  2016. tmp = list_entry(curr, struct task_struct, run_list);
  2017. curr = curr->prev;
  2018. /*
  2019. * To help distribute high priority tasks accross CPUs we don't
  2020. * skip a task if it will be the highest priority task (i.e. smallest
  2021. * prio value) on its new queue regardless of its load weight
  2022. */
  2023. skip_for_load = tmp->load_weight > rem_load_move;
  2024. if (skip_for_load && idx < this_best_prio)
  2025. skip_for_load = !best_prio_seen && idx == best_prio;
  2026. if (skip_for_load ||
  2027. !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
  2028. best_prio_seen |= idx == best_prio;
  2029. if (curr != head)
  2030. goto skip_queue;
  2031. idx++;
  2032. goto skip_bitmap;
  2033. }
  2034. pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
  2035. pulled++;
  2036. rem_load_move -= tmp->load_weight;
  2037. /*
  2038. * We only want to steal up to the prescribed number of tasks
  2039. * and the prescribed amount of weighted load.
  2040. */
  2041. if (pulled < max_nr_move && rem_load_move > 0) {
  2042. if (idx < this_best_prio)
  2043. this_best_prio = idx;
  2044. if (curr != head)
  2045. goto skip_queue;
  2046. idx++;
  2047. goto skip_bitmap;
  2048. }
  2049. out:
  2050. /*
  2051. * Right now, this is the only place pull_task() is called,
  2052. * so we can safely collect pull_task() stats here rather than
  2053. * inside pull_task().
  2054. */
  2055. schedstat_add(sd, lb_gained[idle], pulled);
  2056. if (all_pinned)
  2057. *all_pinned = pinned;
  2058. return pulled;
  2059. }
  2060. /*
  2061. * find_busiest_group finds and returns the busiest CPU group within the
  2062. * domain. It calculates and returns the amount of weighted load which
  2063. * should be moved to restore balance via the imbalance parameter.
  2064. */
  2065. static struct sched_group *
  2066. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2067. unsigned long *imbalance, enum cpu_idle_type idle, int *sd_idle,
  2068. cpumask_t *cpus, int *balance)
  2069. {
  2070. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2071. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2072. unsigned long max_pull;
  2073. unsigned long busiest_load_per_task, busiest_nr_running;
  2074. unsigned long this_load_per_task, this_nr_running;
  2075. int load_idx;
  2076. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2077. int power_savings_balance = 1;
  2078. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2079. unsigned long min_nr_running = ULONG_MAX;
  2080. struct sched_group *group_min = NULL, *group_leader = NULL;
  2081. #endif
  2082. max_load = this_load = total_load = total_pwr = 0;
  2083. busiest_load_per_task = busiest_nr_running = 0;
  2084. this_load_per_task = this_nr_running = 0;
  2085. if (idle == CPU_NOT_IDLE)
  2086. load_idx = sd->busy_idx;
  2087. else if (idle == CPU_NEWLY_IDLE)
  2088. load_idx = sd->newidle_idx;
  2089. else
  2090. load_idx = sd->idle_idx;
  2091. do {
  2092. unsigned long load, group_capacity;
  2093. int local_group;
  2094. int i;
  2095. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2096. unsigned long sum_nr_running, sum_weighted_load;
  2097. local_group = cpu_isset(this_cpu, group->cpumask);
  2098. if (local_group)
  2099. balance_cpu = first_cpu(group->cpumask);
  2100. /* Tally up the load of all CPUs in the group */
  2101. sum_weighted_load = sum_nr_running = avg_load = 0;
  2102. for_each_cpu_mask(i, group->cpumask) {
  2103. struct rq *rq;
  2104. if (!cpu_isset(i, *cpus))
  2105. continue;
  2106. rq = cpu_rq(i);
  2107. if (*sd_idle && !idle_cpu(i))
  2108. *sd_idle = 0;
  2109. /* Bias balancing toward cpus of our domain */
  2110. if (local_group) {
  2111. if (idle_cpu(i) && !first_idle_cpu) {
  2112. first_idle_cpu = 1;
  2113. balance_cpu = i;
  2114. }
  2115. load = target_load(i, load_idx);
  2116. } else
  2117. load = source_load(i, load_idx);
  2118. avg_load += load;
  2119. sum_nr_running += rq->nr_running;
  2120. sum_weighted_load += rq->raw_weighted_load;
  2121. }
  2122. /*
  2123. * First idle cpu or the first cpu(busiest) in this sched group
  2124. * is eligible for doing load balancing at this and above
  2125. * domains.
  2126. */
  2127. if (local_group && balance_cpu != this_cpu && balance) {
  2128. *balance = 0;
  2129. goto ret;
  2130. }
  2131. total_load += avg_load;
  2132. total_pwr += group->__cpu_power;
  2133. /* Adjust by relative CPU power of the group */
  2134. avg_load = sg_div_cpu_power(group,
  2135. avg_load * SCHED_LOAD_SCALE);
  2136. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2137. if (local_group) {
  2138. this_load = avg_load;
  2139. this = group;
  2140. this_nr_running = sum_nr_running;
  2141. this_load_per_task = sum_weighted_load;
  2142. } else if (avg_load > max_load &&
  2143. sum_nr_running > group_capacity) {
  2144. max_load = avg_load;
  2145. busiest = group;
  2146. busiest_nr_running = sum_nr_running;
  2147. busiest_load_per_task = sum_weighted_load;
  2148. }
  2149. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2150. /*
  2151. * Busy processors will not participate in power savings
  2152. * balance.
  2153. */
  2154. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2155. goto group_next;
  2156. /*
  2157. * If the local group is idle or completely loaded
  2158. * no need to do power savings balance at this domain
  2159. */
  2160. if (local_group && (this_nr_running >= group_capacity ||
  2161. !this_nr_running))
  2162. power_savings_balance = 0;
  2163. /*
  2164. * If a group is already running at full capacity or idle,
  2165. * don't include that group in power savings calculations
  2166. */
  2167. if (!power_savings_balance || sum_nr_running >= group_capacity
  2168. || !sum_nr_running)
  2169. goto group_next;
  2170. /*
  2171. * Calculate the group which has the least non-idle load.
  2172. * This is the group from where we need to pick up the load
  2173. * for saving power
  2174. */
  2175. if ((sum_nr_running < min_nr_running) ||
  2176. (sum_nr_running == min_nr_running &&
  2177. first_cpu(group->cpumask) <
  2178. first_cpu(group_min->cpumask))) {
  2179. group_min = group;
  2180. min_nr_running = sum_nr_running;
  2181. min_load_per_task = sum_weighted_load /
  2182. sum_nr_running;
  2183. }
  2184. /*
  2185. * Calculate the group which is almost near its
  2186. * capacity but still has some space to pick up some load
  2187. * from other group and save more power
  2188. */
  2189. if (sum_nr_running <= group_capacity - 1) {
  2190. if (sum_nr_running > leader_nr_running ||
  2191. (sum_nr_running == leader_nr_running &&
  2192. first_cpu(group->cpumask) >
  2193. first_cpu(group_leader->cpumask))) {
  2194. group_leader = group;
  2195. leader_nr_running = sum_nr_running;
  2196. }
  2197. }
  2198. group_next:
  2199. #endif
  2200. group = group->next;
  2201. } while (group != sd->groups);
  2202. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2203. goto out_balanced;
  2204. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2205. if (this_load >= avg_load ||
  2206. 100*max_load <= sd->imbalance_pct*this_load)
  2207. goto out_balanced;
  2208. busiest_load_per_task /= busiest_nr_running;
  2209. /*
  2210. * We're trying to get all the cpus to the average_load, so we don't
  2211. * want to push ourselves above the average load, nor do we wish to
  2212. * reduce the max loaded cpu below the average load, as either of these
  2213. * actions would just result in more rebalancing later, and ping-pong
  2214. * tasks around. Thus we look for the minimum possible imbalance.
  2215. * Negative imbalances (*we* are more loaded than anyone else) will
  2216. * be counted as no imbalance for these purposes -- we can't fix that
  2217. * by pulling tasks to us. Be careful of negative numbers as they'll
  2218. * appear as very large values with unsigned longs.
  2219. */
  2220. if (max_load <= busiest_load_per_task)
  2221. goto out_balanced;
  2222. /*
  2223. * In the presence of smp nice balancing, certain scenarios can have
  2224. * max load less than avg load(as we skip the groups at or below
  2225. * its cpu_power, while calculating max_load..)
  2226. */
  2227. if (max_load < avg_load) {
  2228. *imbalance = 0;
  2229. goto small_imbalance;
  2230. }
  2231. /* Don't want to pull so many tasks that a group would go idle */
  2232. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2233. /* How much load to actually move to equalise the imbalance */
  2234. *imbalance = min(max_pull * busiest->__cpu_power,
  2235. (avg_load - this_load) * this->__cpu_power)
  2236. / SCHED_LOAD_SCALE;
  2237. /*
  2238. * if *imbalance is less than the average load per runnable task
  2239. * there is no gaurantee that any tasks will be moved so we'll have
  2240. * a think about bumping its value to force at least one task to be
  2241. * moved
  2242. */
  2243. if (*imbalance < busiest_load_per_task) {
  2244. unsigned long tmp, pwr_now, pwr_move;
  2245. unsigned int imbn;
  2246. small_imbalance:
  2247. pwr_move = pwr_now = 0;
  2248. imbn = 2;
  2249. if (this_nr_running) {
  2250. this_load_per_task /= this_nr_running;
  2251. if (busiest_load_per_task > this_load_per_task)
  2252. imbn = 1;
  2253. } else
  2254. this_load_per_task = SCHED_LOAD_SCALE;
  2255. if (max_load - this_load >= busiest_load_per_task * imbn) {
  2256. *imbalance = busiest_load_per_task;
  2257. return busiest;
  2258. }
  2259. /*
  2260. * OK, we don't have enough imbalance to justify moving tasks,
  2261. * however we may be able to increase total CPU power used by
  2262. * moving them.
  2263. */
  2264. pwr_now += busiest->__cpu_power *
  2265. min(busiest_load_per_task, max_load);
  2266. pwr_now += this->__cpu_power *
  2267. min(this_load_per_task, this_load);
  2268. pwr_now /= SCHED_LOAD_SCALE;
  2269. /* Amount of load we'd subtract */
  2270. tmp = sg_div_cpu_power(busiest,
  2271. busiest_load_per_task * SCHED_LOAD_SCALE);
  2272. if (max_load > tmp)
  2273. pwr_move += busiest->__cpu_power *
  2274. min(busiest_load_per_task, max_load - tmp);
  2275. /* Amount of load we'd add */
  2276. if (max_load * busiest->__cpu_power <
  2277. busiest_load_per_task * SCHED_LOAD_SCALE)
  2278. tmp = sg_div_cpu_power(this,
  2279. max_load * busiest->__cpu_power);
  2280. else
  2281. tmp = sg_div_cpu_power(this,
  2282. busiest_load_per_task * SCHED_LOAD_SCALE);
  2283. pwr_move += this->__cpu_power *
  2284. min(this_load_per_task, this_load + tmp);
  2285. pwr_move /= SCHED_LOAD_SCALE;
  2286. /* Move if we gain throughput */
  2287. if (pwr_move <= pwr_now)
  2288. goto out_balanced;
  2289. *imbalance = busiest_load_per_task;
  2290. }
  2291. return busiest;
  2292. out_balanced:
  2293. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2294. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2295. goto ret;
  2296. if (this == group_leader && group_leader != group_min) {
  2297. *imbalance = min_load_per_task;
  2298. return group_min;
  2299. }
  2300. #endif
  2301. ret:
  2302. *imbalance = 0;
  2303. return NULL;
  2304. }
  2305. /*
  2306. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2307. */
  2308. static struct rq *
  2309. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2310. unsigned long imbalance, cpumask_t *cpus)
  2311. {
  2312. struct rq *busiest = NULL, *rq;
  2313. unsigned long max_load = 0;
  2314. int i;
  2315. for_each_cpu_mask(i, group->cpumask) {
  2316. if (!cpu_isset(i, *cpus))
  2317. continue;
  2318. rq = cpu_rq(i);
  2319. if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
  2320. continue;
  2321. if (rq->raw_weighted_load > max_load) {
  2322. max_load = rq->raw_weighted_load;
  2323. busiest = rq;
  2324. }
  2325. }
  2326. return busiest;
  2327. }
  2328. /*
  2329. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2330. * so long as it is large enough.
  2331. */
  2332. #define MAX_PINNED_INTERVAL 512
  2333. static inline unsigned long minus_1_or_zero(unsigned long n)
  2334. {
  2335. return n > 0 ? n - 1 : 0;
  2336. }
  2337. /*
  2338. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2339. * tasks if there is an imbalance.
  2340. */
  2341. static int load_balance(int this_cpu, struct rq *this_rq,
  2342. struct sched_domain *sd, enum cpu_idle_type idle,
  2343. int *balance)
  2344. {
  2345. int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2346. struct sched_group *group;
  2347. unsigned long imbalance;
  2348. struct rq *busiest;
  2349. cpumask_t cpus = CPU_MASK_ALL;
  2350. unsigned long flags;
  2351. /*
  2352. * When power savings policy is enabled for the parent domain, idle
  2353. * sibling can pick up load irrespective of busy siblings. In this case,
  2354. * let the state of idle sibling percolate up as IDLE, instead of
  2355. * portraying it as CPU_NOT_IDLE.
  2356. */
  2357. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2358. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2359. sd_idle = 1;
  2360. schedstat_inc(sd, lb_cnt[idle]);
  2361. redo:
  2362. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2363. &cpus, balance);
  2364. if (*balance == 0)
  2365. goto out_balanced;
  2366. if (!group) {
  2367. schedstat_inc(sd, lb_nobusyg[idle]);
  2368. goto out_balanced;
  2369. }
  2370. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2371. if (!busiest) {
  2372. schedstat_inc(sd, lb_nobusyq[idle]);
  2373. goto out_balanced;
  2374. }
  2375. BUG_ON(busiest == this_rq);
  2376. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2377. nr_moved = 0;
  2378. if (busiest->nr_running > 1) {
  2379. /*
  2380. * Attempt to move tasks. If find_busiest_group has found
  2381. * an imbalance but busiest->nr_running <= 1, the group is
  2382. * still unbalanced. nr_moved simply stays zero, so it is
  2383. * correctly treated as an imbalance.
  2384. */
  2385. local_irq_save(flags);
  2386. double_rq_lock(this_rq, busiest);
  2387. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2388. minus_1_or_zero(busiest->nr_running),
  2389. imbalance, sd, idle, &all_pinned);
  2390. double_rq_unlock(this_rq, busiest);
  2391. local_irq_restore(flags);
  2392. /*
  2393. * some other cpu did the load balance for us.
  2394. */
  2395. if (nr_moved && this_cpu != smp_processor_id())
  2396. resched_cpu(this_cpu);
  2397. /* All tasks on this runqueue were pinned by CPU affinity */
  2398. if (unlikely(all_pinned)) {
  2399. cpu_clear(cpu_of(busiest), cpus);
  2400. if (!cpus_empty(cpus))
  2401. goto redo;
  2402. goto out_balanced;
  2403. }
  2404. }
  2405. if (!nr_moved) {
  2406. schedstat_inc(sd, lb_failed[idle]);
  2407. sd->nr_balance_failed++;
  2408. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2409. spin_lock_irqsave(&busiest->lock, flags);
  2410. /* don't kick the migration_thread, if the curr
  2411. * task on busiest cpu can't be moved to this_cpu
  2412. */
  2413. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2414. spin_unlock_irqrestore(&busiest->lock, flags);
  2415. all_pinned = 1;
  2416. goto out_one_pinned;
  2417. }
  2418. if (!busiest->active_balance) {
  2419. busiest->active_balance = 1;
  2420. busiest->push_cpu = this_cpu;
  2421. active_balance = 1;
  2422. }
  2423. spin_unlock_irqrestore(&busiest->lock, flags);
  2424. if (active_balance)
  2425. wake_up_process(busiest->migration_thread);
  2426. /*
  2427. * We've kicked active balancing, reset the failure
  2428. * counter.
  2429. */
  2430. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2431. }
  2432. } else
  2433. sd->nr_balance_failed = 0;
  2434. if (likely(!active_balance)) {
  2435. /* We were unbalanced, so reset the balancing interval */
  2436. sd->balance_interval = sd->min_interval;
  2437. } else {
  2438. /*
  2439. * If we've begun active balancing, start to back off. This
  2440. * case may not be covered by the all_pinned logic if there
  2441. * is only 1 task on the busy runqueue (because we don't call
  2442. * move_tasks).
  2443. */
  2444. if (sd->balance_interval < sd->max_interval)
  2445. sd->balance_interval *= 2;
  2446. }
  2447. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2448. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2449. return -1;
  2450. return nr_moved;
  2451. out_balanced:
  2452. schedstat_inc(sd, lb_balanced[idle]);
  2453. sd->nr_balance_failed = 0;
  2454. out_one_pinned:
  2455. /* tune up the balancing interval */
  2456. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2457. (sd->balance_interval < sd->max_interval))
  2458. sd->balance_interval *= 2;
  2459. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2460. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2461. return -1;
  2462. return 0;
  2463. }
  2464. /*
  2465. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2466. * tasks if there is an imbalance.
  2467. *
  2468. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2469. * this_rq is locked.
