siena.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2010 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/pci.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/random.h>
  16. #include "net_driver.h"
  17. #include "bitfield.h"
  18. #include "efx.h"
  19. #include "nic.h"
  20. #include "farch_regs.h"
  21. #include "io.h"
  22. #include "phy.h"
  23. #include "workarounds.h"
  24. #include "mcdi.h"
  25. #include "mcdi_pcol.h"
  26. #include "selftest.h"
  27. /* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
  28. static void siena_init_wol(struct efx_nic *efx);
  29. static void siena_push_irq_moderation(struct efx_channel *channel)
  30. {
  31. efx_dword_t timer_cmd;
  32. if (channel->irq_moderation)
  33. EFX_POPULATE_DWORD_2(timer_cmd,
  34. FRF_CZ_TC_TIMER_MODE,
  35. FFE_CZ_TIMER_MODE_INT_HLDOFF,
  36. FRF_CZ_TC_TIMER_VAL,
  37. channel->irq_moderation - 1);
  38. else
  39. EFX_POPULATE_DWORD_2(timer_cmd,
  40. FRF_CZ_TC_TIMER_MODE,
  41. FFE_CZ_TIMER_MODE_DIS,
  42. FRF_CZ_TC_TIMER_VAL, 0);
  43. efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
  44. channel->channel);
  45. }
  46. void siena_prepare_flush(struct efx_nic *efx)
  47. {
  48. if (efx->fc_disable++ == 0)
  49. efx_mcdi_set_mac(efx);
  50. }
  51. void siena_finish_flush(struct efx_nic *efx)
  52. {
  53. if (--efx->fc_disable == 0)
  54. efx_mcdi_set_mac(efx);
  55. }
  56. static const struct efx_farch_register_test siena_register_tests[] = {
  57. { FR_AZ_ADR_REGION,
  58. EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
  59. { FR_CZ_USR_EV_CFG,
  60. EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
  61. { FR_AZ_RX_CFG,
  62. EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
  63. { FR_AZ_TX_CFG,
  64. EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
  65. { FR_AZ_TX_RESERVED,
  66. EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
  67. { FR_AZ_SRM_TX_DC_CFG,
  68. EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
  69. { FR_AZ_RX_DC_CFG,
  70. EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
  71. { FR_AZ_RX_DC_PF_WM,
  72. EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
  73. { FR_BZ_DP_CTRL,
  74. EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
  75. { FR_BZ_RX_RSS_TKEY,
  76. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  77. { FR_CZ_RX_RSS_IPV6_REG1,
  78. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  79. { FR_CZ_RX_RSS_IPV6_REG2,
  80. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  81. { FR_CZ_RX_RSS_IPV6_REG3,
  82. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
  83. };
  84. static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
  85. {
  86. enum reset_type reset_method = RESET_TYPE_ALL;
  87. int rc, rc2;
  88. efx_reset_down(efx, reset_method);
  89. /* Reset the chip immediately so that it is completely
  90. * quiescent regardless of what any VF driver does.
  91. */
  92. rc = efx_mcdi_reset(efx, reset_method);
  93. if (rc)
  94. goto out;
  95. tests->registers =
  96. efx_farch_test_registers(efx, siena_register_tests,
  97. ARRAY_SIZE(siena_register_tests))
  98. ? -1 : 1;
  99. rc = efx_mcdi_reset(efx, reset_method);
  100. out:
  101. rc2 = efx_reset_up(efx, reset_method, rc == 0);
  102. return rc ? rc : rc2;
  103. }
  104. /**************************************************************************
  105. *
  106. * Device reset
  107. *
  108. **************************************************************************
  109. */
  110. static int siena_map_reset_flags(u32 *flags)
  111. {
  112. enum {
  113. SIENA_RESET_PORT = (ETH_RESET_DMA | ETH_RESET_FILTER |
  114. ETH_RESET_OFFLOAD | ETH_RESET_MAC |
  115. ETH_RESET_PHY),
  116. SIENA_RESET_MC = (SIENA_RESET_PORT |
  117. ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT),
  118. };
  119. if ((*flags & SIENA_RESET_MC) == SIENA_RESET_MC) {
  120. *flags &= ~SIENA_RESET_MC;
  121. return RESET_TYPE_WORLD;
  122. }
  123. if ((*flags & SIENA_RESET_PORT) == SIENA_RESET_PORT) {
  124. *flags &= ~SIENA_RESET_PORT;
  125. return RESET_TYPE_ALL;
  126. }
  127. /* no invisible reset implemented */
  128. return -EINVAL;
  129. }
  130. #ifdef CONFIG_EEH
  131. /* When a PCI device is isolated from the bus, a subsequent MMIO read is
  132. * required for the kernel EEH mechanisms to notice. As the Solarflare driver
  133. * was written to minimise MMIO read (for latency) then a periodic call to check
  134. * the EEH status of the device is required so that device recovery can happen
  135. * in a timely fashion.
