mmu.c 86 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "mmu.h"
  21. #include "x86.h"
  22. #include "kvm_cache_regs.h"
  23. #include <linux/kvm_host.h>
  24. #include <linux/types.h>
  25. #include <linux/string.h>
  26. #include <linux/mm.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/swap.h>
  30. #include <linux/hugetlb.h>
  31. #include <linux/compiler.h>
  32. #include <linux/srcu.h>
  33. #include <linux/slab.h>
  34. #include <linux/uaccess.h>
  35. #include <asm/page.h>
  36. #include <asm/cmpxchg.h>
  37. #include <asm/io.h>
  38. #include <asm/vmx.h>
  39. /*
  40. * When setting this variable to true it enables Two-Dimensional-Paging
  41. * where the hardware walks 2 page tables:
  42. * 1. the guest-virtual to guest-physical
  43. * 2. while doing 1. it walks guest-physical to host-physical
  44. * If the hardware supports that we don't need to do shadow paging.
  45. */
  46. bool tdp_enabled = false;
  47. #undef MMU_DEBUG
  48. #undef AUDIT
  49. #ifdef AUDIT
  50. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  51. #else
  52. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  53. #endif
  54. #ifdef MMU_DEBUG
  55. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  56. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  57. #else
  58. #define pgprintk(x...) do { } while (0)
  59. #define rmap_printk(x...) do { } while (0)
  60. #endif
  61. #if defined(MMU_DEBUG) || defined(AUDIT)
  62. static int dbg = 0;
  63. module_param(dbg, bool, 0644);
  64. #endif
  65. static int oos_shadow = 1;
  66. module_param(oos_shadow, bool, 0644);
  67. #ifndef MMU_DEBUG
  68. #define ASSERT(x) do { } while (0)
  69. #else
  70. #define ASSERT(x) \
  71. if (!(x)) { \
  72. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  73. __FILE__, __LINE__, #x); \
  74. }
  75. #endif
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define PT64_LEVEL_BITS 9
  79. #define PT64_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  81. #define PT64_LEVEL_MASK(level) \
  82. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LEVEL_MASK(level) \
  89. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  90. #define PT32_LVL_OFFSET_MASK(level) \
  91. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  92. * PT32_LEVEL_BITS))) - 1))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT64_LVL_ADDR_MASK(level) \
  99. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT64_LEVEL_BITS))) - 1))
  101. #define PT64_LVL_OFFSET_MASK(level) \
  102. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  103. * PT64_LEVEL_BITS))) - 1))
  104. #define PT32_BASE_ADDR_MASK PAGE_MASK
  105. #define PT32_DIR_BASE_ADDR_MASK \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  107. #define PT32_LVL_ADDR_MASK(level) \
  108. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT32_LEVEL_BITS))) - 1))
  110. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  111. | PT64_NX_MASK)
  112. #define RMAP_EXT 4
  113. #define ACC_EXEC_MASK 1
  114. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  115. #define ACC_USER_MASK PT_USER_MASK
  116. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  117. #include <trace/events/kvm.h>
  118. #define CREATE_TRACE_POINTS
  119. #include "mmutrace.h"
  120. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  121. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  122. struct kvm_rmap_desc {
  123. u64 *sptes[RMAP_EXT];
  124. struct kvm_rmap_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. int level;
  130. u64 *sptep;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
  138. static struct kmem_cache *pte_chain_cache;
  139. static struct kmem_cache *rmap_desc_cache;
  140. static struct kmem_cache *mmu_page_header_cache;
  141. static struct percpu_counter kvm_total_used_mmu_pages;
  142. static u64 __read_mostly shadow_trap_nonpresent_pte;
  143. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  144. static u64 __read_mostly shadow_base_present_pte;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static inline u64 rsvd_bits(int s, int e)
  151. {
  152. return ((1ULL << (e - s + 1)) - 1) << s;
  153. }
  154. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  155. {
  156. shadow_trap_nonpresent_pte = trap_pte;
  157. shadow_notrap_nonpresent_pte = notrap_pte;
  158. }
  159. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  160. void kvm_mmu_set_base_ptes(u64 base_pte)
  161. {
  162. shadow_base_present_pte = base_pte;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  165. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  166. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  167. {
  168. shadow_user_mask = user_mask;
  169. shadow_accessed_mask = accessed_mask;
  170. shadow_dirty_mask = dirty_mask;
  171. shadow_nx_mask = nx_mask;
  172. shadow_x_mask = x_mask;
  173. }
  174. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  175. static bool is_write_protection(struct kvm_vcpu *vcpu)
  176. {
  177. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  178. }
  179. static int is_cpuid_PSE36(void)
  180. {
  181. return 1;
  182. }
  183. static int is_nx(struct kvm_vcpu *vcpu)
  184. {
  185. return vcpu->arch.efer & EFER_NX;
  186. }
  187. static int is_shadow_present_pte(u64 pte)
  188. {
  189. return pte != shadow_trap_nonpresent_pte
  190. && pte != shadow_notrap_nonpresent_pte;
  191. }
  192. static int is_large_pte(u64 pte)
  193. {
  194. return pte & PT_PAGE_SIZE_MASK;
  195. }
  196. static int is_writable_pte(unsigned long pte)
  197. {
  198. return pte & PT_WRITABLE_MASK;
  199. }
  200. static int is_dirty_gpte(unsigned long pte)
  201. {
  202. return pte & PT_DIRTY_MASK;
  203. }
  204. static int is_rmap_spte(u64 pte)
  205. {
  206. return is_shadow_present_pte(pte);
  207. }
  208. static int is_last_spte(u64 pte, int level)
  209. {
  210. if (level == PT_PAGE_TABLE_LEVEL)
  211. return 1;
  212. if (is_large_pte(pte))
  213. return 1;
  214. return 0;
  215. }
  216. static pfn_t spte_to_pfn(u64 pte)
  217. {
  218. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  219. }
  220. static gfn_t pse36_gfn_delta(u32 gpte)
  221. {
  222. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  223. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  224. }
  225. static void __set_spte(u64 *sptep, u64 spte)
  226. {
  227. set_64bit(sptep, spte);
  228. }
  229. static u64 __xchg_spte(u64 *sptep, u64 new_spte)
  230. {
  231. #ifdef CONFIG_X86_64
  232. return xchg(sptep, new_spte);
  233. #else
  234. u64 old_spte;
  235. do {
  236. old_spte = *sptep;
  237. } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
  238. return old_spte;
  239. #endif
  240. }
  241. static bool spte_has_volatile_bits(u64 spte)
  242. {
  243. if (!shadow_accessed_mask)
  244. return false;
  245. if (!is_shadow_present_pte(spte))
  246. return false;
  247. if ((spte & shadow_accessed_mask) &&
  248. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  249. return false;
  250. return true;
  251. }
  252. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  253. {
  254. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  255. }
  256. static void update_spte(u64 *sptep, u64 new_spte)
  257. {
  258. u64 mask, old_spte = *sptep;
  259. WARN_ON(!is_rmap_spte(new_spte));
  260. new_spte |= old_spte & shadow_dirty_mask;
  261. mask = shadow_accessed_mask;
  262. if (is_writable_pte(old_spte))
  263. mask |= shadow_dirty_mask;
  264. if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
  265. __set_spte(sptep, new_spte);
  266. else
  267. old_spte = __xchg_spte(sptep, new_spte);
  268. if (!shadow_accessed_mask)
  269. return;
  270. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  271. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  272. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  273. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  274. }
  275. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  276. struct kmem_cache *base_cache, int min)
  277. {
  278. void *obj;
  279. if (cache->nobjs >= min)
  280. return 0;
  281. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  282. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  283. if (!obj)
  284. return -ENOMEM;
  285. cache->objects[cache->nobjs++] = obj;
  286. }
  287. return 0;
  288. }
  289. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  290. struct kmem_cache *cache)
  291. {
  292. while (mc->nobjs)
  293. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  294. }
  295. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  296. int min)
  297. {
  298. struct page *page;
  299. if (cache->nobjs >= min)
  300. return 0;
  301. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  302. page = alloc_page(GFP_KERNEL);
  303. if (!page)
  304. return -ENOMEM;
  305. cache->objects[cache->nobjs++] = page_address(page);
  306. }
  307. return 0;
  308. }
  309. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  310. {
  311. while (mc->nobjs)
  312. free_page((unsigned long)mc->objects[--mc->nobjs]);
  313. }
  314. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  315. {
  316. int r;
  317. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  318. pte_chain_cache, 4);
  319. if (r)
  320. goto out;
  321. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  322. rmap_desc_cache, 4);
  323. if (r)
  324. goto out;
  325. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  326. if (r)
  327. goto out;
  328. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  329. mmu_page_header_cache, 4);
  330. out:
  331. return r;
  332. }
  333. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  334. {
  335. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  336. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  337. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  338. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  339. mmu_page_header_cache);
  340. }
  341. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  342. size_t size)
  343. {
  344. void *p;
  345. BUG_ON(!mc->nobjs);
  346. p = mc->objects[--mc->nobjs];
  347. return p;
  348. }
  349. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  350. {
  351. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  352. sizeof(struct kvm_pte_chain));
  353. }
  354. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  355. {
  356. kmem_cache_free(pte_chain_cache, pc);
  357. }
  358. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  359. {
  360. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  361. sizeof(struct kvm_rmap_desc));
  362. }
  363. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  364. {
  365. kmem_cache_free(rmap_desc_cache, rd);
  366. }
  367. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  368. {
  369. if (!sp->role.direct)
  370. return sp->gfns[index];
  371. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  372. }
  373. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  374. {
  375. if (sp->role.direct)
  376. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  377. else
  378. sp->gfns[index] = gfn;
  379. }
  380. /*
  381. * Return the pointer to the largepage write count for a given
  382. * gfn, handling slots that are not large page aligned.
  383. */
  384. static int *slot_largepage_idx(gfn_t gfn,
  385. struct kvm_memory_slot *slot,
  386. int level)
  387. {
  388. unsigned long idx;
  389. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  390. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  391. return &slot->lpage_info[level - 2][idx].write_count;
  392. }
  393. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  394. {
  395. struct kvm_memory_slot *slot;
  396. int *write_count;
  397. int i;
  398. slot = gfn_to_memslot(kvm, gfn);
  399. for (i = PT_DIRECTORY_LEVEL;
  400. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  401. write_count = slot_largepage_idx(gfn, slot, i);
  402. *write_count += 1;
  403. }
  404. }
  405. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  406. {
  407. struct kvm_memory_slot *slot;
  408. int *write_count;
  409. int i;
  410. slot = gfn_to_memslot(kvm, gfn);
  411. for (i = PT_DIRECTORY_LEVEL;
  412. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  413. write_count = slot_largepage_idx(gfn, slot, i);
  414. *write_count -= 1;
  415. WARN_ON(*write_count < 0);
  416. }
  417. }
  418. static int has_wrprotected_page(struct kvm *kvm,
  419. gfn_t gfn,
  420. int level)
  421. {
  422. struct kvm_memory_slot *slot;
  423. int *largepage_idx;
  424. slot = gfn_to_memslot(kvm, gfn);
  425. if (slot) {
  426. largepage_idx = slot_largepage_idx(gfn, slot, level);
  427. return *largepage_idx;
  428. }
  429. return 1;
  430. }
  431. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  432. {
  433. unsigned long page_size;
  434. int i, ret = 0;
  435. page_size = kvm_host_page_size(kvm, gfn);
  436. for (i = PT_PAGE_TABLE_LEVEL;
  437. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  438. if (page_size >= KVM_HPAGE_SIZE(i))
  439. ret = i;
  440. else
  441. break;
  442. }
  443. return ret;
  444. }
  445. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  446. {
  447. struct kvm_memory_slot *slot;
  448. int host_level, level, max_level;
  449. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  450. if (slot && slot->dirty_bitmap)
  451. return PT_PAGE_TABLE_LEVEL;
  452. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  453. if (host_level == PT_PAGE_TABLE_LEVEL)
  454. return host_level;
  455. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  456. kvm_x86_ops->get_lpage_level() : host_level;
  457. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  458. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  459. break;
  460. return level - 1;
  461. }
  462. /*
  463. * Take gfn and return the reverse mapping to it.