  2470. */
  2471. static int
  2472. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2473. {
  2474. struct sched_group *group;
  2475. struct rq *busiest = NULL;
  2476. unsigned long imbalance;
  2477. int nr_moved = 0;
  2478. int sd_idle = 0;
  2479. cpumask_t cpus = CPU_MASK_ALL;
  2480. /*
  2481. * When power savings policy is enabled for the parent domain, idle
  2482. * sibling can pick up load irrespective of busy siblings. In this case,
  2483. * let the state of idle sibling percolate up as IDLE, instead of
  2484. * portraying it as CPU_NOT_IDLE.
  2485. */
  2486. if (sd->flags & SD_SHARE_CPUPOWER &&
  2487. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2488. sd_idle = 1;
  2489. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2490. redo:
  2491. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2492. &sd_idle, &cpus, NULL);
  2493. if (!group) {
  2494. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2495. goto out_balanced;
  2496. }
  2497. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2498. &cpus);
  2499. if (!busiest) {
  2500. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2501. goto out_balanced;
  2502. }
  2503. BUG_ON(busiest == this_rq);
  2504. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2505. nr_moved = 0;
  2506. if (busiest->nr_running > 1) {
  2507. /* Attempt to move tasks */
  2508. double_lock_balance(this_rq, busiest);
  2509. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2510. minus_1_or_zero(busiest->nr_running),
  2511. imbalance, sd, CPU_NEWLY_IDLE, NULL);
  2512. spin_unlock(&busiest->lock);
  2513. if (!nr_moved) {
  2514. cpu_clear(cpu_of(busiest), cpus);
  2515. if (!cpus_empty(cpus))
  2516. goto redo;
  2517. }
  2518. }
  2519. if (!nr_moved) {
  2520. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2521. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2522. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2523. return -1;
  2524. } else
  2525. sd->nr_balance_failed = 0;
  2526. return nr_moved;
  2527. out_balanced:
  2528. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2529. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2530. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2531. return -1;
  2532. sd->nr_balance_failed = 0;
  2533. return 0;
  2534. }
  2535. /*
  2536. * idle_balance is called by schedule() if this_cpu is about to become
  2537. * idle. Attempts to pull tasks from other CPUs.
  2538. */
  2539. static void idle_balance(int this_cpu, struct rq *this_rq)
  2540. {
  2541. struct sched_domain *sd;
  2542. int pulled_task = 0;
  2543. unsigned long next_balance = jiffies + 60 * HZ;
  2544. for_each_domain(this_cpu, sd) {
  2545. unsigned long interval;
  2546. if (!(sd->flags & SD_LOAD_BALANCE))
  2547. continue;
  2548. if (sd->flags & SD_BALANCE_NEWIDLE)
  2549. /* If we've pulled tasks over stop searching: */
  2550. pulled_task = load_balance_newidle(this_cpu,
  2551. this_rq, sd);
  2552. interval = msecs_to_jiffies(sd->balance_interval);
  2553. if (time_after(next_balance, sd->last_balance + interval))
  2554. next_balance = sd->last_balance + interval;
  2555. if (pulled_task)
  2556. break;
  2557. }
  2558. if (!pulled_task)
  2559. /*
  2560. * We are going idle. next_balance may be set based on
  2561. * a busy processor. So reset next_balance.
  2562. */
  2563. this_rq->next_balance = next_balance;
  2564. }
  2565. /*
  2566. * active_load_balance is run by migration threads. It pushes running tasks
  2567. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2568. * running on each physical CPU where possible, and avoids physical /
  2569. * logical imbalances.
  2570. *
  2571. * Called with busiest_rq locked.
  2572. */
  2573. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2574. {
  2575. int target_cpu = busiest_rq->push_cpu;
  2576. struct sched_domain *sd;
  2577. struct rq *target_rq;
  2578. /* Is there any task to move? */
  2579. if (busiest_rq->nr_running <= 1)
  2580. return;
  2581. target_rq = cpu_rq(target_cpu);
  2582. /*
  2583. * This condition is "impossible", if it occurs
  2584. * we need to fix it. Originally reported by
  2585. * Bjorn Helgaas on a 128-cpu setup.
  2586. */
  2587. BUG_ON(busiest_rq == target_rq);
  2588. /* move a task from busiest_rq to target_rq */
  2589. double_lock_balance(busiest_rq, target_rq);
  2590. /* Search for an sd spanning us and the target CPU. */
  2591. for_each_domain(target_cpu, sd) {
  2592. if ((sd->flags & SD_LOAD_BALANCE) &&
  2593. cpu_isset(busiest_cpu, sd->span))
  2594. break;
  2595. }
  2596. if (likely(sd)) {
  2597. schedstat_inc(sd, alb_cnt);
  2598. if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
  2599. RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
  2600. NULL))
  2601. schedstat_inc(sd, alb_pushed);
  2602. else
  2603. schedstat_inc(sd, alb_failed);
  2604. }
  2605. spin_unlock(&target_rq->lock);
  2606. }
  2607. static void update_load(struct rq *this_rq)
  2608. {
  2609. unsigned long this_load;
  2610. unsigned int i, scale;
  2611. this_load = this_rq->raw_weighted_load;
  2612. /* Update our load: */
  2613. for (i = 0, scale = 1; i < 3; i++, scale += scale) {
  2614. unsigned long old_load, new_load;
  2615. /* scale is effectively 1 << i now, and >> i divides by scale */
  2616. old_load = this_rq->cpu_load[i];
  2617. new_load = this_load;
  2618. /*
  2619. * Round up the averaging division if load is increasing. This
  2620. * prevents us from getting stuck on 9 if the load is 10, for
  2621. * example.
  2622. */
  2623. if (new_load > old_load)
  2624. new_load += scale-1;
  2625. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2626. }
  2627. }
  2628. #ifdef CONFIG_NO_HZ
  2629. static struct {
  2630. atomic_t load_balancer;
  2631. cpumask_t cpu_mask;
  2632. } nohz ____cacheline_aligned = {
  2633. .load_balancer = ATOMIC_INIT(-1),
  2634. .cpu_mask = CPU_MASK_NONE,
  2635. };
  2636. /*
  2637. * This routine will try to nominate the ilb (idle load balancing)
  2638. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2639. * load balancing on behalf of all those cpus. If all the cpus in the system
  2640. * go into this tickless mode, then there will be no ilb owner (as there is
  2641. * no need for one) and all the cpus will sleep till the next wakeup event
  2642. * arrives...
  2643. *
  2644. * For the ilb owner, tick is not stopped. And this tick will be used
  2645. * for idle load balancing. ilb owner will still be part of
  2646. * nohz.cpu_mask..
  2647. *
  2648. * While stopping the tick, this cpu will become the ilb owner if there
  2649. * is no other owner. And will be the owner till that cpu becomes busy
  2650. * or if all cpus in the system stop their ticks at which point
  2651. * there is no need for ilb owner.
  2652. *
  2653. * When the ilb owner becomes busy, it nominates another owner, during the
  2654. * next busy scheduler_tick()
  2655. */
  2656. int select_nohz_load_balancer(int stop_tick)
  2657. {
  2658. int cpu = smp_processor_id();
  2659. if (stop_tick) {
  2660. cpu_set(cpu, nohz.cpu_mask);
  2661. cpu_rq(cpu)->in_nohz_recently = 1;
  2662. /*
  2663. * If we are going offline and still the leader, give up!
  2664. */
  2665. if (cpu_is_offline(cpu) &&
  2666. atomic_read(&nohz.load_balancer) == cpu) {
  2667. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2668. BUG();
  2669. return 0;
  2670. }
  2671. /* time for ilb owner also to sleep */
  2672. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2673. if (atomic_read(&nohz.load_balancer) == cpu)
  2674. atomic_set(&nohz.load_balancer, -1);
  2675. return 0;
  2676. }
  2677. if (atomic_read(&nohz.load_balancer) == -1) {
  2678. /* make me the ilb owner */
  2679. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2680. return 1;
  2681. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2682. return 1;
  2683. } else {
  2684. if (!cpu_isset(cpu, nohz.cpu_mask))
  2685. return 0;
  2686. cpu_clear(cpu, nohz.cpu_mask);
  2687. if (atomic_read(&nohz.load_balancer) == cpu)
  2688. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2689. BUG();
  2690. }
  2691. return 0;
  2692. }
  2693. #endif
  2694. static DEFINE_SPINLOCK(balancing);
  2695. /*
  2696. * It checks each scheduling domain to see if it is due to be balanced,
  2697. * and initiates a balancing operation if so.
  2698. *
  2699. * Balancing parameters are set up in arch_init_sched_domains.
  2700. */
  2701. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2702. {
  2703. int balance = 1;
  2704. struct rq *rq = cpu_rq(cpu);
  2705. unsigned long interval;
  2706. struct sched_domain *sd;
  2707. /* Earliest time when we have to do rebalance again */
  2708. unsigned long next_balance = jiffies + 60*HZ;
  2709. for_each_domain(cpu, sd) {
  2710. if (!(sd->flags & SD_LOAD_BALANCE))
  2711. continue;
  2712. interval = sd->balance_interval;
  2713. if (idle != CPU_IDLE)
  2714. interval *= sd->busy_factor;
  2715. /* scale ms to jiffies */
  2716. interval = msecs_to_jiffies(interval);
  2717. if (unlikely(!interval))
  2718. interval = 1;
  2719. if (sd->flags & SD_SERIALIZE) {
  2720. if (!spin_trylock(&balancing))
  2721. goto out;
  2722. }
  2723. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2724. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2725. /*
  2726. * We've pulled tasks over so either we're no
  2727. * longer idle, or one of our SMT siblings is
  2728. * not idle.
  2729. */
  2730. idle = CPU_NOT_IDLE;
  2731. }
  2732. sd->last_balance = jiffies;
  2733. }
  2734. if (sd->flags & SD_SERIALIZE)
  2735. spin_unlock(&balancing);
  2736. out:
  2737. if (time_after(next_balance, sd->last_balance + interval))
  2738. next_balance = sd->last_balance + interval;
  2739. /*
  2740. * Stop the load balance at this level. There is another
  2741. * CPU in our sched group which is doing load balancing more
  2742. * actively.
  2743. */
  2744. if (!balance)
  2745. break;
  2746. }
  2747. rq->next_balance = next_balance;
  2748. }
  2749. /*
  2750. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2751. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2752. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2753. */
  2754. static void run_rebalance_domains(struct softirq_action *h)
  2755. {
  2756. int local_cpu = smp_processor_id();
  2757. struct rq *local_rq = cpu_rq(local_cpu);
  2758. enum cpu_idle_type idle = local_rq->idle_at_tick ? CPU_IDLE : CPU_NOT_IDLE;
  2759. rebalance_domains(local_cpu, idle);
  2760. #ifdef CONFIG_NO_HZ
  2761. /*
  2762. * If this cpu is the owner for idle load balancing, then do the
  2763. * balancing on behalf of the other idle cpus whose ticks are
  2764. * stopped.
  2765. */
  2766. if (local_rq->idle_at_tick &&
  2767. atomic_read(&nohz.load_balancer) == local_cpu) {
  2768. cpumask_t cpus = nohz.cpu_mask;
  2769. struct rq *rq;
  2770. int balance_cpu;
  2771. cpu_clear(local_cpu, cpus);
  2772. for_each_cpu_mask(balance_cpu, cpus) {
  2773. /*
  2774. * If this cpu gets work to do, stop the load balancing
  2775. * work being done for other cpus. Next load
  2776. * balancing owner will pick it up.
  2777. */
  2778. if (need_resched())
  2779. break;
  2780. rebalance_domains(balance_cpu, CPU_IDLE);
  2781. rq = cpu_rq(balance_cpu);
  2782. if (time_after(local_rq->next_balance, rq->next_balance))
  2783. local_rq->next_balance = rq->next_balance;
  2784. }
  2785. }
  2786. #endif
  2787. }
  2788. /*
  2789. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2790. *
  2791. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2792. * idle load balancing owner or decide to stop the periodic load balancing,
  2793. * if the whole system is idle.
  2794. */
  2795. static inline void trigger_load_balance(int cpu)
  2796. {
  2797. struct rq *rq = cpu_rq(cpu);
  2798. #ifdef CONFIG_NO_HZ
  2799. /*
  2800. * If we were in the nohz mode recently and busy at the current
  2801. * scheduler tick, then check if we need to nominate new idle
  2802. * load balancer.
  2803. */
  2804. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2805. rq->in_nohz_recently = 0;
  2806. if (atomic_read(&nohz.load_balancer) == cpu) {
  2807. cpu_clear(cpu, nohz.cpu_mask);
  2808. atomic_set(&nohz.load_balancer, -1);
  2809. }
  2810. if (atomic_read(&nohz.load_balancer) == -1) {
  2811. /*
  2812. * simple selection for now: Nominate the
  2813. * first cpu in the nohz list to be the next
  2814. * ilb owner.
  2815. *
  2816. * TBD: Traverse the sched domains and nominate
  2817. * the nearest cpu in the nohz.cpu_mask.
  2818. */
  2819. int ilb = first_cpu(nohz.cpu_mask);
  2820. if (ilb != NR_CPUS)
  2821. resched_cpu(ilb);
  2822. }
  2823. }
  2824. /*
  2825. * If this cpu is idle and doing idle load balancing for all the
  2826. * cpus with ticks stopped, is it time for that to stop?
  2827. */
  2828. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2829. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2830. resched_cpu(cpu);
  2831. return;
  2832. }
  2833. /*
  2834. * If this cpu is idle and the idle load balancing is done by
  2835. * someone else, then no need raise the SCHED_SOFTIRQ
  2836. */
  2837. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2838. cpu_isset(cpu, nohz.cpu_mask))
  2839. return;
  2840. #endif
  2841. if (time_after_eq(jiffies, rq->next_balance))
  2842. raise_softirq(SCHED_SOFTIRQ);
  2843. }
  2844. #else
  2845. /*
  2846. * on UP we do not need to balance between CPUs:
  2847. */
  2848. static inline void idle_balance(int cpu, struct rq *rq)
  2849. {
  2850. }
  2851. #endif
  2852. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2853. EXPORT_PER_CPU_SYMBOL(kstat);
  2854. /*
  2855. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2856. * that have not yet been banked in case the task is currently running.
  2857. */
  2858. unsigned long long task_sched_runtime(struct task_struct *p)
  2859. {
  2860. unsigned long flags;
  2861. u64 ns, delta_exec;
  2862. struct rq *rq;
  2863. rq = task_rq_lock(p, &flags);
  2864. ns = p->se.sum_exec_runtime;
  2865. if (rq->curr == p) {
  2866. delta_exec = rq_clock(rq) - p->se.exec_start;
  2867. if ((s64)delta_exec > 0)
  2868. ns += delta_exec;
  2869. }
  2870. task_rq_unlock(rq, &flags);
  2871. return ns;
  2872. }
  2873. /*
  2874. * We place interactive tasks back into the active array, if possible.
  2875. *
  2876. * To guarantee that this does not starve expired tasks we ignore the
  2877. * interactivity of a task if the first expired task had to wait more
  2878. * than a 'reasonable' amount of time. This deadline timeout is
  2879. * load-dependent, as the frequency of array switched decreases with
  2880. * increasing number of running tasks. We also ignore the interactivity
  2881. * if a better static_prio task has expired:
  2882. */
  2883. static inline int expired_starving(struct rq *rq)
  2884. {
  2885. if (rq->curr->static_prio > rq->best_expired_prio)
  2886. return 1;
  2887. if (!STARVATION_LIMIT || !rq->expired_timestamp)
  2888. return 0;
  2889. if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
  2890. return 1;
  2891. return 0;
  2892. }
  2893. /*
  2894. * Account user cpu time to a process.
  2895. * @p: the process that the cpu time gets accounted to
  2896. * @hardirq_offset: the offset to subtract from hardirq_count()
  2897. * @cputime: the cpu time spent in user space since the last update
  2898. */
  2899. void account_user_time(struct task_struct *p, cputime_t cputime)
  2900. {
  2901. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2902. cputime64_t tmp;
  2903. p->utime = cputime_add(p->utime, cputime);
  2904. /* Add user time to cpustat. */
  2905. tmp = cputime_to_cputime64(cputime);
  2906. if (TASK_NICE(p) > 0)
  2907. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2908. else
  2909. cpustat->user = cputime64_add(cpustat->user, tmp);
  2910. }
  2911. /*
  2912. * Account system cpu time to a process.
  2913. * @p: the process that the cpu time gets accounted to
  2914. * @hardirq_offset: the offset to subtract from hardirq_count()
  2915. * @cputime: the cpu time spent in kernel space since the last update
  2916. */
  2917. void account_system_time(struct task_struct *p, int hardirq_offset,
  2918. cputime_t cputime)
  2919. {
  2920. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2921. struct rq *rq = this_rq();
  2922. cputime64_t tmp;
  2923. p->stime = cputime_add(p->stime, cputime);
  2924. /* Add system time to cpustat. */
  2925. tmp = cputime_to_cputime64(cputime);
  2926. if (hardirq_count() - hardirq_offset)
  2927. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2928. else if (softirq_count())
  2929. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2930. else if (p != rq->idle)
  2931. cpustat->system = cputime64_add(cpustat->system, tmp);
  2932. else if (atomic_read(&rq->nr_iowait) > 0)
  2933. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2934. else
  2935. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2936. /* Account for system time used */
  2937. acct_update_integrals(p);
  2938. }
  2939. /*
  2940. * Account for involuntary wait time.
