intel_display.c 307 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. static void intel_increase_pllclock(struct drm_crtc *crtc);
  43. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  44. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  45. struct intel_crtc_config *pipe_config);
  46. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  47. struct intel_crtc_config *pipe_config);
  48. static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  49. int x, int y, struct drm_framebuffer *old_fb);
  50. typedef struct {
  51. int min, max;
  52. } intel_range_t;
  53. typedef struct {
  54. int dot_limit;
  55. int p2_slow, p2_fast;
  56. } intel_p2_t;
  57. typedef struct intel_limit intel_limit_t;
  58. struct intel_limit {
  59. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  60. intel_p2_t p2;
  61. };
  62. int
  63. intel_pch_rawclk(struct drm_device *dev)
  64. {
  65. struct drm_i915_private *dev_priv = dev->dev_private;
  66. WARN_ON(!HAS_PCH_SPLIT(dev));
  67. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  68. }
  69. static inline u32 /* units of 100MHz */
  70. intel_fdi_link_freq(struct drm_device *dev)
  71. {
  72. if (IS_GEN5(dev)) {
  73. struct drm_i915_private *dev_priv = dev->dev_private;
  74. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  75. } else
  76. return 27;
  77. }
  78. static const intel_limit_t intel_limits_i8xx_dac = {
  79. .dot = { .min = 25000, .max = 350000 },
  80. .vco = { .min = 930000, .max = 1400000 },
  81. .n = { .min = 3, .max = 16 },
  82. .m = { .min = 96, .max = 140 },
  83. .m1 = { .min = 18, .max = 26 },
  84. .m2 = { .min = 6, .max = 16 },
  85. .p = { .min = 4, .max = 128 },
  86. .p1 = { .min = 2, .max = 33 },
  87. .p2 = { .dot_limit = 165000,
  88. .p2_slow = 4, .p2_fast = 2 },
  89. };
  90. static const intel_limit_t intel_limits_i8xx_dvo = {
  91. .dot = { .min = 25000, .max = 350000 },
  92. .vco = { .min = 930000, .max = 1400000 },
  93. .n = { .min = 3, .max = 16 },
  94. .m = { .min = 96, .max = 140 },
  95. .m1 = { .min = 18, .max = 26 },
  96. .m2 = { .min = 6, .max = 16 },
  97. .p = { .min = 4, .max = 128 },
  98. .p1 = { .min = 2, .max = 33 },
  99. .p2 = { .dot_limit = 165000,
  100. .p2_slow = 4, .p2_fast = 4 },
  101. };
  102. static const intel_limit_t intel_limits_i8xx_lvds = {
  103. .dot = { .min = 25000, .max = 350000 },
  104. .vco = { .min = 930000, .max = 1400000 },
  105. .n = { .min = 3, .max = 16 },
  106. .m = { .min = 96, .max = 140 },
  107. .m1 = { .min = 18, .max = 26 },
  108. .m2 = { .min = 6, .max = 16 },
  109. .p = { .min = 4, .max = 128 },
  110. .p1 = { .min = 1, .max = 6 },
  111. .p2 = { .dot_limit = 165000,
  112. .p2_slow = 14, .p2_fast = 7 },
  113. };
  114. static const intel_limit_t intel_limits_i9xx_sdvo = {
  115. .dot = { .min = 20000, .max = 400000 },
  116. .vco = { .min = 1400000, .max = 2800000 },
  117. .n = { .min = 1, .max = 6 },
  118. .m = { .min = 70, .max = 120 },
  119. .m1 = { .min = 8, .max = 18 },
  120. .m2 = { .min = 3, .max = 7 },
  121. .p = { .min = 5, .max = 80 },
  122. .p1 = { .min = 1, .max = 8 },
  123. .p2 = { .dot_limit = 200000,
  124. .p2_slow = 10, .p2_fast = 5 },
  125. };
  126. static const intel_limit_t intel_limits_i9xx_lvds = {
  127. .dot = { .min = 20000, .max = 400000 },
  128. .vco = { .min = 1400000, .max = 2800000 },
  129. .n = { .min = 1, .max = 6 },
  130. .m = { .min = 70, .max = 120 },
  131. .m1 = { .min = 8, .max = 18 },
  132. .m2 = { .min = 3, .max = 7 },
  133. .p = { .min = 7, .max = 98 },
  134. .p1 = { .min = 1, .max = 8 },
  135. .p2 = { .dot_limit = 112000,
  136. .p2_slow = 14, .p2_fast = 7 },
  137. };
  138. static const intel_limit_t intel_limits_g4x_sdvo = {
  139. .dot = { .min = 25000, .max = 270000 },
  140. .vco = { .min = 1750000, .max = 3500000},
  141. .n = { .min = 1, .max = 4 },
  142. .m = { .min = 104, .max = 138 },
  143. .m1 = { .min = 17, .max = 23 },
  144. .m2 = { .min = 5, .max = 11 },
  145. .p = { .min = 10, .max = 30 },
  146. .p1 = { .min = 1, .max = 3},
  147. .p2 = { .dot_limit = 270000,
  148. .p2_slow = 10,
  149. .p2_fast = 10
  150. },
  151. };
  152. static const intel_limit_t intel_limits_g4x_hdmi = {
  153. .dot = { .min = 22000, .max = 400000 },
  154. .vco = { .min = 1750000, .max = 3500000},
  155. .n = { .min = 1, .max = 4 },
  156. .m = { .min = 104, .max = 138 },
  157. .m1 = { .min = 16, .max = 23 },
  158. .m2 = { .min = 5, .max = 11 },
  159. .p = { .min = 5, .max = 80 },
  160. .p1 = { .min = 1, .max = 8},
  161. .p2 = { .dot_limit = 165000,
  162. .p2_slow = 10, .p2_fast = 5 },
  163. };
  164. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  165. .dot = { .min = 20000, .max = 115000 },
  166. .vco = { .min = 1750000, .max = 3500000 },
  167. .n = { .min = 1, .max = 3 },
  168. .m = { .min = 104, .max = 138 },
  169. .m1 = { .min = 17, .max = 23 },
  170. .m2 = { .min = 5, .max = 11 },
  171. .p = { .min = 28, .max = 112 },
  172. .p1 = { .min = 2, .max = 8 },
  173. .p2 = { .dot_limit = 0,
  174. .p2_slow = 14, .p2_fast = 14
  175. },
  176. };
  177. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  178. .dot = { .min = 80000, .max = 224000 },
  179. .vco = { .min = 1750000, .max = 3500000 },
  180. .n = { .min = 1, .max = 3 },
  181. .m = { .min = 104, .max = 138 },
  182. .m1 = { .min = 17, .max = 23 },
  183. .m2 = { .min = 5, .max = 11 },
  184. .p = { .min = 14, .max = 42 },
  185. .p1 = { .min = 2, .max = 6 },
  186. .p2 = { .dot_limit = 0,
  187. .p2_slow = 7, .p2_fast = 7
  188. },
  189. };
  190. static const intel_limit_t intel_limits_pineview_sdvo = {
  191. .dot = { .min = 20000, .max = 400000},
  192. .vco = { .min = 1700000, .max = 3500000 },
  193. /* Pineview's Ncounter is a ring counter */
  194. .n = { .min = 3, .max = 6 },
  195. .m = { .min = 2, .max = 256 },
  196. /* Pineview only has one combined m divider, which we treat as m2. */
  197. .m1 = { .min = 0, .max = 0 },
  198. .m2 = { .min = 0, .max = 254 },
  199. .p = { .min = 5, .max = 80 },
  200. .p1 = { .min = 1, .max = 8 },
  201. .p2 = { .dot_limit = 200000,
  202. .p2_slow = 10, .p2_fast = 5 },
  203. };
  204. static const intel_limit_t intel_limits_pineview_lvds = {
  205. .dot = { .min = 20000, .max = 400000 },
  206. .vco = { .min = 1700000, .max = 3500000 },
  207. .n = { .min = 3, .max = 6 },
  208. .m = { .min = 2, .max = 256 },
  209. .m1 = { .min = 0, .max = 0 },
  210. .m2 = { .min = 0, .max = 254 },
  211. .p = { .min = 7, .max = 112 },
  212. .p1 = { .min = 1, .max = 8 },
  213. .p2 = { .dot_limit = 112000,
  214. .p2_slow = 14, .p2_fast = 14 },
  215. };
  216. /* Ironlake / Sandybridge
  217. *
  218. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  219. * the range value for them is (actual_value - 2).
  220. */
  221. static const intel_limit_t intel_limits_ironlake_dac = {
  222. .dot = { .min = 25000, .max = 350000 },
  223. .vco = { .min = 1760000, .max = 3510000 },
  224. .n = { .min = 1, .max = 5 },
  225. .m = { .min = 79, .max = 127 },
  226. .m1 = { .min = 12, .max = 22 },
  227. .m2 = { .min = 5, .max = 9 },
  228. .p = { .min = 5, .max = 80 },
  229. .p1 = { .min = 1, .max = 8 },
  230. .p2 = { .dot_limit = 225000,
  231. .p2_slow = 10, .p2_fast = 5 },
  232. };
  233. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  234. .dot = { .min = 25000, .max = 350000 },
  235. .vco = { .min = 1760000, .max = 3510000 },
  236. .n = { .min = 1, .max = 3 },
  237. .m = { .min = 79, .max = 118 },
  238. .m1 = { .min = 12, .max = 22 },
  239. .m2 = { .min = 5, .max = 9 },
  240. .p = { .min = 28, .max = 112 },
  241. .p1 = { .min = 2, .max = 8 },
  242. .p2 = { .dot_limit = 225000,
  243. .p2_slow = 14, .p2_fast = 14 },
  244. };
  245. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  246. .dot = { .min = 25000, .max = 350000 },
  247. .vco = { .min = 1760000, .max = 3510000 },
  248. .n = { .min = 1, .max = 3 },
  249. .m = { .min = 79, .max = 127 },
  250. .m1 = { .min = 12, .max = 22 },
  251. .m2 = { .min = 5, .max = 9 },
  252. .p = { .min = 14, .max = 56 },
  253. .p1 = { .min = 2, .max = 8 },
  254. .p2 = { .dot_limit = 225000,
  255. .p2_slow = 7, .p2_fast = 7 },
  256. };
  257. /* LVDS 100mhz refclk limits. */
  258. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  259. .dot = { .min = 25000, .max = 350000 },
  260. .vco = { .min = 1760000, .max = 3510000 },
  261. .n = { .min = 1, .max = 2 },
  262. .m = { .min = 79, .max = 126 },
  263. .m1 = { .min = 12, .max = 22 },
  264. .m2 = { .min = 5, .max = 9 },
  265. .p = { .min = 28, .max = 112 },
  266. .p1 = { .min = 2, .max = 8 },
  267. .p2 = { .dot_limit = 225000,
  268. .p2_slow = 14, .p2_fast = 14 },
  269. };
  270. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  271. .dot = { .min = 25000, .max = 350000 },
  272. .vco = { .min = 1760000, .max = 3510000 },
  273. .n = { .min = 1, .max = 3 },
  274. .m = { .min = 79, .max = 126 },
  275. .m1 = { .min = 12, .max = 22 },
  276. .m2 = { .min = 5, .max = 9 },
  277. .p = { .min = 14, .max = 42 },
  278. .p1 = { .min = 2, .max = 6 },
  279. .p2 = { .dot_limit = 225000,
  280. .p2_slow = 7, .p2_fast = 7 },
  281. };
  282. static const intel_limit_t intel_limits_vlv = {
  283. /*
  284. * These are the data rate limits (measured in fast clocks)
  285. * since those are the strictest limits we have. The fast
  286. * clock and actual rate limits are more relaxed, so checking
  287. * them would make no difference.
  288. */
  289. .dot = { .min = 25000 * 5, .max = 270000 * 5 },
  290. .vco = { .min = 4000000, .max = 6000000 },
  291. .n = { .min = 1, .max = 7 },
  292. .m1 = { .min = 2, .max = 3 },
  293. .m2 = { .min = 11, .max = 156 },
  294. .p1 = { .min = 2, .max = 3 },
  295. .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
  296. };
  297. static void vlv_clock(int refclk, intel_clock_t *clock)
  298. {
  299. clock->m = clock->m1 * clock->m2;
  300. clock->p = clock->p1 * clock->p2;
  301. clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
  302. clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  303. }
  304. /**
  305. * Returns whether any output on the specified pipe is of the specified type
  306. */
  307. static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  308. {
  309. struct drm_device *dev = crtc->dev;
  310. struct intel_encoder *encoder;
  311. for_each_encoder_on_crtc(dev, crtc, encoder)
  312. if (encoder->type == type)
  313. return true;
  314. return false;
  315. }
  316. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  317. int refclk)
  318. {
  319. struct drm_device *dev = crtc->dev;
  320. const intel_limit_t *limit;
  321. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  322. if (intel_is_dual_link_lvds(dev)) {
  323. if (refclk == 100000)
  324. limit = &intel_limits_ironlake_dual_lvds_100m;
  325. else
  326. limit = &intel_limits_ironlake_dual_lvds;
  327. } else {
  328. if (refclk == 100000)
  329. limit = &intel_limits_ironlake_single_lvds_100m;
  330. else
  331. limit = &intel_limits_ironlake_single_lvds;
  332. }
  333. } else
  334. limit = &intel_limits_ironlake_dac;
  335. return limit;
  336. }
  337. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  338. {
  339. struct drm_device *dev = crtc->dev;
  340. const intel_limit_t *limit;
  341. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  342. if (intel_is_dual_link_lvds(dev))
  343. limit = &intel_limits_g4x_dual_channel_lvds;
  344. else
  345. limit = &intel_limits_g4x_single_channel_lvds;
  346. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  347. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  348. limit = &intel_limits_g4x_hdmi;
  349. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  350. limit = &intel_limits_g4x_sdvo;
  351. } else /* The option is for other outputs */
  352. limit = &intel_limits_i9xx_sdvo;
  353. return limit;
  354. }
  355. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  356. {
  357. struct drm_device *dev = crtc->dev;
  358. const intel_limit_t *limit;
  359. if (HAS_PCH_SPLIT(dev))
  360. limit = intel_ironlake_limit(crtc, refclk);
  361. else if (IS_G4X(dev)) {
  362. limit = intel_g4x_limit(crtc);
  363. } else if (IS_PINEVIEW(dev)) {
  364. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  365. limit = &intel_limits_pineview_lvds;
  366. else
  367. limit = &intel_limits_pineview_sdvo;
  368. } else if (IS_VALLEYVIEW(dev)) {
  369. limit = &intel_limits_vlv;
  370. } else if (!IS_GEN2(dev)) {
  371. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  372. limit = &intel_limits_i9xx_lvds;
  373. else
  374. limit = &intel_limits_i9xx_sdvo;
  375. } else {
  376. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  377. limit = &intel_limits_i8xx_lvds;
  378. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  379. limit = &intel_limits_i8xx_dvo;
  380. else
  381. limit = &intel_limits_i8xx_dac;
  382. }
  383. return limit;
  384. }
  385. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  386. static void pineview_clock(int refclk, intel_clock_t *clock)
  387. {
  388. clock->m = clock->m2 + 2;
  389. clock->p = clock->p1 * clock->p2;
  390. clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
  391. clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  392. }
  393. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  394. {
  395. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  396. }
  397. static void i9xx_clock(int refclk, intel_clock_t *clock)
  398. {
  399. clock->m = i9xx_dpll_compute_m(clock);
  400. clock->p = clock->p1 * clock->p2;
  401. clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
  402. clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  403. }
  404. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  405. /**
  406. * Returns whether the given set of divisors are valid for a given refclk with
  407. * the given connectors.
  408. */
  409. static bool intel_PLL_is_valid(struct drm_device *dev,
  410. const intel_limit_t *limit,
  411. const intel_clock_t *clock)
  412. {
  413. if (clock->n < limit->n.min || limit->n.max < clock->n)
  414. INTELPllInvalid("n out of range\n");
  415. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  416. INTELPllInvalid("p1 out of range\n");
  417. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  418. INTELPllInvalid("m2 out of range\n");
  419. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  420. INTELPllInvalid("m1 out of range\n");
  421. if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
  422. if (clock->m1 <= clock->m2)
  423. INTELPllInvalid("m1 <= m2\n");
  424. if (!IS_VALLEYVIEW(dev)) {
  425. if (clock->p < limit->p.min || limit->p.max < clock->p)
  426. INTELPllInvalid("p out of range\n");
  427. if (clock->m < limit->m.min || limit->m.max < clock->m)
  428. INTELPllInvalid("m out of range\n");
  429. }
  430. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  431. INTELPllInvalid("vco out of range\n");
  432. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  433. * connector, etc., rather than just a single range.
  434. */
  435. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  436. INTELPllInvalid("dot out of range\n");
  437. return true;
  438. }
  439. static bool
  440. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  441. int target, int refclk, intel_clock_t *match_clock,
  442. intel_clock_t *best_clock)
  443. {
  444. struct drm_device *dev = crtc->dev;
  445. intel_clock_t clock;
  446. int err = target;
  447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  448. /*
  449. * For LVDS just rely on its current settings for dual-channel.
  450. * We haven't figured out how to reliably set up different
  451. * single/dual channel state, if we even can.
  452. */
  453. if (intel_is_dual_link_lvds(dev))
  454. clock.p2 = limit->p2.p2_fast;
  455. else
  456. clock.p2 = limit->p2.p2_slow;
  457. } else {
  458. if (target < limit->p2.dot_limit)
  459. clock.p2 = limit->p2.p2_slow;
  460. else
  461. clock.p2 = limit->p2.p2_fast;
  462. }
  463. memset(best_clock, 0, sizeof(*best_clock));
  464. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  465. clock.m1++) {
  466. for (clock.m2 = limit->m2.min;
  467. clock.m2 <= limit->m2.max; clock.m2++) {
  468. if (clock.m2 >= clock.m1)
  469. break;
  470. for (clock.n = limit->n.min;
  471. clock.n <= limit->n.max; clock.n++) {
  472. for (clock.p1 = limit->p1.min;
  473. clock.p1 <= limit->p1.max; clock.p1++) {
  474. int this_err;
  475. i9xx_clock(refclk, &clock);
  476. if (!intel_PLL_is_valid(dev, limit,
  477. &clock))
  478. continue;
  479. if (match_clock &&
  480. clock.p != match_clock->p)
  481. continue;
  482. this_err = abs(clock.dot - target);
  483. if (this_err < err) {
  484. *best_clock = clock;
  485. err = this_err;
  486. }
  487. }
  488. }
  489. }
  490. }
  491. return (err != target);
  492. }
  493. static bool
  494. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  495. int target, int refclk, intel_clock_t *match_clock,
  496. intel_clock_t *best_clock)
  497. {
  498. struct drm_device *dev = crtc->dev;
  499. intel_clock_t clock;
  500. int err = target;
  501. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  502. /*
  503. * For LVDS just rely on its current settings for dual-channel.
  504. * We haven't figured out how to reliably set up different
  505. * single/dual channel state, if we even can.