  464. */
  465. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  466. {
  467. struct kvm_memory_slot *slot;
  468. unsigned long idx;
  469. slot = gfn_to_memslot(kvm, gfn);
  470. if (likely(level == PT_PAGE_TABLE_LEVEL))
  471. return &slot->rmap[gfn - slot->base_gfn];
  472. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  473. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  474. return &slot->lpage_info[level - 2][idx].rmap_pde;
  475. }
  476. /*
  477. * Reverse mapping data structures:
  478. *
  479. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  480. * that points to page_address(page).
  481. *
  482. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  483. * containing more mappings.
  484. *
  485. * Returns the number of rmap entries before the spte was added or zero if
  486. * the spte was not added.
  487. *
  488. */
  489. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  490. {
  491. struct kvm_mmu_page *sp;
  492. struct kvm_rmap_desc *desc;
  493. unsigned long *rmapp;
  494. int i, count = 0;
  495. if (!is_rmap_spte(*spte))
  496. return count;
  497. sp = page_header(__pa(spte));
  498. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  499. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  500. if (!*rmapp) {
  501. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  502. *rmapp = (unsigned long)spte;
  503. } else if (!(*rmapp & 1)) {
  504. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  505. desc = mmu_alloc_rmap_desc(vcpu);
  506. desc->sptes[0] = (u64 *)*rmapp;
  507. desc->sptes[1] = spte;
  508. *rmapp = (unsigned long)desc | 1;
  509. } else {
  510. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  511. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  512. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  513. desc = desc->more;
  514. count += RMAP_EXT;
  515. }
  516. if (desc->sptes[RMAP_EXT-1]) {
  517. desc->more = mmu_alloc_rmap_desc(vcpu);
  518. desc = desc->more;
  519. }
  520. for (i = 0; desc->sptes[i]; ++i)
  521. ;
  522. desc->sptes[i] = spte;
  523. }
  524. return count;
  525. }
  526. static void rmap_desc_remove_entry(unsigned long *rmapp,
  527. struct kvm_rmap_desc *desc,
  528. int i,
  529. struct kvm_rmap_desc *prev_desc)
  530. {
  531. int j;
  532. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  533. ;
  534. desc->sptes[i] = desc->sptes[j];
  535. desc->sptes[j] = NULL;
  536. if (j != 0)
  537. return;
  538. if (!prev_desc && !desc->more)
  539. *rmapp = (unsigned long)desc->sptes[0];
  540. else
  541. if (prev_desc)
  542. prev_desc->more = desc->more;
  543. else
  544. *rmapp = (unsigned long)desc->more | 1;
  545. mmu_free_rmap_desc(desc);
  546. }
  547. static void rmap_remove(struct kvm *kvm, u64 *spte)
  548. {
  549. struct kvm_rmap_desc *desc;
  550. struct kvm_rmap_desc *prev_desc;
  551. struct kvm_mmu_page *sp;
  552. gfn_t gfn;
  553. unsigned long *rmapp;
  554. int i;
  555. sp = page_header(__pa(spte));
  556. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  557. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  558. if (!*rmapp) {
  559. printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
  560. BUG();
  561. } else if (!(*rmapp & 1)) {
  562. rmap_printk("rmap_remove: %p 1->0\n", spte);
  563. if ((u64 *)*rmapp != spte) {
  564. printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
  565. BUG();
  566. }
  567. *rmapp = 0;
  568. } else {
  569. rmap_printk("rmap_remove: %p many->many\n", spte);
  570. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  571. prev_desc = NULL;
  572. while (desc) {
  573. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  574. if (desc->sptes[i] == spte) {
  575. rmap_desc_remove_entry(rmapp,
  576. desc, i,
  577. prev_desc);
  578. return;
  579. }
  580. prev_desc = desc;
  581. desc = desc->more;
  582. }
  583. pr_err("rmap_remove: %p many->many\n", spte);
  584. BUG();
  585. }
  586. }
  587. static void set_spte_track_bits(u64 *sptep, u64 new_spte)
  588. {
  589. pfn_t pfn;
  590. u64 old_spte = *sptep;
  591. if (!spte_has_volatile_bits(old_spte))
  592. __set_spte(sptep, new_spte);
  593. else
  594. old_spte = __xchg_spte(sptep, new_spte);
  595. if (!is_rmap_spte(old_spte))
  596. return;
  597. pfn = spte_to_pfn(old_spte);
  598. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  599. kvm_set_pfn_accessed(pfn);
  600. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  601. kvm_set_pfn_dirty(pfn);
  602. }
  603. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  604. {
  605. set_spte_track_bits(sptep, new_spte);
  606. rmap_remove(kvm, sptep);
  607. }
  608. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  609. {
  610. struct kvm_rmap_desc *desc;
  611. u64 *prev_spte;
  612. int i;
  613. if (!*rmapp)
  614. return NULL;
  615. else if (!(*rmapp & 1)) {
  616. if (!spte)
  617. return (u64 *)*rmapp;
  618. return NULL;
  619. }
  620. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  621. prev_spte = NULL;
  622. while (desc) {
  623. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  624. if (prev_spte == spte)
  625. return desc->sptes[i];
  626. prev_spte = desc->sptes[i];
  627. }
  628. desc = desc->more;
  629. }
  630. return NULL;
  631. }
  632. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  633. {
  634. unsigned long *rmapp;
  635. u64 *spte;
  636. int i, write_protected = 0;
  637. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  638. spte = rmap_next(kvm, rmapp, NULL);
  639. while (spte) {
  640. BUG_ON(!spte);
  641. BUG_ON(!(*spte & PT_PRESENT_MASK));
  642. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  643. if (is_writable_pte(*spte)) {
  644. update_spte(spte, *spte & ~PT_WRITABLE_MASK);
  645. write_protected = 1;
  646. }
  647. spte = rmap_next(kvm, rmapp, spte);
  648. }
  649. /* check for huge page mappings */
  650. for (i = PT_DIRECTORY_LEVEL;
  651. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  652. rmapp = gfn_to_rmap(kvm, gfn, i);
  653. spte = rmap_next(kvm, rmapp, NULL);
  654. while (spte) {
  655. BUG_ON(!spte);
  656. BUG_ON(!(*spte & PT_PRESENT_MASK));
  657. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  658. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  659. if (is_writable_pte(*spte)) {
  660. drop_spte(kvm, spte,
  661. shadow_trap_nonpresent_pte);
  662. --kvm->stat.lpages;
  663. spte = NULL;
  664. write_protected = 1;
  665. }
  666. spte = rmap_next(kvm, rmapp, spte);
  667. }
  668. }
  669. return write_protected;
  670. }
  671. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  672. unsigned long data)
  673. {
  674. u64 *spte;
  675. int need_tlb_flush = 0;
  676. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  677. BUG_ON(!(*spte & PT_PRESENT_MASK));
  678. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  679. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  680. need_tlb_flush = 1;
  681. }
  682. return need_tlb_flush;
  683. }
  684. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  685. unsigned long data)
  686. {
  687. int need_flush = 0;
  688. u64 *spte, new_spte;
  689. pte_t *ptep = (pte_t *)data;
  690. pfn_t new_pfn;
  691. WARN_ON(pte_huge(*ptep));
  692. new_pfn = pte_pfn(*ptep);
  693. spte = rmap_next(kvm, rmapp, NULL);
  694. while (spte) {
  695. BUG_ON(!is_shadow_present_pte(*spte));
  696. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  697. need_flush = 1;
  698. if (pte_write(*ptep)) {
  699. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  700. spte = rmap_next(kvm, rmapp, NULL);
  701. } else {
  702. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  703. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  704. new_spte &= ~PT_WRITABLE_MASK;
  705. new_spte &= ~SPTE_HOST_WRITEABLE;
  706. new_spte &= ~shadow_accessed_mask;
  707. set_spte_track_bits(spte, new_spte);
  708. spte = rmap_next(kvm, rmapp, spte);
  709. }
  710. }
  711. if (need_flush)
  712. kvm_flush_remote_tlbs(kvm);
  713. return 0;
  714. }
  715. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  716. unsigned long data,
  717. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  718. unsigned long data))
  719. {
  720. int i, j;
  721. int ret;
  722. int retval = 0;
  723. struct kvm_memslots *slots;
  724. slots = kvm_memslots(kvm);
  725. for (i = 0; i < slots->nmemslots; i++) {
  726. struct kvm_memory_slot *memslot = &slots->memslots[i];
  727. unsigned long start = memslot->userspace_addr;
  728. unsigned long end;
  729. end = start + (memslot->npages << PAGE_SHIFT);
  730. if (hva >= start && hva < end) {
  731. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  732. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  733. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  734. unsigned long idx;
  735. int sh;
  736. sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j);
  737. idx = ((memslot->base_gfn+gfn_offset) >> sh) -
  738. (memslot->base_gfn >> sh);
  739. ret |= handler(kvm,
  740. &memslot->lpage_info[j][idx].rmap_pde,
  741. data);
  742. }
  743. trace_kvm_age_page(hva, memslot, ret);
  744. retval |= ret;
  745. }
  746. }
  747. return retval;
  748. }
  749. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  750. {
  751. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  752. }
  753. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  754. {
  755. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  756. }
  757. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  758. unsigned long data)
  759. {
  760. u64 *spte;
  761. int young = 0;
  762. /*
  763. * Emulate the accessed bit for EPT, by checking if this page has
  764. * an EPT mapping, and clearing it if it does. On the next access,
  765. * a new EPT mapping will be established.
  766. * This has some overhead, but not as much as the cost of swapping
  767. * out actively used pages or breaking up actively used hugepages.