  2941. * @p: the process from which the cpu time has been stolen
  2942. * @steal: the cpu time spent in involuntary wait
  2943. */
  2944. void account_steal_time(struct task_struct *p, cputime_t steal)
  2945. {
  2946. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2947. cputime64_t tmp = cputime_to_cputime64(steal);
  2948. struct rq *rq = this_rq();
  2949. if (p == rq->idle) {
  2950. p->stime = cputime_add(p->stime, steal);
  2951. if (atomic_read(&rq->nr_iowait) > 0)
  2952. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2953. else
  2954. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2955. } else
  2956. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2957. }
  2958. static void task_running_tick(struct rq *rq, struct task_struct *p)
  2959. {
  2960. if (p->array != rq->active) {
  2961. /* Task has expired but was not scheduled yet */
  2962. set_tsk_need_resched(p);
  2963. return;
  2964. }
  2965. spin_lock(&rq->lock);
  2966. /*
  2967. * The task was running during this tick - update the
  2968. * time slice counter. Note: we do not update a thread's
  2969. * priority until it either goes to sleep or uses up its
  2970. * timeslice. This makes it possible for interactive tasks
  2971. * to use up their timeslices at their highest priority levels.
  2972. */
  2973. if (rt_task(p)) {
  2974. /*
  2975. * RR tasks need a special form of timeslice management.
  2976. * FIFO tasks have no timeslices.
  2977. */
  2978. if ((p->policy == SCHED_RR) && !--p->time_slice) {
  2979. p->time_slice = task_timeslice(p);
  2980. p->first_time_slice = 0;
  2981. set_tsk_need_resched(p);
  2982. /* put it at the end of the queue: */
  2983. requeue_task(p, rq->active);
  2984. }
  2985. goto out_unlock;
  2986. }
  2987. if (!--p->time_slice) {
  2988. dequeue_task(p, rq->active);
  2989. set_tsk_need_resched(p);
  2990. p->prio = effective_prio(p);
  2991. p->time_slice = task_timeslice(p);
  2992. p->first_time_slice = 0;
  2993. if (!rq->expired_timestamp)
  2994. rq->expired_timestamp = jiffies;
  2995. if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
  2996. enqueue_task(p, rq->expired);
  2997. if (p->static_prio < rq->best_expired_prio)
  2998. rq->best_expired_prio = p->static_prio;
  2999. } else
  3000. enqueue_task(p, rq->active);
  3001. } else {
  3002. /*
  3003. * Prevent a too long timeslice allowing a task to monopolize
  3004. * the CPU. We do this by splitting up the timeslice into
  3005. * smaller pieces.
  3006. *
  3007. * Note: this does not mean the task's timeslices expire or
  3008. * get lost in any way, they just might be preempted by
  3009. * another task of equal priority. (one with higher
  3010. * priority would have preempted this task already.) We
  3011. * requeue this task to the end of the list on this priority
  3012. * level, which is in essence a round-robin of tasks with
  3013. * equal priority.
  3014. *
  3015. * This only applies to tasks in the interactive
  3016. * delta range with at least TIMESLICE_GRANULARITY to requeue.
  3017. */
  3018. if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
  3019. p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
  3020. (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
  3021. (p->array == rq->active)) {
  3022. requeue_task(p, rq->active);
  3023. set_tsk_need_resched(p);
  3024. }
  3025. }
  3026. out_unlock:
  3027. spin_unlock(&rq->lock);
  3028. }
  3029. /*
  3030. * This function gets called by the timer code, with HZ frequency.
  3031. * We call it with interrupts disabled.
  3032. *
  3033. * It also gets called by the fork code, when changing the parent's
  3034. * timeslices.
  3035. */
  3036. void scheduler_tick(void)
  3037. {
  3038. struct task_struct *p = current;
  3039. int cpu = smp_processor_id();
  3040. int idle_at_tick = idle_cpu(cpu);
  3041. struct rq *rq = cpu_rq(cpu);
  3042. if (!idle_at_tick)
  3043. task_running_tick(rq, p);
  3044. #ifdef CONFIG_SMP
  3045. update_load(rq);
  3046. rq->idle_at_tick = idle_at_tick;
  3047. trigger_load_balance(cpu);
  3048. #endif
  3049. }
  3050. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3051. void fastcall add_preempt_count(int val)
  3052. {
  3053. /*
  3054. * Underflow?
  3055. */
  3056. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3057. return;
  3058. preempt_count() += val;
  3059. /*
  3060. * Spinlock count overflowing soon?
  3061. */
  3062. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3063. PREEMPT_MASK - 10);
  3064. }
  3065. EXPORT_SYMBOL(add_preempt_count);
  3066. void fastcall sub_preempt_count(int val)
  3067. {
  3068. /*
  3069. * Underflow?
  3070. */
  3071. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3072. return;
  3073. /*
  3074. * Is the spinlock portion underflowing?
  3075. */
  3076. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3077. !(preempt_count() & PREEMPT_MASK)))
  3078. return;
  3079. preempt_count() -= val;
  3080. }
  3081. EXPORT_SYMBOL(sub_preempt_count);
  3082. #endif
  3083. static inline int interactive_sleep(enum sleep_type sleep_type)
  3084. {
  3085. return (sleep_type == SLEEP_INTERACTIVE ||
  3086. sleep_type == SLEEP_INTERRUPTED);
  3087. }
  3088. /*
  3089. * schedule() is the main scheduler function.
  3090. */
  3091. asmlinkage void __sched schedule(void)
  3092. {
  3093. struct task_struct *prev, *next;
  3094. struct prio_array *array;
  3095. struct list_head *queue;
  3096. unsigned long long now;
  3097. unsigned long run_time;
  3098. int cpu, idx, new_prio;
  3099. long *switch_count;
  3100. struct rq *rq;
  3101. /*
  3102. * Test if we are atomic. Since do_exit() needs to call into
  3103. * schedule() atomically, we ignore that path for now.
  3104. * Otherwise, whine if we are scheduling when we should not be.
  3105. */
  3106. if (unlikely(in_atomic() && !current->exit_state)) {
  3107. printk(KERN_ERR "BUG: scheduling while atomic: "
  3108. "%s/0x%08x/%d\n",
  3109. current->comm, preempt_count(), current->pid);
  3110. debug_show_held_locks(current);
  3111. if (irqs_disabled())
  3112. print_irqtrace_events(current);
  3113. dump_stack();
  3114. }
  3115. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3116. need_resched:
  3117. preempt_disable();
  3118. prev = current;
  3119. release_kernel_lock(prev);
  3120. need_resched_nonpreemptible:
  3121. rq = this_rq();
  3122. /*
  3123. * The idle thread is not allowed to schedule!
  3124. * Remove this check after it has been exercised a bit.
  3125. */
  3126. if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
  3127. printk(KERN_ERR "bad: scheduling from the idle thread!\n");
  3128. dump_stack();
  3129. }
  3130. schedstat_inc(rq, sched_cnt);
  3131. now = sched_clock();
  3132. if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
  3133. run_time = now - prev->timestamp;
  3134. if (unlikely((long long)(now - prev->timestamp) < 0))
  3135. run_time = 0;
  3136. } else
  3137. run_time = NS_MAX_SLEEP_AVG;
  3138. /*
  3139. * Tasks charged proportionately less run_time at high sleep_avg to
  3140. * delay them losing their interactive status
  3141. */
  3142. run_time /= (CURRENT_BONUS(prev) ? : 1);
  3143. spin_lock_irq(&rq->lock);
  3144. switch_count = &prev->nivcsw;
  3145. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3146. switch_count = &prev->nvcsw;
  3147. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3148. unlikely(signal_pending(prev))))
  3149. prev->state = TASK_RUNNING;
  3150. else {
  3151. if (prev->state == TASK_UNINTERRUPTIBLE)
  3152. rq->nr_uninterruptible++;
  3153. deactivate_task(prev, rq);
  3154. }
  3155. }
  3156. cpu = smp_processor_id();
  3157. if (unlikely(!rq->nr_running)) {
  3158. idle_balance(cpu, rq);
  3159. if (!rq->nr_running) {
  3160. next = rq->idle;
  3161. rq->expired_timestamp = 0;
  3162. goto switch_tasks;
  3163. }
  3164. }
  3165. array = rq->active;
  3166. if (unlikely(!array->nr_active)) {
  3167. /*
  3168. * Switch the active and expired arrays.
  3169. */
  3170. schedstat_inc(rq, sched_switch);
  3171. rq->active = rq->expired;
  3172. rq->expired = array;
  3173. array = rq->active;
  3174. rq->expired_timestamp = 0;
  3175. rq->best_expired_prio = MAX_PRIO;
  3176. }
  3177. idx = sched_find_first_bit(array->bitmap);
  3178. queue = array->queue + idx;
  3179. next = list_entry(queue->next, struct task_struct, run_list);
  3180. if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
  3181. unsigned long long delta = now - next->timestamp;
  3182. if (unlikely((long long)(now - next->timestamp) < 0))
  3183. delta = 0;
  3184. if (next->sleep_type == SLEEP_INTERACTIVE)
  3185. delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
  3186. array = next->array;
  3187. new_prio = recalc_task_prio(next, next->timestamp + delta);
  3188. if (unlikely(next->prio != new_prio)) {
  3189. dequeue_task(next, array);
  3190. next->prio = new_prio;
  3191. enqueue_task(next, array);
  3192. }
  3193. }
  3194. next->sleep_type = SLEEP_NORMAL;
  3195. switch_tasks:
  3196. if (next == rq->idle)
  3197. schedstat_inc(rq, sched_goidle);
  3198. prefetch(next);
  3199. prefetch_stack(next);
  3200. clear_tsk_need_resched(prev);
  3201. rcu_qsctr_inc(task_cpu(prev));
  3202. prev->sleep_avg -= run_time;
  3203. if ((long)prev->sleep_avg <= 0)
  3204. prev->sleep_avg = 0;
  3205. prev->timestamp = prev->last_ran = now;
  3206. sched_info_switch(prev, next);
  3207. if (likely(prev != next)) {
  3208. next->timestamp = next->last_ran = now;
  3209. rq->nr_switches++;
  3210. rq->curr = next;
  3211. ++*switch_count;
  3212. prepare_task_switch(rq, next);
  3213. prev = context_switch(rq, prev, next);
  3214. barrier();
  3215. /*
  3216. * this_rq must be evaluated again because prev may have moved
  3217. * CPUs since it called schedule(), thus the 'rq' on its stack
  3218. * frame will be invalid.
  3219. */
  3220. finish_task_switch(this_rq(), prev);
  3221. } else
  3222. spin_unlock_irq(&rq->lock);
  3223. prev = current;
  3224. if (unlikely(reacquire_kernel_lock(prev) < 0))
  3225. goto need_resched_nonpreemptible;
  3226. preempt_enable_no_resched();
  3227. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3228. goto need_resched;
  3229. }
  3230. EXPORT_SYMBOL(schedule);
  3231. #ifdef CONFIG_PREEMPT
  3232. /*
  3233. * this is the entry point to schedule() from in-kernel preemption
  3234. * off of preempt_enable. Kernel preemptions off return from interrupt
  3235. * occur there and call schedule directly.
  3236. */
  3237. asmlinkage void __sched preempt_schedule(void)
  3238. {
  3239. struct thread_info *ti = current_thread_info();
  3240. #ifdef CONFIG_PREEMPT_BKL
  3241. struct task_struct *task = current;
  3242. int saved_lock_depth;
  3243. #endif
  3244. /*
  3245. * If there is a non-zero preempt_count or interrupts are disabled,
  3246. * we do not want to preempt the current task. Just return..
  3247. */
  3248. if (likely(ti->preempt_count || irqs_disabled()))
  3249. return;
  3250. need_resched:
  3251. add_preempt_count(PREEMPT_ACTIVE);
  3252. /*
  3253. * We keep the big kernel semaphore locked, but we
  3254. * clear ->lock_depth so that schedule() doesnt
  3255. * auto-release the semaphore:
  3256. */
  3257. #ifdef CONFIG_PREEMPT_BKL
  3258. saved_lock_depth = task->lock_depth;
  3259. task->lock_depth = -1;
  3260. #endif
  3261. schedule();
  3262. #ifdef CONFIG_PREEMPT_BKL
  3263. task->lock_depth = saved_lock_depth;
  3264. #endif
  3265. sub_preempt_count(PREEMPT_ACTIVE);
  3266. /* we could miss a preemption opportunity between schedule and now */
  3267. barrier();
  3268. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3269. goto need_resched;
  3270. }
  3271. EXPORT_SYMBOL(preempt_schedule);
  3272. /*
  3273. * this is the entry point to schedule() from kernel preemption
  3274. * off of irq context.
  3275. * Note, that this is called and return with irqs disabled. This will
  3276. * protect us against recursive calling from irq.
  3277. */
  3278. asmlinkage void __sched preempt_schedule_irq(void)
  3279. {
  3280. struct thread_info *ti = current_thread_info();
  3281. #ifdef CONFIG_PREEMPT_BKL
  3282. struct task_struct *task = current;
  3283. int saved_lock_depth;
  3284. #endif
  3285. /* Catch callers which need to be fixed */
  3286. BUG_ON(ti->preempt_count || !irqs_disabled());
  3287. need_resched:
  3288. add_preempt_count(PREEMPT_ACTIVE);
  3289. /*
  3290. * We keep the big kernel semaphore locked, but we
  3291. * clear ->lock_depth so that schedule() doesnt
  3292. * auto-release the semaphore:
  3293. */
  3294. #ifdef CONFIG_PREEMPT_BKL
  3295. saved_lock_depth = task->lock_depth;
  3296. task->lock_depth = -1;
  3297. #endif
  3298. local_irq_enable();
  3299. schedule();
  3300. local_irq_disable();
  3301. #ifdef CONFIG_PREEMPT_BKL
  3302. task->lock_depth = saved_lock_depth;
  3303. #endif
  3304. sub_preempt_count(PREEMPT_ACTIVE);
  3305. /* we could miss a preemption opportunity between schedule and now */
  3306. barrier();
  3307. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3308. goto need_resched;
  3309. }
  3310. #endif /* CONFIG_PREEMPT */
  3311. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3312. void *key)
  3313. {
  3314. return try_to_wake_up(curr->private, mode, sync);
  3315. }
  3316. EXPORT_SYMBOL(default_wake_function);
  3317. /*
  3318. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3319. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3320. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3321. *
  3322. * There are circumstances in which we can try to wake a task which has already
  3323. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3324. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3325. */
  3326. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3327. int nr_exclusive, int sync, void *key)
  3328. {
  3329. struct list_head *tmp, *next;
  3330. list_for_each_safe(tmp, next, &q->task_list) {
  3331. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3332. unsigned flags = curr->flags;
  3333. if (curr->func(curr, mode, sync, key) &&
  3334. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3335. break;
  3336. }
  3337. }
  3338. /**
  3339. * __wake_up - wake up threads blocked on a waitqueue.
  3340. * @q: the waitqueue
  3341. * @mode: which threads
  3342. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3343. * @key: is directly passed to the wakeup function
  3344. */
  3345. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3346. int nr_exclusive, void *key)
  3347. {
  3348. unsigned long flags;
  3349. spin_lock_irqsave(&q->lock, flags);
  3350. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3351. spin_unlock_irqrestore(&q->lock, flags);
  3352. }
  3353. EXPORT_SYMBOL(__wake_up);
  3354. /*
  3355. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3356. */
  3357. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3358. {
  3359. __wake_up_common(q, mode, 1, 0, NULL);
  3360. }
  3361. /**
  3362. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3363. * @q: the waitqueue
  3364. * @mode: which threads
  3365. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3366. *
  3367. * The sync wakeup differs that the waker knows that it will schedule
  3368. * away soon, so while the target thread will be woken up, it will not
  3369. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3370. * with each other. This can prevent needless bouncing between CPUs.
  3371. *
  3372. * On UP it can prevent extra preemption.