  506. */
  507. if (intel_is_dual_link_lvds(dev))
  508. clock.p2 = limit->p2.p2_fast;
  509. else
  510. clock.p2 = limit->p2.p2_slow;
  511. } else {
  512. if (target < limit->p2.dot_limit)
  513. clock.p2 = limit->p2.p2_slow;
  514. else
  515. clock.p2 = limit->p2.p2_fast;
  516. }
  517. memset(best_clock, 0, sizeof(*best_clock));
  518. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  519. clock.m1++) {
  520. for (clock.m2 = limit->m2.min;
  521. clock.m2 <= limit->m2.max; clock.m2++) {
  522. for (clock.n = limit->n.min;
  523. clock.n <= limit->n.max; clock.n++) {
  524. for (clock.p1 = limit->p1.min;
  525. clock.p1 <= limit->p1.max; clock.p1++) {
  526. int this_err;
  527. pineview_clock(refclk, &clock);
  528. if (!intel_PLL_is_valid(dev, limit,
  529. &clock))
  530. continue;
  531. if (match_clock &&
  532. clock.p != match_clock->p)
  533. continue;
  534. this_err = abs(clock.dot - target);
  535. if (this_err < err) {
  536. *best_clock = clock;
  537. err = this_err;
  538. }
  539. }
  540. }
  541. }
  542. }
  543. return (err != target);
  544. }
  545. static bool
  546. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  547. int target, int refclk, intel_clock_t *match_clock,
  548. intel_clock_t *best_clock)
  549. {
  550. struct drm_device *dev = crtc->dev;
  551. intel_clock_t clock;
  552. int max_n;
  553. bool found;
  554. /* approximately equals target * 0.00585 */
  555. int err_most = (target >> 8) + (target >> 9);
  556. found = false;
  557. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  558. if (intel_is_dual_link_lvds(dev))
  559. clock.p2 = limit->p2.p2_fast;
  560. else
  561. clock.p2 = limit->p2.p2_slow;
  562. } else {
  563. if (target < limit->p2.dot_limit)
  564. clock.p2 = limit->p2.p2_slow;
  565. else
  566. clock.p2 = limit->p2.p2_fast;
  567. }
  568. memset(best_clock, 0, sizeof(*best_clock));
  569. max_n = limit->n.max;
  570. /* based on hardware requirement, prefer smaller n to precision */
  571. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  572. /* based on hardware requirement, prefere larger m1,m2 */
  573. for (clock.m1 = limit->m1.max;
  574. clock.m1 >= limit->m1.min; clock.m1--) {
  575. for (clock.m2 = limit->m2.max;
  576. clock.m2 >= limit->m2.min; clock.m2--) {
  577. for (clock.p1 = limit->p1.max;
  578. clock.p1 >= limit->p1.min; clock.p1--) {
  579. int this_err;
  580. i9xx_clock(refclk, &clock);
  581. if (!intel_PLL_is_valid(dev, limit,
  582. &clock))
  583. continue;
  584. this_err = abs(clock.dot - target);
  585. if (this_err < err_most) {
  586. *best_clock = clock;
  587. err_most = this_err;
  588. max_n = clock.n;
  589. found = true;
  590. }
  591. }
  592. }
  593. }
  594. }
  595. return found;
  596. }
  597. static bool
  598. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  599. int target, int refclk, intel_clock_t *match_clock,
  600. intel_clock_t *best_clock)
  601. {
  602. struct drm_device *dev = crtc->dev;
  603. intel_clock_t clock;
  604. unsigned int bestppm = 1000000;
  605. /* min update 19.2 MHz */
  606. int max_n = min(limit->n.max, refclk / 19200);
  607. bool found = false;
  608. target *= 5; /* fast clock */
  609. memset(best_clock, 0, sizeof(*best_clock));
  610. /* based on hardware requirement, prefer smaller n to precision */
  611. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  612. for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  613. for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
  614. clock.p2 -= clock.p2 > 10 ? 2 : 1) {
  615. clock.p = clock.p1 * clock.p2;
  616. /* based on hardware requirement, prefer bigger m1,m2 values */
  617. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
  618. unsigned int ppm, diff;
  619. clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
  620. refclk * clock.m1);
  621. vlv_clock(refclk, &clock);
  622. if (!intel_PLL_is_valid(dev, limit,
  623. &clock))
  624. continue;
  625. diff = abs(clock.dot - target);
  626. ppm = div_u64(1000000ULL * diff, target);
  627. if (ppm < 100 && clock.p > best_clock->p) {
  628. bestppm = 0;
  629. *best_clock = clock;
  630. found = true;
  631. }
  632. if (bestppm >= 10 && ppm < bestppm - 10) {
  633. bestppm = ppm;
  634. *best_clock = clock;
  635. found = true;
  636. }
  637. }
  638. }
  639. }
  640. }
  641. return found;
  642. }
  643. bool intel_crtc_active(struct drm_crtc *crtc)
  644. {
  645. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  646. /* Be paranoid as we can arrive here with only partial
  647. * state retrieved from the hardware during setup.
  648. *
  649. * We can ditch the adjusted_mode.crtc_clock check as soon
  650. * as Haswell has gained clock readout/fastboot support.
  651. *
  652. * We can ditch the crtc->fb check as soon as we can
  653. * properly reconstruct framebuffers.
  654. */
  655. return intel_crtc->active && crtc->fb &&
  656. intel_crtc->config.adjusted_mode.crtc_clock;
  657. }
  658. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  659. enum pipe pipe)
  660. {
  661. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  662. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  663. return intel_crtc->config.cpu_transcoder;
  664. }
  665. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  666. {
  667. struct drm_i915_private *dev_priv = dev->dev_private;
  668. u32 frame, frame_reg = PIPEFRAME(pipe);
  669. frame = I915_READ(frame_reg);
  670. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  671. DRM_DEBUG_KMS("vblank wait timed out\n");
  672. }
  673. /**
  674. * intel_wait_for_vblank - wait for vblank on a given pipe
  675. * @dev: drm device
  676. * @pipe: pipe to wait for
  677. *
  678. * Wait for vblank to occur on a given pipe. Needed for various bits of
  679. * mode setting code.
  680. */
  681. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  682. {
  683. struct drm_i915_private *dev_priv = dev->dev_private;
  684. int pipestat_reg = PIPESTAT(pipe);
  685. if (INTEL_INFO(dev)->gen >= 5) {
  686. ironlake_wait_for_vblank(dev, pipe);
  687. return;
  688. }
  689. /* Clear existing vblank status. Note this will clear any other
  690. * sticky status fields as well.
  691. *
  692. * This races with i915_driver_irq_handler() with the result
  693. * that either function could miss a vblank event. Here it is not
  694. * fatal, as we will either wait upon the next vblank interrupt or
  695. * timeout. Generally speaking intel_wait_for_vblank() is only
  696. * called during modeset at which time the GPU should be idle and
  697. * should *not* be performing page flips and thus not waiting on
  698. * vblanks...
  699. * Currently, the result of us stealing a vblank from the irq
  700. * handler is that a single frame will be skipped during swapbuffers.
  701. */
  702. I915_WRITE(pipestat_reg,
  703. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  704. /* Wait for vblank interrupt bit to set */
  705. if (wait_for(I915_READ(pipestat_reg) &
  706. PIPE_VBLANK_INTERRUPT_STATUS,
  707. 50))
  708. DRM_DEBUG_KMS("vblank wait timed out\n");
  709. }
  710. static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
  711. {
  712. struct drm_i915_private *dev_priv = dev->dev_private;
  713. u32 reg = PIPEDSL(pipe);
  714. u32 line1, line2;
  715. u32 line_mask;
  716. if (IS_GEN2(dev))
  717. line_mask = DSL_LINEMASK_GEN2;
  718. else
  719. line_mask = DSL_LINEMASK_GEN3;
  720. line1 = I915_READ(reg) & line_mask;
  721. mdelay(5);
  722. line2 = I915_READ(reg) & line_mask;
  723. return line1 == line2;
  724. }
  725. /*
  726. * intel_wait_for_pipe_off - wait for pipe to turn off
  727. * @dev: drm device
  728. * @pipe: pipe to wait for
  729. *
  730. * After disabling a pipe, we can't wait for vblank in the usual way,
  731. * spinning on the vblank interrupt status bit, since we won't actually
  732. * see an interrupt when the pipe is disabled.
  733. *
  734. * On Gen4 and above:
  735. * wait for the pipe register state bit to turn off
  736. *
  737. * Otherwise:
  738. * wait for the display line value to settle (it usually
  739. * ends up stopping at the start of the next frame).
  740. *
  741. */
  742. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  743. {
  744. struct drm_i915_private *dev_priv = dev->dev_private;
  745. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  746. pipe);
  747. if (INTEL_INFO(dev)->gen >= 4) {
  748. int reg = PIPECONF(cpu_transcoder);
  749. /* Wait for the Pipe State to go off */
  750. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  751. 100))
  752. WARN(1, "pipe_off wait timed out\n");
  753. } else {
  754. /* Wait for the display line to settle */
  755. if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
  756. WARN(1, "pipe_off wait timed out\n");
  757. }
  758. }
  759. /*
  760. * ibx_digital_port_connected - is the specified port connected?
  761. * @dev_priv: i915 private structure
  762. * @port: the port to test
  763. *
  764. * Returns true if @port is connected, false otherwise.
  765. */
  766. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  767. struct intel_digital_port *port)
  768. {
  769. u32 bit;
  770. if (HAS_PCH_IBX(dev_priv->dev)) {
  771. switch(port->port) {
  772. case PORT_B:
  773. bit = SDE_PORTB_HOTPLUG;
  774. break;
  775. case PORT_C:
  776. bit = SDE_PORTC_HOTPLUG;
  777. break;
  778. case PORT_D:
  779. bit = SDE_PORTD_HOTPLUG;
  780. break;
  781. default:
  782. return true;
  783. }
  784. } else {
  785. switch(port->port) {
  786. case PORT_B:
  787. bit = SDE_PORTB_HOTPLUG_CPT;
  788. break;
  789. case PORT_C:
  790. bit = SDE_PORTC_HOTPLUG_CPT;
  791. break;
  792. case PORT_D:
  793. bit = SDE_PORTD_HOTPLUG_CPT;
  794. break;
  795. default:
  796. return true;
  797. }
  798. }
  799. return I915_READ(SDEISR) & bit;
  800. }
  801. static const char *state_string(bool enabled)
  802. {
  803. return enabled ? "on" : "off";
  804. }
  805. /* Only for pre-ILK configs */
  806. void assert_pll(struct drm_i915_private *dev_priv,
  807. enum pipe pipe, bool state)
  808. {
  809. int reg;
  810. u32 val;
  811. bool cur_state;
  812. reg = DPLL(pipe);
  813. val = I915_READ(reg);
  814. cur_state = !!(val & DPLL_VCO_ENABLE);
  815. WARN(cur_state != state,
  816. "PLL state assertion failure (expected %s, current %s)\n",
  817. state_string(state), state_string(cur_state));
  818. }
  819. /* XXX: the dsi pll is shared between MIPI DSI ports */
  820. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  821. {
  822. u32 val;
  823. bool cur_state;
  824. mutex_lock(&dev_priv->dpio_lock);
  825. val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  826. mutex_unlock(&dev_priv->dpio_lock);
  827. cur_state = val & DSI_PLL_VCO_EN;
  828. WARN(cur_state != state,
  829. "DSI PLL state assertion failure (expected %s, current %s)\n",
  830. state_string(state), state_string(cur_state));
  831. }
  832. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  833. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  834. struct intel_shared_dpll *
  835. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  836. {
  837. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  838. if (crtc->config.shared_dpll < 0)
  839. return NULL;
  840. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  841. }
  842. /* For ILK+ */
  843. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  844. struct intel_shared_dpll *pll,
  845. bool state)
  846. {
  847. bool cur_state;
  848. struct intel_dpll_hw_state hw_state;
  849. if (HAS_PCH_LPT(dev_priv->dev)) {
  850. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  851. return;
  852. }
  853. if (WARN (!pll,
  854. "asserting DPLL %s with no DPLL\n", state_string(state)))
  855. return;
  856. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  857. WARN(cur_state != state,
  858. "%s assertion failure (expected %s, current %s)\n",
  859. pll->name, state_string(state), state_string(cur_state));
  860. }
  861. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  862. enum pipe pipe, bool state)
  863. {
  864. int reg;
  865. u32 val;
  866. bool cur_state;
  867. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  868. pipe);
  869. if (HAS_DDI(dev_priv->dev)) {
  870. /* DDI does not have a specific FDI_TX register */
  871. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  872. val = I915_READ(reg);
  873. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  874. } else {
  875. reg = FDI_TX_CTL(pipe);
  876. val = I915_READ(reg);
  877. cur_state = !!(val & FDI_TX_ENABLE);
  878. }
  879. WARN(cur_state != state,
  880. "FDI TX state assertion failure (expected %s, current %s)\n",
  881. state_string(state), state_string(cur_state));
  882. }
  883. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  884. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  885. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  886. enum pipe pipe, bool state)
  887. {
  888. int reg;
  889. u32 val;
  890. bool cur_state;
  891. reg = FDI_RX_CTL(pipe);
  892. val = I915_READ(reg);
  893. cur_state = !!(val & FDI_RX_ENABLE);
  894. WARN(cur_state != state,
  895. "FDI RX state assertion failure (expected %s, current %s)\n",
  896. state_string(state), state_string(cur_state));
  897. }
  898. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  899. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  900. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  901. enum pipe pipe)
  902. {
  903. int reg;
  904. u32 val;
  905. /* ILK FDI PLL is always enabled */
  906. if (dev_priv->info->gen == 5)
  907. return;
  908. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  909. if (HAS_DDI(dev_priv->dev))
  910. return;
  911. reg = FDI_TX_CTL(pipe);
  912. val = I915_READ(reg);
  913. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  914. }
  915. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  916. enum pipe pipe, bool state)
  917. {
  918. int reg;
  919. u32 val;
  920. bool cur_state;
  921. reg = FDI_RX_CTL(pipe);
  922. val = I915_READ(reg);
  923. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  924. WARN(cur_state != state,
  925. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  926. state_string(state), state_string(cur_state));
  927. }
  928. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  929. enum pipe pipe)
  930. {
  931. int pp_reg, lvds_reg;
  932. u32 val;
  933. enum pipe panel_pipe = PIPE_A;
  934. bool locked = true;
  935. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  936. pp_reg = PCH_PP_CONTROL;
  937. lvds_reg = PCH_LVDS;
  938. } else {
  939. pp_reg = PP_CONTROL;
  940. lvds_reg = LVDS;
  941. }
  942. val = I915_READ(pp_reg);
  943. if (!(val & PANEL_POWER_ON) ||
  944. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  945. locked = false;
  946. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  947. panel_pipe = PIPE_B;
  948. WARN(panel_pipe == pipe && locked,
  949. "panel assertion failure, pipe %c regs locked\n",
  950. pipe_name(pipe));
  951. }
  952. static void assert_cursor(struct drm_i915_private *dev_priv,
  953. enum pipe pipe, bool state)
  954. {
  955. struct drm_device *dev = dev_priv->dev;
  956. bool cur_state;
  957. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  958. cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
  959. else if (IS_845G(dev) || IS_I865G(dev))
  960. cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
  961. else
  962. cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  963. WARN(cur_state != state,
  964. "cursor on pipe %c assertion failure (expected %s, current %s)\n",
  965. pipe_name(pipe), state_string(state), state_string(cur_state));
  966. }
  967. #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
  968. #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
  969. void assert_pipe(struct drm_i915_private *dev_priv,
  970. enum pipe pipe, bool state)
  971. {
  972. int reg;
  973. u32 val;
  974. bool cur_state;
  975. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  976. pipe);
  977. /* if we need the pipe A quirk it must be always on */
  978. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  979. state = true;
  980. if (!intel_display_power_enabled(dev_priv->dev,
  981. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  982. cur_state = false;
  983. } else {
  984. reg = PIPECONF(cpu_transcoder);
  985. val = I915_READ(reg);
  986. cur_state = !!(val & PIPECONF_ENABLE);
  987. }
  988. WARN(cur_state != state,
  989. "pipe %c assertion failure (expected %s, current %s)\n",
  990. pipe_name(pipe), state_string(state), state_string(cur_state));
  991. }
  992. static void assert_plane(struct drm_i915_private *dev_priv,
  993. enum plane plane, bool state)
  994. {
  995. int reg;
  996. u32 val;
  997. bool cur_state;
  998. reg = DSPCNTR(plane);
  999. val = I915_READ(reg);
  1000. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1001. WARN(cur_state != state,
  1002. "plane %c assertion failure (expected %s, current %s)\n",
  1003. plane_name(plane), state_string(state), state_string(cur_state));
  1004. }
  1005. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1006. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1007. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1008. enum pipe pipe)
  1009. {
  1010. struct drm_device *dev = dev_priv->dev;
  1011. int reg, i;
  1012. u32 val;
  1013. int cur_pipe;
  1014. /* Primary planes are fixed to pipes on gen4+ */
  1015. if (INTEL_INFO(dev)->gen >= 4) {
  1016. reg = DSPCNTR(pipe);
  1017. val = I915_READ(reg);
  1018. WARN((val & DISPLAY_PLANE_ENABLE),
  1019. "plane %c assertion failure, should be disabled but not\n",
  1020. plane_name(pipe));
  1021. return;
  1022. }
  1023. /* Need to check both planes against the pipe */
  1024. for_each_pipe(i) {
  1025. reg = DSPCNTR(i);
  1026. val = I915_READ(reg);
  1027. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1028. DISPPLANE_SEL_PIPE_SHIFT;
  1029. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1030. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1031. plane_name(i), pipe_name(pipe));
  1032. }
  1033. }
  1034. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1035. enum pipe pipe)
  1036. {
  1037. struct drm_device *dev = dev_priv->dev;
  1038. int reg, i;
  1039. u32 val;
  1040. if (IS_VALLEYVIEW(dev)) {
  1041. for (i = 0; i < dev_priv->num_plane; i++) {
  1042. reg = SPCNTR(pipe, i);
  1043. val = I915_READ(reg);
  1044. WARN((val & SP_ENABLE),
  1045. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1046. sprite_name(pipe, i), pipe_name(pipe));
  1047. }
  1048. } else if (INTEL_INFO(dev)->gen >= 7) {
  1049. reg = SPRCTL(pipe);
  1050. val = I915_READ(reg);
  1051. WARN((val & SPRITE_ENABLE),
  1052. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1053. plane_name(pipe), pipe_name(pipe));
  1054. } else if (INTEL_INFO(dev)->gen >= 5) {
  1055. reg = DVSCNTR(pipe);
  1056. val = I915_READ(reg);
  1057. WARN((val & DVS_ENABLE),
  1058. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1059. plane_name(pipe), pipe_name(pipe));
  1060. }
  1061. }
  1062. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1063. {
  1064. u32 val;
  1065. bool enabled;
  1066. if (HAS_PCH_LPT(dev_priv->dev)) {
  1067. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1068. return;
  1069. }
  1070. val = I915_READ(PCH_DREF_CONTROL);
  1071. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1072. DREF_SUPERSPREAD_SOURCE_MASK));
  1073. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1074. }
  1075. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1076. enum pipe pipe)
  1077. {
  1078. int reg;
  1079. u32 val;
  1080. bool enabled;
  1081. reg = PCH_TRANSCONF(pipe);
  1082. val = I915_READ(reg);
  1083. enabled = !!(val & TRANS_ENABLE);
  1084. WARN(enabled,
  1085. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1086. pipe_name(pipe));
  1087. }
  1088. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1089. enum pipe pipe, u32 port_sel, u32 val)
  1090. {
  1091. if ((val & DP_PORT_EN) == 0)
  1092. return false;
  1093. if (HAS_PCH_CPT(dev_priv->dev)) {
  1094. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1095. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1096. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1097. return false;
  1098. } else {
  1099. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1100. return false;
  1101. }
  1102. return true;
  1103. }
  1104. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1105. enum pipe pipe, u32 val)
  1106. {
  1107. if ((val & SDVO_ENABLE) == 0)
  1108. return false;
  1109. if (HAS_PCH_CPT(dev_priv->dev)) {
  1110. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1111. return false;
  1112. } else {
  1113. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1114. return false;
  1115. }
  1116. return true;
  1117. }
  1118. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1119. enum pipe pipe, u32 val)
  1120. {
  1121. if ((val & LVDS_PORT_EN) == 0)
  1122. return false;
  1123. if (HAS_PCH_CPT(dev_priv->dev)) {
  1124. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1125. return false;
  1126. } else {
  1127. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1128. return false;
  1129. }
  1130. return true;
  1131. }
  1132. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1133. enum pipe pipe, u32 val)
  1134. {
  1135. if ((val & ADPA_DAC_ENABLE) == 0)
  1136. return false;
  1137. if (HAS_PCH_CPT(dev_priv->dev)) {
  1138. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1139. return false;
  1140. } else {
  1141. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1142. return false;
  1143. }
  1144. return true;
  1145. }
  1146. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1147. enum pipe pipe, int reg, u32 port_sel)
  1148. {
  1149. u32 val = I915_READ(reg);
  1150. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1151. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1152. reg, pipe_name(pipe));
  1153. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1154. && (val & DP_PIPEB_SELECT),
  1155. "IBX PCH dp port still using transcoder B\n");
  1156. }
  1157. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1158. enum pipe pipe, int reg)
  1159. {
  1160. u32 val = I915_READ(reg);
  1161. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1162. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1163. reg, pipe_name(pipe));
  1164. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1165. && (val & SDVO_PIPE_B_SELECT),
  1166. "IBX PCH hdmi port still using transcoder B\n");
  1167. }
  1168. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1169. enum pipe pipe)
  1170. {
  1171. int reg;
  1172. u32 val;
  1173. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1174. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1175. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1176. reg = PCH_ADPA;
  1177. val = I915_READ(reg);
  1178. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1179. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1180. pipe_name(pipe));
  1181. reg = PCH_LVDS;
  1182. val = I915_READ(reg);
  1183. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1184. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1185. pipe_name(pipe));
  1186. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1187. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1188. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1189. }
  1190. static void intel_init_dpio(struct drm_device *dev)
  1191. {
  1192. struct drm_i915_private *dev_priv = dev->dev_private;
  1193. if (!IS_VALLEYVIEW(dev))
  1194. return;
  1195. /*
  1196. * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
  1197. * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
  1198. * a. GUnit 0x2110 bit[0] set to 1 (def 0)
  1199. * b. The other bits such as sfr settings / modesel may all be set
  1200. * to 0.