  136. */
  137. static void siena_monitor(struct efx_nic *efx)
  138. {
  139. struct eeh_dev *eehdev =
  140. of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
  141. eeh_dev_check_failure(eehdev);
  142. }
  143. #endif
  144. static int siena_probe_nvconfig(struct efx_nic *efx)
  145. {
  146. u32 caps = 0;
  147. int rc;
  148. rc = efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL, &caps);
  149. efx->timer_quantum_ns =
  150. (caps & (1 << MC_CMD_CAPABILITIES_TURBO_ACTIVE_LBN)) ?
  151. 3072 : 6144; /* 768 cycles */
  152. return rc;
  153. }
  154. static void siena_dimension_resources(struct efx_nic *efx)
  155. {
  156. /* Each port has a small block of internal SRAM dedicated to
  157. * the buffer table and descriptor caches. In theory we can
  158. * map both blocks to one port, but we don't.
  159. */
  160. efx_farch_dimension_resources(efx, FR_CZ_BUF_FULL_TBL_ROWS / 2);
  161. }
  162. static unsigned int siena_mem_map_size(struct efx_nic *efx)
  163. {
  164. return FR_CZ_MC_TREG_SMEM +
  165. FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS;
  166. }
  167. static int siena_probe_nic(struct efx_nic *efx)
  168. {
  169. struct siena_nic_data *nic_data;
  170. bool already_attached = false;
  171. efx_oword_t reg;
  172. int rc;
  173. /* Allocate storage for hardware specific data */
  174. nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
  175. if (!nic_data)
  176. return -ENOMEM;
  177. efx->nic_data = nic_data;
  178. if (efx_farch_fpga_ver(efx) != 0) {
  179. netif_err(efx, probe, efx->net_dev,
  180. "Siena FPGA not supported\n");
  181. rc = -ENODEV;
  182. goto fail1;
  183. }
  184. efx->max_channels = EFX_MAX_CHANNELS;
  185. efx_reado(efx, &reg, FR_AZ_CS_DEBUG);
  186. efx->port_num = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
  187. rc = efx_mcdi_init(efx);
  188. if (rc)
  189. goto fail1;
  190. /* Let the BMC know that the driver is now in charge of link and
  191. * filter settings. We must do this before we reset the NIC */
  192. rc = efx_mcdi_drv_attach(efx, true, &already_attached);
  193. if (rc) {
  194. netif_err(efx, probe, efx->net_dev,
  195. "Unable to register driver with MCPU\n");
  196. goto fail2;
  197. }
  198. if (already_attached)
  199. /* Not a fatal error */
  200. netif_err(efx, probe, efx->net_dev,
  201. "Host already registered with MCPU\n");
  202. /* Now we can reset the NIC */
  203. rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
  204. if (rc) {
  205. netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
  206. goto fail3;
  207. }
  208. siena_init_wol(efx);
  209. /* Allocate memory for INT_KER */
  210. rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
  211. GFP_KERNEL);
  212. if (rc)
  213. goto fail4;
  214. BUG_ON(efx->irq_status.dma_addr & 0x0f);
  215. netif_dbg(efx, probe, efx->net_dev,
  216. "INT_KER at %llx (virt %p phys %llx)\n",
  217. (unsigned long long)efx->irq_status.dma_addr,
  218. efx->irq_status.addr,
  219. (unsigned long long)virt_to_phys(efx->irq_status.addr));
  220. /* Read in the non-volatile configuration */
  221. rc = siena_probe_nvconfig(efx);
  222. if (rc == -EINVAL) {
  223. netif_err(efx, probe, efx->net_dev,
  224. "NVRAM is invalid therefore using defaults\n");
  225. efx->phy_type = PHY_TYPE_NONE;
  226. efx->mdio.prtad = MDIO_PRTAD_NONE;
  227. } else if (rc) {
  228. goto fail5;
  229. }
  230. rc = efx_mcdi_mon_probe(efx);
  231. if (rc)
  232. goto fail5;
  233. efx_sriov_probe(efx);
  234. efx_ptp_probe(efx);
  235. return 0;
  236. fail5:
  237. efx_nic_free_buffer(efx, &efx->irq_status);
  238. fail4:
  239. fail3:
  240. efx_mcdi_drv_attach(efx, false, NULL);
  241. fail2:
  242. efx_mcdi_fini(efx);
  243. fail1:
  244. kfree(efx->nic_data);
  245. return rc;
  246. }
  247. /* This call performs hardware-specific global initialisation, such as
  248. * defining the descriptor cache sizes and number of RSS channels.