  3373. */
  3374. void fastcall
  3375. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3376. {
  3377. unsigned long flags;
  3378. int sync = 1;
  3379. if (unlikely(!q))
  3380. return;
  3381. if (unlikely(!nr_exclusive))
  3382. sync = 0;
  3383. spin_lock_irqsave(&q->lock, flags);
  3384. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3385. spin_unlock_irqrestore(&q->lock, flags);
  3386. }
  3387. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3388. void fastcall complete(struct completion *x)
  3389. {
  3390. unsigned long flags;
  3391. spin_lock_irqsave(&x->wait.lock, flags);
  3392. x->done++;
  3393. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3394. 1, 0, NULL);
  3395. spin_unlock_irqrestore(&x->wait.lock, flags);
  3396. }
  3397. EXPORT_SYMBOL(complete);
  3398. void fastcall complete_all(struct completion *x)
  3399. {
  3400. unsigned long flags;
  3401. spin_lock_irqsave(&x->wait.lock, flags);
  3402. x->done += UINT_MAX/2;
  3403. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3404. 0, 0, NULL);
  3405. spin_unlock_irqrestore(&x->wait.lock, flags);
  3406. }
  3407. EXPORT_SYMBOL(complete_all);
  3408. void fastcall __sched wait_for_completion(struct completion *x)
  3409. {
  3410. might_sleep();
  3411. spin_lock_irq(&x->wait.lock);
  3412. if (!x->done) {
  3413. DECLARE_WAITQUEUE(wait, current);
  3414. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3415. __add_wait_queue_tail(&x->wait, &wait);
  3416. do {
  3417. __set_current_state(TASK_UNINTERRUPTIBLE);
  3418. spin_unlock_irq(&x->wait.lock);
  3419. schedule();
  3420. spin_lock_irq(&x->wait.lock);
  3421. } while (!x->done);
  3422. __remove_wait_queue(&x->wait, &wait);
  3423. }
  3424. x->done--;
  3425. spin_unlock_irq(&x->wait.lock);
  3426. }
  3427. EXPORT_SYMBOL(wait_for_completion);
  3428. unsigned long fastcall __sched
  3429. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3430. {
  3431. might_sleep();
  3432. spin_lock_irq(&x->wait.lock);
  3433. if (!x->done) {
  3434. DECLARE_WAITQUEUE(wait, current);
  3435. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3436. __add_wait_queue_tail(&x->wait, &wait);
  3437. do {
  3438. __set_current_state(TASK_UNINTERRUPTIBLE);
  3439. spin_unlock_irq(&x->wait.lock);
  3440. timeout = schedule_timeout(timeout);
  3441. spin_lock_irq(&x->wait.lock);
  3442. if (!timeout) {
  3443. __remove_wait_queue(&x->wait, &wait);
  3444. goto out;
  3445. }
  3446. } while (!x->done);
  3447. __remove_wait_queue(&x->wait, &wait);
  3448. }
  3449. x->done--;
  3450. out:
  3451. spin_unlock_irq(&x->wait.lock);
  3452. return timeout;
  3453. }
  3454. EXPORT_SYMBOL(wait_for_completion_timeout);
  3455. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3456. {
  3457. int ret = 0;
  3458. might_sleep();
  3459. spin_lock_irq(&x->wait.lock);
  3460. if (!x->done) {
  3461. DECLARE_WAITQUEUE(wait, current);
  3462. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3463. __add_wait_queue_tail(&x->wait, &wait);
  3464. do {
  3465. if (signal_pending(current)) {
  3466. ret = -ERESTARTSYS;
  3467. __remove_wait_queue(&x->wait, &wait);
  3468. goto out;
  3469. }
  3470. __set_current_state(TASK_INTERRUPTIBLE);
  3471. spin_unlock_irq(&x->wait.lock);
  3472. schedule();
  3473. spin_lock_irq(&x->wait.lock);
  3474. } while (!x->done);
  3475. __remove_wait_queue(&x->wait, &wait);
  3476. }
  3477. x->done--;
  3478. out:
  3479. spin_unlock_irq(&x->wait.lock);
  3480. return ret;
  3481. }
  3482. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3483. unsigned long fastcall __sched
  3484. wait_for_completion_interruptible_timeout(struct completion *x,
  3485. unsigned long timeout)
  3486. {
  3487. might_sleep();
  3488. spin_lock_irq(&x->wait.lock);
  3489. if (!x->done) {
  3490. DECLARE_WAITQUEUE(wait, current);
  3491. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3492. __add_wait_queue_tail(&x->wait, &wait);
  3493. do {
  3494. if (signal_pending(current)) {
  3495. timeout = -ERESTARTSYS;
  3496. __remove_wait_queue(&x->wait, &wait);
  3497. goto out;
  3498. }
  3499. __set_current_state(TASK_INTERRUPTIBLE);
  3500. spin_unlock_irq(&x->wait.lock);
  3501. timeout = schedule_timeout(timeout);
  3502. spin_lock_irq(&x->wait.lock);
  3503. if (!timeout) {
  3504. __remove_wait_queue(&x->wait, &wait);
  3505. goto out;
  3506. }
  3507. } while (!x->done);
  3508. __remove_wait_queue(&x->wait, &wait);
  3509. }
  3510. x->done--;
  3511. out:
  3512. spin_unlock_irq(&x->wait.lock);
  3513. return timeout;
  3514. }
  3515. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3516. #define SLEEP_ON_VAR \
  3517. unsigned long flags; \
  3518. wait_queue_t wait; \
  3519. init_waitqueue_entry(&wait, current);
  3520. #define SLEEP_ON_HEAD \
  3521. spin_lock_irqsave(&q->lock,flags); \
  3522. __add_wait_queue(q, &wait); \
  3523. spin_unlock(&q->lock);
  3524. #define SLEEP_ON_TAIL \
  3525. spin_lock_irq(&q->lock); \
  3526. __remove_wait_queue(q, &wait); \
  3527. spin_unlock_irqrestore(&q->lock, flags);
  3528. void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
  3529. {
  3530. SLEEP_ON_VAR
  3531. current->state = TASK_INTERRUPTIBLE;
  3532. SLEEP_ON_HEAD
  3533. schedule();
  3534. SLEEP_ON_TAIL
  3535. }
  3536. EXPORT_SYMBOL(interruptible_sleep_on);
  3537. long fastcall __sched
  3538. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3539. {
  3540. SLEEP_ON_VAR
  3541. current->state = TASK_INTERRUPTIBLE;
  3542. SLEEP_ON_HEAD
  3543. timeout = schedule_timeout(timeout);
  3544. SLEEP_ON_TAIL
  3545. return timeout;
  3546. }
  3547. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3548. void fastcall __sched sleep_on(wait_queue_head_t *q)
  3549. {
  3550. SLEEP_ON_VAR
  3551. current->state = TASK_UNINTERRUPTIBLE;
  3552. SLEEP_ON_HEAD
  3553. schedule();
  3554. SLEEP_ON_TAIL
  3555. }
  3556. EXPORT_SYMBOL(sleep_on);
  3557. long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3558. {
  3559. SLEEP_ON_VAR
  3560. current->state = TASK_UNINTERRUPTIBLE;
  3561. SLEEP_ON_HEAD
  3562. timeout = schedule_timeout(timeout);
  3563. SLEEP_ON_TAIL
  3564. return timeout;
  3565. }
  3566. EXPORT_SYMBOL(sleep_on_timeout);
  3567. #ifdef CONFIG_RT_MUTEXES
  3568. /*
  3569. * rt_mutex_setprio - set the current priority of a task
  3570. * @p: task
  3571. * @prio: prio value (kernel-internal form)
  3572. *
  3573. * This function changes the 'effective' priority of a task. It does
  3574. * not touch ->normal_prio like __setscheduler().
  3575. *
  3576. * Used by the rt_mutex code to implement priority inheritance logic.
  3577. */
  3578. void rt_mutex_setprio(struct task_struct *p, int prio)
  3579. {
  3580. struct prio_array *array;
  3581. unsigned long flags;
  3582. struct rq *rq;
  3583. int oldprio;
  3584. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3585. rq = task_rq_lock(p, &flags);
  3586. oldprio = p->prio;
  3587. array = p->array;
  3588. if (array)
  3589. dequeue_task(p, array);
  3590. p->prio = prio;
  3591. if (array) {
  3592. /*
  3593. * If changing to an RT priority then queue it
  3594. * in the active array!
  3595. */
  3596. if (rt_task(p))
  3597. array = rq->active;
  3598. enqueue_task(p, array);
  3599. /*
  3600. * Reschedule if we are currently running on this runqueue and
  3601. * our priority decreased, or if we are not currently running on
  3602. * this runqueue and our priority is higher than the current's
  3603. */
  3604. if (task_running(rq, p)) {
  3605. if (p->prio > oldprio)
  3606. resched_task(rq->curr);
  3607. } else if (TASK_PREEMPTS_CURR(p, rq))
  3608. resched_task(rq->curr);
  3609. }
  3610. task_rq_unlock(rq, &flags);
  3611. }
  3612. #endif
  3613. void set_user_nice(struct task_struct *p, long nice)
  3614. {
  3615. struct prio_array *array;
  3616. int old_prio, delta;
  3617. unsigned long flags;
  3618. struct rq *rq;
  3619. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3620. return;
  3621. /*
  3622. * We have to be careful, if called from sys_setpriority(),
  3623. * the task might be in the middle of scheduling on another CPU.
  3624. */
  3625. rq = task_rq_lock(p, &flags);
  3626. /*
  3627. * The RT priorities are set via sched_setscheduler(), but we still
  3628. * allow the 'normal' nice value to be set - but as expected
  3629. * it wont have any effect on scheduling until the task is
  3630. * not SCHED_NORMAL/SCHED_BATCH:
  3631. */
  3632. if (task_has_rt_policy(p)) {
  3633. p->static_prio = NICE_TO_PRIO(nice);
  3634. goto out_unlock;
  3635. }
  3636. array = p->array;
  3637. if (array) {
  3638. dequeue_task(p, array);
  3639. dec_raw_weighted_load(rq, p);
  3640. }
  3641. p->static_prio = NICE_TO_PRIO(nice);
  3642. set_load_weight(p);
  3643. old_prio = p->prio;
  3644. p->prio = effective_prio(p);
  3645. delta = p->prio - old_prio;
  3646. if (array) {
  3647. enqueue_task(p, array);
  3648. inc_raw_weighted_load(rq, p);
  3649. /*
  3650. * If the task increased its priority or is running and
  3651. * lowered its priority, then reschedule its CPU:
  3652. */
  3653. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3654. resched_task(rq->curr);
  3655. }
  3656. out_unlock:
  3657. task_rq_unlock(rq, &flags);
  3658. }
  3659. EXPORT_SYMBOL(set_user_nice);
  3660. /*
  3661. * can_nice - check if a task can reduce its nice value
  3662. * @p: task
  3663. * @nice: nice value
  3664. */
  3665. int can_nice(const struct task_struct *p, const int nice)
  3666. {
  3667. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3668. int nice_rlim = 20 - nice;
  3669. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3670. capable(CAP_SYS_NICE));
  3671. }
  3672. #ifdef __ARCH_WANT_SYS_NICE
  3673. /*
  3674. * sys_nice - change the priority of the current process.
  3675. * @increment: priority increment
  3676. *
  3677. * sys_setpriority is a more generic, but much slower function that
  3678. * does similar things.
  3679. */
  3680. asmlinkage long sys_nice(int increment)
  3681. {
  3682. long nice, retval;
  3683. /*
  3684. * Setpriority might change our priority at the same moment.
  3685. * We don't have to worry. Conceptually one call occurs first
  3686. * and we have a single winner.
  3687. */
  3688. if (increment < -40)
  3689. increment = -40;
  3690. if (increment > 40)
  3691. increment = 40;
  3692. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3693. if (nice < -20)
  3694. nice = -20;
  3695. if (nice > 19)
  3696. nice = 19;
  3697. if (increment < 0 && !can_nice(current, nice))
  3698. return -EPERM;
  3699. retval = security_task_setnice(current, nice);
  3700. if (retval)
  3701. return retval;
  3702. set_user_nice(current, nice);
  3703. return 0;
  3704. }
  3705. #endif
  3706. /**
  3707. * task_prio - return the priority value of a given task.
  3708. * @p: the task in question.
  3709. *
  3710. * This is the priority value as seen by users in /proc.
  3711. * RT tasks are offset by -200. Normal tasks are centered
  3712. * around 0, value goes from -16 to +15.
  3713. */
  3714. int task_prio(const struct task_struct *p)
  3715. {
  3716. return p->prio - MAX_RT_PRIO;
  3717. }
  3718. /**
  3719. * task_nice - return the nice value of a given task.
  3720. * @p: the task in question.
  3721. */
  3722. int task_nice(const struct task_struct *p)
  3723. {
  3724. return TASK_NICE(p);
  3725. }
  3726. EXPORT_SYMBOL_GPL(task_nice);
  3727. /**
  3728. * idle_cpu - is a given cpu idle currently?
  3729. * @cpu: the processor in question.
  3730. */
  3731. int idle_cpu(int cpu)
  3732. {
  3733. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3734. }
  3735. /**
  3736. * idle_task - return the idle task for a given cpu.
  3737. * @cpu: the processor in question.
  3738. */
  3739. struct task_struct *idle_task(int cpu)
  3740. {
  3741. return cpu_rq(cpu)->idle;
  3742. }
  3743. /**
  3744. * find_process_by_pid - find a process with a matching PID value.
  3745. * @pid: the pid in question.
  3746. */
  3747. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3748. {
  3749. return pid ? find_task_by_pid(pid) : current;
  3750. }
  3751. /* Actually do priority change: must hold rq lock. */
  3752. static void __setscheduler(struct task_struct *p, int policy, int prio)
  3753. {
  3754. BUG_ON(p->array);
  3755. p->policy = policy;
  3756. p->rt_priority = prio;
  3757. p->normal_prio = normal_prio(p);
  3758. /* we are holding p->pi_lock already */
  3759. p->prio = rt_mutex_getprio(p);
  3760. /*
  3761. * SCHED_BATCH tasks are treated as perpetual CPU hogs:
  3762. */
  3763. if (policy == SCHED_BATCH)
  3764. p->sleep_avg = 0;
  3765. set_load_weight(p);
  3766. }
  3767. /**
  3768. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3769. * @p: the task in question.
  3770. * @policy: new policy.
  3771. * @param: structure containing the new RT priority.
  3772. *
  3773. * NOTE that the task may be already dead.
  3774. */
  3775. int sched_setscheduler(struct task_struct *p, int policy,
  3776. struct sched_param *param)
  3777. {
  3778. int retval, oldprio, oldpolicy = -1;
  3779. struct prio_array *array;
  3780. unsigned long flags;
  3781. struct rq *rq;
  3782. /* may grab non-irq protected spin_locks */
  3783. BUG_ON(in_interrupt());
  3784. recheck:
  3785. /* double check policy once rq lock held */
  3786. if (policy < 0)
  3787. policy = oldpolicy = p->policy;
  3788. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3789. policy != SCHED_NORMAL && policy != SCHED_BATCH)
  3790. return -EINVAL;
  3791. /*
  3792. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3793. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
  3794. * SCHED_BATCH is 0.
  3795. */
  3796. if (param->sched_priority < 0 ||
  3797. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3798. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3799. return -EINVAL;
  3800. if (rt_policy(policy) != (param->sched_priority != 0))
  3801. return -EINVAL;
  3802. /*
  3803. * Allow unprivileged RT tasks to decrease priority:
  3804. */
  3805. if (!capable(CAP_SYS_NICE)) {
  3806. if (rt_policy(policy)) {
  3807. unsigned long rlim_rtprio;
  3808. unsigned long flags;
  3809. if (!lock_task_sighand(p, &flags))
  3810. return -ESRCH;
  3811. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3812. unlock_task_sighand(p, &flags);
  3813. /* can't set/change the rt policy */
  3814. if (policy != p->policy && !rlim_rtprio)
  3815. return -EPERM;
  3816. /* can't increase priority */
  3817. if (param->sched_priority > p->rt_priority &&
  3818. param->sched_priority > rlim_rtprio)
  3819. return -EPERM;
  3820. }
  3821. /* can't change other user's priorities */
  3822. if ((current->euid != p->euid) &&
  3823. (current->euid != p->uid))
  3824. return -EPERM;
  3825. }
  3826. retval = security_task_setscheduler(p, policy, param);
  3827. if (retval)
  3828. return retval;
  3829. /*
  3830. * make sure no PI-waiters arrive (or leave) while we are
  3831. * changing the priority of the task:
  3832. */
  3833. spin_lock_irqsave(&p->pi_lock, flags);
  3834. /*
  3835. * To be able to change p->policy safely, the apropriate
  3836. * runqueue lock must be held.
  3837. */
  3838. rq = __task_rq_lock(p);
  3839. /* recheck policy now with rq lock held */
  3840. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3841. policy = oldpolicy = -1;
  3842. __task_rq_unlock(rq);
  3843. spin_unlock_irqrestore(&p->pi_lock, flags);
  3844. goto recheck;
  3845. }
  3846. array = p->array;
  3847. if (array)
  3848. deactivate_task(p, rq);
  3849. oldprio = p->prio;
  3850. __setscheduler(p, policy, param->sched_priority);
  3851. if (array) {
  3852. __activate_task(p, rq);
  3853. /*
  3854. * Reschedule if we are currently running on this runqueue and
  3855. * our priority decreased, or if we are not currently running on
  3856. * this runqueue and our priority is higher than the current's
  3857. */
  3858. if (task_running(rq, p)) {
  3859. if (p->prio > oldprio)
  3860. resched_task(rq->curr);
  3861. } else if (TASK_PREEMPTS_CURR(p, rq))
  3862. resched_task(rq->curr);
  3863. }
  3864. __task_rq_unlock(rq);
  3865. spin_unlock_irqrestore(&p->pi_lock, flags);
  3866. rt_mutex_adjust_pi(p);
  3867. return 0;
  3868. }
  3869. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3870. static int
  3871. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3872. {
  3873. struct sched_param lparam;
  3874. struct task_struct *p;
  3875. int retval;
  3876. if (!param || pid < 0)
  3877. return -EINVAL;
  3878. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3879. return -EFAULT;
  3880. rcu_read_lock();
  3881. retval = -ESRCH;
  3882. p = find_process_by_pid(pid);
  3883. if (p != NULL)
  3884. retval = sched_setscheduler(p, policy, &lparam);
  3885. rcu_read_unlock();
  3886. return retval;
  3887. }
  3888. /**
  3889. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3890. * @pid: the pid in question.
  3891. * @policy: new policy.
  3892. * @param: structure containing the new RT priority.
  3893. */
  3894. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3895. struct sched_param __user *param)
  3896. {
  3897. /* negative values for policy are not valid */
  3898. if (policy < 0)
  3899. return -EINVAL;
  3900. return do_sched_setscheduler(pid, policy, param);
  3901. }
  3902. /**
  3903. * sys_sched_setparam - set/change the RT priority of a thread
  3904. * @pid: the pid in question.