  768. */
  769. if (!shadow_accessed_mask)
  770. return kvm_unmap_rmapp(kvm, rmapp, data);
  771. spte = rmap_next(kvm, rmapp, NULL);
  772. while (spte) {
  773. int _young;
  774. u64 _spte = *spte;
  775. BUG_ON(!(_spte & PT_PRESENT_MASK));
  776. _young = _spte & PT_ACCESSED_MASK;
  777. if (_young) {
  778. young = 1;
  779. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  780. }
  781. spte = rmap_next(kvm, rmapp, spte);
  782. }
  783. return young;
  784. }
  785. #define RMAP_RECYCLE_THRESHOLD 1000
  786. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  787. {
  788. unsigned long *rmapp;
  789. struct kvm_mmu_page *sp;
  790. sp = page_header(__pa(spte));
  791. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  792. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  793. kvm_flush_remote_tlbs(vcpu->kvm);
  794. }
  795. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  796. {
  797. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  798. }
  799. #ifdef MMU_DEBUG
  800. static int is_empty_shadow_page(u64 *spt)
  801. {
  802. u64 *pos;
  803. u64 *end;
  804. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  805. if (is_shadow_present_pte(*pos)) {
  806. printk(KERN_ERR "%s: %p %llx\n", __func__,
  807. pos, *pos);
  808. return 0;
  809. }
  810. return 1;
  811. }
  812. #endif
  813. /*
  814. * This value is the sum of all of the kvm instances's
  815. * kvm->arch.n_used_mmu_pages values. We need a global,
  816. * aggregate version in order to make the slab shrinker
  817. * faster
  818. */
  819. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  820. {
  821. kvm->arch.n_used_mmu_pages += nr;
  822. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  823. }
  824. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  825. {
  826. ASSERT(is_empty_shadow_page(sp->spt));
  827. hlist_del(&sp->hash_link);
  828. list_del(&sp->link);
  829. __free_page(virt_to_page(sp->spt));
  830. if (!sp->role.direct)
  831. __free_page(virt_to_page(sp->gfns));
  832. kmem_cache_free(mmu_page_header_cache, sp);
  833. kvm_mod_used_mmu_pages(kvm, -1);
  834. }
  835. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  836. {
  837. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  838. }
  839. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  840. u64 *parent_pte, int direct)
  841. {
  842. struct kvm_mmu_page *sp;
  843. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  844. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  845. if (!direct)
  846. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  847. PAGE_SIZE);
  848. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  849. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  850. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  851. sp->multimapped = 0;
  852. sp->parent_pte = parent_pte;
  853. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  854. return sp;
  855. }
  856. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  857. struct kvm_mmu_page *sp, u64 *parent_pte)
  858. {
  859. struct kvm_pte_chain *pte_chain;
  860. struct hlist_node *node;
  861. int i;
  862. if (!parent_pte)
  863. return;
  864. if (!sp->multimapped) {
  865. u64 *old = sp->parent_pte;
  866. if (!old) {
  867. sp->parent_pte = parent_pte;
  868. return;
  869. }
  870. sp->multimapped = 1;
  871. pte_chain = mmu_alloc_pte_chain(vcpu);
  872. INIT_HLIST_HEAD(&sp->parent_ptes);
  873. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  874. pte_chain->parent_ptes[0] = old;
  875. }
  876. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  877. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  878. continue;
  879. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  880. if (!pte_chain->parent_ptes[i]) {
  881. pte_chain->parent_ptes[i] = parent_pte;
  882. return;
  883. }
  884. }
  885. pte_chain = mmu_alloc_pte_chain(vcpu);
  886. BUG_ON(!pte_chain);
  887. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  888. pte_chain->parent_ptes[0] = parent_pte;
  889. }
  890. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  891. u64 *parent_pte)
  892. {
  893. struct kvm_pte_chain *pte_chain;
  894. struct hlist_node *node;
  895. int i;
  896. if (!sp->multimapped) {
  897. BUG_ON(sp->parent_pte != parent_pte);
  898. sp->parent_pte = NULL;
  899. return;
  900. }
  901. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  902. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  903. if (!pte_chain->parent_ptes[i])
  904. break;
  905. if (pte_chain->parent_ptes[i] != parent_pte)
  906. continue;
  907. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  908. && pte_chain->parent_ptes[i + 1]) {
  909. pte_chain->parent_ptes[i]
  910. = pte_chain->parent_ptes[i + 1];
  911. ++i;
  912. }
  913. pte_chain->parent_ptes[i] = NULL;
  914. if (i == 0) {
  915. hlist_del(&pte_chain->link);
  916. mmu_free_pte_chain(pte_chain);
  917. if (hlist_empty(&sp->parent_ptes)) {
  918. sp->multimapped = 0;
  919. sp->parent_pte = NULL;
  920. }
  921. }
  922. return;
  923. }
  924. BUG();
  925. }
  926. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  927. {
  928. struct kvm_pte_chain *pte_chain;
  929. struct hlist_node *node;
  930. struct kvm_mmu_page *parent_sp;
  931. int i;
  932. if (!sp->multimapped && sp->parent_pte) {
  933. parent_sp = page_header(__pa(sp->parent_pte));
  934. fn(parent_sp, sp->parent_pte);
  935. return;
  936. }
  937. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  938. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  939. u64 *spte = pte_chain->parent_ptes[i];
  940. if (!spte)
  941. break;
  942. parent_sp = page_header(__pa(spte));
  943. fn(parent_sp, spte);
  944. }
  945. }
  946. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
  947. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  948. {
  949. mmu_parent_walk(sp, mark_unsync);
  950. }
  951. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
  952. {
  953. unsigned int index;
  954. index = spte - sp->spt;
  955. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  956. return;
  957. if (sp->unsync_children++)
  958. return;
  959. kvm_mmu_mark_parents_unsync(sp);
  960. }
  961. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  962. struct kvm_mmu_page *sp)
  963. {
  964. int i;
  965. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  966. sp->spt[i] = shadow_trap_nonpresent_pte;
  967. }
  968. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  969. struct kvm_mmu_page *sp, bool clear_unsync)
  970. {
  971. return 1;
  972. }
  973. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  974. {
  975. }
  976. #define KVM_PAGE_ARRAY_NR 16
  977. struct kvm_mmu_pages {
  978. struct mmu_page_and_offset {
  979. struct kvm_mmu_page *sp;
  980. unsigned int idx;
  981. } page[KVM_PAGE_ARRAY_NR];
  982. unsigned int nr;
  983. };
  984. #define for_each_unsync_children(bitmap, idx) \
  985. for (idx = find_first_bit(bitmap, 512); \
  986. idx < 512; \
  987. idx = find_next_bit(bitmap, 512, idx+1))
  988. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  989. int idx)
  990. {
  991. int i;
  992. if (sp->unsync)
  993. for (i=0; i < pvec->nr; i++)
  994. if (pvec->page[i].sp == sp)
  995. return 0;
  996. pvec->page[pvec->nr].sp = sp;
  997. pvec->page[pvec->nr].idx = idx;
  998. pvec->nr++;
  999. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1000. }
  1001. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1002. struct kvm_mmu_pages *pvec)
  1003. {
  1004. int i, ret, nr_unsync_leaf = 0;
  1005. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  1006. struct kvm_mmu_page *child;
  1007. u64 ent = sp->spt[i];
  1008. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1009. goto clear_child_bitmap;
  1010. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1011. if (child->unsync_children) {
  1012. if (mmu_pages_add(pvec, child, i))
  1013. return -ENOSPC;
  1014. ret = __mmu_unsync_walk(child, pvec);
  1015. if (!ret)
  1016. goto clear_child_bitmap;
  1017. else if (ret > 0)
  1018. nr_unsync_leaf += ret;
  1019. else
  1020. return ret;
  1021. } else if (child->unsync) {
  1022. nr_unsync_leaf++;
  1023. if (mmu_pages_add(pvec, child, i))
  1024. return -ENOSPC;
  1025. } else
  1026. goto clear_child_bitmap;
  1027. continue;
  1028. clear_child_bitmap:
  1029. __clear_bit(i, sp->unsync_child_bitmap);
  1030. sp->unsync_children--;
  1031. WARN_ON((int)sp->unsync_children < 0);
  1032. }
  1033. return nr_unsync_leaf;
  1034. }
  1035. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1036. struct kvm_mmu_pages *pvec)
  1037. {
  1038. if (!sp->unsync_children)
  1039. return 0;
  1040. mmu_pages_add(pvec, sp, 0);
  1041. return __mmu_unsync_walk(sp, pvec);
  1042. }
  1043. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1044. {
  1045. WARN_ON(!sp->unsync);
  1046. trace_kvm_mmu_sync_page(sp);
  1047. sp->unsync = 0;
  1048. --kvm->stat.mmu_unsync;
  1049. }
  1050. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1051. struct list_head *invalid_list);
  1052. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1053. struct list_head *invalid_list);
  1054. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1055. hlist_for_each_entry(sp, pos, \
  1056. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1057. if ((sp)->gfn != (gfn)) {} else
  1058. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1059. hlist_for_each_entry(sp, pos, \
  1060. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1061. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1062. (sp)->role.invalid) {} else
  1063. /* @sp->gfn should be write-protected at the call site */
  1064. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1065. struct list_head *invalid_list, bool clear_unsync)
  1066. {
  1067. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1068. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1069. return 1;
  1070. }
  1071. if (clear_unsync)
  1072. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1073. if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
  1074. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1075. return 1;
  1076. }
  1077. kvm_mmu_flush_tlb(vcpu);
  1078. return 0;
  1079. }
  1080. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1081. struct kvm_mmu_page *sp)
  1082. {
  1083. LIST_HEAD(invalid_list);
  1084. int ret;
  1085. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1086. if (ret)
  1087. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1088. return ret;
  1089. }
  1090. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1091. struct list_head *invalid_list)
  1092. {
  1093. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1094. }
  1095. /* @gfn should be write-protected at the call site */
  1096. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1097. {
  1098. struct kvm_mmu_page *s;
  1099. struct hlist_node *node;
  1100. LIST_HEAD(invalid_list);
  1101. bool flush = false;
  1102. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1103. if (!s->unsync)
  1104. continue;
  1105. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1106. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1107. (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
  1108. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1109. continue;
  1110. }
  1111. kvm_unlink_unsync_page(vcpu->kvm, s);
  1112. flush = true;
  1113. }
  1114. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1115. if (flush)
  1116. kvm_mmu_flush_tlb(vcpu);
  1117. }
  1118. struct mmu_page_path {
  1119. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1120. unsigned int idx[PT64_ROOT_LEVEL-1];
  1121. };
  1122. #define for_each_sp(pvec, sp, parents, i) \
  1123. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1124. sp = pvec.page[i].sp; \
  1125. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1126. i = mmu_pages_next(&pvec, &parents, i))
  1127. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1128. struct mmu_page_path *parents,
  1129. int i)
  1130. {
  1131. int n;
  1132. for (n = i+1; n < pvec->nr; n++) {
  1133. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1134. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1135. parents->idx[0] = pvec->page[n].idx;
  1136. return n;
  1137. }
  1138. parents->parent[sp->role.level-2] = sp;
  1139. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1140. }
  1141. return n;
  1142. }
  1143. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1144. {
  1145. struct kvm_mmu_page *sp;
  1146. unsigned int level = 0;
  1147. do {
  1148. unsigned int idx = parents->idx[level];
  1149. sp = parents->parent[level];
  1150. if (!sp)
  1151. return;
  1152. --sp->unsync_children;
  1153. WARN_ON((int)sp->unsync_children < 0);
  1154. __clear_bit(idx, sp->unsync_child_bitmap);
  1155. level++;
  1156. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1157. }
  1158. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1159. struct mmu_page_path *parents,
  1160. struct kvm_mmu_pages *pvec)
  1161. {
  1162. parents->parent[parent->role.level-1] = NULL;
  1163. pvec->nr = 0;
  1164. }
  1165. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1166. struct kvm_mmu_page *parent)
  1167. {
  1168. int i;
  1169. struct kvm_mmu_page *sp;
  1170. struct mmu_page_path parents;
  1171. struct kvm_mmu_pages pages;
  1172. LIST_HEAD(invalid_list);
  1173. kvm_mmu_pages_init(parent, &parents, &pages);
  1174. while (mmu_unsync_walk(parent, &pages)) {
  1175. int protected = 0;
  1176. for_each_sp(pages, sp, parents, i)
  1177. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1178. if (protected)
  1179. kvm_flush_remote_tlbs(vcpu->kvm);
  1180. for_each_sp(pages, sp, parents, i) {
  1181. kvm_sync_page(vcpu, sp, &invalid_list);
  1182. mmu_pages_clear_parents(&parents);
  1183. }
  1184. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1185. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1186. kvm_mmu_pages_init(parent, &parents, &pages);
  1187. }
  1188. }
  1189. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1190. gfn_t gfn,
  1191. gva_t gaddr,
  1192. unsigned level,
  1193. int direct,
  1194. unsigned access,
  1195. u64 *parent_pte)
  1196. {
  1197. union kvm_mmu_page_role role;
  1198. unsigned quadrant;
  1199. struct kvm_mmu_page *sp;
  1200. struct hlist_node *node;
  1201. bool need_sync = false;
  1202. role = vcpu->arch.mmu.base_role;
  1203. role.level = level;
  1204. role.direct = direct;
  1205. if (role.direct)
  1206. role.cr4_pae = 0;
  1207. role.access = access;
  1208. if (!tdp_enabled && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1209. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1210. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1211. role.quadrant = quadrant;
  1212. }
  1213. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1214. if (!need_sync && sp->unsync)
  1215. need_sync = true;
  1216. if (sp->role.word != role.word)
  1217. continue;
  1218. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1219. break;
  1220. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1221. if (sp->unsync_children) {
  1222. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1223. kvm_mmu_mark_parents_unsync(sp);
  1224. } else if (sp->unsync)
  1225. kvm_mmu_mark_parents_unsync(sp);
  1226. trace_kvm_mmu_get_page(sp, false);
  1227. return sp;
  1228. }
  1229. ++vcpu->kvm->stat.mmu_cache_miss;
  1230. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1231. if (!sp)
  1232. return sp;
  1233. sp->gfn = gfn;
  1234. sp->role = role;
  1235. hlist_add_head(&sp->hash_link,
  1236. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1237. if (!direct) {
  1238. if (rmap_write_protect(vcpu->kvm, gfn))
  1239. kvm_flush_remote_tlbs(vcpu->kvm);
  1240. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1241. kvm_sync_pages(vcpu, gfn);
  1242. account_shadowed(vcpu->kvm, gfn);
  1243. }
  1244. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1245. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1246. else
  1247. nonpaging_prefetch_page(vcpu, sp);
  1248. trace_kvm_mmu_get_page(sp, true);
  1249. return sp;
  1250. }
  1251. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1252. struct kvm_vcpu *vcpu, u64 addr)
  1253. {
  1254. iterator->addr = addr;
  1255. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1256. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1257. if (iterator->level == PT32E_ROOT_LEVEL) {
  1258. iterator->shadow_addr
  1259. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1260. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1261. --iterator->level;
  1262. if (!iterator->shadow_addr)
  1263. iterator->level = 0;
  1264. }
  1265. }
  1266. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1267. {
  1268. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1269. return false;
  1270. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1271. if (is_large_pte(*iterator->sptep))
  1272. return false;
  1273. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1274. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1275. return true;
  1276. }
  1277. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1278. {
  1279. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1280. --iterator->level;
  1281. }
  1282. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1283. {
  1284. u64 spte;
  1285. spte = __pa(sp->spt)
  1286. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1287. | PT_WRITABLE_MASK | PT_USER_MASK;
  1288. __set_spte(sptep, spte);
  1289. }
  1290. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1291. {
  1292. if (is_large_pte(*sptep)) {
  1293. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1294. kvm_flush_remote_tlbs(vcpu->kvm);
  1295. }
  1296. }
  1297. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1298. unsigned direct_access)
  1299. {
  1300. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1301. struct kvm_mmu_page *child;
  1302. /*
  1303. * For the direct sp, if the guest pte's dirty bit
  1304. * changed form clean to dirty, it will corrupt the
  1305. * sp's access: allow writable in the read-only sp,
  1306. * so we should update the spte at this point to get
  1307. * a new sp with the correct access.