  249. * It does not set up any buffers, descriptor rings or event queues.
  250. */
  251. static int siena_init_nic(struct efx_nic *efx)
  252. {
  253. efx_oword_t temp;
  254. int rc;
  255. /* Recover from a failed assertion post-reset */
  256. rc = efx_mcdi_handle_assertion(efx);
  257. if (rc)
  258. return rc;
  259. /* Squash TX of packets of 16 bytes or less */
  260. efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
  261. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
  262. efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
  263. /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
  264. * descriptors (which is bad).
  265. */
  266. efx_reado(efx, &temp, FR_AZ_TX_CFG);
  267. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
  268. EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
  269. efx_writeo(efx, &temp, FR_AZ_TX_CFG);
  270. efx_reado(efx, &temp, FR_AZ_RX_CFG);
  271. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
  272. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
  273. /* Enable hash insertion. This is broken for the 'Falcon' hash
  274. * if IPv6 hashing is also enabled, so also select Toeplitz
  275. * TCP/IPv4 and IPv4 hashes. */
  276. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1);
  277. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1);
  278. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1);
  279. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_USR_BUF_SIZE,
  280. EFX_RX_USR_BUF_SIZE >> 5);
  281. efx_writeo(efx, &temp, FR_AZ_RX_CFG);
  282. /* Set hash key for IPv4 */
  283. memcpy(&temp, efx->rx_hash_key, sizeof(temp));
  284. efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
  285. /* Enable IPv6 RSS */
  286. BUILD_BUG_ON(sizeof(efx->rx_hash_key) <
  287. 2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 ||
  288. FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0);
  289. memcpy(&temp, efx->rx_hash_key, sizeof(temp));
  290. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
  291. memcpy(&temp, efx->rx_hash_key + sizeof(temp), sizeof(temp));
  292. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
  293. EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1,
  294. FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1);
  295. memcpy(&temp, efx->rx_hash_key + 2 * sizeof(temp),
  296. FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
  297. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);
  298. /* Enable event logging */
  299. rc = efx_mcdi_log_ctrl(efx, true, false, 0);
  300. if (rc)
  301. return rc;
  302. /* Set destination of both TX and RX Flush events */
  303. EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
  304. efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
  305. EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
  306. efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
  307. efx_farch_init_common(efx);
  308. return 0;
  309. }
  310. static void siena_remove_nic(struct efx_nic *efx)
  311. {
  312. efx_mcdi_mon_remove(efx);
  313. efx_nic_free_buffer(efx, &efx->irq_status);
  314. efx_mcdi_reset(efx, RESET_TYPE_ALL);
  315. /* Relinquish the device back to the BMC */
  316. efx_mcdi_drv_attach(efx, false, NULL);
  317. /* Tear down the private nic state */
  318. kfree(efx->nic_data);
  319. efx->nic_data = NULL;
  320. efx_mcdi_fini(efx);
  321. }
  322. static int siena_try_update_nic_stats(struct efx_nic *efx)
  323. {
  324. __le64 *dma_stats;
  325. struct efx_mac_stats *mac_stats;
  326. __le64 generation_start, generation_end;
  327. mac_stats = &efx->mac_stats;
  328. dma_stats = efx->stats_buffer.addr;