  3905. * @param: structure containing the new RT priority.
  3906. */
  3907. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3908. {
  3909. return do_sched_setscheduler(pid, -1, param);
  3910. }
  3911. /**
  3912. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3913. * @pid: the pid in question.
  3914. */
  3915. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3916. {
  3917. struct task_struct *p;
  3918. int retval = -EINVAL;
  3919. if (pid < 0)
  3920. goto out_nounlock;
  3921. retval = -ESRCH;
  3922. read_lock(&tasklist_lock);
  3923. p = find_process_by_pid(pid);
  3924. if (p) {
  3925. retval = security_task_getscheduler(p);
  3926. if (!retval)
  3927. retval = p->policy;
  3928. }
  3929. read_unlock(&tasklist_lock);
  3930. out_nounlock:
  3931. return retval;
  3932. }
  3933. /**
  3934. * sys_sched_getscheduler - get the RT priority of a thread
  3935. * @pid: the pid in question.
  3936. * @param: structure containing the RT priority.
  3937. */
  3938. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3939. {
  3940. struct sched_param lp;
  3941. struct task_struct *p;
  3942. int retval = -EINVAL;
  3943. if (!param || pid < 0)
  3944. goto out_nounlock;
  3945. read_lock(&tasklist_lock);
  3946. p = find_process_by_pid(pid);
  3947. retval = -ESRCH;
  3948. if (!p)
  3949. goto out_unlock;
  3950. retval = security_task_getscheduler(p);
  3951. if (retval)
  3952. goto out_unlock;
  3953. lp.sched_priority = p->rt_priority;
  3954. read_unlock(&tasklist_lock);
  3955. /*
  3956. * This one might sleep, we cannot do it with a spinlock held ...
  3957. */
  3958. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3959. out_nounlock:
  3960. return retval;
  3961. out_unlock:
  3962. read_unlock(&tasklist_lock);
  3963. return retval;
  3964. }
  3965. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3966. {
  3967. cpumask_t cpus_allowed;
  3968. struct task_struct *p;
  3969. int retval;
  3970. mutex_lock(&sched_hotcpu_mutex);
  3971. read_lock(&tasklist_lock);
  3972. p = find_process_by_pid(pid);
  3973. if (!p) {
  3974. read_unlock(&tasklist_lock);
  3975. mutex_unlock(&sched_hotcpu_mutex);
  3976. return -ESRCH;
  3977. }
  3978. /*
  3979. * It is not safe to call set_cpus_allowed with the
  3980. * tasklist_lock held. We will bump the task_struct's
  3981. * usage count and then drop tasklist_lock.
  3982. */
  3983. get_task_struct(p);
  3984. read_unlock(&tasklist_lock);
  3985. retval = -EPERM;
  3986. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3987. !capable(CAP_SYS_NICE))
  3988. goto out_unlock;
  3989. retval = security_task_setscheduler(p, 0, NULL);
  3990. if (retval)
  3991. goto out_unlock;
  3992. cpus_allowed = cpuset_cpus_allowed(p);
  3993. cpus_and(new_mask, new_mask, cpus_allowed);
  3994. retval = set_cpus_allowed(p, new_mask);
  3995. out_unlock:
  3996. put_task_struct(p);
  3997. mutex_unlock(&sched_hotcpu_mutex);
  3998. return retval;
  3999. }
  4000. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4001. cpumask_t *new_mask)
  4002. {
  4003. if (len < sizeof(cpumask_t)) {
  4004. memset(new_mask, 0, sizeof(cpumask_t));
  4005. } else if (len > sizeof(cpumask_t)) {
  4006. len = sizeof(cpumask_t);
  4007. }
  4008. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4009. }
  4010. /**
  4011. * sys_sched_setaffinity - set the cpu affinity of a process
  4012. * @pid: pid of the process
  4013. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4014. * @user_mask_ptr: user-space pointer to the new cpu mask
  4015. */
  4016. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4017. unsigned long __user *user_mask_ptr)
  4018. {
  4019. cpumask_t new_mask;
  4020. int retval;
  4021. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4022. if (retval)
  4023. return retval;
  4024. return sched_setaffinity(pid, new_mask);
  4025. }
  4026. /*
  4027. * Represents all cpu's present in the system
  4028. * In systems capable of hotplug, this map could dynamically grow
  4029. * as new cpu's are detected in the system via any platform specific
  4030. * method, such as ACPI for e.g.
  4031. */
  4032. cpumask_t cpu_present_map __read_mostly;
  4033. EXPORT_SYMBOL(cpu_present_map);
  4034. #ifndef CONFIG_SMP
  4035. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4036. EXPORT_SYMBOL(cpu_online_map);
  4037. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4038. EXPORT_SYMBOL(cpu_possible_map);
  4039. #endif
  4040. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4041. {
  4042. struct task_struct *p;
  4043. int retval;
  4044. mutex_lock(&sched_hotcpu_mutex);
  4045. read_lock(&tasklist_lock);
  4046. retval = -ESRCH;
  4047. p = find_process_by_pid(pid);
  4048. if (!p)
  4049. goto out_unlock;
  4050. retval = security_task_getscheduler(p);
  4051. if (retval)
  4052. goto out_unlock;
  4053. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4054. out_unlock:
  4055. read_unlock(&tasklist_lock);
  4056. mutex_unlock(&sched_hotcpu_mutex);
  4057. if (retval)
  4058. return retval;
  4059. return 0;
  4060. }
  4061. /**
  4062. * sys_sched_getaffinity - get the cpu affinity of a process
  4063. * @pid: pid of the process
  4064. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4065. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4066. */
  4067. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4068. unsigned long __user *user_mask_ptr)
  4069. {
  4070. int ret;
  4071. cpumask_t mask;
  4072. if (len < sizeof(cpumask_t))
  4073. return -EINVAL;
  4074. ret = sched_getaffinity(pid, &mask);
  4075. if (ret < 0)
  4076. return ret;
  4077. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4078. return -EFAULT;
  4079. return sizeof(cpumask_t);
  4080. }
  4081. /**
  4082. * sys_sched_yield - yield the current processor to other threads.
  4083. *
  4084. * This function yields the current CPU by moving the calling thread
  4085. * to the expired array. If there are no other threads running on this
  4086. * CPU then this function will return.
  4087. */
  4088. asmlinkage long sys_sched_yield(void)
  4089. {
  4090. struct rq *rq = this_rq_lock();
  4091. struct prio_array *array = current->array, *target = rq->expired;
  4092. schedstat_inc(rq, yld_cnt);
  4093. /*
  4094. * We implement yielding by moving the task into the expired
  4095. * queue.
  4096. *
  4097. * (special rule: RT tasks will just roundrobin in the active
  4098. * array.)
  4099. */
  4100. if (rt_task(current))
  4101. target = rq->active;
  4102. if (array->nr_active == 1) {
  4103. schedstat_inc(rq, yld_act_empty);
  4104. if (!rq->expired->nr_active)
  4105. schedstat_inc(rq, yld_both_empty);
  4106. } else if (!rq->expired->nr_active)
  4107. schedstat_inc(rq, yld_exp_empty);
  4108. if (array != target) {
  4109. dequeue_task(current, array);
  4110. enqueue_task(current, target);
  4111. } else
  4112. /*
  4113. * requeue_task is cheaper so perform that if possible.
  4114. */
  4115. requeue_task(current, array);
  4116. /*
  4117. * Since we are going to call schedule() anyway, there's
  4118. * no need to preempt or enable interrupts:
  4119. */
  4120. __release(rq->lock);
  4121. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4122. _raw_spin_unlock(&rq->lock);
  4123. preempt_enable_no_resched();
  4124. schedule();
  4125. return 0;
  4126. }
  4127. static void __cond_resched(void)
  4128. {
  4129. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4130. __might_sleep(__FILE__, __LINE__);
  4131. #endif
  4132. /*
  4133. * The BKS might be reacquired before we have dropped
  4134. * PREEMPT_ACTIVE, which could trigger a second
  4135. * cond_resched() call.
  4136. */
  4137. do {
  4138. add_preempt_count(PREEMPT_ACTIVE);
  4139. schedule();
  4140. sub_preempt_count(PREEMPT_ACTIVE);
  4141. } while (need_resched());
  4142. }
  4143. int __sched cond_resched(void)
  4144. {
  4145. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4146. system_state == SYSTEM_RUNNING) {
  4147. __cond_resched();
  4148. return 1;
  4149. }
  4150. return 0;
  4151. }
  4152. EXPORT_SYMBOL(cond_resched);
  4153. /*
  4154. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4155. * call schedule, and on return reacquire the lock.
  4156. *
  4157. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4158. * operations here to prevent schedule() from being called twice (once via
  4159. * spin_unlock(), once by hand).
  4160. */
  4161. int cond_resched_lock(spinlock_t *lock)
  4162. {
  4163. int ret = 0;
  4164. if (need_lockbreak(lock)) {
  4165. spin_unlock(lock);
  4166. cpu_relax();
  4167. ret = 1;
  4168. spin_lock(lock);
  4169. }
  4170. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4171. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4172. _raw_spin_unlock(lock);
  4173. preempt_enable_no_resched();
  4174. __cond_resched();
  4175. ret = 1;
  4176. spin_lock(lock);
  4177. }
  4178. return ret;
  4179. }
  4180. EXPORT_SYMBOL(cond_resched_lock);
  4181. int __sched cond_resched_softirq(void)
  4182. {
  4183. BUG_ON(!in_softirq());
  4184. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4185. local_bh_enable();
  4186. __cond_resched();
  4187. local_bh_disable();
  4188. return 1;
  4189. }
  4190. return 0;
  4191. }
  4192. EXPORT_SYMBOL(cond_resched_softirq);
  4193. /**
  4194. * yield - yield the current processor to other threads.
  4195. *
  4196. * This is a shortcut for kernel-space yielding - it marks the
  4197. * thread runnable and calls sys_sched_yield().
  4198. */
  4199. void __sched yield(void)
  4200. {
  4201. set_current_state(TASK_RUNNING);
  4202. sys_sched_yield();
  4203. }
  4204. EXPORT_SYMBOL(yield);
  4205. /*
  4206. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4207. * that process accounting knows that this is a task in IO wait state.
  4208. *
  4209. * But don't do that if it is a deliberate, throttling IO wait (this task
  4210. * has set its backing_dev_info: the queue against which it should throttle)
  4211. */
  4212. void __sched io_schedule(void)
  4213. {
  4214. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4215. delayacct_blkio_start();
  4216. atomic_inc(&rq->nr_iowait);
  4217. schedule();
  4218. atomic_dec(&rq->nr_iowait);
  4219. delayacct_blkio_end();
  4220. }
  4221. EXPORT_SYMBOL(io_schedule);
  4222. long __sched io_schedule_timeout(long timeout)
  4223. {
  4224. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4225. long ret;
  4226. delayacct_blkio_start();
  4227. atomic_inc(&rq->nr_iowait);
  4228. ret = schedule_timeout(timeout);
  4229. atomic_dec(&rq->nr_iowait);
  4230. delayacct_blkio_end();
  4231. return ret;
  4232. }
  4233. /**
  4234. * sys_sched_get_priority_max - return maximum RT priority.
  4235. * @policy: scheduling class.
  4236. *
  4237. * this syscall returns the maximum rt_priority that can be used
  4238. * by a given scheduling class.
  4239. */
  4240. asmlinkage long sys_sched_get_priority_max(int policy)
  4241. {
  4242. int ret = -EINVAL;
  4243. switch (policy) {
  4244. case SCHED_FIFO:
  4245. case SCHED_RR:
  4246. ret = MAX_USER_RT_PRIO-1;
  4247. break;
  4248. case SCHED_NORMAL:
  4249. case SCHED_BATCH:
  4250. ret = 0;
  4251. break;
  4252. }
  4253. return ret;
  4254. }
  4255. /**
  4256. * sys_sched_get_priority_min - return minimum RT priority.
  4257. * @policy: scheduling class.
  4258. *
  4259. * this syscall returns the minimum rt_priority that can be used
  4260. * by a given scheduling class.
  4261. */
  4262. asmlinkage long sys_sched_get_priority_min(int policy)
  4263. {
  4264. int ret = -EINVAL;
  4265. switch (policy) {
  4266. case SCHED_FIFO:
  4267. case SCHED_RR:
  4268. ret = 1;
  4269. break;
  4270. case SCHED_NORMAL:
  4271. case SCHED_BATCH:
  4272. ret = 0;
  4273. }
  4274. return ret;
  4275. }
  4276. /**
  4277. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4278. * @pid: pid of the process.
  4279. * @interval: userspace pointer to the timeslice value.
  4280. *
  4281. * this syscall writes the default timeslice value of a given process
  4282. * into the user-space timespec buffer. A value of '0' means infinity.
  4283. */
  4284. asmlinkage
  4285. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4286. {
  4287. struct task_struct *p;
  4288. int retval = -EINVAL;
  4289. struct timespec t;
  4290. if (pid < 0)
  4291. goto out_nounlock;
  4292. retval = -ESRCH;
  4293. read_lock(&tasklist_lock);
  4294. p = find_process_by_pid(pid);
  4295. if (!p)
  4296. goto out_unlock;
  4297. retval = security_task_getscheduler(p);
  4298. if (retval)
  4299. goto out_unlock;
  4300. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4301. 0 : task_timeslice(p), &t);
  4302. read_unlock(&tasklist_lock);
  4303. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4304. out_nounlock:
  4305. return retval;
  4306. out_unlock:
  4307. read_unlock(&tasklist_lock);
  4308. return retval;
  4309. }
  4310. static const char stat_nam[] = "RSDTtZX";
  4311. static void show_task(struct task_struct *p)
  4312. {
  4313. unsigned long free = 0;
  4314. unsigned state;
  4315. state = p->state ? __ffs(p->state) + 1 : 0;
  4316. printk("%-13.13s %c", p->comm,
  4317. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4318. #if (BITS_PER_LONG == 32)
  4319. if (state == TASK_RUNNING)
  4320. printk(" running ");
  4321. else
  4322. printk(" %08lX ", thread_saved_pc(p));
  4323. #else
  4324. if (state == TASK_RUNNING)
  4325. printk(" running task ");
  4326. else
  4327. printk(" %016lx ", thread_saved_pc(p));
  4328. #endif
  4329. #ifdef CONFIG_DEBUG_STACK_USAGE
  4330. {
  4331. unsigned long *n = end_of_stack(p);
  4332. while (!*n)
  4333. n++;
  4334. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4335. }
  4336. #endif
  4337. printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
  4338. if (!p->mm)
  4339. printk(" (L-TLB)\n");
  4340. else
  4341. printk(" (NOTLB)\n");
  4342. if (state != TASK_RUNNING)
  4343. show_stack(p, NULL);
  4344. }
  4345. void show_state_filter(unsigned long state_filter)
  4346. {
  4347. struct task_struct *g, *p;
  4348. #if (BITS_PER_LONG == 32)
  4349. printk("\n"
  4350. " free sibling\n");
  4351. printk(" task PC stack pid father child younger older\n");
  4352. #else
  4353. printk("\n"
  4354. " free sibling\n");
  4355. printk(" task PC stack pid father child younger older\n");
  4356. #endif
  4357. read_lock(&tasklist_lock);
  4358. do_each_thread(g, p) {
  4359. /*
  4360. * reset the NMI-timeout, listing all files on a slow
  4361. * console might take alot of time:
  4362. */
  4363. touch_nmi_watchdog();
  4364. if (!state_filter || (p->state & state_filter))
  4365. show_task(p);
  4366. } while_each_thread(g, p);
  4367. touch_all_softlockup_watchdogs();
  4368. read_unlock(&tasklist_lock);
  4369. /*
  4370. * Only show locks if all tasks are dumped:
  4371. */
  4372. if (state_filter == -1)
  4373. debug_show_all_locks();
  4374. }
  4375. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4376. {
  4377. /* nothing yet */
  4378. }
  4379. /**
  4380. * init_idle - set up an idle thread for a given CPU
  4381. * @idle: task in question
  4382. * @cpu: cpu the idle task belongs to
  4383. *
  4384. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4385. * flag, to make booting more robust.
  4386. */
  4387. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4388. {
  4389. struct rq *rq = cpu_rq(cpu);
  4390. unsigned long flags;
  4391. idle->timestamp = sched_clock();
  4392. idle->sleep_avg = 0;
  4393. idle->array = NULL;
  4394. idle->prio = idle->normal_prio = MAX_PRIO;
  4395. idle->state = TASK_RUNNING;
  4396. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4397. set_task_cpu(idle, cpu);
  4398. spin_lock_irqsave(&rq->lock, flags);
  4399. rq->curr = rq->idle = idle;
  4400. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4401. idle->oncpu = 1;
  4402. #endif
  4403. spin_unlock_irqrestore(&rq->lock, flags);
  4404. /* Set the preempt count _outside_ the spinlocks! */
  4405. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4406. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4407. #else
  4408. task_thread_info(idle)->preempt_count = 0;
  4409. #endif
  4410. }
  4411. /*
  4412. * In a system that switches off the HZ timer nohz_cpu_mask
  4413. * indicates which cpus entered this state. This is used
  4414. * in the rcu update to wait only for active cpus. For system
  4415. * which do not switch off the HZ timer nohz_cpu_mask should
  4416. * always be CPU_MASK_NONE.
  4417. */
  4418. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4419. #ifdef CONFIG_SMP
  4420. /*
  4421. * This is how migration works:
  4422. *
  4423. * 1) we queue a struct migration_req structure in the source CPU's
  4424. * runqueue and wake up that CPU's migration thread.