  1308. */
  1309. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1310. if (child->role.access == direct_access)
  1311. return;
  1312. mmu_page_remove_parent_pte(child, sptep);
  1313. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1314. kvm_flush_remote_tlbs(vcpu->kvm);
  1315. }
  1316. }
  1317. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1318. struct kvm_mmu_page *sp)
  1319. {
  1320. unsigned i;
  1321. u64 *pt;
  1322. u64 ent;
  1323. pt = sp->spt;
  1324. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1325. ent = pt[i];
  1326. if (is_shadow_present_pte(ent)) {
  1327. if (!is_last_spte(ent, sp->role.level)) {
  1328. ent &= PT64_BASE_ADDR_MASK;
  1329. mmu_page_remove_parent_pte(page_header(ent),
  1330. &pt[i]);
  1331. } else {
  1332. if (is_large_pte(ent))
  1333. --kvm->stat.lpages;
  1334. drop_spte(kvm, &pt[i],
  1335. shadow_trap_nonpresent_pte);
  1336. }
  1337. }
  1338. pt[i] = shadow_trap_nonpresent_pte;
  1339. }
  1340. }
  1341. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1342. {
  1343. mmu_page_remove_parent_pte(sp, parent_pte);
  1344. }
  1345. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1346. {
  1347. int i;
  1348. struct kvm_vcpu *vcpu;
  1349. kvm_for_each_vcpu(i, vcpu, kvm)
  1350. vcpu->arch.last_pte_updated = NULL;
  1351. }
  1352. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1353. {
  1354. u64 *parent_pte;
  1355. while (sp->multimapped || sp->parent_pte) {
  1356. if (!sp->multimapped)
  1357. parent_pte = sp->parent_pte;
  1358. else {
  1359. struct kvm_pte_chain *chain;
  1360. chain = container_of(sp->parent_ptes.first,
  1361. struct kvm_pte_chain, link);
  1362. parent_pte = chain->parent_ptes[0];
  1363. }
  1364. BUG_ON(!parent_pte);
  1365. kvm_mmu_put_page(sp, parent_pte);
  1366. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1367. }
  1368. }
  1369. static int mmu_zap_unsync_children(struct kvm *kvm,
  1370. struct kvm_mmu_page *parent,
  1371. struct list_head *invalid_list)
  1372. {
  1373. int i, zapped = 0;
  1374. struct mmu_page_path parents;
  1375. struct kvm_mmu_pages pages;
  1376. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1377. return 0;
  1378. kvm_mmu_pages_init(parent, &parents, &pages);
  1379. while (mmu_unsync_walk(parent, &pages)) {
  1380. struct kvm_mmu_page *sp;
  1381. for_each_sp(pages, sp, parents, i) {
  1382. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1383. mmu_pages_clear_parents(&parents);
  1384. zapped++;
  1385. }
  1386. kvm_mmu_pages_init(parent, &parents, &pages);
  1387. }
  1388. return zapped;
  1389. }
  1390. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1391. struct list_head *invalid_list)
  1392. {
  1393. int ret;
  1394. trace_kvm_mmu_prepare_zap_page(sp);
  1395. ++kvm->stat.mmu_shadow_zapped;
  1396. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1397. kvm_mmu_page_unlink_children(kvm, sp);
  1398. kvm_mmu_unlink_parents(kvm, sp);
  1399. if (!sp->role.invalid && !sp->role.direct)
  1400. unaccount_shadowed(kvm, sp->gfn);
  1401. if (sp->unsync)
  1402. kvm_unlink_unsync_page(kvm, sp);
  1403. if (!sp->root_count) {
  1404. /* Count self */
  1405. ret++;
  1406. list_move(&sp->link, invalid_list);
  1407. } else {
  1408. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1409. kvm_reload_remote_mmus(kvm);
  1410. }
  1411. sp->role.invalid = 1;
  1412. kvm_mmu_reset_last_pte_updated(kvm);
  1413. return ret;
  1414. }
  1415. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1416. struct list_head *invalid_list)
  1417. {
  1418. struct kvm_mmu_page *sp;
  1419. if (list_empty(invalid_list))
  1420. return;
  1421. kvm_flush_remote_tlbs(kvm);
  1422. do {
  1423. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1424. WARN_ON(!sp->role.invalid || sp->root_count);
  1425. kvm_mmu_free_page(kvm, sp);
  1426. } while (!list_empty(invalid_list));
  1427. }
  1428. /*
  1429. * Changing the number of mmu pages allocated to the vm
  1430. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1431. */
  1432. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1433. {
  1434. LIST_HEAD(invalid_list);
  1435. /*
  1436. * If we set the number of mmu pages to be smaller be than the
  1437. * number of actived pages , we must to free some mmu pages before we
  1438. * change the value
  1439. */
  1440. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1441. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1442. !list_empty(&kvm->arch.active_mmu_pages)) {
  1443. struct kvm_mmu_page *page;
  1444. page = container_of(kvm->arch.active_mmu_pages.prev,
  1445. struct kvm_mmu_page, link);
  1446. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1447. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1448. }
  1449. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1450. }
  1451. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1452. }
  1453. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1454. {
  1455. struct kvm_mmu_page *sp;
  1456. struct hlist_node *node;
  1457. LIST_HEAD(invalid_list);
  1458. int r;
  1459. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1460. r = 0;
  1461. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1462. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1463. sp->role.word);
  1464. r = 1;
  1465. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1466. }
  1467. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1468. return r;
  1469. }
  1470. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1471. {
  1472. struct kvm_mmu_page *sp;
  1473. struct hlist_node *node;
  1474. LIST_HEAD(invalid_list);
  1475. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1476. pgprintk("%s: zap %lx %x\n",
  1477. __func__, gfn, sp->role.word);
  1478. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1479. }
  1480. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1481. }
  1482. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1483. {
  1484. int slot = memslot_id(kvm, gfn);
  1485. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1486. __set_bit(slot, sp->slot_bitmap);
  1487. }
  1488. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1489. {
  1490. int i;
  1491. u64 *pt = sp->spt;
  1492. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1493. return;
  1494. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1495. if (pt[i] == shadow_notrap_nonpresent_pte)
  1496. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1497. }
  1498. }
  1499. /*
  1500. * The function is based on mtrr_type_lookup() in
  1501. * arch/x86/kernel/cpu/mtrr/generic.c
  1502. */
  1503. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1504. u64 start, u64 end)
  1505. {
  1506. int i;
  1507. u64 base, mask;
  1508. u8 prev_match, curr_match;
  1509. int num_var_ranges = KVM_NR_VAR_MTRR;
  1510. if (!mtrr_state->enabled)
  1511. return 0xFF;
  1512. /* Make end inclusive end, instead of exclusive */
  1513. end--;
  1514. /* Look in fixed ranges. Just return the type as per start */
  1515. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1516. int idx;
  1517. if (start < 0x80000) {
  1518. idx = 0;
  1519. idx += (start >> 16);
  1520. return mtrr_state->fixed_ranges[idx];
  1521. } else if (start < 0xC0000) {
  1522. idx = 1 * 8;
  1523. idx += ((start - 0x80000) >> 14);
  1524. return mtrr_state->fixed_ranges[idx];
  1525. } else if (start < 0x1000000) {
  1526. idx = 3 * 8;
  1527. idx += ((start - 0xC0000) >> 12);
  1528. return mtrr_state->fixed_ranges[idx];
  1529. }
  1530. }
  1531. /*
  1532. * Look in variable ranges
  1533. * Look of multiple ranges matching this address and pick type
  1534. * as per MTRR precedence
  1535. */
  1536. if (!(mtrr_state->enabled & 2))
  1537. return mtrr_state->def_type;
  1538. prev_match = 0xFF;
  1539. for (i = 0; i < num_var_ranges; ++i) {
  1540. unsigned short start_state, end_state;
  1541. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1542. continue;
  1543. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1544. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1545. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1546. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1547. start_state = ((start & mask) == (base & mask));
  1548. end_state = ((end & mask) == (base & mask));
  1549. if (start_state != end_state)
  1550. return 0xFE;
  1551. if ((start & mask) != (base & mask))
  1552. continue;
  1553. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1554. if (prev_match == 0xFF) {
  1555. prev_match = curr_match;
  1556. continue;
  1557. }
  1558. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1559. curr_match == MTRR_TYPE_UNCACHABLE)
  1560. return MTRR_TYPE_UNCACHABLE;
  1561. if ((prev_match == MTRR_TYPE_WRBACK &&
  1562. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1563. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1564. curr_match == MTRR_TYPE_WRBACK)) {
  1565. prev_match = MTRR_TYPE_WRTHROUGH;
  1566. curr_match = MTRR_TYPE_WRTHROUGH;
  1567. }
  1568. if (prev_match != curr_match)
  1569. return MTRR_TYPE_UNCACHABLE;
  1570. }
  1571. if (prev_match != 0xFF)
  1572. return prev_match;
  1573. return mtrr_state->def_type;
  1574. }
  1575. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1576. {
  1577. u8 mtrr;
  1578. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1579. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1580. if (mtrr == 0xfe || mtrr == 0xff)
  1581. mtrr = MTRR_TYPE_WRBACK;
  1582. return mtrr;
  1583. }
  1584. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1585. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1586. {
  1587. trace_kvm_mmu_unsync_page(sp);
  1588. ++vcpu->kvm->stat.mmu_unsync;
  1589. sp->unsync = 1;
  1590. kvm_mmu_mark_parents_unsync(sp);
  1591. mmu_convert_notrap(sp);
  1592. }
  1593. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1594. {
  1595. struct kvm_mmu_page *s;
  1596. struct hlist_node *node;
  1597. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1598. if (s->unsync)
  1599. continue;
  1600. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1601. __kvm_unsync_page(vcpu, s);
  1602. }
  1603. }
  1604. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1605. bool can_unsync)
  1606. {
  1607. struct kvm_mmu_page *s;
  1608. struct hlist_node *node;
  1609. bool need_unsync = false;
  1610. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1611. if (!can_unsync)
  1612. return 1;
  1613. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1614. return 1;
  1615. if (!need_unsync && !s->unsync) {
  1616. if (!oos_shadow)
  1617. return 1;
  1618. need_unsync = true;
  1619. }
  1620. }
  1621. if (need_unsync)
  1622. kvm_unsync_pages(vcpu, gfn);
  1623. return 0;
  1624. }
  1625. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1626. unsigned pte_access, int user_fault,
  1627. int write_fault, int dirty, int level,
  1628. gfn_t gfn, pfn_t pfn, bool speculative,
  1629. bool can_unsync, bool reset_host_protection)
  1630. {
  1631. u64 spte;
  1632. int ret = 0;
  1633. /*
  1634. * We don't set the accessed bit, since we sometimes want to see
  1635. * whether the guest actually used the pte (in order to detect
  1636. * demand paging).