  329. generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
  330. if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
  331. return 0;
  332. rmb();
  333. #define MAC_STAT(M, D) \
  334. mac_stats->M = le64_to_cpu(dma_stats[MC_CMD_MAC_ ## D])
  335. MAC_STAT(tx_bytes, TX_BYTES);
  336. MAC_STAT(tx_bad_bytes, TX_BAD_BYTES);
  337. efx_update_diff_stat(&mac_stats->tx_good_bytes,
  338. mac_stats->tx_bytes - mac_stats->tx_bad_bytes);
  339. MAC_STAT(tx_packets, TX_PKTS);
  340. MAC_STAT(tx_bad, TX_BAD_FCS_PKTS);
  341. MAC_STAT(tx_pause, TX_PAUSE_PKTS);
  342. MAC_STAT(tx_control, TX_CONTROL_PKTS);
  343. MAC_STAT(tx_unicast, TX_UNICAST_PKTS);
  344. MAC_STAT(tx_multicast, TX_MULTICAST_PKTS);
  345. MAC_STAT(tx_broadcast, TX_BROADCAST_PKTS);
  346. MAC_STAT(tx_lt64, TX_LT64_PKTS);
  347. MAC_STAT(tx_64, TX_64_PKTS);
  348. MAC_STAT(tx_65_to_127, TX_65_TO_127_PKTS);
  349. MAC_STAT(tx_128_to_255, TX_128_TO_255_PKTS);
  350. MAC_STAT(tx_256_to_511, TX_256_TO_511_PKTS);
  351. MAC_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS);
  352. MAC_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS);
  353. MAC_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS);
  354. MAC_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS);
  355. mac_stats->tx_collision = 0;
  356. MAC_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS);
  357. MAC_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS);
  358. MAC_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS);
  359. MAC_STAT(tx_deferred, TX_DEFERRED_PKTS);
  360. MAC_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS);
  361. mac_stats->tx_collision = (mac_stats->tx_single_collision +
  362. mac_stats->tx_multiple_collision +
  363. mac_stats->tx_excessive_collision +
  364. mac_stats->tx_late_collision);
  365. MAC_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS);
  366. MAC_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS);
  367. MAC_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS);
  368. MAC_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS);
  369. MAC_STAT(rx_bytes, RX_BYTES);
  370. MAC_STAT(rx_bad_bytes, RX_BAD_BYTES);
  371. efx_update_diff_stat(&mac_stats->rx_good_bytes,
  372. mac_stats->rx_bytes - mac_stats->rx_bad_bytes);
  373. MAC_STAT(rx_packets, RX_PKTS);
  374. MAC_STAT(rx_good, RX_GOOD_PKTS);
  375. MAC_STAT(rx_bad, RX_BAD_FCS_PKTS);
  376. MAC_STAT(rx_pause, RX_PAUSE_PKTS);
  377. MAC_STAT(rx_control, RX_CONTROL_PKTS);
  378. MAC_STAT(rx_unicast, RX_UNICAST_PKTS);
  379. MAC_STAT(rx_multicast, RX_MULTICAST_PKTS);
  380. MAC_STAT(rx_broadcast, RX_BROADCAST_PKTS);
  381. MAC_STAT(rx_lt64, RX_UNDERSIZE_PKTS);
  382. MAC_STAT(rx_64, RX_64_PKTS);
  383. MAC_STAT(rx_65_to_127, RX_65_TO_127_PKTS);
  384. MAC_STAT(rx_128_to_255, RX_128_TO_255_PKTS);
  385. MAC_STAT(rx_256_to_511, RX_256_TO_511_PKTS);
  386. MAC_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS);
  387. MAC_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS);
  388. MAC_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS);
  389. MAC_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS);
  390. mac_stats->rx_bad_lt64 = 0;
  391. mac_stats->rx_bad_64_to_15xx = 0;
  392. mac_stats->rx_bad_15xx_to_jumbo = 0;
  393. MAC_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS);
  394. MAC_STAT(rx_overflow, RX_OVERFLOW_PKTS);
  395. mac_stats->rx_missed = 0;
  396. MAC_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS);
  397. MAC_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS);
  398. MAC_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS);
  399. MAC_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS);