  1201. *
  1202. * This should only be done on init and resume from S3 with both
  1203. * PLLs disabled, or we risk losing DPIO and PLL synchronization.
  1204. */
  1205. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
  1206. }
  1207. static void vlv_enable_pll(struct intel_crtc *crtc)
  1208. {
  1209. struct drm_device *dev = crtc->base.dev;
  1210. struct drm_i915_private *dev_priv = dev->dev_private;
  1211. int reg = DPLL(crtc->pipe);
  1212. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1213. assert_pipe_disabled(dev_priv, crtc->pipe);
  1214. /* No really, not for ILK+ */
  1215. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1216. /* PLL is protected by panel, make sure we can write it */
  1217. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1218. assert_panel_unlocked(dev_priv, crtc->pipe);
  1219. I915_WRITE(reg, dpll);
  1220. POSTING_READ(reg);
  1221. udelay(150);
  1222. if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1223. DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1224. I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1225. POSTING_READ(DPLL_MD(crtc->pipe));
  1226. /* We do this three times for luck */
  1227. I915_WRITE(reg, dpll);
  1228. POSTING_READ(reg);
  1229. udelay(150); /* wait for warmup */
  1230. I915_WRITE(reg, dpll);
  1231. POSTING_READ(reg);
  1232. udelay(150); /* wait for warmup */
  1233. I915_WRITE(reg, dpll);
  1234. POSTING_READ(reg);
  1235. udelay(150); /* wait for warmup */
  1236. }
  1237. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1238. {
  1239. struct drm_device *dev = crtc->base.dev;
  1240. struct drm_i915_private *dev_priv = dev->dev_private;
  1241. int reg = DPLL(crtc->pipe);
  1242. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1243. assert_pipe_disabled(dev_priv, crtc->pipe);
  1244. /* No really, not for ILK+ */
  1245. BUG_ON(dev_priv->info->gen >= 5);
  1246. /* PLL is protected by panel, make sure we can write it */
  1247. if (IS_MOBILE(dev) && !IS_I830(dev))
  1248. assert_panel_unlocked(dev_priv, crtc->pipe);
  1249. I915_WRITE(reg, dpll);
  1250. /* Wait for the clocks to stabilize. */
  1251. POSTING_READ(reg);
  1252. udelay(150);
  1253. if (INTEL_INFO(dev)->gen >= 4) {
  1254. I915_WRITE(DPLL_MD(crtc->pipe),
  1255. crtc->config.dpll_hw_state.dpll_md);
  1256. } else {
  1257. /* The pixel multiplier can only be updated once the
  1258. * DPLL is enabled and the clocks are stable.
  1259. *
  1260. * So write it again.
  1261. */
  1262. I915_WRITE(reg, dpll);
  1263. }
  1264. /* We do this three times for luck */
  1265. I915_WRITE(reg, dpll);
  1266. POSTING_READ(reg);
  1267. udelay(150); /* wait for warmup */
  1268. I915_WRITE(reg, dpll);
  1269. POSTING_READ(reg);
  1270. udelay(150); /* wait for warmup */
  1271. I915_WRITE(reg, dpll);
  1272. POSTING_READ(reg);
  1273. udelay(150); /* wait for warmup */
  1274. }
  1275. /**
  1276. * i9xx_disable_pll - disable a PLL
  1277. * @dev_priv: i915 private structure
  1278. * @pipe: pipe PLL to disable
  1279. *
  1280. * Disable the PLL for @pipe, making sure the pipe is off first.
  1281. *
  1282. * Note! This is for pre-ILK only.
  1283. */
  1284. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1285. {
  1286. /* Don't disable pipe A or pipe A PLLs if needed */
  1287. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1288. return;
  1289. /* Make sure the pipe isn't still relying on us */
  1290. assert_pipe_disabled(dev_priv, pipe);
  1291. I915_WRITE(DPLL(pipe), 0);
  1292. POSTING_READ(DPLL(pipe));
  1293. }
  1294. static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1295. {
  1296. u32 val = 0;
  1297. /* Make sure the pipe isn't still relying on us */
  1298. assert_pipe_disabled(dev_priv, pipe);
  1299. /* Leave integrated clock source enabled */
  1300. if (pipe == PIPE_B)
  1301. val = DPLL_INTEGRATED_CRI_CLK_VLV;
  1302. I915_WRITE(DPLL(pipe), val);
  1303. POSTING_READ(DPLL(pipe));
  1304. }
  1305. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1306. {
  1307. u32 port_mask;
  1308. if (!port)
  1309. port_mask = DPLL_PORTB_READY_MASK;
  1310. else
  1311. port_mask = DPLL_PORTC_READY_MASK;
  1312. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1313. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1314. 'B' + port, I915_READ(DPLL(0)));
  1315. }
  1316. /**
  1317. * ironlake_enable_shared_dpll - enable PCH PLL
  1318. * @dev_priv: i915 private structure
  1319. * @pipe: pipe PLL to enable
  1320. *
  1321. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1322. * drives the transcoder clock.
  1323. */
  1324. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1325. {
  1326. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1327. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1328. /* PCH PLLs only available on ILK, SNB and IVB */
  1329. BUG_ON(dev_priv->info->gen < 5);
  1330. if (WARN_ON(pll == NULL))
  1331. return;
  1332. if (WARN_ON(pll->refcount == 0))
  1333. return;
  1334. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1335. pll->name, pll->active, pll->on,
  1336. crtc->base.base.id);
  1337. if (pll->active++) {
  1338. WARN_ON(!pll->on);
  1339. assert_shared_dpll_enabled(dev_priv, pll);
  1340. return;
  1341. }
  1342. WARN_ON(pll->on);
  1343. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1344. pll->enable(dev_priv, pll);
  1345. pll->on = true;
  1346. }
  1347. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1348. {
  1349. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1350. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1351. /* PCH only available on ILK+ */
  1352. BUG_ON(dev_priv->info->gen < 5);
  1353. if (WARN_ON(pll == NULL))
  1354. return;
  1355. if (WARN_ON(pll->refcount == 0))
  1356. return;
  1357. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1358. pll->name, pll->active, pll->on,
  1359. crtc->base.base.id);
  1360. if (WARN_ON(pll->active == 0)) {
  1361. assert_shared_dpll_disabled(dev_priv, pll);
  1362. return;
  1363. }
  1364. assert_shared_dpll_enabled(dev_priv, pll);
  1365. WARN_ON(!pll->on);
  1366. if (--pll->active)
  1367. return;
  1368. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1369. pll->disable(dev_priv, pll);
  1370. pll->on = false;
  1371. }
  1372. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1373. enum pipe pipe)
  1374. {
  1375. struct drm_device *dev = dev_priv->dev;
  1376. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1377. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1378. uint32_t reg, val, pipeconf_val;
  1379. /* PCH only available on ILK+ */
  1380. BUG_ON(dev_priv->info->gen < 5);
  1381. /* Make sure PCH DPLL is enabled */
  1382. assert_shared_dpll_enabled(dev_priv,
  1383. intel_crtc_to_shared_dpll(intel_crtc));
  1384. /* FDI must be feeding us bits for PCH ports */
  1385. assert_fdi_tx_enabled(dev_priv, pipe);
  1386. assert_fdi_rx_enabled(dev_priv, pipe);
  1387. if (HAS_PCH_CPT(dev)) {
  1388. /* Workaround: Set the timing override bit before enabling the
  1389. * pch transcoder. */
  1390. reg = TRANS_CHICKEN2(pipe);
  1391. val = I915_READ(reg);
  1392. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1393. I915_WRITE(reg, val);
  1394. }
  1395. reg = PCH_TRANSCONF(pipe);
  1396. val = I915_READ(reg);
  1397. pipeconf_val = I915_READ(PIPECONF(pipe));
  1398. if (HAS_PCH_IBX(dev_priv->dev)) {
  1399. /*
  1400. * make the BPC in transcoder be consistent with
  1401. * that in pipeconf reg.
  1402. */
  1403. val &= ~PIPECONF_BPC_MASK;
  1404. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1405. }
  1406. val &= ~TRANS_INTERLACE_MASK;
  1407. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1408. if (HAS_PCH_IBX(dev_priv->dev) &&
  1409. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1410. val |= TRANS_LEGACY_INTERLACED_ILK;
  1411. else
  1412. val |= TRANS_INTERLACED;
  1413. else
  1414. val |= TRANS_PROGRESSIVE;
  1415. I915_WRITE(reg, val | TRANS_ENABLE);
  1416. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1417. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1418. }
  1419. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1420. enum transcoder cpu_transcoder)
  1421. {
  1422. u32 val, pipeconf_val;
  1423. /* PCH only available on ILK+ */
  1424. BUG_ON(dev_priv->info->gen < 5);
  1425. /* FDI must be feeding us bits for PCH ports */
  1426. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1427. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1428. /* Workaround: set timing override bit. */
  1429. val = I915_READ(_TRANSA_CHICKEN2);
  1430. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1431. I915_WRITE(_TRANSA_CHICKEN2, val);
  1432. val = TRANS_ENABLE;
  1433. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1434. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1435. PIPECONF_INTERLACED_ILK)
  1436. val |= TRANS_INTERLACED;
  1437. else
  1438. val |= TRANS_PROGRESSIVE;
  1439. I915_WRITE(LPT_TRANSCONF, val);
  1440. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1441. DRM_ERROR("Failed to enable PCH transcoder\n");
  1442. }
  1443. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1444. enum pipe pipe)
  1445. {
  1446. struct drm_device *dev = dev_priv->dev;
  1447. uint32_t reg, val;
  1448. /* FDI relies on the transcoder */
  1449. assert_fdi_tx_disabled(dev_priv, pipe);
  1450. assert_fdi_rx_disabled(dev_priv, pipe);
  1451. /* Ports must be off as well */
  1452. assert_pch_ports_disabled(dev_priv, pipe);
  1453. reg = PCH_TRANSCONF(pipe);
  1454. val = I915_READ(reg);
  1455. val &= ~TRANS_ENABLE;
  1456. I915_WRITE(reg, val);
  1457. /* wait for PCH transcoder off, transcoder state */
  1458. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1459. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1460. if (!HAS_PCH_IBX(dev)) {
  1461. /* Workaround: Clear the timing override chicken bit again. */
  1462. reg = TRANS_CHICKEN2(pipe);
  1463. val = I915_READ(reg);
  1464. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1465. I915_WRITE(reg, val);
  1466. }
  1467. }
  1468. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1469. {
  1470. u32 val;
  1471. val = I915_READ(LPT_TRANSCONF);
  1472. val &= ~TRANS_ENABLE;
  1473. I915_WRITE(LPT_TRANSCONF, val);
  1474. /* wait for PCH transcoder off, transcoder state */
  1475. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1476. DRM_ERROR("Failed to disable PCH transcoder\n");
  1477. /* Workaround: clear timing override bit. */
  1478. val = I915_READ(_TRANSA_CHICKEN2);
  1479. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1480. I915_WRITE(_TRANSA_CHICKEN2, val);
  1481. }
  1482. /**
  1483. * intel_enable_pipe - enable a pipe, asserting requirements
  1484. * @dev_priv: i915 private structure
  1485. * @pipe: pipe to enable
  1486. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1487. *
  1488. * Enable @pipe, making sure that various hardware specific requirements
  1489. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1490. *
  1491. * @pipe should be %PIPE_A or %PIPE_B.
  1492. *
  1493. * Will wait until the pipe is actually running (i.e. first vblank) before
  1494. * returning.
  1495. */
  1496. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1497. bool pch_port, bool dsi)
  1498. {
  1499. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1500. pipe);
  1501. enum pipe pch_transcoder;
  1502. int reg;
  1503. u32 val;
  1504. assert_planes_disabled(dev_priv, pipe);
  1505. assert_cursor_disabled(dev_priv, pipe);
  1506. assert_sprites_disabled(dev_priv, pipe);
  1507. if (HAS_PCH_LPT(dev_priv->dev))
  1508. pch_transcoder = TRANSCODER_A;
  1509. else
  1510. pch_transcoder = pipe;
  1511. /*
  1512. * A pipe without a PLL won't actually be able to drive bits from
  1513. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1514. * need the check.
  1515. */
  1516. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1517. if (dsi)
  1518. assert_dsi_pll_enabled(dev_priv);
  1519. else
  1520. assert_pll_enabled(dev_priv, pipe);
  1521. else {
  1522. if (pch_port) {
  1523. /* if driving the PCH, we need FDI enabled */
  1524. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1525. assert_fdi_tx_pll_enabled(dev_priv,
  1526. (enum pipe) cpu_transcoder);
  1527. }
  1528. /* FIXME: assert CPU port conditions for SNB+ */
  1529. }
  1530. reg = PIPECONF(cpu_transcoder);
  1531. val = I915_READ(reg);
  1532. if (val & PIPECONF_ENABLE)
  1533. return;
  1534. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1535. intel_wait_for_vblank(dev_priv->dev, pipe);
  1536. }
  1537. /**
  1538. * intel_disable_pipe - disable a pipe, asserting requirements
  1539. * @dev_priv: i915 private structure
  1540. * @pipe: pipe to disable
  1541. *
  1542. * Disable @pipe, making sure that various hardware specific requirements
  1543. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1544. *
  1545. * @pipe should be %PIPE_A or %PIPE_B.
  1546. *
  1547. * Will wait until the pipe has shut down before returning.
  1548. */
  1549. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1550. enum pipe pipe)
  1551. {
  1552. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1553. pipe);
  1554. int reg;
  1555. u32 val;
  1556. /*
  1557. * Make sure planes won't keep trying to pump pixels to us,
  1558. * or we might hang the display.
  1559. */
  1560. assert_planes_disabled(dev_priv, pipe);
  1561. assert_cursor_disabled(dev_priv, pipe);
  1562. assert_sprites_disabled(dev_priv, pipe);
  1563. /* Don't disable pipe A or pipe A PLLs if needed */
  1564. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1565. return;
  1566. reg = PIPECONF(cpu_transcoder);
  1567. val = I915_READ(reg);
  1568. if ((val & PIPECONF_ENABLE) == 0)
  1569. return;
  1570. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1571. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1572. }
  1573. /*
  1574. * Plane regs are double buffered, going from enabled->disabled needs a
  1575. * trigger in order to latch. The display address reg provides this.
  1576. */
  1577. void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
  1578. enum plane plane)
  1579. {
  1580. u32 reg = dev_priv->info->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
  1581. I915_WRITE(reg, I915_READ(reg));
  1582. POSTING_READ(reg);
  1583. }
  1584. /**
  1585. * intel_enable_primary_plane - enable the primary plane on a given pipe
  1586. * @dev_priv: i915 private structure
  1587. * @plane: plane to enable
  1588. * @pipe: pipe being fed
  1589. *
  1590. * Enable @plane on @pipe, making sure that @pipe is running first.
  1591. */
  1592. static void intel_enable_primary_plane(struct drm_i915_private *dev_priv,
  1593. enum plane plane, enum pipe pipe)
  1594. {
  1595. struct intel_crtc *intel_crtc =
  1596. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  1597. int reg;
  1598. u32 val;
  1599. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1600. assert_pipe_enabled(dev_priv, pipe);
  1601. WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
  1602. intel_crtc->primary_enabled = true;
  1603. reg = DSPCNTR(plane);
  1604. val = I915_READ(reg);
  1605. if (val & DISPLAY_PLANE_ENABLE)
  1606. return;
  1607. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1608. intel_flush_primary_plane(dev_priv, plane);
  1609. intel_wait_for_vblank(dev_priv->dev, pipe);
  1610. }
  1611. /**
  1612. * intel_disable_primary_plane - disable the primary plane
  1613. * @dev_priv: i915 private structure
  1614. * @plane: plane to disable
  1615. * @pipe: pipe consuming the data
  1616. *
  1617. * Disable @plane; should be an independent operation.
  1618. */
  1619. static void intel_disable_primary_plane(struct drm_i915_private *dev_priv,
  1620. enum plane plane, enum pipe pipe)
  1621. {
  1622. struct intel_crtc *intel_crtc =
  1623. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  1624. int reg;
  1625. u32 val;
  1626. WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
  1627. intel_crtc->primary_enabled = false;
  1628. reg = DSPCNTR(plane);
  1629. val = I915_READ(reg);
  1630. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1631. return;
  1632. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1633. intel_flush_primary_plane(dev_priv, plane);
  1634. intel_wait_for_vblank(dev_priv->dev, pipe);
  1635. }
  1636. static bool need_vtd_wa(struct drm_device *dev)
  1637. {
  1638. #ifdef CONFIG_INTEL_IOMMU
  1639. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1640. return true;
  1641. #endif
  1642. return false;
  1643. }
  1644. int
  1645. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1646. struct drm_i915_gem_object *obj,
  1647. struct intel_ring_buffer *pipelined)
  1648. {
  1649. struct drm_i915_private *dev_priv = dev->dev_private;
  1650. u32 alignment;
  1651. int ret;
  1652. switch (obj->tiling_mode) {
  1653. case I915_TILING_NONE:
  1654. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1655. alignment = 128 * 1024;
  1656. else if (INTEL_INFO(dev)->gen >= 4)
  1657. alignment = 4 * 1024;
  1658. else
  1659. alignment = 64 * 1024;
  1660. break;
  1661. case I915_TILING_X:
  1662. /* pin() will align the object as required by fence */
  1663. alignment = 0;
  1664. break;
  1665. case I915_TILING_Y:
  1666. WARN(1, "Y tiled bo slipped through, driver bug!\n");
  1667. return -EINVAL;
  1668. default:
  1669. BUG();
  1670. }
  1671. /* Note that the w/a also requires 64 PTE of padding following the
  1672. * bo. We currently fill all unused PTE with the shadow page and so
  1673. * we should always have valid PTE following the scanout preventing
  1674. * the VT-d warning.