  1637. */
  1638. spte = shadow_base_present_pte;
  1639. if (!speculative)
  1640. spte |= shadow_accessed_mask;
  1641. if (!dirty)
  1642. pte_access &= ~ACC_WRITE_MASK;
  1643. if (pte_access & ACC_EXEC_MASK)
  1644. spte |= shadow_x_mask;
  1645. else
  1646. spte |= shadow_nx_mask;
  1647. if (pte_access & ACC_USER_MASK)
  1648. spte |= shadow_user_mask;
  1649. if (level > PT_PAGE_TABLE_LEVEL)
  1650. spte |= PT_PAGE_SIZE_MASK;
  1651. if (tdp_enabled)
  1652. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1653. kvm_is_mmio_pfn(pfn));
  1654. if (reset_host_protection)
  1655. spte |= SPTE_HOST_WRITEABLE;
  1656. spte |= (u64)pfn << PAGE_SHIFT;
  1657. if ((pte_access & ACC_WRITE_MASK)
  1658. || (!tdp_enabled && write_fault && !is_write_protection(vcpu)
  1659. && !user_fault)) {
  1660. if (level > PT_PAGE_TABLE_LEVEL &&
  1661. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1662. ret = 1;
  1663. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1664. goto done;
  1665. }
  1666. spte |= PT_WRITABLE_MASK;
  1667. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1668. spte &= ~PT_USER_MASK;
  1669. /*
  1670. * Optimization: for pte sync, if spte was writable the hash
  1671. * lookup is unnecessary (and expensive). Write protection
  1672. * is responsibility of mmu_get_page / kvm_sync_page.
  1673. * Same reasoning can be applied to dirty page accounting.
  1674. */
  1675. if (!can_unsync && is_writable_pte(*sptep))
  1676. goto set_pte;
  1677. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1678. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1679. __func__, gfn);
  1680. ret = 1;
  1681. pte_access &= ~ACC_WRITE_MASK;
  1682. if (is_writable_pte(spte))
  1683. spte &= ~PT_WRITABLE_MASK;
  1684. }
  1685. }
  1686. if (pte_access & ACC_WRITE_MASK)
  1687. mark_page_dirty(vcpu->kvm, gfn);
  1688. set_pte:
  1689. update_spte(sptep, spte);
  1690. done:
  1691. return ret;
  1692. }
  1693. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1694. unsigned pt_access, unsigned pte_access,
  1695. int user_fault, int write_fault, int dirty,
  1696. int *ptwrite, int level, gfn_t gfn,
  1697. pfn_t pfn, bool speculative,
  1698. bool reset_host_protection)
  1699. {
  1700. int was_rmapped = 0;
  1701. int rmap_count;
  1702. pgprintk("%s: spte %llx access %x write_fault %d"
  1703. " user_fault %d gfn %lx\n",
  1704. __func__, *sptep, pt_access,
  1705. write_fault, user_fault, gfn);
  1706. if (is_rmap_spte(*sptep)) {
  1707. /*
  1708. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1709. * the parent of the now unreachable PTE.
  1710. */
  1711. if (level > PT_PAGE_TABLE_LEVEL &&
  1712. !is_large_pte(*sptep)) {
  1713. struct kvm_mmu_page *child;
  1714. u64 pte = *sptep;
  1715. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1716. mmu_page_remove_parent_pte(child, sptep);
  1717. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1718. kvm_flush_remote_tlbs(vcpu->kvm);
  1719. } else if (pfn != spte_to_pfn(*sptep)) {
  1720. pgprintk("hfn old %lx new %lx\n",
  1721. spte_to_pfn(*sptep), pfn);
  1722. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1723. kvm_flush_remote_tlbs(vcpu->kvm);
  1724. } else
  1725. was_rmapped = 1;
  1726. }
  1727. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1728. dirty, level, gfn, pfn, speculative, true,
  1729. reset_host_protection)) {
  1730. if (write_fault)
  1731. *ptwrite = 1;
  1732. kvm_mmu_flush_tlb(vcpu);
  1733. }
  1734. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1735. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1736. is_large_pte(*sptep)? "2MB" : "4kB",
  1737. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1738. *sptep, sptep);
  1739. if (!was_rmapped && is_large_pte(*sptep))
  1740. ++vcpu->kvm->stat.lpages;
  1741. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1742. if (!was_rmapped) {
  1743. rmap_count = rmap_add(vcpu, sptep, gfn);
  1744. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1745. rmap_recycle(vcpu, sptep, gfn);
  1746. }
  1747. kvm_release_pfn_clean(pfn);
  1748. if (speculative) {
  1749. vcpu->arch.last_pte_updated = sptep;
  1750. vcpu->arch.last_pte_gfn = gfn;
  1751. }
  1752. }
  1753. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1754. {
  1755. }
  1756. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1757. int level, gfn_t gfn, pfn_t pfn)
  1758. {
  1759. struct kvm_shadow_walk_iterator iterator;
  1760. struct kvm_mmu_page *sp;
  1761. int pt_write = 0;
  1762. gfn_t pseudo_gfn;
  1763. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1764. if (iterator.level == level) {
  1765. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1766. 0, write, 1, &pt_write,
  1767. level, gfn, pfn, false, true);
  1768. ++vcpu->stat.pf_fixed;
  1769. break;
  1770. }
  1771. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1772. u64 base_addr = iterator.addr;
  1773. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1774. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1775. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1776. iterator.level - 1,
  1777. 1, ACC_ALL, iterator.sptep);
  1778. if (!sp) {
  1779. pgprintk("nonpaging_map: ENOMEM\n");
  1780. kvm_release_pfn_clean(pfn);
  1781. return -ENOMEM;
  1782. }
  1783. __set_spte(iterator.sptep,
  1784. __pa(sp->spt)
  1785. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1786. | shadow_user_mask | shadow_x_mask);
  1787. }
  1788. }
  1789. return pt_write;
  1790. }
  1791. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1792. {
  1793. char buf[1];
  1794. void __user *hva;
  1795. int r;
  1796. /* Touch the page, so send SIGBUS */
  1797. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1798. r = copy_from_user(buf, hva, 1);
  1799. }
  1800. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1801. {
  1802. kvm_release_pfn_clean(pfn);
  1803. if (is_hwpoison_pfn(pfn)) {
  1804. kvm_send_hwpoison_signal(kvm, gfn);
  1805. return 0;
  1806. } else if (is_fault_pfn(pfn))
  1807. return -EFAULT;
  1808. return 1;
  1809. }
  1810. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1811. {
  1812. int r;
  1813. int level;
  1814. pfn_t pfn;
  1815. unsigned long mmu_seq;
  1816. level = mapping_level(vcpu, gfn);
  1817. /*
  1818. * This path builds a PAE pagetable - so we can map 2mb pages at
  1819. * maximum. Therefore check if the level is larger than that.
  1820. */
  1821. if (level > PT_DIRECTORY_LEVEL)
  1822. level = PT_DIRECTORY_LEVEL;
  1823. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1824. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1825. smp_rmb();
  1826. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1827. /* mmio */
  1828. if (is_error_pfn(pfn))
  1829. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1830. spin_lock(&vcpu->kvm->mmu_lock);
  1831. if (mmu_notifier_retry(vcpu, mmu_seq))
  1832. goto out_unlock;
  1833. kvm_mmu_free_some_pages(vcpu);
  1834. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1835. spin_unlock(&vcpu->kvm->mmu_lock);
  1836. return r;
  1837. out_unlock:
  1838. spin_unlock(&vcpu->kvm->mmu_lock);
  1839. kvm_release_pfn_clean(pfn);
  1840. return 0;
  1841. }
  1842. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1843. {
  1844. int i;
  1845. struct kvm_mmu_page *sp;
  1846. LIST_HEAD(invalid_list);
  1847. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1848. return;
  1849. spin_lock(&vcpu->kvm->mmu_lock);
  1850. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1851. hpa_t root = vcpu->arch.mmu.root_hpa;
  1852. sp = page_header(root);
  1853. --sp->root_count;
  1854. if (!sp->root_count && sp->role.invalid) {
  1855. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  1856. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1857. }
  1858. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1859. spin_unlock(&vcpu->kvm->mmu_lock);
  1860. return;
  1861. }
  1862. for (i = 0; i < 4; ++i) {
  1863. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1864. if (root) {
  1865. root &= PT64_BASE_ADDR_MASK;
  1866. sp = page_header(root);
  1867. --sp->root_count;
  1868. if (!sp->root_count && sp->role.invalid)
  1869. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  1870. &invalid_list);
  1871. }
  1872. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1873. }
  1874. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1875. spin_unlock(&vcpu->kvm->mmu_lock);
  1876. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1877. }
  1878. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1879. {
  1880. int ret = 0;
  1881. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1882. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1883. ret = 1;
  1884. }
  1885. return ret;
  1886. }
  1887. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1888. {
  1889. int i;
  1890. gfn_t root_gfn;
  1891. struct kvm_mmu_page *sp;
  1892. int direct = 0;
  1893. u64 pdptr;
  1894. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1895. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1896. hpa_t root = vcpu->arch.mmu.root_hpa;
  1897. ASSERT(!VALID_PAGE(root));
  1898. if (mmu_check_root(vcpu, root_gfn))
  1899. return 1;
  1900. if (tdp_enabled) {
  1901. direct = 1;
  1902. root_gfn = 0;
  1903. }
  1904. spin_lock(&vcpu->kvm->mmu_lock);
  1905. kvm_mmu_free_some_pages(vcpu);
  1906. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1907. PT64_ROOT_LEVEL, direct,
  1908. ACC_ALL, NULL);
  1909. root = __pa(sp->spt);
  1910. ++sp->root_count;
  1911. spin_unlock(&vcpu->kvm->mmu_lock);
  1912. vcpu->arch.mmu.root_hpa = root;
  1913. return 0;
  1914. }
  1915. direct = !is_paging(vcpu);
  1916. for (i = 0; i < 4; ++i) {
  1917. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1918. ASSERT(!VALID_PAGE(root));
  1919. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1920. pdptr = kvm_pdptr_read(vcpu, i);
  1921. if (!is_present_gpte(pdptr)) {
  1922. vcpu->arch.mmu.pae_root[i] = 0;
  1923. continue;
  1924. }
  1925. root_gfn = pdptr >> PAGE_SHIFT;
  1926. } else if (vcpu->arch.mmu.root_level == 0)
  1927. root_gfn = 0;
  1928. if (mmu_check_root(vcpu, root_gfn))
  1929. return 1;
  1930. if (tdp_enabled) {
  1931. direct = 1;
  1932. root_gfn = i << 30;
  1933. }
  1934. spin_lock(&vcpu->kvm->mmu_lock);
  1935. kvm_mmu_free_some_pages(vcpu);
  1936. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1937. PT32_ROOT_LEVEL, direct,
  1938. ACC_ALL, NULL);
  1939. root = __pa(sp->spt);
  1940. ++sp->root_count;
  1941. spin_unlock(&vcpu->kvm->mmu_lock);
  1942. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1943. }
  1944. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1945. return 0;
  1946. }
  1947. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1948. {
  1949. int i;
  1950. struct kvm_mmu_page *sp;
  1951. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1952. return;
  1953. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1954. hpa_t root = vcpu->arch.mmu.root_hpa;
  1955. sp = page_header(root);
  1956. mmu_sync_children(vcpu, sp);
  1957. return;
  1958. }
  1959. for (i = 0; i < 4; ++i) {
  1960. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1961. if (root && VALID_PAGE(root)) {
  1962. root &= PT64_BASE_ADDR_MASK;
  1963. sp = page_header(root);
  1964. mmu_sync_children(vcpu, sp);
  1965. }
  1966. }
  1967. }
  1968. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1969. {
  1970. spin_lock(&vcpu->kvm->mmu_lock);
  1971. mmu_sync_roots(vcpu);
  1972. spin_unlock(&vcpu->kvm->mmu_lock);
  1973. }
  1974. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1975. u32 access, u32 *error)
  1976. {
  1977. if (error)
  1978. *error = 0;
  1979. return vaddr;
  1980. }
  1981. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1982. u32 error_code)
  1983. {
  1984. gfn_t gfn;
  1985. int r;
  1986. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1987. r = mmu_topup_memory_caches(vcpu);
  1988. if (r)
  1989. return r;
  1990. ASSERT(vcpu);
  1991. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1992. gfn = gva >> PAGE_SHIFT;
  1993. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1994. error_code & PFERR_WRITE_MASK, gfn);
  1995. }
  1996. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1997. u32 error_code)
  1998. {
  1999. pfn_t pfn;
  2000. int r;
  2001. int level;
  2002. gfn_t gfn = gpa >> PAGE_SHIFT;
  2003. unsigned long mmu_seq;
  2004. ASSERT(vcpu);
  2005. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2006. r = mmu_topup_memory_caches(vcpu);
  2007. if (r)
  2008. return r;
  2009. level = mapping_level(vcpu, gfn);
  2010. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2011. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2012. smp_rmb();
  2013. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2014. if (is_error_pfn(pfn))
  2015. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  2016. spin_lock(&vcpu->kvm->mmu_lock);
  2017. if (mmu_notifier_retry(vcpu, mmu_seq))
  2018. goto out_unlock;
  2019. kvm_mmu_free_some_pages(vcpu);
  2020. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  2021. level, gfn, pfn);