  4425. * 2) we down() the locked semaphore => thread blocks.
  4426. * 3) migration thread wakes up (implicitly it forces the migrated
  4427. * thread off the CPU)
  4428. * 4) it gets the migration request and checks whether the migrated
  4429. * task is still in the wrong runqueue.
  4430. * 5) if it's in the wrong runqueue then the migration thread removes
  4431. * it and puts it into the right queue.
  4432. * 6) migration thread up()s the semaphore.
  4433. * 7) we wake up and the migration is done.
  4434. */
  4435. /*
  4436. * Change a given task's CPU affinity. Migrate the thread to a
  4437. * proper CPU and schedule it away if the CPU it's executing on
  4438. * is removed from the allowed bitmask.
  4439. *
  4440. * NOTE: the caller must have a valid reference to the task, the
  4441. * task must not exit() & deallocate itself prematurely. The
  4442. * call is not atomic; no spinlocks may be held.
  4443. */
  4444. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4445. {
  4446. struct migration_req req;
  4447. unsigned long flags;
  4448. struct rq *rq;
  4449. int ret = 0;
  4450. rq = task_rq_lock(p, &flags);
  4451. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4452. ret = -EINVAL;
  4453. goto out;
  4454. }
  4455. p->cpus_allowed = new_mask;
  4456. /* Can the task run on the task's current CPU? If so, we're done */
  4457. if (cpu_isset(task_cpu(p), new_mask))
  4458. goto out;
  4459. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4460. /* Need help from migration thread: drop lock and wait. */
  4461. task_rq_unlock(rq, &flags);
  4462. wake_up_process(rq->migration_thread);
  4463. wait_for_completion(&req.done);
  4464. tlb_migrate_finish(p->mm);
  4465. return 0;
  4466. }
  4467. out:
  4468. task_rq_unlock(rq, &flags);
  4469. return ret;
  4470. }
  4471. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4472. /*
  4473. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4474. * this because either it can't run here any more (set_cpus_allowed()
  4475. * away from this CPU, or CPU going down), or because we're
  4476. * attempting to rebalance this task on exec (sched_exec).
  4477. *
  4478. * So we race with normal scheduler movements, but that's OK, as long
  4479. * as the task is no longer on this CPU.
  4480. *
  4481. * Returns non-zero if task was successfully migrated.
  4482. */
  4483. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4484. {
  4485. struct rq *rq_dest, *rq_src;
  4486. int ret = 0;
  4487. if (unlikely(cpu_is_offline(dest_cpu)))
  4488. return ret;
  4489. rq_src = cpu_rq(src_cpu);
  4490. rq_dest = cpu_rq(dest_cpu);
  4491. double_rq_lock(rq_src, rq_dest);
  4492. /* Already moved. */
  4493. if (task_cpu(p) != src_cpu)
  4494. goto out;
  4495. /* Affinity changed (again). */
  4496. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4497. goto out;
  4498. set_task_cpu(p, dest_cpu);
  4499. if (p->array) {
  4500. /*
  4501. * Sync timestamp with rq_dest's before activating.
  4502. * The same thing could be achieved by doing this step
  4503. * afterwards, and pretending it was a local activate.
  4504. * This way is cleaner and logically correct.
  4505. */
  4506. p->timestamp = p->timestamp - rq_src->most_recent_timestamp
  4507. + rq_dest->most_recent_timestamp;
  4508. deactivate_task(p, rq_src);
  4509. __activate_task(p, rq_dest);
  4510. if (TASK_PREEMPTS_CURR(p, rq_dest))
  4511. resched_task(rq_dest->curr);
  4512. }
  4513. ret = 1;
  4514. out:
  4515. double_rq_unlock(rq_src, rq_dest);
  4516. return ret;
  4517. }
  4518. /*
  4519. * migration_thread - this is a highprio system thread that performs
  4520. * thread migration by bumping thread off CPU then 'pushing' onto
  4521. * another runqueue.
  4522. */
  4523. static int migration_thread(void *data)
  4524. {
  4525. int cpu = (long)data;
  4526. struct rq *rq;
  4527. rq = cpu_rq(cpu);
  4528. BUG_ON(rq->migration_thread != current);
  4529. set_current_state(TASK_INTERRUPTIBLE);
  4530. while (!kthread_should_stop()) {
  4531. struct migration_req *req;
  4532. struct list_head *head;
  4533. try_to_freeze();
  4534. spin_lock_irq(&rq->lock);
  4535. if (cpu_is_offline(cpu)) {
  4536. spin_unlock_irq(&rq->lock);
  4537. goto wait_to_die;
  4538. }
  4539. if (rq->active_balance) {
  4540. active_load_balance(rq, cpu);
  4541. rq->active_balance = 0;
  4542. }
  4543. head = &rq->migration_queue;
  4544. if (list_empty(head)) {
  4545. spin_unlock_irq(&rq->lock);
  4546. schedule();
  4547. set_current_state(TASK_INTERRUPTIBLE);
  4548. continue;
  4549. }
  4550. req = list_entry(head->next, struct migration_req, list);
  4551. list_del_init(head->next);
  4552. spin_unlock(&rq->lock);
  4553. __migrate_task(req->task, cpu, req->dest_cpu);
  4554. local_irq_enable();
  4555. complete(&req->done);
  4556. }
  4557. __set_current_state(TASK_RUNNING);
  4558. return 0;
  4559. wait_to_die:
  4560. /* Wait for kthread_stop */
  4561. set_current_state(TASK_INTERRUPTIBLE);
  4562. while (!kthread_should_stop()) {
  4563. schedule();
  4564. set_current_state(TASK_INTERRUPTIBLE);
  4565. }
  4566. __set_current_state(TASK_RUNNING);
  4567. return 0;
  4568. }
  4569. #ifdef CONFIG_HOTPLUG_CPU
  4570. /*
  4571. * Figure out where task on dead CPU should go, use force if neccessary.
  4572. * NOTE: interrupts should be disabled by the caller
  4573. */
  4574. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4575. {
  4576. unsigned long flags;
  4577. cpumask_t mask;
  4578. struct rq *rq;
  4579. int dest_cpu;
  4580. restart:
  4581. /* On same node? */
  4582. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4583. cpus_and(mask, mask, p->cpus_allowed);
  4584. dest_cpu = any_online_cpu(mask);
  4585. /* On any allowed CPU? */
  4586. if (dest_cpu == NR_CPUS)
  4587. dest_cpu = any_online_cpu(p->cpus_allowed);
  4588. /* No more Mr. Nice Guy. */
  4589. if (dest_cpu == NR_CPUS) {
  4590. rq = task_rq_lock(p, &flags);
  4591. cpus_setall(p->cpus_allowed);
  4592. dest_cpu = any_online_cpu(p->cpus_allowed);
  4593. task_rq_unlock(rq, &flags);
  4594. /*
  4595. * Don't tell them about moving exiting tasks or
  4596. * kernel threads (both mm NULL), since they never
  4597. * leave kernel.
  4598. */
  4599. if (p->mm && printk_ratelimit())
  4600. printk(KERN_INFO "process %d (%s) no "
  4601. "longer affine to cpu%d\n",
  4602. p->pid, p->comm, dead_cpu);
  4603. }
  4604. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4605. goto restart;
  4606. }
  4607. /*
  4608. * While a dead CPU has no uninterruptible tasks queued at this point,
  4609. * it might still have a nonzero ->nr_uninterruptible counter, because
  4610. * for performance reasons the counter is not stricly tracking tasks to
  4611. * their home CPUs. So we just add the counter to another CPU's counter,
  4612. * to keep the global sum constant after CPU-down:
  4613. */
  4614. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4615. {
  4616. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4617. unsigned long flags;
  4618. local_irq_save(flags);
  4619. double_rq_lock(rq_src, rq_dest);
  4620. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4621. rq_src->nr_uninterruptible = 0;
  4622. double_rq_unlock(rq_src, rq_dest);
  4623. local_irq_restore(flags);
  4624. }
  4625. /* Run through task list and migrate tasks from the dead cpu. */
  4626. static void migrate_live_tasks(int src_cpu)
  4627. {
  4628. struct task_struct *p, *t;
  4629. write_lock_irq(&tasklist_lock);
  4630. do_each_thread(t, p) {
  4631. if (p == current)
  4632. continue;
  4633. if (task_cpu(p) == src_cpu)
  4634. move_task_off_dead_cpu(src_cpu, p);
  4635. } while_each_thread(t, p);
  4636. write_unlock_irq(&tasklist_lock);
  4637. }
  4638. /* Schedules idle task to be the next runnable task on current CPU.
  4639. * It does so by boosting its priority to highest possible and adding it to
  4640. * the _front_ of the runqueue. Used by CPU offline code.
  4641. */
  4642. void sched_idle_next(void)
  4643. {
  4644. int this_cpu = smp_processor_id();
  4645. struct rq *rq = cpu_rq(this_cpu);
  4646. struct task_struct *p = rq->idle;
  4647. unsigned long flags;
  4648. /* cpu has to be offline */
  4649. BUG_ON(cpu_online(this_cpu));
  4650. /*
  4651. * Strictly not necessary since rest of the CPUs are stopped by now
  4652. * and interrupts disabled on the current cpu.
  4653. */
  4654. spin_lock_irqsave(&rq->lock, flags);
  4655. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4656. /* Add idle task to the _front_ of its priority queue: */
  4657. __activate_idle_task(p, rq);
  4658. spin_unlock_irqrestore(&rq->lock, flags);
  4659. }
  4660. /*
  4661. * Ensures that the idle task is using init_mm right before its cpu goes
  4662. * offline.
  4663. */
  4664. void idle_task_exit(void)
  4665. {
  4666. struct mm_struct *mm = current->active_mm;
  4667. BUG_ON(cpu_online(smp_processor_id()));
  4668. if (mm != &init_mm)
  4669. switch_mm(mm, &init_mm, current);
  4670. mmdrop(mm);
  4671. }
  4672. /* called under rq->lock with disabled interrupts */
  4673. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4674. {
  4675. struct rq *rq = cpu_rq(dead_cpu);
  4676. /* Must be exiting, otherwise would be on tasklist. */
  4677. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4678. /* Cannot have done final schedule yet: would have vanished. */
  4679. BUG_ON(p->state == TASK_DEAD);
  4680. get_task_struct(p);
  4681. /*
  4682. * Drop lock around migration; if someone else moves it,
  4683. * that's OK. No task can be added to this CPU, so iteration is
  4684. * fine.
  4685. * NOTE: interrupts should be left disabled --dev@
  4686. */
  4687. spin_unlock(&rq->lock);
  4688. move_task_off_dead_cpu(dead_cpu, p);
  4689. spin_lock(&rq->lock);
  4690. put_task_struct(p);
  4691. }
  4692. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4693. static void migrate_dead_tasks(unsigned int dead_cpu)
  4694. {
  4695. struct rq *rq = cpu_rq(dead_cpu);
  4696. unsigned int arr, i;
  4697. for (arr = 0; arr < 2; arr++) {
  4698. for (i = 0; i < MAX_PRIO; i++) {
  4699. struct list_head *list = &rq->arrays[arr].queue[i];
  4700. while (!list_empty(list))
  4701. migrate_dead(dead_cpu, list_entry(list->next,
  4702. struct task_struct, run_list));
  4703. }
  4704. }
  4705. }
  4706. #endif /* CONFIG_HOTPLUG_CPU */
  4707. /*
  4708. * migration_call - callback that gets triggered when a CPU is added.
  4709. * Here we can start up the necessary migration thread for the new CPU.
  4710. */
  4711. static int __cpuinit
  4712. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4713. {
  4714. struct task_struct *p;
  4715. int cpu = (long)hcpu;
  4716. unsigned long flags;
  4717. struct rq *rq;
  4718. switch (action) {
  4719. case CPU_LOCK_ACQUIRE:
  4720. mutex_lock(&sched_hotcpu_mutex);
  4721. break;
  4722. case CPU_UP_PREPARE:
  4723. case CPU_UP_PREPARE_FROZEN:
  4724. p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
  4725. if (IS_ERR(p))
  4726. return NOTIFY_BAD;
  4727. p->flags |= PF_NOFREEZE;
  4728. kthread_bind(p, cpu);
  4729. /* Must be high prio: stop_machine expects to yield to it. */
  4730. rq = task_rq_lock(p, &flags);
  4731. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4732. task_rq_unlock(rq, &flags);
  4733. cpu_rq(cpu)->migration_thread = p;
  4734. break;
  4735. case CPU_ONLINE:
  4736. case CPU_ONLINE_FROZEN:
  4737. /* Strictly unneccessary, as first user will wake it. */
  4738. wake_up_process(cpu_rq(cpu)->migration_thread);
  4739. break;
  4740. #ifdef CONFIG_HOTPLUG_CPU
  4741. case CPU_UP_CANCELED:
  4742. case CPU_UP_CANCELED_FROZEN:
  4743. if (!cpu_rq(cpu)->migration_thread)
  4744. break;
  4745. /* Unbind it from offline cpu so it can run. Fall thru. */
  4746. kthread_bind(cpu_rq(cpu)->migration_thread,
  4747. any_online_cpu(cpu_online_map));
  4748. kthread_stop(cpu_rq(cpu)->migration_thread);
  4749. cpu_rq(cpu)->migration_thread = NULL;
  4750. break;
  4751. case CPU_DEAD:
  4752. case CPU_DEAD_FROZEN:
  4753. migrate_live_tasks(cpu);
  4754. rq = cpu_rq(cpu);
  4755. kthread_stop(rq->migration_thread);
  4756. rq->migration_thread = NULL;
  4757. /* Idle task back to normal (off runqueue, low prio) */
  4758. rq = task_rq_lock(rq->idle, &flags);
  4759. deactivate_task(rq->idle, rq);
  4760. rq->idle->static_prio = MAX_PRIO;
  4761. __setscheduler(rq->idle, SCHED_NORMAL, 0);
  4762. migrate_dead_tasks(cpu);
  4763. task_rq_unlock(rq, &flags);
  4764. migrate_nr_uninterruptible(rq);
  4765. BUG_ON(rq->nr_running != 0);
  4766. /* No need to migrate the tasks: it was best-effort if
  4767. * they didn't take sched_hotcpu_mutex. Just wake up
  4768. * the requestors. */
  4769. spin_lock_irq(&rq->lock);
  4770. while (!list_empty(&rq->migration_queue)) {
  4771. struct migration_req *req;
  4772. req = list_entry(rq->migration_queue.next,
  4773. struct migration_req, list);
  4774. list_del_init(&req->list);
  4775. complete(&req->done);
  4776. }
  4777. spin_unlock_irq(&rq->lock);
  4778. break;
  4779. #endif
  4780. case CPU_LOCK_RELEASE:
  4781. mutex_unlock(&sched_hotcpu_mutex);
  4782. break;
  4783. }
  4784. return NOTIFY_OK;
  4785. }
  4786. /* Register at highest priority so that task migration (migrate_all_tasks)
  4787. * happens before everything else.