  1675. */
  1676. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1677. alignment = 256 * 1024;
  1678. dev_priv->mm.interruptible = false;
  1679. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1680. if (ret)
  1681. goto err_interruptible;
  1682. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1683. * fence, whereas 965+ only requires a fence if using
  1684. * framebuffer compression. For simplicity, we always install
  1685. * a fence as the cost is not that onerous.
  1686. */
  1687. ret = i915_gem_object_get_fence(obj);
  1688. if (ret)
  1689. goto err_unpin;
  1690. i915_gem_object_pin_fence(obj);
  1691. dev_priv->mm.interruptible = true;
  1692. return 0;
  1693. err_unpin:
  1694. i915_gem_object_unpin_from_display_plane(obj);
  1695. err_interruptible:
  1696. dev_priv->mm.interruptible = true;
  1697. return ret;
  1698. }
  1699. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1700. {
  1701. i915_gem_object_unpin_fence(obj);
  1702. i915_gem_object_unpin_from_display_plane(obj);
  1703. }
  1704. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1705. * is assumed to be a power-of-two. */
  1706. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1707. unsigned int tiling_mode,
  1708. unsigned int cpp,
  1709. unsigned int pitch)
  1710. {
  1711. if (tiling_mode != I915_TILING_NONE) {
  1712. unsigned int tile_rows, tiles;
  1713. tile_rows = *y / 8;
  1714. *y %= 8;
  1715. tiles = *x / (512/cpp);
  1716. *x %= 512/cpp;
  1717. return tile_rows * pitch * 8 + tiles * 4096;
  1718. } else {
  1719. unsigned int offset;
  1720. offset = *y * pitch + *x * cpp;
  1721. *y = 0;
  1722. *x = (offset & 4095) / cpp;
  1723. return offset & -4096;
  1724. }
  1725. }
  1726. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1727. int x, int y)
  1728. {
  1729. struct drm_device *dev = crtc->dev;
  1730. struct drm_i915_private *dev_priv = dev->dev_private;
  1731. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1732. struct intel_framebuffer *intel_fb;
  1733. struct drm_i915_gem_object *obj;
  1734. int plane = intel_crtc->plane;
  1735. unsigned long linear_offset;
  1736. u32 dspcntr;
  1737. u32 reg;
  1738. switch (plane) {
  1739. case 0:
  1740. case 1:
  1741. break;
  1742. default:
  1743. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1744. return -EINVAL;
  1745. }
  1746. intel_fb = to_intel_framebuffer(fb);
  1747. obj = intel_fb->obj;
  1748. reg = DSPCNTR(plane);
  1749. dspcntr = I915_READ(reg);
  1750. /* Mask out pixel format bits in case we change it */
  1751. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1752. switch (fb->pixel_format) {
  1753. case DRM_FORMAT_C8:
  1754. dspcntr |= DISPPLANE_8BPP;
  1755. break;
  1756. case DRM_FORMAT_XRGB1555:
  1757. case DRM_FORMAT_ARGB1555:
  1758. dspcntr |= DISPPLANE_BGRX555;
  1759. break;
  1760. case DRM_FORMAT_RGB565:
  1761. dspcntr |= DISPPLANE_BGRX565;
  1762. break;
  1763. case DRM_FORMAT_XRGB8888:
  1764. case DRM_FORMAT_ARGB8888:
  1765. dspcntr |= DISPPLANE_BGRX888;
  1766. break;
  1767. case DRM_FORMAT_XBGR8888:
  1768. case DRM_FORMAT_ABGR8888:
  1769. dspcntr |= DISPPLANE_RGBX888;
  1770. break;
  1771. case DRM_FORMAT_XRGB2101010:
  1772. case DRM_FORMAT_ARGB2101010:
  1773. dspcntr |= DISPPLANE_BGRX101010;
  1774. break;
  1775. case DRM_FORMAT_XBGR2101010:
  1776. case DRM_FORMAT_ABGR2101010:
  1777. dspcntr |= DISPPLANE_RGBX101010;
  1778. break;
  1779. default:
  1780. BUG();
  1781. }
  1782. if (INTEL_INFO(dev)->gen >= 4) {
  1783. if (obj->tiling_mode != I915_TILING_NONE)
  1784. dspcntr |= DISPPLANE_TILED;
  1785. else
  1786. dspcntr &= ~DISPPLANE_TILED;
  1787. }
  1788. if (IS_G4X(dev))
  1789. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1790. I915_WRITE(reg, dspcntr);
  1791. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1792. if (INTEL_INFO(dev)->gen >= 4) {
  1793. intel_crtc->dspaddr_offset =
  1794. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1795. fb->bits_per_pixel / 8,
  1796. fb->pitches[0]);
  1797. linear_offset -= intel_crtc->dspaddr_offset;
  1798. } else {
  1799. intel_crtc->dspaddr_offset = linear_offset;
  1800. }
  1801. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1802. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1803. fb->pitches[0]);
  1804. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1805. if (INTEL_INFO(dev)->gen >= 4) {
  1806. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1807. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1808. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1809. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1810. } else
  1811. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1812. POSTING_READ(reg);
  1813. return 0;
  1814. }
  1815. static int ironlake_update_plane(struct drm_crtc *crtc,
  1816. struct drm_framebuffer *fb, int x, int y)
  1817. {
  1818. struct drm_device *dev = crtc->dev;
  1819. struct drm_i915_private *dev_priv = dev->dev_private;
  1820. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1821. struct intel_framebuffer *intel_fb;
  1822. struct drm_i915_gem_object *obj;
  1823. int plane = intel_crtc->plane;
  1824. unsigned long linear_offset;
  1825. u32 dspcntr;
  1826. u32 reg;
  1827. switch (plane) {
  1828. case 0:
  1829. case 1:
  1830. case 2:
  1831. break;
  1832. default:
  1833. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1834. return -EINVAL;
  1835. }
  1836. intel_fb = to_intel_framebuffer(fb);
  1837. obj = intel_fb->obj;
  1838. reg = DSPCNTR(plane);
  1839. dspcntr = I915_READ(reg);
  1840. /* Mask out pixel format bits in case we change it */
  1841. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1842. switch (fb->pixel_format) {
  1843. case DRM_FORMAT_C8:
  1844. dspcntr |= DISPPLANE_8BPP;
  1845. break;
  1846. case DRM_FORMAT_RGB565:
  1847. dspcntr |= DISPPLANE_BGRX565;
  1848. break;
  1849. case DRM_FORMAT_XRGB8888:
  1850. case DRM_FORMAT_ARGB8888:
  1851. dspcntr |= DISPPLANE_BGRX888;
  1852. break;
  1853. case DRM_FORMAT_XBGR8888:
  1854. case DRM_FORMAT_ABGR8888:
  1855. dspcntr |= DISPPLANE_RGBX888;
  1856. break;
  1857. case DRM_FORMAT_XRGB2101010:
  1858. case DRM_FORMAT_ARGB2101010:
  1859. dspcntr |= DISPPLANE_BGRX101010;
  1860. break;
  1861. case DRM_FORMAT_XBGR2101010:
  1862. case DRM_FORMAT_ABGR2101010:
  1863. dspcntr |= DISPPLANE_RGBX101010;
  1864. break;
  1865. default:
  1866. BUG();
  1867. }
  1868. if (obj->tiling_mode != I915_TILING_NONE)
  1869. dspcntr |= DISPPLANE_TILED;
  1870. else
  1871. dspcntr &= ~DISPPLANE_TILED;
  1872. if (IS_HASWELL(dev))
  1873. dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
  1874. else
  1875. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1876. I915_WRITE(reg, dspcntr);
  1877. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1878. intel_crtc->dspaddr_offset =
  1879. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1880. fb->bits_per_pixel / 8,
  1881. fb->pitches[0]);
  1882. linear_offset -= intel_crtc->dspaddr_offset;
  1883. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1884. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1885. fb->pitches[0]);
  1886. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1887. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1888. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1889. if (IS_HASWELL(dev)) {
  1890. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1891. } else {
  1892. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1893. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1894. }
  1895. POSTING_READ(reg);
  1896. return 0;
  1897. }
  1898. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1899. static int
  1900. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1901. int x, int y, enum mode_set_atomic state)
  1902. {
  1903. struct drm_device *dev = crtc->dev;
  1904. struct drm_i915_private *dev_priv = dev->dev_private;
  1905. if (dev_priv->display.disable_fbc)
  1906. dev_priv->display.disable_fbc(dev);
  1907. intel_increase_pllclock(crtc);
  1908. return dev_priv->display.update_plane(crtc, fb, x, y);
  1909. }
  1910. void intel_display_handle_reset(struct drm_device *dev)
  1911. {
  1912. struct drm_i915_private *dev_priv = dev->dev_private;
  1913. struct drm_crtc *crtc;
  1914. /*
  1915. * Flips in the rings have been nuked by the reset,
  1916. * so complete all pending flips so that user space
  1917. * will get its events and not get stuck.
  1918. *
  1919. * Also update the base address of all primary
  1920. * planes to the the last fb to make sure we're
  1921. * showing the correct fb after a reset.
  1922. *
  1923. * Need to make two loops over the crtcs so that we
  1924. * don't try to grab a crtc mutex before the
  1925. * pending_flip_queue really got woken up.
  1926. */
  1927. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1928. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1929. enum plane plane = intel_crtc->plane;
  1930. intel_prepare_page_flip(dev, plane);
  1931. intel_finish_page_flip_plane(dev, plane);
  1932. }
  1933. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1934. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1935. mutex_lock(&crtc->mutex);
  1936. if (intel_crtc->active)
  1937. dev_priv->display.update_plane(crtc, crtc->fb,
  1938. crtc->x, crtc->y);
  1939. mutex_unlock(&crtc->mutex);
  1940. }
  1941. }
  1942. static int
  1943. intel_finish_fb(struct drm_framebuffer *old_fb)
  1944. {
  1945. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1946. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1947. bool was_interruptible = dev_priv->mm.interruptible;
  1948. int ret;
  1949. /* Big Hammer, we also need to ensure that any pending
  1950. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1951. * current scanout is retired before unpinning the old
  1952. * framebuffer.
  1953. *
  1954. * This should only fail upon a hung GPU, in which case we
  1955. * can safely continue.
  1956. */
  1957. dev_priv->mm.interruptible = false;
  1958. ret = i915_gem_object_finish_gpu(obj);
  1959. dev_priv->mm.interruptible = was_interruptible;
  1960. return ret;
  1961. }
  1962. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1963. {
  1964. struct drm_device *dev = crtc->dev;
  1965. struct drm_i915_master_private *master_priv;
  1966. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1967. if (!dev->primary->master)
  1968. return;
  1969. master_priv = dev->primary->master->driver_priv;
  1970. if (!master_priv->sarea_priv)
  1971. return;
  1972. switch (intel_crtc->pipe) {
  1973. case 0:
  1974. master_priv->sarea_priv->pipeA_x = x;
  1975. master_priv->sarea_priv->pipeA_y = y;
  1976. break;
  1977. case 1:
  1978. master_priv->sarea_priv->pipeB_x = x;
  1979. master_priv->sarea_priv->pipeB_y = y;
  1980. break;
  1981. default:
  1982. break;
  1983. }
  1984. }
  1985. static int
  1986. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1987. struct drm_framebuffer *fb)
  1988. {
  1989. struct drm_device *dev = crtc->dev;
  1990. struct drm_i915_private *dev_priv = dev->dev_private;
  1991. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1992. struct drm_framebuffer *old_fb;
  1993. int ret;
  1994. /* no fb bound */
  1995. if (!fb) {
  1996. DRM_ERROR("No FB bound\n");
  1997. return 0;
  1998. }
  1999. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  2000. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  2001. plane_name(intel_crtc->plane),
  2002. INTEL_INFO(dev)->num_pipes);
  2003. return -EINVAL;
  2004. }
  2005. mutex_lock(&dev->struct_mutex);
  2006. ret = intel_pin_and_fence_fb_obj(dev,
  2007. to_intel_framebuffer(fb)->obj,
  2008. NULL);
  2009. if (ret != 0) {
  2010. mutex_unlock(&dev->struct_mutex);
  2011. DRM_ERROR("pin & fence failed\n");
  2012. return ret;
  2013. }
  2014. /*
  2015. * Update pipe size and adjust fitter if needed: the reason for this is
  2016. * that in compute_mode_changes we check the native mode (not the pfit
  2017. * mode) to see if we can flip rather than do a full mode set. In the
  2018. * fastboot case, we'll flip, but if we don't update the pipesrc and
  2019. * pfit state, we'll end up with a big fb scanned out into the wrong
  2020. * sized surface.
  2021. *
  2022. * To fix this properly, we need to hoist the checks up into
  2023. * compute_mode_changes (or above), check the actual pfit state and
  2024. * whether the platform allows pfit disable with pipe active, and only
  2025. * then update the pipesrc and pfit state, even on the flip path.
  2026. */
  2027. if (i915_fastboot) {
  2028. const struct drm_display_mode *adjusted_mode =
  2029. &intel_crtc->config.adjusted_mode;
  2030. I915_WRITE(PIPESRC(intel_crtc->pipe),
  2031. ((adjusted_mode->crtc_hdisplay - 1) << 16) |
  2032. (adjusted_mode->crtc_vdisplay - 1));
  2033. if (!intel_crtc->config.pch_pfit.enabled &&
  2034. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2035. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2036. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  2037. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  2038. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  2039. }
  2040. }
  2041. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2042. if (ret) {
  2043. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2044. mutex_unlock(&dev->struct_mutex);
  2045. DRM_ERROR("failed to update base address\n");
  2046. return ret;
  2047. }
  2048. old_fb = crtc->fb;
  2049. crtc->fb = fb;
  2050. crtc->x = x;
  2051. crtc->y = y;
  2052. if (old_fb) {
  2053. if (intel_crtc->active && old_fb != fb)
  2054. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2055. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2056. }
  2057. intel_update_fbc(dev);
  2058. intel_edp_psr_update(dev);
  2059. mutex_unlock(&dev->struct_mutex);
  2060. intel_crtc_update_sarea_pos(crtc, x, y);
  2061. return 0;
  2062. }
  2063. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2064. {
  2065. struct drm_device *dev = crtc->dev;
  2066. struct drm_i915_private *dev_priv = dev->dev_private;
  2067. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2068. int pipe = intel_crtc->pipe;
  2069. u32 reg, temp;
  2070. /* enable normal train */
  2071. reg = FDI_TX_CTL(pipe);
  2072. temp = I915_READ(reg);
  2073. if (IS_IVYBRIDGE(dev)) {
  2074. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2075. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2076. } else {
  2077. temp &= ~FDI_LINK_TRAIN_NONE;
  2078. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2079. }
  2080. I915_WRITE(reg, temp);
  2081. reg = FDI_RX_CTL(pipe);
  2082. temp = I915_READ(reg);
  2083. if (HAS_PCH_CPT(dev)) {
  2084. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2085. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2086. } else {
  2087. temp &= ~FDI_LINK_TRAIN_NONE;
  2088. temp |= FDI_LINK_TRAIN_NONE;
  2089. }
  2090. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2091. /* wait one idle pattern time */
  2092. POSTING_READ(reg);
  2093. udelay(1000);
  2094. /* IVB wants error correction enabled */
  2095. if (IS_IVYBRIDGE(dev))
  2096. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2097. FDI_FE_ERRC_ENABLE);
  2098. }
  2099. static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
  2100. {
  2101. return crtc->base.enabled && crtc->active &&
  2102. crtc->config.has_pch_encoder;
  2103. }
  2104. static void ivb_modeset_global_resources(struct drm_device *dev)
  2105. {
  2106. struct drm_i915_private *dev_priv = dev->dev_private;
  2107. struct intel_crtc *pipe_B_crtc =
  2108. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2109. struct intel_crtc *pipe_C_crtc =
  2110. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2111. uint32_t temp;
  2112. /*
  2113. * When everything is off disable fdi C so that we could enable fdi B
  2114. * with all lanes. Note that we don't care about enabled pipes without
  2115. * an enabled pch encoder.