  2022. spin_unlock(&vcpu->kvm->mmu_lock);
  2023. return r;
  2024. out_unlock:
  2025. spin_unlock(&vcpu->kvm->mmu_lock);
  2026. kvm_release_pfn_clean(pfn);
  2027. return 0;
  2028. }
  2029. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2030. {
  2031. mmu_free_roots(vcpu);
  2032. }
  2033. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  2034. {
  2035. struct kvm_mmu *context = &vcpu->arch.mmu;
  2036. context->new_cr3 = nonpaging_new_cr3;
  2037. context->page_fault = nonpaging_page_fault;
  2038. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2039. context->free = nonpaging_free;
  2040. context->prefetch_page = nonpaging_prefetch_page;
  2041. context->sync_page = nonpaging_sync_page;
  2042. context->invlpg = nonpaging_invlpg;
  2043. context->root_level = 0;
  2044. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2045. context->root_hpa = INVALID_PAGE;
  2046. return 0;
  2047. }
  2048. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2049. {
  2050. ++vcpu->stat.tlb_flush;
  2051. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2052. }
  2053. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2054. {
  2055. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  2056. mmu_free_roots(vcpu);
  2057. }
  2058. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2059. u64 addr,
  2060. u32 err_code)
  2061. {
  2062. kvm_inject_page_fault(vcpu, addr, err_code);
  2063. }
  2064. static void paging_free(struct kvm_vcpu *vcpu)
  2065. {
  2066. nonpaging_free(vcpu);
  2067. }
  2068. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  2069. {
  2070. int bit7;
  2071. bit7 = (gpte >> 7) & 1;
  2072. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  2073. }
  2074. #define PTTYPE 64
  2075. #include "paging_tmpl.h"
  2076. #undef PTTYPE
  2077. #define PTTYPE 32
  2078. #include "paging_tmpl.h"
  2079. #undef PTTYPE
  2080. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  2081. {
  2082. struct kvm_mmu *context = &vcpu->arch.mmu;
  2083. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2084. u64 exb_bit_rsvd = 0;
  2085. if (!is_nx(vcpu))
  2086. exb_bit_rsvd = rsvd_bits(63, 63);
  2087. switch (level) {
  2088. case PT32_ROOT_LEVEL:
  2089. /* no rsvd bits for 2 level 4K page table entries */
  2090. context->rsvd_bits_mask[0][1] = 0;
  2091. context->rsvd_bits_mask[0][0] = 0;
  2092. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2093. if (!is_pse(vcpu)) {
  2094. context->rsvd_bits_mask[1][1] = 0;
  2095. break;
  2096. }
  2097. if (is_cpuid_PSE36())
  2098. /* 36bits PSE 4MB page */
  2099. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2100. else
  2101. /* 32 bits PSE 4MB page */
  2102. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2103. break;
  2104. case PT32E_ROOT_LEVEL:
  2105. context->rsvd_bits_mask[0][2] =
  2106. rsvd_bits(maxphyaddr, 63) |
  2107. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2108. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2109. rsvd_bits(maxphyaddr, 62); /* PDE */
  2110. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2111. rsvd_bits(maxphyaddr, 62); /* PTE */
  2112. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2113. rsvd_bits(maxphyaddr, 62) |
  2114. rsvd_bits(13, 20); /* large page */
  2115. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2116. break;
  2117. case PT64_ROOT_LEVEL:
  2118. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2119. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2120. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2121. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2122. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2123. rsvd_bits(maxphyaddr, 51);
  2124. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2125. rsvd_bits(maxphyaddr, 51);
  2126. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2127. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2128. rsvd_bits(maxphyaddr, 51) |
  2129. rsvd_bits(13, 29);
  2130. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2131. rsvd_bits(maxphyaddr, 51) |
  2132. rsvd_bits(13, 20); /* large page */
  2133. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2134. break;
  2135. }
  2136. }
  2137. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2138. {
  2139. struct kvm_mmu *context = &vcpu->arch.mmu;
  2140. ASSERT(is_pae(vcpu));
  2141. context->new_cr3 = paging_new_cr3;
  2142. context->page_fault = paging64_page_fault;
  2143. context->gva_to_gpa = paging64_gva_to_gpa;
  2144. context->prefetch_page = paging64_prefetch_page;
  2145. context->sync_page = paging64_sync_page;
  2146. context->invlpg = paging64_invlpg;
  2147. context->free = paging_free;
  2148. context->root_level = level;
  2149. context->shadow_root_level = level;
  2150. context->root_hpa = INVALID_PAGE;
  2151. return 0;
  2152. }
  2153. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2154. {
  2155. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2156. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2157. }
  2158. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2159. {
  2160. struct kvm_mmu *context = &vcpu->arch.mmu;
  2161. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2162. context->new_cr3 = paging_new_cr3;
  2163. context->page_fault = paging32_page_fault;
  2164. context->gva_to_gpa = paging32_gva_to_gpa;
  2165. context->free = paging_free;
  2166. context->prefetch_page = paging32_prefetch_page;
  2167. context->sync_page = paging32_sync_page;
  2168. context->invlpg = paging32_invlpg;
  2169. context->root_level = PT32_ROOT_LEVEL;
  2170. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2171. context->root_hpa = INVALID_PAGE;
  2172. return 0;
  2173. }
  2174. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2175. {
  2176. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2177. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2178. }
  2179. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2180. {
  2181. struct kvm_mmu *context = &vcpu->arch.mmu;
  2182. context->new_cr3 = nonpaging_new_cr3;
  2183. context->page_fault = tdp_page_fault;
  2184. context->free = nonpaging_free;
  2185. context->prefetch_page = nonpaging_prefetch_page;
  2186. context->sync_page = nonpaging_sync_page;
  2187. context->invlpg = nonpaging_invlpg;
  2188. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2189. context->root_hpa = INVALID_PAGE;
  2190. if (!is_paging(vcpu)) {
  2191. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2192. context->root_level = 0;
  2193. } else if (is_long_mode(vcpu)) {
  2194. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2195. context->gva_to_gpa = paging64_gva_to_gpa;
  2196. context->root_level = PT64_ROOT_LEVEL;
  2197. } else if (is_pae(vcpu)) {
  2198. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2199. context->gva_to_gpa = paging64_gva_to_gpa;
  2200. context->root_level = PT32E_ROOT_LEVEL;
  2201. } else {
  2202. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2203. context->gva_to_gpa = paging32_gva_to_gpa;
  2204. context->root_level = PT32_ROOT_LEVEL;
  2205. }
  2206. return 0;
  2207. }
  2208. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2209. {
  2210. int r;
  2211. ASSERT(vcpu);
  2212. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2213. if (!is_paging(vcpu))
  2214. r = nonpaging_init_context(vcpu);
  2215. else if (is_long_mode(vcpu))
  2216. r = paging64_init_context(vcpu);
  2217. else if (is_pae(vcpu))
  2218. r = paging32E_init_context(vcpu);
  2219. else
  2220. r = paging32_init_context(vcpu);
  2221. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2222. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2223. return r;
  2224. }
  2225. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2226. {
  2227. vcpu->arch.update_pte.pfn = bad_pfn;
  2228. if (tdp_enabled)
  2229. return init_kvm_tdp_mmu(vcpu);
  2230. else
  2231. return init_kvm_softmmu(vcpu);
  2232. }
  2233. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2234. {
  2235. ASSERT(vcpu);
  2236. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2237. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2238. vcpu->arch.mmu.free(vcpu);
  2239. }
  2240. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2241. {
  2242. destroy_kvm_mmu(vcpu);
  2243. return init_kvm_mmu(vcpu);
  2244. }
  2245. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2246. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2247. {
  2248. int r;
  2249. r = mmu_topup_memory_caches(vcpu);
  2250. if (r)
  2251. goto out;
  2252. r = mmu_alloc_roots(vcpu);
  2253. spin_lock(&vcpu->kvm->mmu_lock);
  2254. mmu_sync_roots(vcpu);
  2255. spin_unlock(&vcpu->kvm->mmu_lock);
  2256. if (r)
  2257. goto out;
  2258. /* set_cr3() should ensure TLB has been flushed */
  2259. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2260. out:
  2261. return r;
  2262. }
  2263. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2264. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2265. {
  2266. mmu_free_roots(vcpu);
  2267. }
  2268. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2269. struct kvm_mmu_page *sp,
  2270. u64 *spte)
  2271. {
  2272. u64 pte;
  2273. struct kvm_mmu_page *child;
  2274. pte = *spte;
  2275. if (is_shadow_present_pte(pte)) {
  2276. if (is_last_spte(pte, sp->role.level))
  2277. drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
  2278. else {
  2279. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2280. mmu_page_remove_parent_pte(child, spte);
  2281. }
  2282. }
  2283. __set_spte(spte, shadow_trap_nonpresent_pte);
  2284. if (is_large_pte(pte))
  2285. --vcpu->kvm->stat.lpages;
  2286. }
  2287. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2288. struct kvm_mmu_page *sp,
  2289. u64 *spte,
  2290. const void *new)
  2291. {
  2292. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2293. ++vcpu->kvm->stat.mmu_pde_zapped;
  2294. return;
  2295. }
  2296. if (is_rsvd_bits_set(vcpu, *(u64 *)new, PT_PAGE_TABLE_LEVEL))
  2297. return;
  2298. ++vcpu->kvm->stat.mmu_pte_updated;
  2299. if (!sp->role.cr4_pae)
  2300. paging32_update_pte(vcpu, sp, spte, new);
  2301. else
  2302. paging64_update_pte(vcpu, sp, spte, new);
  2303. }
  2304. static bool need_remote_flush(u64 old, u64 new)
  2305. {
  2306. if (!is_shadow_present_pte(old))
  2307. return false;
  2308. if (!is_shadow_present_pte(new))
  2309. return true;
  2310. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2311. return true;
  2312. old ^= PT64_NX_MASK;
  2313. new ^= PT64_NX_MASK;
  2314. return (old & ~new & PT64_PERM_MASK) != 0;
  2315. }
  2316. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2317. bool remote_flush, bool local_flush)
  2318. {
  2319. if (zap_page)
  2320. return;
  2321. if (remote_flush)
  2322. kvm_flush_remote_tlbs(vcpu->kvm);
  2323. else if (local_flush)
  2324. kvm_mmu_flush_tlb(vcpu);
  2325. }
  2326. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2327. {
  2328. u64 *spte = vcpu->arch.last_pte_updated;
  2329. return !!(spte && (*spte & shadow_accessed_mask));
  2330. }
  2331. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2332. u64 gpte)
  2333. {
  2334. gfn_t gfn;
  2335. pfn_t pfn;
  2336. if (!is_present_gpte(gpte))
  2337. return;
  2338. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2339. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2340. smp_rmb();
  2341. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2342. if (is_error_pfn(pfn)) {
  2343. kvm_release_pfn_clean(pfn);
  2344. return;
  2345. }
  2346. vcpu->arch.update_pte.gfn = gfn;
  2347. vcpu->arch.update_pte.pfn = pfn;
  2348. }
  2349. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2350. {
  2351. u64 *spte = vcpu->arch.last_pte_updated;
  2352. if (spte
  2353. && vcpu->arch.last_pte_gfn == gfn
  2354. && shadow_accessed_mask
  2355. && !(*spte & shadow_accessed_mask)
  2356. && is_shadow_present_pte(*spte))
  2357. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2358. }
  2359. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2360. const u8 *new, int bytes,
  2361. bool guest_initiated)
  2362. {
  2363. gfn_t gfn = gpa >> PAGE_SHIFT;
  2364. union kvm_mmu_page_role mask = { .word = 0 };
  2365. struct kvm_mmu_page *sp;
  2366. struct hlist_node *node;
  2367. LIST_HEAD(invalid_list);
  2368. u64 entry, gentry;
  2369. u64 *spte;
  2370. unsigned offset = offset_in_page(gpa);
  2371. unsigned pte_size;
  2372. unsigned page_offset;
  2373. unsigned misaligned;
  2374. unsigned quadrant;
  2375. int level;
  2376. int flooded = 0;
  2377. int npte;
  2378. int r;
  2379. int invlpg_counter;
  2380. bool remote_flush, local_flush, zap_page;
  2381. zap_page = remote_flush = local_flush = false;
  2382. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2383. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2384. /*
  2385. * Assume that the pte write on a page table of the same type
  2386. * as the current vcpu paging mode. This is nearly always true
  2387. * (might be false while changing modes). Note it is verified later
  2388. * by update_pte().