  400. MAC_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS);
  401. mac_stats->rx_good_lt64 = 0;
  402. efx->n_rx_nodesc_drop_cnt =
  403. le64_to_cpu(dma_stats[MC_CMD_MAC_RX_NODESC_DROPS]);
  404. #undef MAC_STAT
  405. rmb();
  406. generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
  407. if (generation_end != generation_start)
  408. return -EAGAIN;
  409. return 0;
  410. }
  411. static void siena_update_nic_stats(struct efx_nic *efx)
  412. {
  413. int retry;
  414. /* If we're unlucky enough to read statistics wduring the DMA, wait
  415. * up to 10ms for it to finish (typically takes <500us) */
  416. for (retry = 0; retry < 100; ++retry) {
  417. if (siena_try_update_nic_stats(efx) == 0)
  418. return;
  419. udelay(100);
  420. }
  421. /* Use the old values instead */
  422. }
  423. static int siena_mac_reconfigure(struct efx_nic *efx)
  424. {
  425. MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_MCAST_HASH_IN_LEN);
  426. int rc;
  427. BUILD_BUG_ON(MC_CMD_SET_MCAST_HASH_IN_LEN !=
  428. MC_CMD_SET_MCAST_HASH_IN_HASH0_OFST +
  429. sizeof(efx->multicast_hash));
  430. efx_farch_filter_sync_rx_mode(efx);
  431. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  432. rc = efx_mcdi_set_mac(efx);
  433. if (rc != 0)
  434. return rc;
  435. memcpy(MCDI_PTR(inbuf, SET_MCAST_HASH_IN_HASH0),
  436. efx->multicast_hash.byte, sizeof(efx->multicast_hash));
  437. return efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
  438. inbuf, sizeof(inbuf), NULL, 0, NULL);
  439. }
  440. /**************************************************************************
  441. *
  442. * Wake on LAN
  443. *
  444. **************************************************************************
  445. */
  446. static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
  447. {
  448. struct siena_nic_data *nic_data = efx->nic_data;
  449. wol->supported = WAKE_MAGIC;
  450. if (nic_data->wol_filter_id != -1)
  451. wol->wolopts = WAKE_MAGIC;
  452. else
  453. wol->wolopts = 0;
  454. memset(&wol->sopass, 0, sizeof(wol->sopass));
  455. }
  456. static int siena_set_wol(struct efx_nic *efx, u32 type)
  457. {
  458. struct siena_nic_data *nic_data = efx->nic_data;
  459. int rc;
  460. if (type & ~WAKE_MAGIC)
  461. return -EINVAL;
  462. if (type & WAKE_MAGIC) {
  463. if (nic_data->wol_filter_id != -1)
  464. efx_mcdi_wol_filter_remove(efx,
  465. nic_data->wol_filter_id);
  466. rc = efx_mcdi_wol_filter_set_magic(efx, efx->net_dev->dev_addr,
  467. &nic_data->wol_filter_id);
  468. if (rc)
  469. goto fail;
  470. pci_wake_from_d3(efx->pci_dev, true);
  471. } else {
  472. rc = efx_mcdi_wol_filter_reset(efx);
  473. nic_data->wol_filter_id = -1;
  474. pci_wake_from_d3(efx->pci_dev, false);
  475. if (rc)
  476. goto fail;
  477. }
  478. return 0;
  479. fail:
  480. netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n",
  481. __func__, type, rc);
  482. return rc;
  483. }
  484. static void siena_init_wol(struct efx_nic *efx)
  485. {
  486. struct siena_nic_data *nic_data = efx->nic_data;
  487. int rc;
  488. rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
  489. if (rc != 0) {
  490. /* If it failed, attempt to get into a synchronised
  491. * state with MC by resetting any set WoL filters */
  492. efx_mcdi_wol_filter_reset(efx);
  493. nic_data->wol_filter_id = -1;
  494. } else if (nic_data->wol_filter_id != -1) {
  495. pci_wake_from_d3(efx->pci_dev, true);
  496. }
  497. }
  498. /**************************************************************************
  499. *
  500. * MCDI
  501. *
  502. **************************************************************************
  503. */