  2116. */
  2117. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2118. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2119. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2120. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2121. temp = I915_READ(SOUTH_CHICKEN1);
  2122. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2123. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2124. I915_WRITE(SOUTH_CHICKEN1, temp);
  2125. }
  2126. }
  2127. /* The FDI link training functions for ILK/Ibexpeak. */
  2128. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2129. {
  2130. struct drm_device *dev = crtc->dev;
  2131. struct drm_i915_private *dev_priv = dev->dev_private;
  2132. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2133. int pipe = intel_crtc->pipe;
  2134. int plane = intel_crtc->plane;
  2135. u32 reg, temp, tries;
  2136. /* FDI needs bits from pipe & plane first */
  2137. assert_pipe_enabled(dev_priv, pipe);
  2138. assert_plane_enabled(dev_priv, plane);
  2139. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2140. for train result */
  2141. reg = FDI_RX_IMR(pipe);
  2142. temp = I915_READ(reg);
  2143. temp &= ~FDI_RX_SYMBOL_LOCK;
  2144. temp &= ~FDI_RX_BIT_LOCK;
  2145. I915_WRITE(reg, temp);
  2146. I915_READ(reg);
  2147. udelay(150);
  2148. /* enable CPU FDI TX and PCH FDI RX */
  2149. reg = FDI_TX_CTL(pipe);
  2150. temp = I915_READ(reg);
  2151. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2152. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2153. temp &= ~FDI_LINK_TRAIN_NONE;
  2154. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2155. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2156. reg = FDI_RX_CTL(pipe);
  2157. temp = I915_READ(reg);
  2158. temp &= ~FDI_LINK_TRAIN_NONE;
  2159. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2160. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2161. POSTING_READ(reg);
  2162. udelay(150);
  2163. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2164. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2165. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2166. FDI_RX_PHASE_SYNC_POINTER_EN);
  2167. reg = FDI_RX_IIR(pipe);
  2168. for (tries = 0; tries < 5; tries++) {
  2169. temp = I915_READ(reg);
  2170. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2171. if ((temp & FDI_RX_BIT_LOCK)) {
  2172. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2173. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2174. break;
  2175. }
  2176. }
  2177. if (tries == 5)
  2178. DRM_ERROR("FDI train 1 fail!\n");
  2179. /* Train 2 */
  2180. reg = FDI_TX_CTL(pipe);
  2181. temp = I915_READ(reg);
  2182. temp &= ~FDI_LINK_TRAIN_NONE;
  2183. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2184. I915_WRITE(reg, temp);
  2185. reg = FDI_RX_CTL(pipe);
  2186. temp = I915_READ(reg);
  2187. temp &= ~FDI_LINK_TRAIN_NONE;
  2188. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2189. I915_WRITE(reg, temp);
  2190. POSTING_READ(reg);
  2191. udelay(150);
  2192. reg = FDI_RX_IIR(pipe);
  2193. for (tries = 0; tries < 5; tries++) {
  2194. temp = I915_READ(reg);
  2195. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2196. if (temp & FDI_RX_SYMBOL_LOCK) {
  2197. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2198. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2199. break;
  2200. }
  2201. }
  2202. if (tries == 5)
  2203. DRM_ERROR("FDI train 2 fail!\n");
  2204. DRM_DEBUG_KMS("FDI train done\n");
  2205. }
  2206. static const int snb_b_fdi_train_param[] = {
  2207. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2208. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2209. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2210. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2211. };
  2212. /* The FDI link training functions for SNB/Cougarpoint. */
  2213. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2214. {
  2215. struct drm_device *dev = crtc->dev;
  2216. struct drm_i915_private *dev_priv = dev->dev_private;
  2217. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2218. int pipe = intel_crtc->pipe;
  2219. u32 reg, temp, i, retry;
  2220. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2221. for train result */
  2222. reg = FDI_RX_IMR(pipe);
  2223. temp = I915_READ(reg);
  2224. temp &= ~FDI_RX_SYMBOL_LOCK;
  2225. temp &= ~FDI_RX_BIT_LOCK;
  2226. I915_WRITE(reg, temp);
  2227. POSTING_READ(reg);
  2228. udelay(150);
  2229. /* enable CPU FDI TX and PCH FDI RX */
  2230. reg = FDI_TX_CTL(pipe);
  2231. temp = I915_READ(reg);
  2232. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2233. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2234. temp &= ~FDI_LINK_TRAIN_NONE;
  2235. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2236. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2237. /* SNB-B */
  2238. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2239. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2240. I915_WRITE(FDI_RX_MISC(pipe),
  2241. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2242. reg = FDI_RX_CTL(pipe);
  2243. temp = I915_READ(reg);
  2244. if (HAS_PCH_CPT(dev)) {
  2245. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2246. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2247. } else {
  2248. temp &= ~FDI_LINK_TRAIN_NONE;
  2249. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2250. }
  2251. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2252. POSTING_READ(reg);
  2253. udelay(150);
  2254. for (i = 0; i < 4; i++) {
  2255. reg = FDI_TX_CTL(pipe);
  2256. temp = I915_READ(reg);
  2257. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2258. temp |= snb_b_fdi_train_param[i];
  2259. I915_WRITE(reg, temp);
  2260. POSTING_READ(reg);
  2261. udelay(500);
  2262. for (retry = 0; retry < 5; retry++) {
  2263. reg = FDI_RX_IIR(pipe);
  2264. temp = I915_READ(reg);
  2265. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2266. if (temp & FDI_RX_BIT_LOCK) {
  2267. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2268. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2269. break;
  2270. }
  2271. udelay(50);
  2272. }
  2273. if (retry < 5)
  2274. break;
  2275. }
  2276. if (i == 4)
  2277. DRM_ERROR("FDI train 1 fail!\n");
  2278. /* Train 2 */
  2279. reg = FDI_TX_CTL(pipe);
  2280. temp = I915_READ(reg);
  2281. temp &= ~FDI_LINK_TRAIN_NONE;
  2282. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2283. if (IS_GEN6(dev)) {
  2284. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2285. /* SNB-B */
  2286. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2287. }
  2288. I915_WRITE(reg, temp);
  2289. reg = FDI_RX_CTL(pipe);
  2290. temp = I915_READ(reg);
  2291. if (HAS_PCH_CPT(dev)) {
  2292. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2293. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2294. } else {
  2295. temp &= ~FDI_LINK_TRAIN_NONE;
  2296. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2297. }
  2298. I915_WRITE(reg, temp);
  2299. POSTING_READ(reg);
  2300. udelay(150);
  2301. for (i = 0; i < 4; i++) {
  2302. reg = FDI_TX_CTL(pipe);
  2303. temp = I915_READ(reg);
  2304. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2305. temp |= snb_b_fdi_train_param[i];
  2306. I915_WRITE(reg, temp);
  2307. POSTING_READ(reg);
  2308. udelay(500);
  2309. for (retry = 0; retry < 5; retry++) {
  2310. reg = FDI_RX_IIR(pipe);
  2311. temp = I915_READ(reg);
  2312. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2313. if (temp & FDI_RX_SYMBOL_LOCK) {
  2314. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2315. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2316. break;
  2317. }
  2318. udelay(50);
  2319. }
  2320. if (retry < 5)
  2321. break;
  2322. }
  2323. if (i == 4)
  2324. DRM_ERROR("FDI train 2 fail!\n");
  2325. DRM_DEBUG_KMS("FDI train done.\n");
  2326. }
  2327. /* Manual link training for Ivy Bridge A0 parts */
  2328. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2329. {
  2330. struct drm_device *dev = crtc->dev;
  2331. struct drm_i915_private *dev_priv = dev->dev_private;
  2332. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2333. int pipe = intel_crtc->pipe;
  2334. u32 reg, temp, i, j;
  2335. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2336. for train result */
  2337. reg = FDI_RX_IMR(pipe);
  2338. temp = I915_READ(reg);
  2339. temp &= ~FDI_RX_SYMBOL_LOCK;
  2340. temp &= ~FDI_RX_BIT_LOCK;
  2341. I915_WRITE(reg, temp);
  2342. POSTING_READ(reg);
  2343. udelay(150);
  2344. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2345. I915_READ(FDI_RX_IIR(pipe)));
  2346. /* Try each vswing and preemphasis setting twice before moving on */
  2347. for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  2348. /* disable first in case we need to retry */
  2349. reg = FDI_TX_CTL(pipe);
  2350. temp = I915_READ(reg);
  2351. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2352. temp &= ~FDI_TX_ENABLE;
  2353. I915_WRITE(reg, temp);
  2354. reg = FDI_RX_CTL(pipe);
  2355. temp = I915_READ(reg);
  2356. temp &= ~FDI_LINK_TRAIN_AUTO;
  2357. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2358. temp &= ~FDI_RX_ENABLE;
  2359. I915_WRITE(reg, temp);
  2360. /* enable CPU FDI TX and PCH FDI RX */
  2361. reg = FDI_TX_CTL(pipe);
  2362. temp = I915_READ(reg);
  2363. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2364. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2365. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2366. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2367. temp |= snb_b_fdi_train_param[j/2];
  2368. temp |= FDI_COMPOSITE_SYNC;
  2369. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2370. I915_WRITE(FDI_RX_MISC(pipe),
  2371. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2372. reg = FDI_RX_CTL(pipe);
  2373. temp = I915_READ(reg);
  2374. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2375. temp |= FDI_COMPOSITE_SYNC;
  2376. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2377. POSTING_READ(reg);
  2378. udelay(1); /* should be 0.5us */
  2379. for (i = 0; i < 4; i++) {
  2380. reg = FDI_RX_IIR(pipe);
  2381. temp = I915_READ(reg);
  2382. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2383. if (temp & FDI_RX_BIT_LOCK ||
  2384. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2385. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2386. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  2387. i);
  2388. break;
  2389. }
  2390. udelay(1); /* should be 0.5us */
  2391. }
  2392. if (i == 4) {
  2393. DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  2394. continue;
  2395. }
  2396. /* Train 2 */
  2397. reg = FDI_TX_CTL(pipe);
  2398. temp = I915_READ(reg);
  2399. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2400. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2401. I915_WRITE(reg, temp);
  2402. reg = FDI_RX_CTL(pipe);
  2403. temp = I915_READ(reg);
  2404. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2405. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2406. I915_WRITE(reg, temp);
  2407. POSTING_READ(reg);
  2408. udelay(2); /* should be 1.5us */
  2409. for (i = 0; i < 4; i++) {
  2410. reg = FDI_RX_IIR(pipe);
  2411. temp = I915_READ(reg);
  2412. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2413. if (temp & FDI_RX_SYMBOL_LOCK ||
  2414. (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  2415. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2416. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  2417. i);
  2418. goto train_done;
  2419. }
  2420. udelay(2); /* should be 1.5us */
  2421. }
  2422. if (i == 4)
  2423. DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  2424. }
  2425. train_done:
  2426. DRM_DEBUG_KMS("FDI train done.\n");
  2427. }
  2428. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2429. {
  2430. struct drm_device *dev = intel_crtc->base.dev;
  2431. struct drm_i915_private *dev_priv = dev->dev_private;
  2432. int pipe = intel_crtc->pipe;
  2433. u32 reg, temp;
  2434. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2435. reg = FDI_RX_CTL(pipe);
  2436. temp = I915_READ(reg);
  2437. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2438. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2439. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2440. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2441. POSTING_READ(reg);
  2442. udelay(200);
  2443. /* Switch from Rawclk to PCDclk */
  2444. temp = I915_READ(reg);
  2445. I915_WRITE(reg, temp | FDI_PCDCLK);
  2446. POSTING_READ(reg);
  2447. udelay(200);
  2448. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2449. reg = FDI_TX_CTL(pipe);
  2450. temp = I915_READ(reg);
  2451. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2452. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2453. POSTING_READ(reg);
  2454. udelay(100);
  2455. }
  2456. }
  2457. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2458. {
  2459. struct drm_device *dev = intel_crtc->base.dev;
  2460. struct drm_i915_private *dev_priv = dev->dev_private;
  2461. int pipe = intel_crtc->pipe;
  2462. u32 reg, temp;
  2463. /* Switch from PCDclk to Rawclk */
  2464. reg = FDI_RX_CTL(pipe);
  2465. temp = I915_READ(reg);
  2466. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2467. /* Disable CPU FDI TX PLL */
  2468. reg = FDI_TX_CTL(pipe);
  2469. temp = I915_READ(reg);
  2470. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2471. POSTING_READ(reg);
  2472. udelay(100);
  2473. reg = FDI_RX_CTL(pipe);
  2474. temp = I915_READ(reg);
  2475. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2476. /* Wait for the clocks to turn off. */
  2477. POSTING_READ(reg);
  2478. udelay(100);
  2479. }
  2480. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2481. {
  2482. struct drm_device *dev = crtc->dev;
  2483. struct drm_i915_private *dev_priv = dev->dev_private;
  2484. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2485. int pipe = intel_crtc->pipe;
  2486. u32 reg, temp;
  2487. /* disable CPU FDI tx and PCH FDI rx */
  2488. reg = FDI_TX_CTL(pipe);
  2489. temp = I915_READ(reg);
  2490. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2491. POSTING_READ(reg);
  2492. reg = FDI_RX_CTL(pipe);
  2493. temp = I915_READ(reg);
  2494. temp &= ~(0x7 << 16);
  2495. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2496. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2497. POSTING_READ(reg);
  2498. udelay(100);
  2499. /* Ironlake workaround, disable clock pointer after downing FDI */
  2500. if (HAS_PCH_IBX(dev)) {
  2501. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2502. }
  2503. /* still set train pattern 1 */
  2504. reg = FDI_TX_CTL(pipe);
  2505. temp = I915_READ(reg);
  2506. temp &= ~FDI_LINK_TRAIN_NONE;
  2507. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2508. I915_WRITE(reg, temp);
  2509. reg = FDI_RX_CTL(pipe);
  2510. temp = I915_READ(reg);
  2511. if (HAS_PCH_CPT(dev)) {
  2512. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2513. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2514. } else {
  2515. temp &= ~FDI_LINK_TRAIN_NONE;
  2516. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2517. }
  2518. /* BPC in FDI rx is consistent with that in PIPECONF */
  2519. temp &= ~(0x07 << 16);
  2520. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2521. I915_WRITE(reg, temp);
  2522. POSTING_READ(reg);
  2523. udelay(100);
  2524. }
  2525. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2526. {
  2527. struct drm_device *dev = crtc->dev;
  2528. struct drm_i915_private *dev_priv = dev->dev_private;
  2529. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2530. unsigned long flags;
  2531. bool pending;
  2532. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2533. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2534. return false;
  2535. spin_lock_irqsave(&dev->event_lock, flags);
  2536. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2537. spin_unlock_irqrestore(&dev->event_lock, flags);
  2538. return pending;
  2539. }
  2540. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2541. {
  2542. struct drm_device *dev = crtc->dev;
  2543. struct drm_i915_private *dev_priv = dev->dev_private;
  2544. if (crtc->fb == NULL)
  2545. return;
  2546. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2547. wait_event(dev_priv->pending_flip_queue,
  2548. !intel_crtc_has_pending_flip(crtc));
  2549. mutex_lock(&dev->struct_mutex);
  2550. intel_finish_fb(crtc->fb);
  2551. mutex_unlock(&dev->struct_mutex);
  2552. }
  2553. /* Program iCLKIP clock to the desired frequency */
  2554. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2555. {
  2556. struct drm_device *dev = crtc->dev;
  2557. struct drm_i915_private *dev_priv = dev->dev_private;
  2558. int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2559. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2560. u32 temp;
  2561. mutex_lock(&dev_priv->dpio_lock);
  2562. /* It is necessary to ungate the pixclk gate prior to programming
  2563. * the divisors, and gate it back when it is done.
  2564. */
  2565. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2566. /* Disable SSCCTL */
  2567. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2568. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2569. SBI_SSCCTL_DISABLE,
  2570. SBI_ICLK);
  2571. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2572. if (clock == 20000) {
  2573. auxdiv = 1;
  2574. divsel = 0x41;
  2575. phaseinc = 0x20;
  2576. } else {
  2577. /* The iCLK virtual clock root frequency is in MHz,
  2578. * but the adjusted_mode->crtc_clock in in KHz. To get the
  2579. * divisors, it is necessary to divide one by another, so we
  2580. * convert the virtual clock precision to KHz here for higher
  2581. * precision.
  2582. */
  2583. u32 iclk_virtual_root_freq = 172800 * 1000;
  2584. u32 iclk_pi_range = 64;
  2585. u32 desired_divisor, msb_divisor_value, pi_value;
  2586. desired_divisor = (iclk_virtual_root_freq / clock);
  2587. msb_divisor_value = desired_divisor / iclk_pi_range;
  2588. pi_value = desired_divisor % iclk_pi_range;
  2589. auxdiv = 0;
  2590. divsel = msb_divisor_value - 2;
  2591. phaseinc = pi_value;
  2592. }
  2593. /* This should not happen with any sane values */
  2594. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2595. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2596. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2597. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2598. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2599. clock,
  2600. auxdiv,
  2601. divsel,
  2602. phasedir,
  2603. phaseinc);
  2604. /* Program SSCDIVINTPHASE6 */
  2605. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2606. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2607. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2608. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2609. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2610. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2611. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2612. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2613. /* Program SSCAUXDIV */
  2614. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2615. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2616. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2617. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2618. /* Enable modulator and associated divider */
  2619. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2620. temp &= ~SBI_SSCCTL_DISABLE;
  2621. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2622. /* Wait for initialization time */
  2623. udelay(24);
  2624. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2625. mutex_unlock(&dev_priv->dpio_lock);
  2626. }
  2627. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2628. enum pipe pch_transcoder)
  2629. {
  2630. struct drm_device *dev = crtc->base.dev;
  2631. struct drm_i915_private *dev_priv = dev->dev_private;
  2632. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2633. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2634. I915_READ(HTOTAL(cpu_transcoder)));
  2635. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2636. I915_READ(HBLANK(cpu_transcoder)));
  2637. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2638. I915_READ(HSYNC(cpu_transcoder)));
  2639. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2640. I915_READ(VTOTAL(cpu_transcoder)));
  2641. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2642. I915_READ(VBLANK(cpu_transcoder)));
  2643. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2644. I915_READ(VSYNC(cpu_transcoder)));
  2645. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2646. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2647. }
  2648. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  2649. {
  2650. struct drm_i915_private *dev_priv = dev->dev_private;
  2651. uint32_t temp;
  2652. temp = I915_READ(SOUTH_CHICKEN1);
  2653. if (temp & FDI_BC_BIFURCATION_SELECT)
  2654. return;
  2655. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2656. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2657. temp |= FDI_BC_BIFURCATION_SELECT;
  2658. DRM_DEBUG_KMS("enabling fdi C rx\n");
  2659. I915_WRITE(SOUTH_CHICKEN1, temp);
  2660. POSTING_READ(SOUTH_CHICKEN1);
  2661. }
  2662. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  2663. {
  2664. struct drm_device *dev = intel_crtc->base.dev;
  2665. struct drm_i915_private *dev_priv = dev->dev_private;
  2666. switch (intel_crtc->pipe) {
  2667. case PIPE_A:
  2668. break;
  2669. case PIPE_B:
  2670. if (intel_crtc->config.fdi_lanes > 2)
  2671. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  2672. else
  2673. cpt_enable_fdi_bc_bifurcation(dev);
  2674. break;
  2675. case PIPE_C:
  2676. cpt_enable_fdi_bc_bifurcation(dev);
  2677. break;
  2678. default:
  2679. BUG();
  2680. }
  2681. }
  2682. /*
  2683. * Enable PCH resources required for PCH ports:
  2684. * - PCH PLLs
  2685. * - FDI training & RX/TX
  2686. * - update transcoder timings
  2687. * - DP transcoding bits
  2688. * - transcoder
  2689. */
  2690. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2691. {
  2692. struct drm_device *dev = crtc->dev;
  2693. struct drm_i915_private *dev_priv = dev->dev_private;
  2694. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2695. int pipe = intel_crtc->pipe;
  2696. u32 reg, temp;
  2697. assert_pch_transcoder_disabled(dev_priv, pipe);
  2698. if (IS_IVYBRIDGE(dev))
  2699. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  2700. /* Write the TU size bits before fdi link training, so that error
  2701. * detection works. */
  2702. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2703. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2704. /* For PCH output, training FDI link */
  2705. dev_priv->display.fdi_link_train(crtc);
  2706. /* We need to program the right clock selection before writing the pixel
  2707. * mutliplier into the DPLL. */
  2708. if (HAS_PCH_CPT(dev)) {
  2709. u32 sel;
  2710. temp = I915_READ(PCH_DPLL_SEL);
  2711. temp |= TRANS_DPLL_ENABLE(pipe);
  2712. sel = TRANS_DPLLB_SEL(pipe);
  2713. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2714. temp |= sel;
  2715. else
  2716. temp &= ~sel;
  2717. I915_WRITE(PCH_DPLL_SEL, temp);
  2718. }
  2719. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2720. * transcoder, and we actually should do this to not upset any PCH
  2721. * transcoder that already use the clock when we share it.
  2722. *
  2723. * Note that enable_shared_dpll tries to do the right thing, but
  2724. * get_shared_dpll unconditionally resets the pll - we need that to have
  2725. * the right LVDS enable sequence. */
  2726. ironlake_enable_shared_dpll(intel_crtc);
  2727. /* set transcoder timing, panel must allow it */
  2728. assert_panel_unlocked(dev_priv, pipe);
  2729. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2730. intel_fdi_normal_train(crtc);
  2731. /* For PCH DP, enable TRANS_DP_CTL */
  2732. if (HAS_PCH_CPT(dev) &&
  2733. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2734. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2735. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2736. reg = TRANS_DP_CTL(pipe);
  2737. temp = I915_READ(reg);
  2738. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2739. TRANS_DP_SYNC_MASK |
  2740. TRANS_DP_BPC_MASK);
  2741. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2742. TRANS_DP_ENH_FRAMING);
  2743. temp |= bpc << 9; /* same format but at 11:9 */
  2744. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2745. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2746. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2747. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2748. switch (intel_trans_dp_port_sel(crtc)) {
  2749. case PCH_DP_B:
  2750. temp |= TRANS_DP_PORT_SEL_B;
  2751. break;
  2752. case PCH_DP_C:
  2753. temp |= TRANS_DP_PORT_SEL_C;
  2754. break;
  2755. case PCH_DP_D:
  2756. temp |= TRANS_DP_PORT_SEL_D;
  2757. break;
  2758. default:
  2759. BUG();
  2760. }
  2761. I915_WRITE(reg, temp);
  2762. }
  2763. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2764. }
  2765. static void lpt_pch_enable(struct drm_crtc *crtc)
  2766. {
  2767. struct drm_device *dev = crtc->dev;
  2768. struct drm_i915_private *dev_priv = dev->dev_private;
  2769. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2770. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2771. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2772. lpt_program_iclkip(crtc);
  2773. /* Set transcoder timing. */
  2774. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2775. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2776. }
  2777. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2778. {
  2779. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2780. if (pll == NULL)
  2781. return;
  2782. if (pll->refcount == 0) {
  2783. WARN(1, "bad %s refcount\n", pll->name);
  2784. return;
  2785. }
  2786. if (--pll->refcount == 0) {
  2787. WARN_ON(pll->on);
  2788. WARN_ON(pll->active);
  2789. }
  2790. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2791. }
  2792. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2793. {
  2794. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2795. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2796. enum intel_dpll_id i;
  2797. if (pll) {
  2798. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2799. crtc->base.base.id, pll->name);
  2800. intel_put_shared_dpll(crtc);
  2801. }
  2802. if (HAS_PCH_IBX(dev_priv->dev)) {
  2803. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2804. i = (enum intel_dpll_id) crtc->pipe;
  2805. pll = &dev_priv->shared_dplls[i];
  2806. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2807. crtc->base.base.id, pll->name);
  2808. goto found;
  2809. }
  2810. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2811. pll = &dev_priv->shared_dplls[i];
  2812. /* Only want to check enabled timings first */
  2813. if (pll->refcount == 0)
  2814. continue;
  2815. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2816. sizeof(pll->hw_state)) == 0) {
  2817. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2818. crtc->base.base.id,
  2819. pll->name, pll->refcount, pll->active);
  2820. goto found;
  2821. }
  2822. }
  2823. /* Ok no matching timings, maybe there's a free one? */
  2824. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2825. pll = &dev_priv->shared_dplls[i];
  2826. if (pll->refcount == 0) {
  2827. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2828. crtc->base.base.id, pll->name);
  2829. goto found;
  2830. }
  2831. }
  2832. return NULL;
  2833. found:
  2834. crtc->config.shared_dpll = i;
  2835. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2836. pipe_name(crtc->pipe));
  2837. if (pll->active == 0) {
  2838. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2839. sizeof(pll->hw_state));
  2840. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2841. WARN_ON(pll->on);
  2842. assert_shared_dpll_disabled(dev_priv, pll);
  2843. pll->mode_set(dev_priv, pll);
  2844. }
  2845. pll->refcount++;
  2846. return pll;
  2847. }
  2848. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2849. {
  2850. struct drm_i915_private *dev_priv = dev->dev_private;
  2851. int dslreg = PIPEDSL(pipe);
  2852. u32 temp;
  2853. temp = I915_READ(dslreg);
  2854. udelay(500);
  2855. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2856. if (wait_for(I915_READ(dslreg) != temp, 5))
  2857. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2858. }
  2859. }
  2860. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2861. {
  2862. struct drm_device *dev = crtc->base.dev;
  2863. struct drm_i915_private *dev_priv = dev->dev_private;
  2864. int pipe = crtc->pipe;
  2865. if (crtc->config.pch_pfit.enabled) {
  2866. /* Force use of hard-coded filter coefficients
  2867. * as some pre-programmed values are broken,
  2868. * e.g. x201.