  2389. */
  2390. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2391. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2392. if (is_pae(vcpu)) {
  2393. gpa &= ~(gpa_t)7;
  2394. bytes = 8;
  2395. }
  2396. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2397. if (r)
  2398. gentry = 0;
  2399. new = (const u8 *)&gentry;
  2400. }
  2401. switch (bytes) {
  2402. case 4:
  2403. gentry = *(const u32 *)new;
  2404. break;
  2405. case 8:
  2406. gentry = *(const u64 *)new;
  2407. break;
  2408. default:
  2409. gentry = 0;
  2410. break;
  2411. }
  2412. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2413. spin_lock(&vcpu->kvm->mmu_lock);
  2414. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2415. gentry = 0;
  2416. kvm_mmu_access_page(vcpu, gfn);
  2417. kvm_mmu_free_some_pages(vcpu);
  2418. ++vcpu->kvm->stat.mmu_pte_write;
  2419. kvm_mmu_audit(vcpu, "pre pte write");
  2420. if (guest_initiated) {
  2421. if (gfn == vcpu->arch.last_pt_write_gfn
  2422. && !last_updated_pte_accessed(vcpu)) {
  2423. ++vcpu->arch.last_pt_write_count;
  2424. if (vcpu->arch.last_pt_write_count >= 3)
  2425. flooded = 1;
  2426. } else {
  2427. vcpu->arch.last_pt_write_gfn = gfn;
  2428. vcpu->arch.last_pt_write_count = 1;
  2429. vcpu->arch.last_pte_updated = NULL;
  2430. }
  2431. }
  2432. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  2433. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2434. pte_size = sp->role.cr4_pae ? 8 : 4;
  2435. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2436. misaligned |= bytes < 4;
  2437. if (misaligned || flooded) {
  2438. /*
  2439. * Misaligned accesses are too much trouble to fix
  2440. * up; also, they usually indicate a page is not used
  2441. * as a page table.
  2442. *
  2443. * If we're seeing too many writes to a page,
  2444. * it may no longer be a page table, or we may be
  2445. * forking, in which case it is better to unmap the
  2446. * page.
  2447. */
  2448. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2449. gpa, bytes, sp->role.word);
  2450. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2451. &invalid_list);
  2452. ++vcpu->kvm->stat.mmu_flooded;
  2453. continue;
  2454. }
  2455. page_offset = offset;
  2456. level = sp->role.level;
  2457. npte = 1;
  2458. if (!sp->role.cr4_pae) {
  2459. page_offset <<= 1; /* 32->64 */
  2460. /*
  2461. * A 32-bit pde maps 4MB while the shadow pdes map
  2462. * only 2MB. So we need to double the offset again
  2463. * and zap two pdes instead of one.
  2464. */
  2465. if (level == PT32_ROOT_LEVEL) {
  2466. page_offset &= ~7; /* kill rounding error */
  2467. page_offset <<= 1;
  2468. npte = 2;
  2469. }
  2470. quadrant = page_offset >> PAGE_SHIFT;
  2471. page_offset &= ~PAGE_MASK;
  2472. if (quadrant != sp->role.quadrant)
  2473. continue;
  2474. }
  2475. local_flush = true;
  2476. spte = &sp->spt[page_offset / sizeof(*spte)];
  2477. while (npte--) {
  2478. entry = *spte;
  2479. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2480. if (gentry &&
  2481. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  2482. & mask.word))
  2483. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2484. if (!remote_flush && need_remote_flush(entry, *spte))
  2485. remote_flush = true;
  2486. ++spte;
  2487. }
  2488. }
  2489. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2490. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2491. kvm_mmu_audit(vcpu, "post pte write");
  2492. spin_unlock(&vcpu->kvm->mmu_lock);
  2493. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2494. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2495. vcpu->arch.update_pte.pfn = bad_pfn;
  2496. }
  2497. }
  2498. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2499. {
  2500. gpa_t gpa;
  2501. int r;
  2502. if (tdp_enabled)
  2503. return 0;
  2504. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2505. spin_lock(&vcpu->kvm->mmu_lock);
  2506. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2507. spin_unlock(&vcpu->kvm->mmu_lock);
  2508. return r;
  2509. }
  2510. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2511. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2512. {
  2513. LIST_HEAD(invalid_list);
  2514. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  2515. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2516. struct kvm_mmu_page *sp;
  2517. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2518. struct kvm_mmu_page, link);
  2519. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2520. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2521. ++vcpu->kvm->stat.mmu_recycled;
  2522. }
  2523. }
  2524. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2525. {
  2526. int r;
  2527. enum emulation_result er;
  2528. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2529. if (r < 0)
  2530. goto out;
  2531. if (!r) {
  2532. r = 1;
  2533. goto out;
  2534. }
  2535. r = mmu_topup_memory_caches(vcpu);
  2536. if (r)
  2537. goto out;
  2538. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2539. switch (er) {
  2540. case EMULATE_DONE:
  2541. return 1;
  2542. case EMULATE_DO_MMIO:
  2543. ++vcpu->stat.mmio_exits;
  2544. /* fall through */
  2545. case EMULATE_FAIL:
  2546. return 0;
  2547. default:
  2548. BUG();
  2549. }
  2550. out:
  2551. return r;
  2552. }
  2553. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2554. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2555. {
  2556. vcpu->arch.mmu.invlpg(vcpu, gva);
  2557. kvm_mmu_flush_tlb(vcpu);
  2558. ++vcpu->stat.invlpg;
  2559. }
  2560. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2561. void kvm_enable_tdp(void)
  2562. {
  2563. tdp_enabled = true;
  2564. }
  2565. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2566. void kvm_disable_tdp(void)
  2567. {
  2568. tdp_enabled = false;
  2569. }
  2570. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2571. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2572. {
  2573. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2574. }
  2575. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2576. {
  2577. struct page *page;
  2578. int i;
  2579. ASSERT(vcpu);
  2580. /*
  2581. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2582. * Therefore we need to allocate shadow page tables in the first
  2583. * 4GB of memory, which happens to fit the DMA32 zone.
  2584. */
  2585. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2586. if (!page)
  2587. return -ENOMEM;
  2588. vcpu->arch.mmu.pae_root = page_address(page);
  2589. for (i = 0; i < 4; ++i)
  2590. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2591. return 0;
  2592. }
  2593. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2594. {
  2595. ASSERT(vcpu);
  2596. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2597. return alloc_mmu_pages(vcpu);
  2598. }
  2599. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2600. {
  2601. ASSERT(vcpu);
  2602. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2603. return init_kvm_mmu(vcpu);
  2604. }
  2605. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2606. {
  2607. ASSERT(vcpu);
  2608. destroy_kvm_mmu(vcpu);
  2609. free_mmu_pages(vcpu);
  2610. mmu_free_memory_caches(vcpu);
  2611. }
  2612. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2613. {
  2614. struct kvm_mmu_page *sp;
  2615. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2616. int i;
  2617. u64 *pt;
  2618. if (!test_bit(slot, sp->slot_bitmap))
  2619. continue;
  2620. pt = sp->spt;
  2621. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2622. /* avoid RMW */
  2623. if (is_writable_pte(pt[i]))
  2624. pt[i] &= ~PT_WRITABLE_MASK;
  2625. }
  2626. kvm_flush_remote_tlbs(kvm);
  2627. }
  2628. void kvm_mmu_zap_all(struct kvm *kvm)
  2629. {
  2630. struct kvm_mmu_page *sp, *node;
  2631. LIST_HEAD(invalid_list);
  2632. spin_lock(&kvm->mmu_lock);
  2633. restart:
  2634. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2635. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2636. goto restart;
  2637. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2638. spin_unlock(&kvm->mmu_lock);
  2639. }
  2640. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2641. struct list_head *invalid_list)
  2642. {
  2643. struct kvm_mmu_page *page;
  2644. page = container_of(kvm->arch.active_mmu_pages.prev,
  2645. struct kvm_mmu_page, link);
  2646. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  2647. }
  2648. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2649. {
  2650. struct kvm *kvm;
  2651. struct kvm *kvm_freed = NULL;
  2652. if (nr_to_scan == 0)
  2653. goto out;
  2654. spin_lock(&kvm_lock);
  2655. list_for_each_entry(kvm, &vm_list, vm_list) {
  2656. int idx, freed_pages;
  2657. LIST_HEAD(invalid_list);
  2658. idx = srcu_read_lock(&kvm->srcu);
  2659. spin_lock(&kvm->mmu_lock);
  2660. if (!kvm_freed && nr_to_scan > 0 &&
  2661. kvm->arch.n_used_mmu_pages > 0) {
  2662. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  2663. &invalid_list);
  2664. kvm_freed = kvm;
  2665. }
  2666. nr_to_scan--;
  2667. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2668. spin_unlock(&kvm->mmu_lock);
  2669. srcu_read_unlock(&kvm->srcu, idx);
  2670. }
  2671. if (kvm_freed)
  2672. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2673. spin_unlock(&kvm_lock);
  2674. out:
  2675. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  2676. }
  2677. static struct shrinker mmu_shrinker = {
  2678. .shrink = mmu_shrink,
  2679. .seeks = DEFAULT_SEEKS * 10,
  2680. };
  2681. static void mmu_destroy_caches(void)
  2682. {
  2683. if (pte_chain_cache)
  2684. kmem_cache_destroy(pte_chain_cache);
  2685. if (rmap_desc_cache)
  2686. kmem_cache_destroy(rmap_desc_cache);
  2687. if (mmu_page_header_cache)
  2688. kmem_cache_destroy(mmu_page_header_cache);
  2689. }
  2690. void kvm_mmu_module_exit(void)
  2691. {
  2692. mmu_destroy_caches();
  2693. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  2694. unregister_shrinker(&mmu_shrinker);
  2695. }
  2696. int kvm_mmu_module_init(void)
  2697. {
  2698. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2699. sizeof(struct kvm_pte_chain),
  2700. 0, 0, NULL);
  2701. if (!pte_chain_cache)
  2702. goto nomem;
  2703. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2704. sizeof(struct kvm_rmap_desc),
  2705. 0, 0, NULL);
  2706. if (!rmap_desc_cache)
  2707. goto nomem;
  2708. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2709. sizeof(struct kvm_mmu_page),
  2710. 0, 0, NULL);
  2711. if (!mmu_page_header_cache)
  2712. goto nomem;
  2713. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  2714. goto nomem;
  2715. register_shrinker(&mmu_shrinker);
  2716. return 0;
  2717. nomem:
  2718. mmu_destroy_caches();
  2719. return -ENOMEM;
  2720. }
  2721. /*
  2722. * Caculate mmu pages needed for kvm.