  504. #define MCDI_PDU(efx) \
  505. (efx_port_num(efx) ? MC_SMEM_P1_PDU_OFST : MC_SMEM_P0_PDU_OFST)
  506. #define MCDI_DOORBELL(efx) \
  507. (efx_port_num(efx) ? MC_SMEM_P1_DOORBELL_OFST : MC_SMEM_P0_DOORBELL_OFST)
  508. #define MCDI_STATUS(efx) \
  509. (efx_port_num(efx) ? MC_SMEM_P1_STATUS_OFST : MC_SMEM_P0_STATUS_OFST)
  510. static void siena_mcdi_request(struct efx_nic *efx,
  511. const efx_dword_t *hdr, size_t hdr_len,
  512. const efx_dword_t *sdu, size_t sdu_len)
  513. {
  514. unsigned pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  515. unsigned doorbell = FR_CZ_MC_TREG_SMEM + MCDI_DOORBELL(efx);
  516. unsigned int i;
  517. unsigned int inlen_dw = DIV_ROUND_UP(sdu_len, 4);
  518. EFX_BUG_ON_PARANOID(hdr_len != 4);
  519. efx_writed(efx, hdr, pdu);
  520. for (i = 0; i < inlen_dw; i++)
  521. efx_writed(efx, &sdu[i], pdu + hdr_len + 4 * i);
  522. /* Ensure the request is written out before the doorbell */
  523. wmb();
  524. /* ring the doorbell with a distinctive value */
  525. _efx_writed(efx, (__force __le32) 0x45789abc, doorbell);
  526. }
  527. static bool siena_mcdi_poll_response(struct efx_nic *efx)
  528. {
  529. unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  530. efx_dword_t hdr;
  531. efx_readd(efx, &hdr, pdu);
  532. /* All 1's indicates that shared memory is in reset (and is
  533. * not a valid hdr). Wait for it to come out reset before
  534. * completing the command
  535. */
  536. return EFX_DWORD_FIELD(hdr, EFX_DWORD_0) != 0xffffffff &&
  537. EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
  538. }
  539. static void siena_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
  540. size_t offset, size_t outlen)
  541. {
  542. unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  543. unsigned int outlen_dw = DIV_ROUND_UP(outlen, 4);
  544. int i;
  545. for (i = 0; i < outlen_dw; i++)
  546. efx_readd(efx, &outbuf[i], pdu + offset + 4 * i);
  547. }
  548. static int siena_mcdi_poll_reboot(struct efx_nic *efx)
  549. {
  550. unsigned int addr = FR_CZ_MC_TREG_SMEM + MCDI_STATUS(efx);
  551. efx_dword_t reg;
  552. u32 value;
  553. efx_readd(efx, &reg, addr);
  554. value = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
  555. if (value == 0)
  556. return 0;
  557. EFX_ZERO_DWORD(reg);
  558. efx_writed(efx, &reg, addr);
  559. if (value == MC_STATUS_DWORD_ASSERT)
  560. return -EINTR;
  561. else
  562. return -EIO;
  563. }
  564. /**************************************************************************
  565. *
  566. * MTD
  567. *
  568. **************************************************************************
  569. */
  570. #ifdef CONFIG_SFC_MTD
  571. struct siena_nvram_type_info {
  572. int port;
  573. const char *name;
  574. };
  575. static const struct siena_nvram_type_info siena_nvram_types[] = {
  576. [MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO] = { 0, "sfc_dummy_phy" },
  577. [MC_CMD_NVRAM_TYPE_MC_FW] = { 0, "sfc_mcfw" },
  578. [MC_CMD_NVRAM_TYPE_MC_FW_BACKUP] = { 0, "sfc_mcfw_backup" },
  579. [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT0] = { 0, "sfc_static_cfg" },
  580. [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT1] = { 1, "sfc_static_cfg" },
  581. [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0] = { 0, "sfc_dynamic_cfg" },
  582. [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1] = { 1, "sfc_dynamic_cfg" },
  583. [MC_CMD_NVRAM_TYPE_EXP_ROM] = { 0, "sfc_exp_rom" },
  584. [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT0] = { 0, "sfc_exp_rom_cfg" },
  585. [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT1] = { 1, "sfc_exp_rom_cfg" },