  2869. */
  2870. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2871. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2872. PF_PIPE_SEL_IVB(pipe));
  2873. else
  2874. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2875. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2876. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2877. }
  2878. }
  2879. static void intel_enable_planes(struct drm_crtc *crtc)
  2880. {
  2881. struct drm_device *dev = crtc->dev;
  2882. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2883. struct intel_plane *intel_plane;
  2884. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2885. if (intel_plane->pipe == pipe)
  2886. intel_plane_restore(&intel_plane->base);
  2887. }
  2888. static void intel_disable_planes(struct drm_crtc *crtc)
  2889. {
  2890. struct drm_device *dev = crtc->dev;
  2891. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2892. struct intel_plane *intel_plane;
  2893. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2894. if (intel_plane->pipe == pipe)
  2895. intel_plane_disable(&intel_plane->base);
  2896. }
  2897. void hsw_enable_ips(struct intel_crtc *crtc)
  2898. {
  2899. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2900. if (!crtc->config.ips_enabled)
  2901. return;
  2902. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2903. * We guarantee that the plane is enabled by calling intel_enable_ips
  2904. * only after intel_enable_plane. And intel_enable_plane already waits
  2905. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2906. assert_plane_enabled(dev_priv, crtc->plane);
  2907. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2908. /* The bit only becomes 1 in the next vblank, so this wait here is
  2909. * essentially intel_wait_for_vblank. If we don't have this and don't
  2910. * wait for vblanks until the end of crtc_enable, then the HW state
  2911. * readout code will complain that the expected IPS_CTL value is not the
  2912. * one we read. */
  2913. if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
  2914. DRM_ERROR("Timed out waiting for IPS enable\n");
  2915. }
  2916. void hsw_disable_ips(struct intel_crtc *crtc)
  2917. {
  2918. struct drm_device *dev = crtc->base.dev;
  2919. struct drm_i915_private *dev_priv = dev->dev_private;
  2920. if (!crtc->config.ips_enabled)
  2921. return;
  2922. assert_plane_enabled(dev_priv, crtc->plane);
  2923. I915_WRITE(IPS_CTL, 0);
  2924. POSTING_READ(IPS_CTL);
  2925. /* We need to wait for a vblank before we can disable the plane. */
  2926. intel_wait_for_vblank(dev, crtc->pipe);
  2927. }
  2928. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  2929. static void intel_crtc_load_lut(struct drm_crtc *crtc)
  2930. {
  2931. struct drm_device *dev = crtc->dev;
  2932. struct drm_i915_private *dev_priv = dev->dev_private;
  2933. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2934. enum pipe pipe = intel_crtc->pipe;
  2935. int palreg = PALETTE(pipe);
  2936. int i;
  2937. bool reenable_ips = false;
  2938. /* The clocks have to be on to load the palette. */
  2939. if (!crtc->enabled || !intel_crtc->active)
  2940. return;
  2941. if (!HAS_PCH_SPLIT(dev_priv->dev)) {
  2942. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  2943. assert_dsi_pll_enabled(dev_priv);
  2944. else
  2945. assert_pll_enabled(dev_priv, pipe);
  2946. }
  2947. /* use legacy palette for Ironlake */
  2948. if (HAS_PCH_SPLIT(dev))
  2949. palreg = LGC_PALETTE(pipe);
  2950. /* Workaround : Do not read or write the pipe palette/gamma data while
  2951. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  2952. */
  2953. if (intel_crtc->config.ips_enabled &&
  2954. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  2955. GAMMA_MODE_MODE_SPLIT)) {
  2956. hsw_disable_ips(intel_crtc);
  2957. reenable_ips = true;
  2958. }
  2959. for (i = 0; i < 256; i++) {
  2960. I915_WRITE(palreg + 4 * i,
  2961. (intel_crtc->lut_r[i] << 16) |
  2962. (intel_crtc->lut_g[i] << 8) |
  2963. intel_crtc->lut_b[i]);
  2964. }
  2965. if (reenable_ips)
  2966. hsw_enable_ips(intel_crtc);
  2967. }
  2968. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2969. {
  2970. struct drm_device *dev = crtc->dev;
  2971. struct drm_i915_private *dev_priv = dev->dev_private;
  2972. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2973. struct intel_encoder *encoder;
  2974. int pipe = intel_crtc->pipe;
  2975. int plane = intel_crtc->plane;
  2976. WARN_ON(!crtc->enabled);
  2977. if (intel_crtc->active)
  2978. return;
  2979. intel_crtc->active = true;
  2980. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2981. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2982. for_each_encoder_on_crtc(dev, crtc, encoder)
  2983. if (encoder->pre_enable)
  2984. encoder->pre_enable(encoder);
  2985. if (intel_crtc->config.has_pch_encoder) {
  2986. /* Note: FDI PLL enabling _must_ be done before we enable the
  2987. * cpu pipes, hence this is separate from all the other fdi/pch
  2988. * enabling. */
  2989. ironlake_fdi_pll_enable(intel_crtc);
  2990. } else {
  2991. assert_fdi_tx_disabled(dev_priv, pipe);
  2992. assert_fdi_rx_disabled(dev_priv, pipe);
  2993. }
  2994. ironlake_pfit_enable(intel_crtc);
  2995. /*
  2996. * On ILK+ LUT must be loaded before the pipe is running but with
  2997. * clocks enabled
  2998. */
  2999. intel_crtc_load_lut(crtc);
  3000. intel_update_watermarks(crtc);
  3001. intel_enable_pipe(dev_priv, pipe,
  3002. intel_crtc->config.has_pch_encoder, false);
  3003. intel_enable_primary_plane(dev_priv, plane, pipe);
  3004. intel_enable_planes(crtc);
  3005. intel_crtc_update_cursor(crtc, true);
  3006. if (intel_crtc->config.has_pch_encoder)
  3007. ironlake_pch_enable(crtc);
  3008. mutex_lock(&dev->struct_mutex);
  3009. intel_update_fbc(dev);
  3010. mutex_unlock(&dev->struct_mutex);
  3011. for_each_encoder_on_crtc(dev, crtc, encoder)
  3012. encoder->enable(encoder);
  3013. if (HAS_PCH_CPT(dev))
  3014. cpt_verify_modeset(dev, intel_crtc->pipe);
  3015. /*
  3016. * There seems to be a race in PCH platform hw (at least on some
  3017. * outputs) where an enabled pipe still completes any pageflip right
  3018. * away (as if the pipe is off) instead of waiting for vblank. As soon
  3019. * as the first vblank happend, everything works as expected. Hence just
  3020. * wait for one vblank before returning to avoid strange things
  3021. * happening.
  3022. */
  3023. intel_wait_for_vblank(dev, intel_crtc->pipe);
  3024. }
  3025. /* IPS only exists on ULT machines and is tied to pipe A. */
  3026. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  3027. {
  3028. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  3029. }
  3030. static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
  3031. {
  3032. struct drm_device *dev = crtc->dev;
  3033. struct drm_i915_private *dev_priv = dev->dev_private;
  3034. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3035. int pipe = intel_crtc->pipe;
  3036. int plane = intel_crtc->plane;
  3037. intel_enable_primary_plane(dev_priv, plane, pipe);
  3038. intel_enable_planes(crtc);
  3039. intel_crtc_update_cursor(crtc, true);
  3040. hsw_enable_ips(intel_crtc);
  3041. mutex_lock(&dev->struct_mutex);
  3042. intel_update_fbc(dev);
  3043. mutex_unlock(&dev->struct_mutex);
  3044. }
  3045. static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
  3046. {
  3047. struct drm_device *dev = crtc->dev;
  3048. struct drm_i915_private *dev_priv = dev->dev_private;
  3049. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3050. int pipe = intel_crtc->pipe;
  3051. int plane = intel_crtc->plane;
  3052. intel_crtc_wait_for_pending_flips(crtc);
  3053. drm_vblank_off(dev, pipe);
  3054. /* FBC must be disabled before disabling the plane on HSW. */
  3055. if (dev_priv->fbc.plane == plane)
  3056. intel_disable_fbc(dev);
  3057. hsw_disable_ips(intel_crtc);
  3058. intel_crtc_update_cursor(crtc, false);
  3059. intel_disable_planes(crtc);
  3060. intel_disable_primary_plane(dev_priv, plane, pipe);
  3061. }
  3062. /*
  3063. * This implements the workaround described in the "notes" section of the mode
  3064. * set sequence documentation. When going from no pipes or single pipe to
  3065. * multiple pipes, and planes are enabled after the pipe, we need to wait at
  3066. * least 2 vblanks on the first pipe before enabling planes on the second pipe.
  3067. */
  3068. static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
  3069. {
  3070. struct drm_device *dev = crtc->base.dev;
  3071. struct intel_crtc *crtc_it, *other_active_crtc = NULL;
  3072. /* We want to get the other_active_crtc only if there's only 1 other
  3073. * active crtc. */
  3074. list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
  3075. if (!crtc_it->active || crtc_it == crtc)
  3076. continue;
  3077. if (other_active_crtc)
  3078. return;
  3079. other_active_crtc = crtc_it;
  3080. }
  3081. if (!other_active_crtc)
  3082. return;
  3083. intel_wait_for_vblank(dev, other_active_crtc->pipe);
  3084. intel_wait_for_vblank(dev, other_active_crtc->pipe);
  3085. }
  3086. static void haswell_crtc_enable(struct drm_crtc *crtc)
  3087. {
  3088. struct drm_device *dev = crtc->dev;
  3089. struct drm_i915_private *dev_priv = dev->dev_private;
  3090. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3091. struct intel_encoder *encoder;
  3092. int pipe = intel_crtc->pipe;
  3093. WARN_ON(!crtc->enabled);
  3094. if (intel_crtc->active)
  3095. return;
  3096. intel_crtc->active = true;
  3097. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  3098. if (intel_crtc->config.has_pch_encoder)
  3099. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3100. if (intel_crtc->config.has_pch_encoder)
  3101. dev_priv->display.fdi_link_train(crtc);
  3102. for_each_encoder_on_crtc(dev, crtc, encoder)
  3103. if (encoder->pre_enable)
  3104. encoder->pre_enable(encoder);
  3105. intel_ddi_enable_pipe_clock(intel_crtc);
  3106. ironlake_pfit_enable(intel_crtc);
  3107. /*
  3108. * On ILK+ LUT must be loaded before the pipe is running but with
  3109. * clocks enabled
  3110. */
  3111. intel_crtc_load_lut(crtc);
  3112. intel_ddi_set_pipe_settings(crtc);
  3113. intel_ddi_enable_transcoder_func(crtc);
  3114. intel_update_watermarks(crtc);
  3115. intel_enable_pipe(dev_priv, pipe,
  3116. intel_crtc->config.has_pch_encoder, false);
  3117. if (intel_crtc->config.has_pch_encoder)
  3118. lpt_pch_enable(crtc);
  3119. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3120. encoder->enable(encoder);
  3121. intel_opregion_notify_encoder(encoder, true);
  3122. }
  3123. /* If we change the relative order between pipe/planes enabling, we need
  3124. * to change the workaround. */
  3125. haswell_mode_set_planes_workaround(intel_crtc);
  3126. haswell_crtc_enable_planes(crtc);
  3127. /*
  3128. * There seems to be a race in PCH platform hw (at least on some
  3129. * outputs) where an enabled pipe still completes any pageflip right
  3130. * away (as if the pipe is off) instead of waiting for vblank. As soon
  3131. * as the first vblank happend, everything works as expected. Hence just
  3132. * wait for one vblank before returning to avoid strange things
  3133. * happening.
  3134. */
  3135. intel_wait_for_vblank(dev, intel_crtc->pipe);
  3136. }
  3137. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  3138. {
  3139. struct drm_device *dev = crtc->base.dev;
  3140. struct drm_i915_private *dev_priv = dev->dev_private;
  3141. int pipe = crtc->pipe;
  3142. /* To avoid upsetting the power well on haswell only disable the pfit if
  3143. * it's in use. The hw state code will make sure we get this right. */
  3144. if (crtc->config.pch_pfit.enabled) {
  3145. I915_WRITE(PF_CTL(pipe), 0);
  3146. I915_WRITE(PF_WIN_POS(pipe), 0);
  3147. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3148. }
  3149. }
  3150. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  3151. {
  3152. struct drm_device *dev = crtc->dev;
  3153. struct drm_i915_private *dev_priv = dev->dev_private;
  3154. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3155. struct intel_encoder *encoder;
  3156. int pipe = intel_crtc->pipe;
  3157. int plane = intel_crtc->plane;
  3158. u32 reg, temp;
  3159. if (!intel_crtc->active)
  3160. return;
  3161. for_each_encoder_on_crtc(dev, crtc, encoder)
  3162. encoder->disable(encoder);
  3163. intel_crtc_wait_for_pending_flips(crtc);
  3164. drm_vblank_off(dev, pipe);
  3165. if (dev_priv->fbc.plane == plane)
  3166. intel_disable_fbc(dev);
  3167. intel_crtc_update_cursor(crtc, false);
  3168. intel_disable_planes(crtc);
  3169. intel_disable_primary_plane(dev_priv, plane, pipe);
  3170. if (intel_crtc->config.has_pch_encoder)
  3171. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  3172. intel_disable_pipe(dev_priv, pipe);
  3173. ironlake_pfit_disable(intel_crtc);
  3174. for_each_encoder_on_crtc(dev, crtc, encoder)
  3175. if (encoder->post_disable)
  3176. encoder->post_disable(encoder);
  3177. if (intel_crtc->config.has_pch_encoder) {
  3178. ironlake_fdi_disable(crtc);
  3179. ironlake_disable_pch_transcoder(dev_priv, pipe);
  3180. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  3181. if (HAS_PCH_CPT(dev)) {
  3182. /* disable TRANS_DP_CTL */
  3183. reg = TRANS_DP_CTL(pipe);
  3184. temp = I915_READ(reg);
  3185. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  3186. TRANS_DP_PORT_SEL_MASK);
  3187. temp |= TRANS_DP_PORT_SEL_NONE;
  3188. I915_WRITE(reg, temp);
  3189. /* disable DPLL_SEL */
  3190. temp = I915_READ(PCH_DPLL_SEL);
  3191. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  3192. I915_WRITE(PCH_DPLL_SEL, temp);
  3193. }
  3194. /* disable PCH DPLL */
  3195. intel_disable_shared_dpll(intel_crtc);
  3196. ironlake_fdi_pll_disable(intel_crtc);
  3197. }
  3198. intel_crtc->active = false;
  3199. intel_update_watermarks(crtc);
  3200. mutex_lock(&dev->struct_mutex);
  3201. intel_update_fbc(dev);
  3202. mutex_unlock(&dev->struct_mutex);
  3203. }
  3204. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3205. {
  3206. struct drm_device *dev = crtc->dev;
  3207. struct drm_i915_private *dev_priv = dev->dev_private;
  3208. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3209. struct intel_encoder *encoder;
  3210. int pipe = intel_crtc->pipe;
  3211. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3212. if (!intel_crtc->active)
  3213. return;
  3214. haswell_crtc_disable_planes(crtc);
  3215. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3216. intel_opregion_notify_encoder(encoder, false);
  3217. encoder->disable(encoder);
  3218. }
  3219. if (intel_crtc->config.has_pch_encoder)
  3220. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3221. intel_disable_pipe(dev_priv, pipe);
  3222. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3223. ironlake_pfit_disable(intel_crtc);
  3224. intel_ddi_disable_pipe_clock(intel_crtc);
  3225. for_each_encoder_on_crtc(dev, crtc, encoder)
  3226. if (encoder->post_disable)
  3227. encoder->post_disable(encoder);
  3228. if (intel_crtc->config.has_pch_encoder) {
  3229. lpt_disable_pch_transcoder(dev_priv);
  3230. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3231. intel_ddi_fdi_disable(crtc);
  3232. }
  3233. intel_crtc->active = false;
  3234. intel_update_watermarks(crtc);
  3235. mutex_lock(&dev->struct_mutex);
  3236. intel_update_fbc(dev);
  3237. mutex_unlock(&dev->struct_mutex);
  3238. }
  3239. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3240. {
  3241. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3242. intel_put_shared_dpll(intel_crtc);
  3243. }
  3244. static void haswell_crtc_off(struct drm_crtc *crtc)
  3245. {
  3246. intel_ddi_put_crtc_pll(crtc);
  3247. }
  3248. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3249. {
  3250. if (!enable && intel_crtc->overlay) {
  3251. struct drm_device *dev = intel_crtc->base.dev;
  3252. struct drm_i915_private *dev_priv = dev->dev_private;
  3253. mutex_lock(&dev->struct_mutex);
  3254. dev_priv->mm.interruptible = false;
  3255. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3256. dev_priv->mm.interruptible = true;
  3257. mutex_unlock(&dev->struct_mutex);
  3258. }
  3259. /* Let userspace switch the overlay on again. In most cases userspace
  3260. * has to recompute where to put it anyway.
  3261. */
  3262. }
  3263. /**
  3264. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3265. * cursor plane briefly if not already running after enabling the display
  3266. * plane.
  3267. * This workaround avoids occasional blank screens when self refresh is
  3268. * enabled.