  2723. */
  2724. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2725. {
  2726. int i;
  2727. unsigned int nr_mmu_pages;
  2728. unsigned int nr_pages = 0;
  2729. struct kvm_memslots *slots;
  2730. slots = kvm_memslots(kvm);
  2731. for (i = 0; i < slots->nmemslots; i++)
  2732. nr_pages += slots->memslots[i].npages;
  2733. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2734. nr_mmu_pages = max(nr_mmu_pages,
  2735. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2736. return nr_mmu_pages;
  2737. }
  2738. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2739. unsigned len)
  2740. {
  2741. if (len > buffer->len)
  2742. return NULL;
  2743. return buffer->ptr;
  2744. }
  2745. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2746. unsigned len)
  2747. {
  2748. void *ret;
  2749. ret = pv_mmu_peek_buffer(buffer, len);
  2750. if (!ret)
  2751. return ret;
  2752. buffer->ptr += len;
  2753. buffer->len -= len;
  2754. buffer->processed += len;
  2755. return ret;
  2756. }
  2757. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2758. gpa_t addr, gpa_t value)
  2759. {
  2760. int bytes = 8;
  2761. int r;
  2762. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2763. bytes = 4;
  2764. r = mmu_topup_memory_caches(vcpu);
  2765. if (r)
  2766. return r;
  2767. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2768. return -EFAULT;
  2769. return 1;
  2770. }
  2771. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2772. {
  2773. (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2774. return 1;
  2775. }
  2776. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2777. {
  2778. spin_lock(&vcpu->kvm->mmu_lock);
  2779. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2780. spin_unlock(&vcpu->kvm->mmu_lock);
  2781. return 1;
  2782. }
  2783. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2784. struct kvm_pv_mmu_op_buffer *buffer)
  2785. {
  2786. struct kvm_mmu_op_header *header;
  2787. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2788. if (!header)
  2789. return 0;
  2790. switch (header->op) {
  2791. case KVM_MMU_OP_WRITE_PTE: {
  2792. struct kvm_mmu_op_write_pte *wpte;
  2793. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2794. if (!wpte)
  2795. return 0;
  2796. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2797. wpte->pte_val);
  2798. }
  2799. case KVM_MMU_OP_FLUSH_TLB: {
  2800. struct kvm_mmu_op_flush_tlb *ftlb;
  2801. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2802. if (!ftlb)
  2803. return 0;
  2804. return kvm_pv_mmu_flush_tlb(vcpu);
  2805. }
  2806. case KVM_MMU_OP_RELEASE_PT: {
  2807. struct kvm_mmu_op_release_pt *rpt;
  2808. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2809. if (!rpt)
  2810. return 0;
  2811. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2812. }
  2813. default: return 0;
  2814. }
  2815. }
  2816. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2817. gpa_t addr, unsigned long *ret)
  2818. {
  2819. int r;
  2820. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2821. buffer->ptr = buffer->buf;
  2822. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2823. buffer->processed = 0;
  2824. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2825. if (r)
  2826. goto out;
  2827. while (buffer->len) {
  2828. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2829. if (r < 0)
  2830. goto out;
  2831. if (r == 0)
  2832. break;
  2833. }
  2834. r = 1;
  2835. out:
  2836. *ret = buffer->processed;
  2837. return r;
  2838. }
  2839. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2840. {
  2841. struct kvm_shadow_walk_iterator iterator;
  2842. int nr_sptes = 0;
  2843. spin_lock(&vcpu->kvm->mmu_lock);
  2844. for_each_shadow_entry(vcpu, addr, iterator) {
  2845. sptes[iterator.level-1] = *iterator.sptep;
  2846. nr_sptes++;
  2847. if (!is_shadow_present_pte(*iterator.sptep))
  2848. break;
  2849. }
  2850. spin_unlock(&vcpu->kvm->mmu_lock);
  2851. return nr_sptes;
  2852. }
  2853. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2854. #ifdef AUDIT
  2855. static const char *audit_msg;
  2856. static gva_t canonicalize(gva_t gva)
  2857. {
  2858. #ifdef CONFIG_X86_64
  2859. gva = (long long)(gva << 16) >> 16;
  2860. #endif
  2861. return gva;
  2862. }
  2863. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2864. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2865. inspect_spte_fn fn)
  2866. {
  2867. int i;
  2868. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2869. u64 ent = sp->spt[i];
  2870. if (is_shadow_present_pte(ent)) {
  2871. if (!is_last_spte(ent, sp->role.level)) {
  2872. struct kvm_mmu_page *child;
  2873. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2874. __mmu_spte_walk(kvm, child, fn);
  2875. } else
  2876. fn(kvm, &sp->spt[i]);
  2877. }
  2878. }
  2879. }
  2880. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2881. {
  2882. int i;
  2883. struct kvm_mmu_page *sp;
  2884. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2885. return;
  2886. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2887. hpa_t root = vcpu->arch.mmu.root_hpa;
  2888. sp = page_header(root);
  2889. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2890. return;
  2891. }
  2892. for (i = 0; i < 4; ++i) {
  2893. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2894. if (root && VALID_PAGE(root)) {
  2895. root &= PT64_BASE_ADDR_MASK;
  2896. sp = page_header(root);
  2897. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2898. }
  2899. }
  2900. return;
  2901. }
  2902. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2903. gva_t va, int level)
  2904. {
  2905. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2906. int i;
  2907. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2908. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2909. u64 ent = pt[i];
  2910. if (ent == shadow_trap_nonpresent_pte)
  2911. continue;
  2912. va = canonicalize(va);
  2913. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2914. audit_mappings_page(vcpu, ent, va, level - 1);
  2915. else {
  2916. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2917. gfn_t gfn = gpa >> PAGE_SHIFT;
  2918. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2919. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2920. if (is_error_pfn(pfn)) {
  2921. kvm_release_pfn_clean(pfn);
  2922. continue;
  2923. }
  2924. if (is_shadow_present_pte(ent)
  2925. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2926. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2927. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2928. audit_msg, vcpu->arch.mmu.root_level,
  2929. va, gpa, hpa, ent,
  2930. is_shadow_present_pte(ent));
  2931. else if (ent == shadow_notrap_nonpresent_pte
  2932. && !is_error_hpa(hpa))
  2933. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2934. " valid guest gva %lx\n", audit_msg, va);
  2935. kvm_release_pfn_clean(pfn);
  2936. }
  2937. }
  2938. }
  2939. static void audit_mappings(struct kvm_vcpu *vcpu)
  2940. {
  2941. unsigned i;
  2942. if (vcpu->arch.mmu.root_level == 4)
  2943. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2944. else
  2945. for (i = 0; i < 4; ++i)
  2946. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2947. audit_mappings_page(vcpu,
  2948. vcpu->arch.mmu.pae_root[i],
  2949. i << 30,
  2950. 2);
  2951. }
  2952. static int count_rmaps(struct kvm_vcpu *vcpu)
  2953. {
  2954. struct kvm *kvm = vcpu->kvm;
  2955. struct kvm_memslots *slots;
  2956. int nmaps = 0;
  2957. int i, j, k, idx;
  2958. idx = srcu_read_lock(&kvm->srcu);
  2959. slots = kvm_memslots(kvm);
  2960. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2961. struct kvm_memory_slot *m = &slots->memslots[i];
  2962. struct kvm_rmap_desc *d;
  2963. for (j = 0; j < m->npages; ++j) {
  2964. unsigned long *rmapp = &m->rmap[j];
  2965. if (!*rmapp)
  2966. continue;
  2967. if (!(*rmapp & 1)) {
  2968. ++nmaps;
  2969. continue;
  2970. }
  2971. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2972. while (d) {
  2973. for (k = 0; k < RMAP_EXT; ++k)
  2974. if (d->sptes[k])
  2975. ++nmaps;
  2976. else
  2977. break;
  2978. d = d->more;
  2979. }
  2980. }
  2981. }
  2982. srcu_read_unlock(&kvm->srcu, idx);
  2983. return nmaps;
  2984. }
  2985. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2986. {
  2987. unsigned long *rmapp;
  2988. struct kvm_mmu_page *rev_sp;
  2989. gfn_t gfn;
  2990. if (is_writable_pte(*sptep)) {
  2991. rev_sp = page_header(__pa(sptep));
  2992. gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
  2993. if (!gfn_to_memslot(kvm, gfn)) {
  2994. if (!printk_ratelimit())
  2995. return;
  2996. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2997. audit_msg, gfn);
  2998. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2999. audit_msg, (long int)(sptep - rev_sp->spt),
  3000. rev_sp->gfn);
  3001. dump_stack();
  3002. return;
  3003. }
  3004. rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
  3005. if (!*rmapp) {
  3006. if (!printk_ratelimit())
  3007. return;
  3008. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  3009. audit_msg, *sptep);
  3010. dump_stack();
  3011. }
  3012. }
  3013. }
  3014. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  3015. {
  3016. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  3017. }
  3018. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  3019. {
  3020. struct kvm_mmu_page *sp;
  3021. int i;
  3022. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  3023. u64 *pt = sp->spt;
  3024. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  3025. continue;
  3026. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3027. u64 ent = pt[i];
  3028. if (!(ent & PT_PRESENT_MASK))
  3029. continue;
  3030. if (!is_writable_pte(ent))
  3031. continue;
  3032. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  3033. }
  3034. }
  3035. return;
  3036. }
  3037. static void audit_rmap(struct kvm_vcpu *vcpu)
  3038. {
  3039. check_writable_mappings_rmap(vcpu);
  3040. count_rmaps(vcpu);
  3041. }
  3042. static void audit_write_protection(struct kvm_vcpu *vcpu)
  3043. {
  3044. struct kvm_mmu_page *sp;
  3045. struct kvm_memory_slot *slot;
  3046. unsigned long *rmapp;
  3047. u64 *spte;
  3048. gfn_t gfn;
  3049. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  3050. if (sp->role.direct)
  3051. continue;
  3052. if (sp->unsync)
  3053. continue;
  3054. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  3055. rmapp = &slot->rmap[gfn - slot->base_gfn];
  3056. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  3057. while (spte) {
  3058. if (is_writable_pte(*spte))
  3059. printk(KERN_ERR "%s: (%s) shadow page has "
  3060. "writable mappings: gfn %lx role %x\n",
  3061. __func__, audit_msg, sp->gfn,
  3062. sp->role.word);
  3063. spte = rmap_next(vcpu->kvm, rmapp, spte);
  3064. }
  3065. }
  3066. }
  3067. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  3068. {
  3069. int olddbg = dbg;
  3070. dbg = 0;
  3071. audit_msg = msg;
  3072. audit_rmap(vcpu);
  3073. audit_write_protection(vcpu);
  3074. if (strcmp("pre pte write", audit_msg) != 0)
  3075. audit_mappings(vcpu);
  3076. audit_writable_sptes_have_rmaps(vcpu);
  3077. dbg = olddbg;
  3078. }
  3079. #endif