  586. [MC_CMD_NVRAM_TYPE_PHY_PORT0] = { 0, "sfc_phy_fw" },
  587. [MC_CMD_NVRAM_TYPE_PHY_PORT1] = { 1, "sfc_phy_fw" },
  588. [MC_CMD_NVRAM_TYPE_FPGA] = { 0, "sfc_fpga" },
  589. };
  590. static int siena_mtd_probe_partition(struct efx_nic *efx,
  591. struct efx_mcdi_mtd_partition *part,
  592. unsigned int type)
  593. {
  594. const struct siena_nvram_type_info *info;
  595. size_t size, erase_size;
  596. bool protected;
  597. int rc;
  598. if (type >= ARRAY_SIZE(siena_nvram_types) ||
  599. siena_nvram_types[type].name == NULL)
  600. return -ENODEV;
  601. info = &siena_nvram_types[type];
  602. if (info->port != efx_port_num(efx))
  603. return -ENODEV;
  604. rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
  605. if (rc)
  606. return rc;
  607. if (protected)
  608. return -ENODEV; /* hide it */
  609. part->nvram_type = type;
  610. part->common.dev_type_name = "Siena NVRAM manager";
  611. part->common.type_name = info->name;
  612. part->common.mtd.type = MTD_NORFLASH;
  613. part->common.mtd.flags = MTD_CAP_NORFLASH;
  614. part->common.mtd.size = size;
  615. part->common.mtd.erasesize = erase_size;
  616. return 0;
  617. }
  618. static int siena_mtd_get_fw_subtypes(struct efx_nic *efx,
  619. struct efx_mcdi_mtd_partition *parts,
  620. size_t n_parts)
  621. {
  622. uint16_t fw_subtype_list[
  623. MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM];
  624. size_t i;
  625. int rc;
  626. rc = efx_mcdi_get_board_cfg(efx, NULL, fw_subtype_list, NULL);
  627. if (rc)
  628. return rc;
  629. for (i = 0; i < n_parts; i++)
  630. parts[i].fw_subtype = fw_subtype_list[parts[i].nvram_type];
  631. return 0;
  632. }
  633. static int siena_mtd_probe(struct efx_nic *efx)
  634. {
  635. struct efx_mcdi_mtd_partition *parts;
  636. u32 nvram_types;
  637. unsigned int type;
  638. size_t n_parts;
  639. int rc;
  640. ASSERT_RTNL();
  641. rc = efx_mcdi_nvram_types(efx, &nvram_types);
  642. if (rc)
  643. return rc;
  644. parts = kcalloc(hweight32(nvram_types), sizeof(*parts), GFP_KERNEL);
  645. if (!parts)
  646. return -ENOMEM;
  647. type = 0;
  648. n_parts = 0;
  649. while (nvram_types != 0) {
  650. if (nvram_types & 1) {
  651. rc = siena_mtd_probe_partition(efx, &parts[n_parts],
  652. type);
  653. if (rc == 0)
  654. n_parts++;
  655. else if (rc != -ENODEV)
  656. goto fail;
  657. }
  658. type++;
  659. nvram_types >>= 1;
  660. }
  661. rc = siena_mtd_get_fw_subtypes(efx, parts, n_parts);
  662. if (rc)
  663. goto fail;
  664. rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
  665. fail:
  666. if (rc)
  667. kfree(parts);
  668. return rc;
  669. }
  670. #endif /* CONFIG_SFC_MTD */
  671. /**************************************************************************
  672. *
  673. * Revision-dependent attributes used by efx.c and nic.c
  674. *
  675. **************************************************************************
  676. */
  677. const struct efx_nic_type siena_a0_nic_type = {
  678. .mem_map_size = siena_mem_map_size,
  679. .probe = siena_probe_nic,
  680. .remove = siena_remove_nic,
  681. .init = siena_init_nic,
  682. .dimension_resources = siena_dimension_resources,
  683. .fini = efx_port_dummy_op_void,
  684. #ifdef CONFIG_EEH
  685. .monitor = siena_monitor,
  686. #else
  687. .monitor = NULL,
  688. #endif
  689. .map_reset_reason = efx_mcdi_map_reset_reason,
  690. .map_reset_flags = siena_map_reset_flags,
  691. .reset = efx_mcdi_reset,
  692. .probe_port = efx_mcdi_port_probe,
  693. .remove_port = efx_mcdi_port_remove,
  694. .fini_dmaq = efx_farch_fini_dmaq,
  695. .prepare_flush = siena_prepare_flush,
  696. .finish_flush = siena_finish_flush,