  3269. */
  3270. static void
  3271. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3272. {
  3273. u32 cntl = I915_READ(CURCNTR(pipe));
  3274. if ((cntl & CURSOR_MODE) == 0) {
  3275. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3276. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3277. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3278. intel_wait_for_vblank(dev_priv->dev, pipe);
  3279. I915_WRITE(CURCNTR(pipe), cntl);
  3280. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3281. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3282. }
  3283. }
  3284. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3285. {
  3286. struct drm_device *dev = crtc->base.dev;
  3287. struct drm_i915_private *dev_priv = dev->dev_private;
  3288. struct intel_crtc_config *pipe_config = &crtc->config;
  3289. if (!crtc->config.gmch_pfit.control)
  3290. return;
  3291. /*
  3292. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3293. * according to register description and PRM.
  3294. */
  3295. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3296. assert_pipe_disabled(dev_priv, crtc->pipe);
  3297. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3298. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3299. /* Border color in case we don't scale up to the full screen. Black by
  3300. * default, change to something else for debugging. */
  3301. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3302. }
  3303. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3304. {
  3305. struct drm_device *dev = crtc->dev;
  3306. struct drm_i915_private *dev_priv = dev->dev_private;
  3307. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3308. struct intel_encoder *encoder;
  3309. int pipe = intel_crtc->pipe;
  3310. int plane = intel_crtc->plane;
  3311. bool is_dsi;
  3312. WARN_ON(!crtc->enabled);
  3313. if (intel_crtc->active)
  3314. return;
  3315. intel_crtc->active = true;
  3316. for_each_encoder_on_crtc(dev, crtc, encoder)
  3317. if (encoder->pre_pll_enable)
  3318. encoder->pre_pll_enable(encoder);
  3319. is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
  3320. if (!is_dsi)
  3321. vlv_enable_pll(intel_crtc);
  3322. for_each_encoder_on_crtc(dev, crtc, encoder)
  3323. if (encoder->pre_enable)
  3324. encoder->pre_enable(encoder);
  3325. i9xx_pfit_enable(intel_crtc);
  3326. intel_crtc_load_lut(crtc);
  3327. intel_update_watermarks(crtc);
  3328. intel_enable_pipe(dev_priv, pipe, false, is_dsi);
  3329. intel_enable_primary_plane(dev_priv, plane, pipe);
  3330. intel_enable_planes(crtc);
  3331. intel_crtc_update_cursor(crtc, true);
  3332. intel_update_fbc(dev);
  3333. for_each_encoder_on_crtc(dev, crtc, encoder)
  3334. encoder->enable(encoder);
  3335. }
  3336. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3337. {
  3338. struct drm_device *dev = crtc->dev;
  3339. struct drm_i915_private *dev_priv = dev->dev_private;
  3340. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3341. struct intel_encoder *encoder;
  3342. int pipe = intel_crtc->pipe;
  3343. int plane = intel_crtc->plane;
  3344. WARN_ON(!crtc->enabled);
  3345. if (intel_crtc->active)
  3346. return;
  3347. intel_crtc->active = true;
  3348. for_each_encoder_on_crtc(dev, crtc, encoder)
  3349. if (encoder->pre_enable)
  3350. encoder->pre_enable(encoder);
  3351. i9xx_enable_pll(intel_crtc);
  3352. i9xx_pfit_enable(intel_crtc);
  3353. intel_crtc_load_lut(crtc);
  3354. intel_update_watermarks(crtc);
  3355. intel_enable_pipe(dev_priv, pipe, false, false);
  3356. intel_enable_primary_plane(dev_priv, plane, pipe);
  3357. intel_enable_planes(crtc);
  3358. /* The fixup needs to happen before cursor is enabled */
  3359. if (IS_G4X(dev))
  3360. g4x_fixup_plane(dev_priv, pipe);
  3361. intel_crtc_update_cursor(crtc, true);
  3362. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3363. intel_crtc_dpms_overlay(intel_crtc, true);
  3364. intel_update_fbc(dev);
  3365. for_each_encoder_on_crtc(dev, crtc, encoder)
  3366. encoder->enable(encoder);
  3367. }
  3368. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3369. {
  3370. struct drm_device *dev = crtc->base.dev;
  3371. struct drm_i915_private *dev_priv = dev->dev_private;
  3372. if (!crtc->config.gmch_pfit.control)
  3373. return;
  3374. assert_pipe_disabled(dev_priv, crtc->pipe);
  3375. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3376. I915_READ(PFIT_CONTROL));
  3377. I915_WRITE(PFIT_CONTROL, 0);
  3378. }
  3379. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3380. {
  3381. struct drm_device *dev = crtc->dev;
  3382. struct drm_i915_private *dev_priv = dev->dev_private;
  3383. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3384. struct intel_encoder *encoder;
  3385. int pipe = intel_crtc->pipe;
  3386. int plane = intel_crtc->plane;
  3387. if (!intel_crtc->active)
  3388. return;
  3389. for_each_encoder_on_crtc(dev, crtc, encoder)
  3390. encoder->disable(encoder);
  3391. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3392. intel_crtc_wait_for_pending_flips(crtc);
  3393. drm_vblank_off(dev, pipe);
  3394. if (dev_priv->fbc.plane == plane)
  3395. intel_disable_fbc(dev);
  3396. intel_crtc_dpms_overlay(intel_crtc, false);
  3397. intel_crtc_update_cursor(crtc, false);
  3398. intel_disable_planes(crtc);
  3399. intel_disable_primary_plane(dev_priv, plane, pipe);
  3400. intel_disable_pipe(dev_priv, pipe);
  3401. i9xx_pfit_disable(intel_crtc);
  3402. for_each_encoder_on_crtc(dev, crtc, encoder)
  3403. if (encoder->post_disable)
  3404. encoder->post_disable(encoder);
  3405. if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  3406. vlv_disable_pll(dev_priv, pipe);
  3407. else if (!IS_VALLEYVIEW(dev))
  3408. i9xx_disable_pll(dev_priv, pipe);
  3409. intel_crtc->active = false;
  3410. intel_update_watermarks(crtc);
  3411. intel_update_fbc(dev);
  3412. }
  3413. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3414. {
  3415. }
  3416. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3417. bool enabled)
  3418. {
  3419. struct drm_device *dev = crtc->dev;
  3420. struct drm_i915_master_private *master_priv;
  3421. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3422. int pipe = intel_crtc->pipe;
  3423. if (!dev->primary->master)
  3424. return;
  3425. master_priv = dev->primary->master->driver_priv;
  3426. if (!master_priv->sarea_priv)
  3427. return;
  3428. switch (pipe) {
  3429. case 0:
  3430. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3431. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3432. break;
  3433. case 1:
  3434. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3435. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3436. break;
  3437. default:
  3438. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3439. break;
  3440. }
  3441. }
  3442. /**
  3443. * Sets the power management mode of the pipe and plane.
  3444. */
  3445. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3446. {
  3447. struct drm_device *dev = crtc->dev;
  3448. struct drm_i915_private *dev_priv = dev->dev_private;
  3449. struct intel_encoder *intel_encoder;
  3450. bool enable = false;
  3451. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3452. enable |= intel_encoder->connectors_active;
  3453. if (enable)
  3454. dev_priv->display.crtc_enable(crtc);
  3455. else
  3456. dev_priv->display.crtc_disable(crtc);
  3457. intel_crtc_update_sarea(crtc, enable);
  3458. }
  3459. static void intel_crtc_disable(struct drm_crtc *crtc)
  3460. {
  3461. struct drm_device *dev = crtc->dev;
  3462. struct drm_connector *connector;
  3463. struct drm_i915_private *dev_priv = dev->dev_private;
  3464. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3465. /* crtc should still be enabled when we disable it. */
  3466. WARN_ON(!crtc->enabled);
  3467. dev_priv->display.crtc_disable(crtc);
  3468. intel_crtc->eld_vld = false;
  3469. intel_crtc_update_sarea(crtc, false);
  3470. dev_priv->display.off(crtc);
  3471. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3472. assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
  3473. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3474. if (crtc->fb) {
  3475. mutex_lock(&dev->struct_mutex);
  3476. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3477. mutex_unlock(&dev->struct_mutex);
  3478. crtc->fb = NULL;
  3479. }
  3480. /* Update computed state. */
  3481. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3482. if (!connector->encoder || !connector->encoder->crtc)
  3483. continue;
  3484. if (connector->encoder->crtc != crtc)
  3485. continue;
  3486. connector->dpms = DRM_MODE_DPMS_OFF;
  3487. to_intel_encoder(connector->encoder)->connectors_active = false;
  3488. }
  3489. }
  3490. void intel_encoder_destroy(struct drm_encoder *encoder)
  3491. {
  3492. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3493. drm_encoder_cleanup(encoder);
  3494. kfree(intel_encoder);
  3495. }
  3496. /* Simple dpms helper for encoders with just one connector, no cloning and only
  3497. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3498. * state of the entire output pipe. */
  3499. static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3500. {
  3501. if (mode == DRM_MODE_DPMS_ON) {
  3502. encoder->connectors_active = true;
  3503. intel_crtc_update_dpms(encoder->base.crtc);
  3504. } else {
  3505. encoder->connectors_active = false;
  3506. intel_crtc_update_dpms(encoder->base.crtc);
  3507. }
  3508. }
  3509. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3510. * internal consistency). */
  3511. static void intel_connector_check_state(struct intel_connector *connector)
  3512. {
  3513. if (connector->get_hw_state(connector)) {
  3514. struct intel_encoder *encoder = connector->encoder;
  3515. struct drm_crtc *crtc;
  3516. bool encoder_enabled;
  3517. enum pipe pipe;
  3518. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3519. connector->base.base.id,
  3520. drm_get_connector_name(&connector->base));
  3521. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3522. "wrong connector dpms state\n");
  3523. WARN(connector->base.encoder != &encoder->base,
  3524. "active connector not linked to encoder\n");
  3525. WARN(!encoder->connectors_active,
  3526. "encoder->connectors_active not set\n");
  3527. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3528. WARN(!encoder_enabled, "encoder not enabled\n");
  3529. if (WARN_ON(!encoder->base.crtc))
  3530. return;
  3531. crtc = encoder->base.crtc;
  3532. WARN(!crtc->enabled, "crtc not enabled\n");
  3533. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3534. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3535. "encoder active on the wrong pipe\n");
  3536. }
  3537. }
  3538. /* Even simpler default implementation, if there's really no special case to
  3539. * consider. */
  3540. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3541. {
  3542. /* All the simple cases only support two dpms states. */
  3543. if (mode != DRM_MODE_DPMS_ON)
  3544. mode = DRM_MODE_DPMS_OFF;
  3545. if (mode == connector->dpms)
  3546. return;
  3547. connector->dpms = mode;
  3548. /* Only need to change hw state when actually enabled */
  3549. if (connector->encoder)
  3550. intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
  3551. intel_modeset_check_state(connector->dev);
  3552. }
  3553. /* Simple connector->get_hw_state implementation for encoders that support only
  3554. * one connector and no cloning and hence the encoder state determines the state
  3555. * of the connector. */
  3556. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3557. {
  3558. enum pipe pipe = 0;
  3559. struct intel_encoder *encoder = connector->encoder;
  3560. return encoder->get_hw_state(encoder, &pipe);
  3561. }
  3562. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3563. struct intel_crtc_config *pipe_config)
  3564. {
  3565. struct drm_i915_private *dev_priv = dev->dev_private;
  3566. struct intel_crtc *pipe_B_crtc =
  3567. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3568. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3569. pipe_name(pipe), pipe_config->fdi_lanes);
  3570. if (pipe_config->fdi_lanes > 4) {
  3571. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3572. pipe_name(pipe), pipe_config->fdi_lanes);
  3573. return false;
  3574. }
  3575. if (IS_HASWELL(dev)) {
  3576. if (pipe_config->fdi_lanes > 2) {
  3577. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3578. pipe_config->fdi_lanes);
  3579. return false;
  3580. } else {
  3581. return true;
  3582. }
  3583. }
  3584. if (INTEL_INFO(dev)->num_pipes == 2)
  3585. return true;
  3586. /* Ivybridge 3 pipe is really complicated */
  3587. switch (pipe) {
  3588. case PIPE_A:
  3589. return true;
  3590. case PIPE_B:
  3591. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3592. pipe_config->fdi_lanes > 2) {
  3593. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3594. pipe_name(pipe), pipe_config->fdi_lanes);
  3595. return false;
  3596. }
  3597. return true;
  3598. case PIPE_C:
  3599. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3600. pipe_B_crtc->config.fdi_lanes <= 2) {
  3601. if (pipe_config->fdi_lanes > 2) {
  3602. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3603. pipe_name(pipe), pipe_config->fdi_lanes);
  3604. return false;
  3605. }
  3606. } else {
  3607. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3608. return false;
  3609. }
  3610. return true;
  3611. default:
  3612. BUG();
  3613. }
  3614. }
  3615. #define RETRY 1
  3616. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3617. struct intel_crtc_config *pipe_config)
  3618. {
  3619. struct drm_device *dev = intel_crtc->base.dev;
  3620. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3621. int lane, link_bw, fdi_dotclock;
  3622. bool setup_ok, needs_recompute = false;
  3623. retry:
  3624. /* FDI is a binary signal running at ~2.7GHz, encoding
  3625. * each output octet as 10 bits. The actual frequency
  3626. * is stored as a divider into a 100MHz clock, and the
  3627. * mode pixel clock is stored in units of 1KHz.
  3628. * Hence the bw of each lane in terms of the mode signal
  3629. * is:
  3630. */
  3631. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3632. fdi_dotclock = adjusted_mode->crtc_clock;
  3633. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3634. pipe_config->pipe_bpp);
  3635. pipe_config->fdi_lanes = lane;
  3636. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3637. link_bw, &pipe_config->fdi_m_n);
  3638. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3639. intel_crtc->pipe, pipe_config);
  3640. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3641. pipe_config->pipe_bpp -= 2*3;
  3642. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3643. pipe_config->pipe_bpp);
  3644. needs_recompute = true;
  3645. pipe_config->bw_constrained = true;
  3646. goto retry;
  3647. }
  3648. if (needs_recompute)
  3649. return RETRY;
  3650. return setup_ok ? 0 : -EINVAL;
  3651. }
  3652. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3653. struct intel_crtc_config *pipe_config)
  3654. {
  3655. pipe_config->ips_enabled = i915_enable_ips &&
  3656. hsw_crtc_supports_ips(crtc) &&
  3657. pipe_config->pipe_bpp <= 24;
  3658. }
  3659. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3660. struct intel_crtc_config *pipe_config)
  3661. {
  3662. struct drm_device *dev = crtc->base.dev;
  3663. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3664. /* FIXME should check pixel clock limits on all platforms */
  3665. if (INTEL_INFO(dev)->gen < 4) {
  3666. struct drm_i915_private *dev_priv = dev->dev_private;
  3667. int clock_limit =
  3668. dev_priv->display.get_display_clock_speed(dev);
  3669. /*
  3670. * Enable pixel doubling when the dot clock
  3671. * is > 90% of the (display) core speed.
  3672. *
  3673. * GDG double wide on either pipe,
  3674. * otherwise pipe A only.
  3675. */
  3676. if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
  3677. adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
  3678. clock_limit *= 2;
  3679. pipe_config->double_wide = true;
  3680. }
  3681. if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
  3682. return -EINVAL;
  3683. }
  3684. /*
  3685. * Pipe horizontal size must be even in:
  3686. * - DVO ganged mode
  3687. * - LVDS dual channel mode
  3688. * - Double wide pipe
  3689. */
  3690. if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3691. intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
  3692. pipe_config->pipe_src_w &= ~1;
  3693. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3694. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3695. */
  3696. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3697. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3698. return -EINVAL;
  3699. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3700. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3701. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3702. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3703. * for lvds. */
  3704. pipe_config->pipe_bpp = 8*3;
  3705. }
  3706. if (HAS_IPS(dev))
  3707. hsw_compute_ips_config(crtc, pipe_config);
  3708. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3709. * clock survives for now. */
  3710. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3711. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3712. if (pipe_config->has_pch_encoder)
  3713. return ironlake_fdi_compute_config(crtc, pipe_config);
  3714. return 0;
  3715. }
  3716. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3717. {
  3718. return 400000; /* FIXME */
  3719. }
  3720. static int i945_get_display_clock_speed(struct drm_device *dev)
  3721. {
  3722. return 400000;
  3723. }
  3724. static int i915_get_display_clock_speed(struct drm_device *dev)
  3725. {
  3726. return 333000;
  3727. }
  3728. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3729. {
  3730. return 200000;
  3731. }
  3732. static int pnv_get_display_clock_speed(struct drm_device *dev)
  3733. {
  3734. u16 gcfgc = 0;
  3735. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3736. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3737. case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  3738. return 267000;
  3739. case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  3740. return 333000;
  3741. case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  3742. return 444000;
  3743. case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  3744. return 200000;
  3745. default:
  3746. DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  3747. case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  3748. return 133000;
  3749. case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  3750. return 167000;
  3751. }
  3752. }
  3753. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3754. {
  3755. u16 gcfgc = 0;
  3756. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3757. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3758. return 133000;
  3759. else {
  3760. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3761. case GC_DISPLAY_CLOCK_333_MHZ:
  3762. return 333000;
  3763. default:
  3764. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3765. return 190000;
  3766. }
  3767. }
  3768. }
  3769. static int i865_get_display_clock_speed(struct drm_device *dev)
  3770. {
  3771. return 266000;
  3772. }
  3773. static int i855_get_display_clock_speed(struct drm_device *dev)
  3774. {
  3775. u16 hpllcc = 0;
  3776. /* Assume that the hardware is in the high speed state. This
  3777. * should be the default.
  3778. */
  3779. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3780. case GC_CLOCK_133_200:
  3781. case GC_CLOCK_100_200:
  3782. return 200000;
  3783. case GC_CLOCK_166_250:
  3784. return 250000;
  3785. case GC_CLOCK_100_133:
  3786. return 133000;
  3787. }
  3788. /* Shouldn't happen */
  3789. return 0;
  3790. }
  3791. static int i830_get_display_clock_speed(struct drm_device *dev)
  3792. {
  3793. return 133000;
  3794. }
  3795. static void
  3796. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3797. {
  3798. while (*num > DATA_LINK_M_N_MASK ||
  3799. *den > DATA_LINK_M_N_MASK) {
  3800. *num >>= 1;
  3801. *den >>= 1;
  3802. }
  3803. }
  3804. static void compute_m_n(unsigned int m, unsigned int n,
  3805. uint32_t *ret_m, uint32_t *ret_n)
  3806. {
  3807. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3808. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3809. intel_reduce_m_n_ratio(ret_m, ret_n);
  3810. }
  3811. void
  3812. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3813. int pixel_clock, int link_clock,
  3814. struct intel_link_m_n *m_n)
  3815. {
  3816. m_n->tu = 64;
  3817. compute_m_n(bits_per_pixel * pixel_clock,
  3818. link_clock * nlanes * 8,
  3819. &m_n->gmch_m, &m_n->gmch_n);
  3820. compute_m_n(pixel_clock, link_clock,
  3821. &m_n->link_m, &m_n->link_n);
  3822. }
  3823. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3824. {
  3825. if (i915_panel_use_ssc >= 0)
  3826. return i915_panel_use_ssc != 0;
  3827. return dev_priv->vbt.lvds_use_ssc
  3828. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3829. }
  3830. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3831. {
  3832. struct drm_device *dev = crtc->dev;
  3833. struct drm_i915_private *dev_priv = dev->dev_private;
  3834. int refclk;
  3835. if (IS_VALLEYVIEW(dev)) {
  3836. refclk = 100000;
  3837. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3838. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3839. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3840. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3841. refclk / 1000);
  3842. } else if (!IS_GEN2(dev)) {
  3843. refclk = 96000;
  3844. } else {
  3845. refclk = 48000;
  3846. }
  3847. return refclk;
  3848. }
  3849. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3850. {
  3851. return (1 << dpll->n) << 16 | dpll->m2;
  3852. }
  3853. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3854. {
  3855. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3856. }
  3857. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3858. intel_clock_t *reduced_clock)
  3859. {
  3860. struct drm_device *dev = crtc->base.dev;
  3861. struct drm_i915_private *dev_priv = dev->dev_private;
  3862. int pipe = crtc->pipe;
  3863. u32 fp, fp2 = 0;
  3864. if (IS_PINEVIEW(dev)) {
  3865. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3866. if (reduced_clock)
  3867. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3868. } else {
  3869. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3870. if (reduced_clock)
  3871. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3872. }
  3873. I915_WRITE(FP0(pipe), fp);
  3874. crtc->config.dpll_hw_state.fp0 = fp;
  3875. crtc->lowfreq_avail = false;
  3876. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3877. reduced_clock && i915_powersave) {
  3878. I915_WRITE(FP1(pipe), fp2);
  3879. crtc->config.dpll_hw_state.fp1 = fp2;
  3880. crtc->lowfreq_avail = true;
  3881. } else {
  3882. I915_WRITE(FP1(pipe), fp);
  3883. crtc->config.dpll_hw_state.fp1 = fp;
  3884. }
  3885. }
  3886. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
  3887. pipe)
  3888. {
  3889. u32 reg_val;
  3890. /*
  3891. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3892. * and set it to a reasonable value instead.