  4788. */
  4789. static struct notifier_block __cpuinitdata migration_notifier = {
  4790. .notifier_call = migration_call,
  4791. .priority = 10
  4792. };
  4793. int __init migration_init(void)
  4794. {
  4795. void *cpu = (void *)(long)smp_processor_id();
  4796. int err;
  4797. /* Start one for the boot CPU: */
  4798. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4799. BUG_ON(err == NOTIFY_BAD);
  4800. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4801. register_cpu_notifier(&migration_notifier);
  4802. return 0;
  4803. }
  4804. #endif
  4805. #ifdef CONFIG_SMP
  4806. /* Number of possible processor ids */
  4807. int nr_cpu_ids __read_mostly = NR_CPUS;
  4808. EXPORT_SYMBOL(nr_cpu_ids);
  4809. #undef SCHED_DOMAIN_DEBUG
  4810. #ifdef SCHED_DOMAIN_DEBUG
  4811. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4812. {
  4813. int level = 0;
  4814. if (!sd) {
  4815. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4816. return;
  4817. }
  4818. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4819. do {
  4820. int i;
  4821. char str[NR_CPUS];
  4822. struct sched_group *group = sd->groups;
  4823. cpumask_t groupmask;
  4824. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4825. cpus_clear(groupmask);
  4826. printk(KERN_DEBUG);
  4827. for (i = 0; i < level + 1; i++)
  4828. printk(" ");
  4829. printk("domain %d: ", level);
  4830. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4831. printk("does not load-balance\n");
  4832. if (sd->parent)
  4833. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4834. " has parent");
  4835. break;
  4836. }
  4837. printk("span %s\n", str);
  4838. if (!cpu_isset(cpu, sd->span))
  4839. printk(KERN_ERR "ERROR: domain->span does not contain "
  4840. "CPU%d\n", cpu);
  4841. if (!cpu_isset(cpu, group->cpumask))
  4842. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4843. " CPU%d\n", cpu);
  4844. printk(KERN_DEBUG);
  4845. for (i = 0; i < level + 2; i++)
  4846. printk(" ");
  4847. printk("groups:");
  4848. do {
  4849. if (!group) {
  4850. printk("\n");
  4851. printk(KERN_ERR "ERROR: group is NULL\n");
  4852. break;
  4853. }
  4854. if (!group->__cpu_power) {
  4855. printk("\n");
  4856. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4857. "set\n");
  4858. }
  4859. if (!cpus_weight(group->cpumask)) {
  4860. printk("\n");
  4861. printk(KERN_ERR "ERROR: empty group\n");
  4862. }
  4863. if (cpus_intersects(groupmask, group->cpumask)) {
  4864. printk("\n");
  4865. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4866. }
  4867. cpus_or(groupmask, groupmask, group->cpumask);
  4868. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4869. printk(" %s", str);
  4870. group = group->next;
  4871. } while (group != sd->groups);
  4872. printk("\n");
  4873. if (!cpus_equal(sd->span, groupmask))
  4874. printk(KERN_ERR "ERROR: groups don't span "
  4875. "domain->span\n");
  4876. level++;
  4877. sd = sd->parent;
  4878. if (!sd)
  4879. continue;
  4880. if (!cpus_subset(groupmask, sd->span))
  4881. printk(KERN_ERR "ERROR: parent span is not a superset "
  4882. "of domain->span\n");
  4883. } while (sd);
  4884. }
  4885. #else
  4886. # define sched_domain_debug(sd, cpu) do { } while (0)
  4887. #endif
  4888. static int sd_degenerate(struct sched_domain *sd)
  4889. {
  4890. if (cpus_weight(sd->span) == 1)
  4891. return 1;
  4892. /* Following flags need at least 2 groups */
  4893. if (sd->flags & (SD_LOAD_BALANCE |
  4894. SD_BALANCE_NEWIDLE |
  4895. SD_BALANCE_FORK |
  4896. SD_BALANCE_EXEC |
  4897. SD_SHARE_CPUPOWER |
  4898. SD_SHARE_PKG_RESOURCES)) {
  4899. if (sd->groups != sd->groups->next)
  4900. return 0;
  4901. }
  4902. /* Following flags don't use groups */
  4903. if (sd->flags & (SD_WAKE_IDLE |
  4904. SD_WAKE_AFFINE |
  4905. SD_WAKE_BALANCE))
  4906. return 0;
  4907. return 1;
  4908. }
  4909. static int
  4910. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4911. {
  4912. unsigned long cflags = sd->flags, pflags = parent->flags;
  4913. if (sd_degenerate(parent))
  4914. return 1;
  4915. if (!cpus_equal(sd->span, parent->span))
  4916. return 0;
  4917. /* Does parent contain flags not in child? */
  4918. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4919. if (cflags & SD_WAKE_AFFINE)
  4920. pflags &= ~SD_WAKE_BALANCE;
  4921. /* Flags needing groups don't count if only 1 group in parent */
  4922. if (parent->groups == parent->groups->next) {
  4923. pflags &= ~(SD_LOAD_BALANCE |
  4924. SD_BALANCE_NEWIDLE |
  4925. SD_BALANCE_FORK |
  4926. SD_BALANCE_EXEC |
  4927. SD_SHARE_CPUPOWER |
  4928. SD_SHARE_PKG_RESOURCES);
  4929. }
  4930. if (~cflags & pflags)
  4931. return 0;
  4932. return 1;
  4933. }
  4934. /*
  4935. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4936. * hold the hotplug lock.
  4937. */
  4938. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4939. {
  4940. struct rq *rq = cpu_rq(cpu);
  4941. struct sched_domain *tmp;
  4942. /* Remove the sched domains which do not contribute to scheduling. */
  4943. for (tmp = sd; tmp; tmp = tmp->parent) {
  4944. struct sched_domain *parent = tmp->parent;
  4945. if (!parent)
  4946. break;
  4947. if (sd_parent_degenerate(tmp, parent)) {
  4948. tmp->parent = parent->parent;
  4949. if (parent->parent)
  4950. parent->parent->child = tmp;
  4951. }
  4952. }
  4953. if (sd && sd_degenerate(sd)) {
  4954. sd = sd->parent;
  4955. if (sd)
  4956. sd->child = NULL;
  4957. }
  4958. sched_domain_debug(sd, cpu);
  4959. rcu_assign_pointer(rq->sd, sd);
  4960. }
  4961. /* cpus with isolated domains */
  4962. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4963. /* Setup the mask of cpus configured for isolated domains */
  4964. static int __init isolated_cpu_setup(char *str)
  4965. {
  4966. int ints[NR_CPUS], i;
  4967. str = get_options(str, ARRAY_SIZE(ints), ints);
  4968. cpus_clear(cpu_isolated_map);
  4969. for (i = 1; i <= ints[0]; i++)
  4970. if (ints[i] < NR_CPUS)
  4971. cpu_set(ints[i], cpu_isolated_map);
  4972. return 1;
  4973. }
  4974. __setup ("isolcpus=", isolated_cpu_setup);
  4975. /*
  4976. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4977. * to a function which identifies what group(along with sched group) a CPU
  4978. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4979. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4980. *
  4981. * init_sched_build_groups will build a circular linked list of the groups
  4982. * covered by the given span, and will set each group's ->cpumask correctly,
  4983. * and ->cpu_power to 0.
  4984. */
  4985. static void
  4986. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4987. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4988. struct sched_group **sg))
  4989. {
  4990. struct sched_group *first = NULL, *last = NULL;
  4991. cpumask_t covered = CPU_MASK_NONE;
  4992. int i;
  4993. for_each_cpu_mask(i, span) {
  4994. struct sched_group *sg;
  4995. int group = group_fn(i, cpu_map, &sg);
  4996. int j;
  4997. if (cpu_isset(i, covered))
  4998. continue;
  4999. sg->cpumask = CPU_MASK_NONE;
  5000. sg->__cpu_power = 0;
  5001. for_each_cpu_mask(j, span) {
  5002. if (group_fn(j, cpu_map, NULL) != group)
  5003. continue;
  5004. cpu_set(j, covered);
  5005. cpu_set(j, sg->cpumask);
  5006. }
  5007. if (!first)
  5008. first = sg;
  5009. if (last)
  5010. last->next = sg;
  5011. last = sg;
  5012. }
  5013. last->next = first;
  5014. }
  5015. #define SD_NODES_PER_DOMAIN 16
  5016. #ifdef CONFIG_NUMA
  5017. /**
  5018. * find_next_best_node - find the next node to include in a sched_domain
  5019. * @node: node whose sched_domain we're building
  5020. * @used_nodes: nodes already in the sched_domain
  5021. *
  5022. * Find the next node to include in a given scheduling domain. Simply
  5023. * finds the closest node not already in the @used_nodes map.
  5024. *
  5025. * Should use nodemask_t.
  5026. */
  5027. static int find_next_best_node(int node, unsigned long *used_nodes)
  5028. {
  5029. int i, n, val, min_val, best_node = 0;
  5030. min_val = INT_MAX;
  5031. for (i = 0; i < MAX_NUMNODES; i++) {
  5032. /* Start at @node */
  5033. n = (node + i) % MAX_NUMNODES;
  5034. if (!nr_cpus_node(n))
  5035. continue;
  5036. /* Skip already used nodes */
  5037. if (test_bit(n, used_nodes))
  5038. continue;
  5039. /* Simple min distance search */
  5040. val = node_distance(node, n);
  5041. if (val < min_val) {
  5042. min_val = val;
  5043. best_node = n;
  5044. }
  5045. }
  5046. set_bit(best_node, used_nodes);
  5047. return best_node;
  5048. }
  5049. /**
  5050. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5051. * @node: node whose cpumask we're constructing
  5052. * @size: number of nodes to include in this span
  5053. *
  5054. * Given a node, construct a good cpumask for its sched_domain to span. It
  5055. * should be one that prevents unnecessary balancing, but also spreads tasks
  5056. * out optimally.
  5057. */
  5058. static cpumask_t sched_domain_node_span(int node)
  5059. {
  5060. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5061. cpumask_t span, nodemask;
  5062. int i;
  5063. cpus_clear(span);
  5064. bitmap_zero(used_nodes, MAX_NUMNODES);
  5065. nodemask = node_to_cpumask(node);
  5066. cpus_or(span, span, nodemask);
  5067. set_bit(node, used_nodes);
  5068. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5069. int next_node = find_next_best_node(node, used_nodes);
  5070. nodemask = node_to_cpumask(next_node);
  5071. cpus_or(span, span, nodemask);
  5072. }
  5073. return span;
  5074. }
  5075. #endif
  5076. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5077. /*
  5078. * SMT sched-domains:
  5079. */
  5080. #ifdef CONFIG_SCHED_SMT
  5081. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5082. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5083. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5084. struct sched_group **sg)
  5085. {
  5086. if (sg)
  5087. *sg = &per_cpu(sched_group_cpus, cpu);
  5088. return cpu;
  5089. }
  5090. #endif
  5091. /*
  5092. * multi-core sched-domains:
  5093. */
  5094. #ifdef CONFIG_SCHED_MC
  5095. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5096. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5097. #endif
  5098. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5099. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5100. struct sched_group **sg)
  5101. {
  5102. int group;
  5103. cpumask_t mask = cpu_sibling_map[cpu];
  5104. cpus_and(mask, mask, *cpu_map);
  5105. group = first_cpu(mask);
  5106. if (sg)
  5107. *sg = &per_cpu(sched_group_core, group);
  5108. return group;
  5109. }
  5110. #elif defined(CONFIG_SCHED_MC)
  5111. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5112. struct sched_group **sg)
  5113. {
  5114. if (sg)
  5115. *sg = &per_cpu(sched_group_core, cpu);
  5116. return cpu;
  5117. }
  5118. #endif
  5119. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5120. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5121. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5122. struct sched_group **sg)
  5123. {
  5124. int group;
  5125. #ifdef CONFIG_SCHED_MC
  5126. cpumask_t mask = cpu_coregroup_map(cpu);
  5127. cpus_and(mask, mask, *cpu_map);
  5128. group = first_cpu(mask);
  5129. #elif defined(CONFIG_SCHED_SMT)
  5130. cpumask_t mask = cpu_sibling_map[cpu];
  5131. cpus_and(mask, mask, *cpu_map);
  5132. group = first_cpu(mask);
  5133. #else
  5134. group = cpu;
  5135. #endif
  5136. if (sg)
  5137. *sg = &per_cpu(sched_group_phys, group);
  5138. return group;
  5139. }
  5140. #ifdef CONFIG_NUMA
  5141. /*
  5142. * The init_sched_build_groups can't handle what we want to do with node
  5143. * groups, so roll our own. Now each node has its own list of groups which
  5144. * gets dynamically allocated.
  5145. */
  5146. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5147. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5148. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5149. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5150. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5151. struct sched_group **sg)
  5152. {
  5153. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5154. int group;
  5155. cpus_and(nodemask, nodemask, *cpu_map);
  5156. group = first_cpu(nodemask);
  5157. if (sg)
  5158. *sg = &per_cpu(sched_group_allnodes, group);
  5159. return group;
  5160. }
  5161. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5162. {
  5163. struct sched_group *sg = group_head;
  5164. int j;
  5165. if (!sg)
  5166. return;
  5167. next_sg:
  5168. for_each_cpu_mask(j, sg->cpumask) {
  5169. struct sched_domain *sd;
  5170. sd = &per_cpu(phys_domains, j);
  5171. if (j != first_cpu(sd->groups->cpumask)) {
  5172. /*
  5173. * Only add "power" once for each
  5174. * physical package.
  5175. */
  5176. continue;
  5177. }
  5178. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5179. }
  5180. sg = sg->next;
  5181. if (sg != group_head)
  5182. goto next_sg;
  5183. }
  5184. #endif
  5185. #ifdef CONFIG_NUMA
  5186. /* Free memory allocated for various sched_group structures */
  5187. static void free_sched_groups(const cpumask_t *cpu_map)
  5188. {
  5189. int cpu, i;
  5190. for_each_cpu_mask(cpu, *cpu_map) {
  5191. struct sched_group **sched_group_nodes
  5192. = sched_group_nodes_bycpu[cpu];
  5193. if (!sched_group_nodes)
  5194. continue;
  5195. for (i = 0; i < MAX_NUMNODES; i++) {
  5196. cpumask_t nodemask = node_to_cpumask(i);
  5197. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5198. cpus_and(nodemask, nodemask, *cpu_map);
  5199. if (cpus_empty(nodemask))
  5200. continue;
  5201. if (sg == NULL)
  5202. continue;
  5203. sg = sg->next;
  5204. next_sg:
  5205. oldsg = sg;
  5206. sg = sg->next;
  5207. kfree(oldsg);
  5208. if (oldsg != sched_group_nodes[i])
  5209. goto next_sg;
  5210. }
  5211. kfree(sched_group_nodes);
  5212. sched_group_nodes_bycpu[cpu] = NULL;
  5213. }
  5214. }
  5215. #else
  5216. static void free_sched_groups(const cpumask_t *cpu_map)
  5217. {
  5218. }
  5219. #endif
  5220. /*
  5221. * Initialize sched groups cpu_power.
  5222. *
  5223. * cpu_power indicates the capacity of sched group, which is used while
  5224. * distributing the load between different sched groups in a sched domain.
  5225. * Typically cpu_power for all the groups in a sched domain will be same unless
  5226. * there are asymmetries in the topology. If there are asymmetries, group
  5227. * having more cpu_power will pickup more load compared to the group having
  5228. * less cpu_power.
  5229. *
  5230. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5231. * the maximum number of tasks a group can handle in the presence of other idle
  5232. * or lightly loaded groups in the same sched domain.
  5233. */
  5234. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5235. {
  5236. struct sched_domain *child;
  5237. struct sched_group *group;
  5238. WARN_ON(!sd || !sd->groups);
  5239. if (cpu != first_cpu(sd->groups->cpumask))
  5240. return;
  5241. child = sd->child;
  5242. sd->groups->__cpu_power = 0;
  5243. /*
  5244. * For perf policy, if the groups in child domain share resources
  5245. * (for example cores sharing some portions of the cache hierarchy
  5246. * or SMT), then set this domain groups cpu_power such that each group
  5247. * can handle only one task, when there are other idle groups in the
  5248. * same sched domain.
  5249. */
  5250. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5251. (child->flags &
  5252. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5253. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5254. return;
  5255. }
  5256. /*
  5257. * add cpu_power of each child group to this groups cpu_power
  5258. */
  5259. group = child->groups;
  5260. do {
  5261. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5262. group = group->next;
  5263. } while (group != child->groups);
  5264. }
  5265. /*
  5266. * Build sched domains for a given set of cpus and attach the sched domains
  5267. * to the individual cpus
  5268. */
  5269. static int build_sched_domains(const cpumask_t *cpu_map)
  5270. {
  5271. int i;
  5272. struct sched_domain *sd;
  5273. #ifdef CONFIG_NUMA
  5274. struct sched_group **sched_group_nodes = NULL;
  5275. int sd_allnodes = 0;
  5276. /*
  5277. * Allocate the per-node list of sched groups
  5278. */
  5279. sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
  5280. GFP_KERNEL);
  5281. if (!sched_group_nodes) {
  5282. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5283. return -ENOMEM;
  5284. }
  5285. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5286. #endif
  5287. /*
  5288. * Set up domains for cpus specified by the cpu_map.