  697. .update_stats = siena_update_nic_stats,
  698. .start_stats = efx_mcdi_mac_start_stats,
  699. .stop_stats = efx_mcdi_mac_stop_stats,
  700. .set_id_led = efx_mcdi_set_id_led,
  701. .push_irq_moderation = siena_push_irq_moderation,
  702. .reconfigure_mac = siena_mac_reconfigure,
  703. .check_mac_fault = efx_mcdi_mac_check_fault,
  704. .reconfigure_port = efx_mcdi_port_reconfigure,
  705. .get_wol = siena_get_wol,
  706. .set_wol = siena_set_wol,
  707. .resume_wol = siena_init_wol,
  708. .test_chip = siena_test_chip,
  709. .test_nvram = efx_mcdi_nvram_test_all,
  710. .mcdi_request = siena_mcdi_request,
  711. .mcdi_poll_response = siena_mcdi_poll_response,
  712. .mcdi_read_response = siena_mcdi_read_response,
  713. .mcdi_poll_reboot = siena_mcdi_poll_reboot,
  714. .irq_enable_master = efx_farch_irq_enable_master,
  715. .irq_test_generate = efx_farch_irq_test_generate,
  716. .irq_disable_non_ev = efx_farch_irq_disable_master,
  717. .irq_handle_msi = efx_farch_msi_interrupt,
  718. .irq_handle_legacy = efx_farch_legacy_interrupt,
  719. .tx_probe = efx_farch_tx_probe,
  720. .tx_init = efx_farch_tx_init,
  721. .tx_remove = efx_farch_tx_remove,
  722. .tx_write = efx_farch_tx_write,
  723. .rx_push_indir_table = efx_farch_rx_push_indir_table,
  724. .rx_probe = efx_farch_rx_probe,
  725. .rx_init = efx_farch_rx_init,
  726. .rx_remove = efx_farch_rx_remove,
  727. .rx_write = efx_farch_rx_write,
  728. .rx_defer_refill = efx_farch_rx_defer_refill,
  729. .ev_probe = efx_farch_ev_probe,
  730. .ev_init = efx_farch_ev_init,
  731. .ev_fini = efx_farch_ev_fini,
  732. .ev_remove = efx_farch_ev_remove,
  733. .ev_process = efx_farch_ev_process,
  734. .ev_read_ack = efx_farch_ev_read_ack,
  735. .ev_test_generate = efx_farch_ev_test_generate,
  736. .filter_table_probe = efx_farch_filter_table_probe,
  737. .filter_table_restore = efx_farch_filter_table_restore,
  738. .filter_table_remove = efx_farch_filter_table_remove,
  739. .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
  740. .filter_insert = efx_farch_filter_insert,
  741. .filter_remove_safe = efx_farch_filter_remove_safe,
  742. .filter_get_safe = efx_farch_filter_get_safe,
  743. .filter_clear_rx = efx_farch_filter_clear_rx,
  744. .filter_count_rx_used = efx_farch_filter_count_rx_used,
  745. .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
  746. .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
  747. #ifdef CONFIG_RFS_ACCEL
  748. .filter_rfs_insert = efx_farch_filter_rfs_insert,
  749. .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
  750. #endif
  751. #ifdef CONFIG_SFC_MTD
  752. .mtd_probe = siena_mtd_probe,
  753. .mtd_rename = efx_mcdi_mtd_rename,
  754. .mtd_read = efx_mcdi_mtd_read,
  755. .mtd_erase = efx_mcdi_mtd_erase,
  756. .mtd_write = efx_mcdi_mtd_write,
  757. .mtd_sync = efx_mcdi_mtd_sync,
  758. #endif
  759. .revision = EFX_REV_SIENA_A0,
  760. .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
  761. .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
  762. .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
  763. .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
  764. .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
  765. .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
  766. .rx_buffer_hash_size = 0x10,
  767. .rx_buffer_padding = 0,
  768. .can_rx_scatter = true,
  769. .max_interrupt_mode = EFX_INT_MODE_MSIX,
  770. .timer_period_max = 1 << FRF_CZ_TC_TIMER_VAL_WIDTH,
  771. .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  772. NETIF_F_RXHASH | NETIF_F_NTUPLE),
  773. .mcdi_max_ver = 1,
  774. .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
  775. };