  5289. */
  5290. for_each_cpu_mask(i, *cpu_map) {
  5291. struct sched_domain *sd = NULL, *p;
  5292. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5293. cpus_and(nodemask, nodemask, *cpu_map);
  5294. #ifdef CONFIG_NUMA
  5295. if (cpus_weight(*cpu_map)
  5296. > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5297. sd = &per_cpu(allnodes_domains, i);
  5298. *sd = SD_ALLNODES_INIT;
  5299. sd->span = *cpu_map;
  5300. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5301. p = sd;
  5302. sd_allnodes = 1;
  5303. } else
  5304. p = NULL;
  5305. sd = &per_cpu(node_domains, i);
  5306. *sd = SD_NODE_INIT;
  5307. sd->span = sched_domain_node_span(cpu_to_node(i));
  5308. sd->parent = p;
  5309. if (p)
  5310. p->child = sd;
  5311. cpus_and(sd->span, sd->span, *cpu_map);
  5312. #endif
  5313. p = sd;
  5314. sd = &per_cpu(phys_domains, i);
  5315. *sd = SD_CPU_INIT;
  5316. sd->span = nodemask;
  5317. sd->parent = p;
  5318. if (p)
  5319. p->child = sd;
  5320. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5321. #ifdef CONFIG_SCHED_MC
  5322. p = sd;
  5323. sd = &per_cpu(core_domains, i);
  5324. *sd = SD_MC_INIT;
  5325. sd->span = cpu_coregroup_map(i);
  5326. cpus_and(sd->span, sd->span, *cpu_map);
  5327. sd->parent = p;
  5328. p->child = sd;
  5329. cpu_to_core_group(i, cpu_map, &sd->groups);
  5330. #endif
  5331. #ifdef CONFIG_SCHED_SMT
  5332. p = sd;
  5333. sd = &per_cpu(cpu_domains, i);
  5334. *sd = SD_SIBLING_INIT;
  5335. sd->span = cpu_sibling_map[i];
  5336. cpus_and(sd->span, sd->span, *cpu_map);
  5337. sd->parent = p;
  5338. p->child = sd;
  5339. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5340. #endif
  5341. }
  5342. #ifdef CONFIG_SCHED_SMT
  5343. /* Set up CPU (sibling) groups */
  5344. for_each_cpu_mask(i, *cpu_map) {
  5345. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5346. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5347. if (i != first_cpu(this_sibling_map))
  5348. continue;
  5349. init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
  5350. }
  5351. #endif
  5352. #ifdef CONFIG_SCHED_MC
  5353. /* Set up multi-core groups */
  5354. for_each_cpu_mask(i, *cpu_map) {
  5355. cpumask_t this_core_map = cpu_coregroup_map(i);
  5356. cpus_and(this_core_map, this_core_map, *cpu_map);
  5357. if (i != first_cpu(this_core_map))
  5358. continue;
  5359. init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
  5360. }
  5361. #endif
  5362. /* Set up physical groups */
  5363. for (i = 0; i < MAX_NUMNODES; i++) {
  5364. cpumask_t nodemask = node_to_cpumask(i);
  5365. cpus_and(nodemask, nodemask, *cpu_map);
  5366. if (cpus_empty(nodemask))
  5367. continue;
  5368. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5369. }
  5370. #ifdef CONFIG_NUMA
  5371. /* Set up node groups */
  5372. if (sd_allnodes)
  5373. init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
  5374. for (i = 0; i < MAX_NUMNODES; i++) {
  5375. /* Set up node groups */
  5376. struct sched_group *sg, *prev;
  5377. cpumask_t nodemask = node_to_cpumask(i);
  5378. cpumask_t domainspan;
  5379. cpumask_t covered = CPU_MASK_NONE;
  5380. int j;
  5381. cpus_and(nodemask, nodemask, *cpu_map);
  5382. if (cpus_empty(nodemask)) {
  5383. sched_group_nodes[i] = NULL;
  5384. continue;
  5385. }
  5386. domainspan = sched_domain_node_span(i);
  5387. cpus_and(domainspan, domainspan, *cpu_map);
  5388. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5389. if (!sg) {
  5390. printk(KERN_WARNING "Can not alloc domain group for "
  5391. "node %d\n", i);
  5392. goto error;
  5393. }
  5394. sched_group_nodes[i] = sg;
  5395. for_each_cpu_mask(j, nodemask) {
  5396. struct sched_domain *sd;
  5397. sd = &per_cpu(node_domains, j);
  5398. sd->groups = sg;
  5399. }
  5400. sg->__cpu_power = 0;
  5401. sg->cpumask = nodemask;
  5402. sg->next = sg;
  5403. cpus_or(covered, covered, nodemask);
  5404. prev = sg;
  5405. for (j = 0; j < MAX_NUMNODES; j++) {
  5406. cpumask_t tmp, notcovered;
  5407. int n = (i + j) % MAX_NUMNODES;
  5408. cpus_complement(notcovered, covered);
  5409. cpus_and(tmp, notcovered, *cpu_map);
  5410. cpus_and(tmp, tmp, domainspan);
  5411. if (cpus_empty(tmp))
  5412. break;
  5413. nodemask = node_to_cpumask(n);
  5414. cpus_and(tmp, tmp, nodemask);
  5415. if (cpus_empty(tmp))
  5416. continue;
  5417. sg = kmalloc_node(sizeof(struct sched_group),
  5418. GFP_KERNEL, i);
  5419. if (!sg) {
  5420. printk(KERN_WARNING
  5421. "Can not alloc domain group for node %d\n", j);
  5422. goto error;
  5423. }
  5424. sg->__cpu_power = 0;
  5425. sg->cpumask = tmp;
  5426. sg->next = prev->next;
  5427. cpus_or(covered, covered, tmp);
  5428. prev->next = sg;
  5429. prev = sg;
  5430. }
  5431. }
  5432. #endif
  5433. /* Calculate CPU power for physical packages and nodes */
  5434. #ifdef CONFIG_SCHED_SMT
  5435. for_each_cpu_mask(i, *cpu_map) {
  5436. sd = &per_cpu(cpu_domains, i);
  5437. init_sched_groups_power(i, sd);
  5438. }
  5439. #endif
  5440. #ifdef CONFIG_SCHED_MC
  5441. for_each_cpu_mask(i, *cpu_map) {
  5442. sd = &per_cpu(core_domains, i);
  5443. init_sched_groups_power(i, sd);
  5444. }
  5445. #endif
  5446. for_each_cpu_mask(i, *cpu_map) {
  5447. sd = &per_cpu(phys_domains, i);
  5448. init_sched_groups_power(i, sd);
  5449. }
  5450. #ifdef CONFIG_NUMA
  5451. for (i = 0; i < MAX_NUMNODES; i++)
  5452. init_numa_sched_groups_power(sched_group_nodes[i]);
  5453. if (sd_allnodes) {
  5454. struct sched_group *sg;
  5455. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5456. init_numa_sched_groups_power(sg);
  5457. }
  5458. #endif
  5459. /* Attach the domains */
  5460. for_each_cpu_mask(i, *cpu_map) {
  5461. struct sched_domain *sd;
  5462. #ifdef CONFIG_SCHED_SMT
  5463. sd = &per_cpu(cpu_domains, i);
  5464. #elif defined(CONFIG_SCHED_MC)
  5465. sd = &per_cpu(core_domains, i);
  5466. #else
  5467. sd = &per_cpu(phys_domains, i);
  5468. #endif
  5469. cpu_attach_domain(sd, i);
  5470. }
  5471. return 0;
  5472. #ifdef CONFIG_NUMA
  5473. error:
  5474. free_sched_groups(cpu_map);
  5475. return -ENOMEM;
  5476. #endif
  5477. }
  5478. /*
  5479. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5480. */
  5481. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5482. {
  5483. cpumask_t cpu_default_map;
  5484. int err;
  5485. /*
  5486. * Setup mask for cpus without special case scheduling requirements.
  5487. * For now this just excludes isolated cpus, but could be used to
  5488. * exclude other special cases in the future.
  5489. */
  5490. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5491. err = build_sched_domains(&cpu_default_map);
  5492. return err;
  5493. }
  5494. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5495. {
  5496. free_sched_groups(cpu_map);
  5497. }
  5498. /*
  5499. * Detach sched domains from a group of cpus specified in cpu_map
  5500. * These cpus will now be attached to the NULL domain
  5501. */
  5502. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5503. {
  5504. int i;
  5505. for_each_cpu_mask(i, *cpu_map)
  5506. cpu_attach_domain(NULL, i);
  5507. synchronize_sched();
  5508. arch_destroy_sched_domains(cpu_map);
  5509. }
  5510. /*
  5511. * Partition sched domains as specified by the cpumasks below.
  5512. * This attaches all cpus from the cpumasks to the NULL domain,
  5513. * waits for a RCU quiescent period, recalculates sched
  5514. * domain information and then attaches them back to the
  5515. * correct sched domains
  5516. * Call with hotplug lock held
  5517. */
  5518. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5519. {
  5520. cpumask_t change_map;
  5521. int err = 0;
  5522. cpus_and(*partition1, *partition1, cpu_online_map);
  5523. cpus_and(*partition2, *partition2, cpu_online_map);
  5524. cpus_or(change_map, *partition1, *partition2);
  5525. /* Detach sched domains from all of the affected cpus */
  5526. detach_destroy_domains(&change_map);
  5527. if (!cpus_empty(*partition1))
  5528. err = build_sched_domains(partition1);
  5529. if (!err && !cpus_empty(*partition2))
  5530. err = build_sched_domains(partition2);
  5531. return err;
  5532. }
  5533. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5534. int arch_reinit_sched_domains(void)
  5535. {
  5536. int err;
  5537. mutex_lock(&sched_hotcpu_mutex);
  5538. detach_destroy_domains(&cpu_online_map);
  5539. err = arch_init_sched_domains(&cpu_online_map);
  5540. mutex_unlock(&sched_hotcpu_mutex);
  5541. return err;
  5542. }
  5543. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5544. {
  5545. int ret;
  5546. if (buf[0] != '0' && buf[0] != '1')
  5547. return -EINVAL;
  5548. if (smt)
  5549. sched_smt_power_savings = (buf[0] == '1');
  5550. else
  5551. sched_mc_power_savings = (buf[0] == '1');
  5552. ret = arch_reinit_sched_domains();
  5553. return ret ? ret : count;
  5554. }
  5555. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5556. {
  5557. int err = 0;
  5558. #ifdef CONFIG_SCHED_SMT
  5559. if (smt_capable())
  5560. err = sysfs_create_file(&cls->kset.kobj,
  5561. &attr_sched_smt_power_savings.attr);
  5562. #endif
  5563. #ifdef CONFIG_SCHED_MC
  5564. if (!err && mc_capable())
  5565. err = sysfs_create_file(&cls->kset.kobj,
  5566. &attr_sched_mc_power_savings.attr);
  5567. #endif
  5568. return err;
  5569. }
  5570. #endif
  5571. #ifdef CONFIG_SCHED_MC
  5572. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5573. {
  5574. return sprintf(page, "%u\n", sched_mc_power_savings);
  5575. }
  5576. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5577. const char *buf, size_t count)
  5578. {
  5579. return sched_power_savings_store(buf, count, 0);
  5580. }
  5581. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5582. sched_mc_power_savings_store);
  5583. #endif
  5584. #ifdef CONFIG_SCHED_SMT
  5585. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5586. {
  5587. return sprintf(page, "%u\n", sched_smt_power_savings);
  5588. }
  5589. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5590. const char *buf, size_t count)
  5591. {
  5592. return sched_power_savings_store(buf, count, 1);
  5593. }
  5594. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5595. sched_smt_power_savings_store);
  5596. #endif
  5597. /*
  5598. * Force a reinitialization of the sched domains hierarchy. The domains
  5599. * and groups cannot be updated in place without racing with the balancing
  5600. * code, so we temporarily attach all running cpus to the NULL domain
  5601. * which will prevent rebalancing while the sched domains are recalculated.
  5602. */
  5603. static int update_sched_domains(struct notifier_block *nfb,
  5604. unsigned long action, void *hcpu)
  5605. {
  5606. switch (action) {
  5607. case CPU_UP_PREPARE:
  5608. case CPU_UP_PREPARE_FROZEN:
  5609. case CPU_DOWN_PREPARE:
  5610. case CPU_DOWN_PREPARE_FROZEN:
  5611. detach_destroy_domains(&cpu_online_map);
  5612. return NOTIFY_OK;
  5613. case CPU_UP_CANCELED:
  5614. case CPU_UP_CANCELED_FROZEN:
  5615. case CPU_DOWN_FAILED:
  5616. case CPU_DOWN_FAILED_FROZEN:
  5617. case CPU_ONLINE:
  5618. case CPU_ONLINE_FROZEN:
  5619. case CPU_DEAD:
  5620. case CPU_DEAD_FROZEN:
  5621. /*
  5622. * Fall through and re-initialise the domains.
  5623. */
  5624. break;
  5625. default:
  5626. return NOTIFY_DONE;
  5627. }
  5628. /* The hotplug lock is already held by cpu_up/cpu_down */
  5629. arch_init_sched_domains(&cpu_online_map);
  5630. return NOTIFY_OK;
  5631. }
  5632. void __init sched_init_smp(void)
  5633. {
  5634. cpumask_t non_isolated_cpus;
  5635. mutex_lock(&sched_hotcpu_mutex);
  5636. arch_init_sched_domains(&cpu_online_map);
  5637. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5638. if (cpus_empty(non_isolated_cpus))
  5639. cpu_set(smp_processor_id(), non_isolated_cpus);
  5640. mutex_unlock(&sched_hotcpu_mutex);
  5641. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5642. hotcpu_notifier(update_sched_domains, 0);
  5643. /* Move init over to a non-isolated CPU */
  5644. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5645. BUG();
  5646. }
  5647. #else
  5648. void __init sched_init_smp(void)
  5649. {
  5650. }
  5651. #endif /* CONFIG_SMP */
  5652. int in_sched_functions(unsigned long addr)
  5653. {
  5654. /* Linker adds these: start and end of __sched functions */
  5655. extern char __sched_text_start[], __sched_text_end[];
  5656. return in_lock_functions(addr) ||
  5657. (addr >= (unsigned long)__sched_text_start
  5658. && addr < (unsigned long)__sched_text_end);
  5659. }
  5660. void __init sched_init(void)
  5661. {
  5662. int i, j, k;
  5663. int highest_cpu = 0;
  5664. for_each_possible_cpu(i) {
  5665. struct prio_array *array;
  5666. struct rq *rq;
  5667. rq = cpu_rq(i);
  5668. spin_lock_init(&rq->lock);
  5669. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5670. rq->nr_running = 0;
  5671. rq->active = rq->arrays;
  5672. rq->expired = rq->arrays + 1;
  5673. rq->best_expired_prio = MAX_PRIO;
  5674. #ifdef CONFIG_SMP
  5675. rq->sd = NULL;
  5676. for (j = 1; j < 3; j++)
  5677. rq->cpu_load[j] = 0;
  5678. rq->active_balance = 0;
  5679. rq->push_cpu = 0;
  5680. rq->cpu = i;
  5681. rq->migration_thread = NULL;
  5682. INIT_LIST_HEAD(&rq->migration_queue);
  5683. #endif
  5684. atomic_set(&rq->nr_iowait, 0);
  5685. for (j = 0; j < 2; j++) {
  5686. array = rq->arrays + j;
  5687. for (k = 0; k < MAX_PRIO; k++) {
  5688. INIT_LIST_HEAD(array->queue + k);
  5689. __clear_bit(k, array->bitmap);
  5690. }
  5691. // delimiter for bitsearch
  5692. __set_bit(MAX_PRIO, array->bitmap);
  5693. }
  5694. highest_cpu = i;
  5695. }
  5696. set_load_weight(&init_task);
  5697. #ifdef CONFIG_SMP
  5698. nr_cpu_ids = highest_cpu + 1;
  5699. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5700. #endif
  5701. #ifdef CONFIG_RT_MUTEXES
  5702. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5703. #endif
  5704. /*
  5705. * The boot idle thread does lazy MMU switching as well:
  5706. */
  5707. atomic_inc(&init_mm.mm_count);
  5708. enter_lazy_tlb(&init_mm, current);
  5709. /*
  5710. * Make us the idle thread. Technically, schedule() should not be
  5711. * called from this thread, however somewhere below it might be,
  5712. * but because we are the idle thread, we just pick up running again
  5713. * when this runqueue becomes "idle".
  5714. */
  5715. init_idle(current, smp_processor_id());
  5716. }
  5717. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5718. void __might_sleep(char *file, int line)
  5719. {
  5720. #ifdef in_atomic
  5721. static unsigned long prev_jiffy; /* ratelimiting */
  5722. if ((in_atomic() || irqs_disabled()) &&
  5723. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5724. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5725. return;
  5726. prev_jiffy = jiffies;
  5727. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5728. " context at %s:%d\n", file, line);
  5729. printk("in_atomic():%d, irqs_disabled():%d\n",
  5730. in_atomic(), irqs_disabled());
  5731. debug_show_held_locks(current);
  5732. if (irqs_disabled())
  5733. print_irqtrace_events(current);
  5734. dump_stack();
  5735. }
  5736. #endif
  5737. }
  5738. EXPORT_SYMBOL(__might_sleep);
  5739. #endif
  5740. #ifdef CONFIG_MAGIC_SYSRQ
  5741. void normalize_rt_tasks(void)
  5742. {
  5743. struct prio_array *array;
  5744. struct task_struct *g, *p;
  5745. unsigned long flags;
  5746. struct rq *rq;
  5747. read_lock_irq(&tasklist_lock);
  5748. do_each_thread(g, p) {
  5749. if (!rt_task(p))
  5750. continue;
  5751. spin_lock_irqsave(&p->pi_lock, flags);
  5752. rq = __task_rq_lock(p);
  5753. array = p->array;
  5754. if (array)
  5755. deactivate_task(p, task_rq(p));
  5756. __setscheduler(p, SCHED_NORMAL, 0);
  5757. if (array) {
  5758. __activate_task(p, task_rq(p));
  5759. resched_task(rq->curr);
  5760. }
  5761. __task_rq_unlock(rq);
  5762. spin_unlock_irqrestore(&p->pi_lock, flags);
  5763. } while_each_thread(g, p);
  5764. read_unlock_irq(&tasklist_lock);
  5765. }
  5766. #endif /* CONFIG_MAGIC_SYSRQ */
  5767. #ifdef CONFIG_IA64
  5768. /*
  5769. * These functions are only useful for the IA64 MCA handling.
  5770. *
  5771. * They can only be called when the whole system has been
  5772. * stopped - every CPU needs to be quiescent, and no scheduling
  5773. * activity can take place. Using them for anything else would
  5774. * be a serious bug, and as a result, they aren't even visible
  5775. * under any other configuration.
  5776. */
  5777. /**
  5778. * curr_task - return the current task for a given cpu.
  5779. * @cpu: the processor in question.
  5780. *
  5781. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5782. */
  5783. struct task_struct *curr_task(int cpu)
  5784. {
  5785. return cpu_curr(cpu);
  5786. }
  5787. /**
  5788. * set_curr_task - set the current task for a given cpu.
  5789. * @cpu: the processor in question.
  5790. * @p: the task pointer to set.
  5791. *
  5792. * Description: This function must only be used when non-maskable interrupts
  5793. * are serviced on a separate stack. It allows the architecture to switch the
  5794. * notion of the current task on a cpu in a non-blocking manner. This function
  5795. * must be called with all CPU's synchronized, and interrupts disabled, the
  5796. * and caller must save the original value of the current task (see
  5797. * curr_task() above) and restore that value before reenabling interrupts and
  5798. * re-starting the system.
  5799. *
  5800. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5801. */
  5802. void set_curr_task(int cpu, struct task_struct *p)
  5803. {
  5804. cpu_curr(cpu) = p;
  5805. }
  5806. #endif