  3893. */
  3894. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3895. reg_val &= 0xffffff00;
  3896. reg_val |= 0x00000030;
  3897. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3898. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3899. reg_val &= 0x8cffffff;
  3900. reg_val = 0x8c000000;
  3901. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3902. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3903. reg_val &= 0xffffff00;
  3904. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3905. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3906. reg_val &= 0x00ffffff;
  3907. reg_val |= 0xb0000000;
  3908. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3909. }
  3910. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3911. struct intel_link_m_n *m_n)
  3912. {
  3913. struct drm_device *dev = crtc->base.dev;
  3914. struct drm_i915_private *dev_priv = dev->dev_private;
  3915. int pipe = crtc->pipe;
  3916. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3917. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3918. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3919. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3920. }
  3921. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3922. struct intel_link_m_n *m_n)
  3923. {
  3924. struct drm_device *dev = crtc->base.dev;
  3925. struct drm_i915_private *dev_priv = dev->dev_private;
  3926. int pipe = crtc->pipe;
  3927. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3928. if (INTEL_INFO(dev)->gen >= 5) {
  3929. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3930. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3931. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3932. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3933. } else {
  3934. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3935. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3936. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3937. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3938. }
  3939. }
  3940. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3941. {
  3942. if (crtc->config.has_pch_encoder)
  3943. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3944. else
  3945. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3946. }
  3947. static void vlv_update_pll(struct intel_crtc *crtc)
  3948. {
  3949. struct drm_device *dev = crtc->base.dev;
  3950. struct drm_i915_private *dev_priv = dev->dev_private;
  3951. int pipe = crtc->pipe;
  3952. u32 dpll, mdiv;
  3953. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3954. u32 coreclk, reg_val, dpll_md;
  3955. mutex_lock(&dev_priv->dpio_lock);
  3956. bestn = crtc->config.dpll.n;
  3957. bestm1 = crtc->config.dpll.m1;
  3958. bestm2 = crtc->config.dpll.m2;
  3959. bestp1 = crtc->config.dpll.p1;
  3960. bestp2 = crtc->config.dpll.p2;
  3961. /* See eDP HDMI DPIO driver vbios notes doc */
  3962. /* PLL B needs special handling */
  3963. if (pipe)
  3964. vlv_pllb_recal_opamp(dev_priv, pipe);
  3965. /* Set up Tx target for periodic Rcomp update */
  3966. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
  3967. /* Disable target IRef on PLL */
  3968. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
  3969. reg_val &= 0x00ffffff;
  3970. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
  3971. /* Disable fast lock */
  3972. vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
  3973. /* Set idtafcrecal before PLL is enabled */
  3974. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3975. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3976. mdiv |= ((bestn << DPIO_N_SHIFT));
  3977. mdiv |= (1 << DPIO_K_SHIFT);
  3978. /*
  3979. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3980. * but we don't support that).
  3981. * Note: don't use the DAC post divider as it seems unstable.
  3982. */
  3983. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3984. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3985. mdiv |= DPIO_ENABLE_CALIBRATION;
  3986. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3987. /* Set HBR and RBR LPF coefficients */
  3988. if (crtc->config.port_clock == 162000 ||
  3989. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3990. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3991. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3992. 0x009f0003);
  3993. else
  3994. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3995. 0x00d0000f);
  3996. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3997. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3998. /* Use SSC source */
  3999. if (!pipe)
  4000. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  4001. 0x0df40000);
  4002. else
  4003. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  4004. 0x0df70000);
  4005. } else { /* HDMI or VGA */
  4006. /* Use bend source */
  4007. if (!pipe)
  4008. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  4009. 0x0df70000);
  4010. else
  4011. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  4012. 0x0df40000);
  4013. }
  4014. coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
  4015. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  4016. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  4017. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  4018. coreclk |= 0x01000000;
  4019. vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
  4020. vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
  4021. /* Enable DPIO clock input */
  4022. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  4023. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  4024. /* We should never disable this, set it here for state tracking */
  4025. if (pipe == PIPE_B)
  4026. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  4027. dpll |= DPLL_VCO_ENABLE;
  4028. crtc->config.dpll_hw_state.dpll = dpll;
  4029. dpll_md = (crtc->config.pixel_multiplier - 1)
  4030. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4031. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  4032. if (crtc->config.has_dp_encoder)
  4033. intel_dp_set_m_n(crtc);
  4034. mutex_unlock(&dev_priv->dpio_lock);
  4035. }
  4036. static void i9xx_update_pll(struct intel_crtc *crtc,
  4037. intel_clock_t *reduced_clock,
  4038. int num_connectors)
  4039. {
  4040. struct drm_device *dev = crtc->base.dev;
  4041. struct drm_i915_private *dev_priv = dev->dev_private;
  4042. u32 dpll;
  4043. bool is_sdvo;
  4044. struct dpll *clock = &crtc->config.dpll;
  4045. i9xx_update_pll_dividers(crtc, reduced_clock);
  4046. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  4047. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  4048. dpll = DPLL_VGA_MODE_DIS;
  4049. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  4050. dpll |= DPLLB_MODE_LVDS;
  4051. else
  4052. dpll |= DPLLB_MODE_DAC_SERIAL;
  4053. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4054. dpll |= (crtc->config.pixel_multiplier - 1)
  4055. << SDVO_MULTIPLIER_SHIFT_HIRES;
  4056. }
  4057. if (is_sdvo)
  4058. dpll |= DPLL_SDVO_HIGH_SPEED;
  4059. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  4060. dpll |= DPLL_SDVO_HIGH_SPEED;
  4061. /* compute bitmask from p1 value */
  4062. if (IS_PINEVIEW(dev))
  4063. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4064. else {
  4065. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4066. if (IS_G4X(dev) && reduced_clock)
  4067. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4068. }
  4069. switch (clock->p2) {
  4070. case 5:
  4071. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4072. break;
  4073. case 7:
  4074. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4075. break;
  4076. case 10:
  4077. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4078. break;
  4079. case 14:
  4080. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4081. break;
  4082. }
  4083. if (INTEL_INFO(dev)->gen >= 4)
  4084. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4085. if (crtc->config.sdvo_tv_clock)
  4086. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4087. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  4088. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4089. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4090. else
  4091. dpll |= PLL_REF_INPUT_DREFCLK;
  4092. dpll |= DPLL_VCO_ENABLE;
  4093. crtc->config.dpll_hw_state.dpll = dpll;
  4094. if (INTEL_INFO(dev)->gen >= 4) {
  4095. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  4096. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4097. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  4098. }
  4099. if (crtc->config.has_dp_encoder)
  4100. intel_dp_set_m_n(crtc);
  4101. }
  4102. static void i8xx_update_pll(struct intel_crtc *crtc,
  4103. intel_clock_t *reduced_clock,
  4104. int num_connectors)
  4105. {
  4106. struct drm_device *dev = crtc->base.dev;
  4107. struct drm_i915_private *dev_priv = dev->dev_private;
  4108. u32 dpll;
  4109. struct dpll *clock = &crtc->config.dpll;
  4110. i9xx_update_pll_dividers(crtc, reduced_clock);
  4111. dpll = DPLL_VGA_MODE_DIS;
  4112. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  4113. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4114. } else {
  4115. if (clock->p1 == 2)
  4116. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4117. else
  4118. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4119. if (clock->p2 == 4)
  4120. dpll |= PLL_P2_DIVIDE_BY_4;
  4121. }
  4122. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  4123. dpll |= DPLL_DVO_2X_MODE;
  4124. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  4125. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4126. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4127. else
  4128. dpll |= PLL_REF_INPUT_DREFCLK;
  4129. dpll |= DPLL_VCO_ENABLE;
  4130. crtc->config.dpll_hw_state.dpll = dpll;
  4131. }
  4132. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  4133. {
  4134. struct drm_device *dev = intel_crtc->base.dev;
  4135. struct drm_i915_private *dev_priv = dev->dev_private;
  4136. enum pipe pipe = intel_crtc->pipe;
  4137. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4138. struct drm_display_mode *adjusted_mode =
  4139. &intel_crtc->config.adjusted_mode;
  4140. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  4141. /* We need to be careful not to changed the adjusted mode, for otherwise
  4142. * the hw state checker will get angry at the mismatch. */
  4143. crtc_vtotal = adjusted_mode->crtc_vtotal;
  4144. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  4145. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4146. /* the chip adds 2 halflines automatically */
  4147. crtc_vtotal -= 1;
  4148. crtc_vblank_end -= 1;
  4149. vsyncshift = adjusted_mode->crtc_hsync_start
  4150. - adjusted_mode->crtc_htotal / 2;
  4151. } else {
  4152. vsyncshift = 0;
  4153. }
  4154. if (INTEL_INFO(dev)->gen > 3)
  4155. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  4156. I915_WRITE(HTOTAL(cpu_transcoder),
  4157. (adjusted_mode->crtc_hdisplay - 1) |
  4158. ((adjusted_mode->crtc_htotal - 1) << 16));
  4159. I915_WRITE(HBLANK(cpu_transcoder),
  4160. (adjusted_mode->crtc_hblank_start - 1) |
  4161. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4162. I915_WRITE(HSYNC(cpu_transcoder),
  4163. (adjusted_mode->crtc_hsync_start - 1) |
  4164. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4165. I915_WRITE(VTOTAL(cpu_transcoder),
  4166. (adjusted_mode->crtc_vdisplay - 1) |
  4167. ((crtc_vtotal - 1) << 16));
  4168. I915_WRITE(VBLANK(cpu_transcoder),
  4169. (adjusted_mode->crtc_vblank_start - 1) |
  4170. ((crtc_vblank_end - 1) << 16));
  4171. I915_WRITE(VSYNC(cpu_transcoder),
  4172. (adjusted_mode->crtc_vsync_start - 1) |
  4173. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4174. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  4175. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  4176. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  4177. * bits. */
  4178. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  4179. (pipe == PIPE_B || pipe == PIPE_C))
  4180. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  4181. /* pipesrc controls the size that is scaled from, which should
  4182. * always be the user's requested size.
  4183. */
  4184. I915_WRITE(PIPESRC(pipe),
  4185. ((intel_crtc->config.pipe_src_w - 1) << 16) |
  4186. (intel_crtc->config.pipe_src_h - 1));
  4187. }
  4188. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4189. struct intel_crtc_config *pipe_config)
  4190. {
  4191. struct drm_device *dev = crtc->base.dev;
  4192. struct drm_i915_private *dev_priv = dev->dev_private;
  4193. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4194. uint32_t tmp;
  4195. tmp = I915_READ(HTOTAL(cpu_transcoder));
  4196. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4197. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4198. tmp = I915_READ(HBLANK(cpu_transcoder));
  4199. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4200. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4201. tmp = I915_READ(HSYNC(cpu_transcoder));
  4202. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4203. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4204. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4205. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4206. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4207. tmp = I915_READ(VBLANK(cpu_transcoder));
  4208. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4209. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4210. tmp = I915_READ(VSYNC(cpu_transcoder));
  4211. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4212. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4213. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4214. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4215. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4216. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4217. }
  4218. tmp = I915_READ(PIPESRC(crtc->pipe));
  4219. pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
  4220. pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
  4221. pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
  4222. pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
  4223. }
  4224. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4225. struct intel_crtc_config *pipe_config)
  4226. {
  4227. struct drm_crtc *crtc = &intel_crtc->base;
  4228. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4229. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4230. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4231. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4232. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4233. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4234. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4235. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4236. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4237. crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
  4238. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4239. }
  4240. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4241. {
  4242. struct drm_device *dev = intel_crtc->base.dev;
  4243. struct drm_i915_private *dev_priv = dev->dev_private;
  4244. uint32_t pipeconf;
  4245. pipeconf = 0;
  4246. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  4247. I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
  4248. pipeconf |= PIPECONF_ENABLE;
  4249. if (intel_crtc->config.double_wide)
  4250. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4251. /* only g4x and later have fancy bpc/dither controls */
  4252. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4253. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4254. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4255. pipeconf |= PIPECONF_DITHER_EN |
  4256. PIPECONF_DITHER_TYPE_SP;
  4257. switch (intel_crtc->config.pipe_bpp) {
  4258. case 18:
  4259. pipeconf |= PIPECONF_6BPC;
  4260. break;
  4261. case 24:
  4262. pipeconf |= PIPECONF_8BPC;
  4263. break;
  4264. case 30:
  4265. pipeconf |= PIPECONF_10BPC;
  4266. break;
  4267. default:
  4268. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4269. BUG();
  4270. }
  4271. }
  4272. if (HAS_PIPE_CXSR(dev)) {
  4273. if (intel_crtc->lowfreq_avail) {
  4274. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4275. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4276. } else {
  4277. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4278. }
  4279. }
  4280. if (!IS_GEN2(dev) &&
  4281. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4282. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4283. else
  4284. pipeconf |= PIPECONF_PROGRESSIVE;
  4285. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4286. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4287. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4288. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4289. }
  4290. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4291. int x, int y,
  4292. struct drm_framebuffer *fb)
  4293. {
  4294. struct drm_device *dev = crtc->dev;
  4295. struct drm_i915_private *dev_priv = dev->dev_private;
  4296. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4297. int pipe = intel_crtc->pipe;
  4298. int plane = intel_crtc->plane;
  4299. int refclk, num_connectors = 0;
  4300. intel_clock_t clock, reduced_clock;
  4301. u32 dspcntr;
  4302. bool ok, has_reduced_clock = false;
  4303. bool is_lvds = false, is_dsi = false;
  4304. struct intel_encoder *encoder;
  4305. const intel_limit_t *limit;
  4306. int ret;
  4307. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4308. switch (encoder->type) {
  4309. case INTEL_OUTPUT_LVDS:
  4310. is_lvds = true;
  4311. break;
  4312. case INTEL_OUTPUT_DSI:
  4313. is_dsi = true;
  4314. break;
  4315. }
  4316. num_connectors++;
  4317. }
  4318. if (is_dsi)
  4319. goto skip_dpll;
  4320. if (!intel_crtc->config.clock_set) {
  4321. refclk = i9xx_get_refclk(crtc, num_connectors);
  4322. /*
  4323. * Returns a set of divisors for the desired target clock with
  4324. * the given refclk, or FALSE. The returned values represent
  4325. * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  4326. * 2) / p1 / p2.
  4327. */
  4328. limit = intel_limit(crtc, refclk);
  4329. ok = dev_priv->display.find_dpll(limit, crtc,
  4330. intel_crtc->config.port_clock,
  4331. refclk, NULL, &clock);
  4332. if (!ok) {
  4333. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4334. return -EINVAL;
  4335. }
  4336. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4337. /*
  4338. * Ensure we match the reduced clock's P to the target
  4339. * clock. If the clocks don't match, we can't switch
  4340. * the display clock by using the FP0/FP1. In such case
  4341. * we will disable the LVDS downclock feature.
  4342. */
  4343. has_reduced_clock =
  4344. dev_priv->display.find_dpll(limit, crtc,
  4345. dev_priv->lvds_downclock,
  4346. refclk, &clock,
  4347. &reduced_clock);
  4348. }
  4349. /* Compat-code for transition, will disappear. */
  4350. intel_crtc->config.dpll.n = clock.n;
  4351. intel_crtc->config.dpll.m1 = clock.m1;
  4352. intel_crtc->config.dpll.m2 = clock.m2;
  4353. intel_crtc->config.dpll.p1 = clock.p1;
  4354. intel_crtc->config.dpll.p2 = clock.p2;
  4355. }
  4356. if (IS_GEN2(dev)) {
  4357. i8xx_update_pll(intel_crtc,
  4358. has_reduced_clock ? &reduced_clock : NULL,
  4359. num_connectors);
  4360. } else if (IS_VALLEYVIEW(dev)) {
  4361. vlv_update_pll(intel_crtc);
  4362. } else {
  4363. i9xx_update_pll(intel_crtc,
  4364. has_reduced_clock ? &reduced_clock : NULL,
  4365. num_connectors);
  4366. }
  4367. skip_dpll:
  4368. /* Set up the display plane register */
  4369. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4370. if (!IS_VALLEYVIEW(dev)) {
  4371. if (pipe == 0)
  4372. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4373. else
  4374. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4375. }
  4376. intel_set_pipe_timings(intel_crtc);
  4377. /* pipesrc and dspsize control the size that is scaled from,
  4378. * which should always be the user's requested size.
  4379. */
  4380. I915_WRITE(DSPSIZE(plane),
  4381. ((intel_crtc->config.pipe_src_h - 1) << 16) |
  4382. (intel_crtc->config.pipe_src_w - 1));
  4383. I915_WRITE(DSPPOS(plane), 0);
  4384. i9xx_set_pipeconf(intel_crtc);
  4385. I915_WRITE(DSPCNTR(plane), dspcntr);
  4386. POSTING_READ(DSPCNTR(plane));
  4387. ret = intel_pipe_set_base(crtc, x, y, fb);
  4388. return ret;
  4389. }
  4390. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4391. struct intel_crtc_config *pipe_config)
  4392. {
  4393. struct drm_device *dev = crtc->base.dev;
  4394. struct drm_i915_private *dev_priv = dev->dev_private;
  4395. uint32_t tmp;
  4396. tmp = I915_READ(PFIT_CONTROL);
  4397. if (!(tmp & PFIT_ENABLE))
  4398. return;
  4399. /* Check whether the pfit is attached to our pipe. */
  4400. if (INTEL_INFO(dev)->gen < 4) {
  4401. if (crtc->pipe != PIPE_B)
  4402. return;
  4403. } else {
  4404. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4405. return;
  4406. }
  4407. pipe_config->gmch_pfit.control = tmp;
  4408. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4409. if (INTEL_INFO(dev)->gen < 5)
  4410. pipe_config->gmch_pfit.lvds_border_bits =
  4411. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4412. }
  4413. static void vlv_crtc_clock_get(struct intel_crtc *crtc,
  4414. struct intel_crtc_config *pipe_config)
  4415. {
  4416. struct drm_device *dev = crtc->base.dev;
  4417. struct drm_i915_private *dev_priv = dev->dev_private;
  4418. int pipe = pipe_config->cpu_transcoder;
  4419. intel_clock_t clock;
  4420. u32 mdiv;
  4421. int refclk = 100000;
  4422. mutex_lock(&dev_priv->dpio_lock);
  4423. mdiv = vlv_dpio_read(dev_priv, pipe, DPIO_DIV(pipe));
  4424. mutex_unlock(&dev_priv->dpio_lock);
  4425. clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
  4426. clock.m2 = mdiv & DPIO_M2DIV_MASK;
  4427. clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
  4428. clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
  4429. clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
  4430. vlv_clock(refclk, &clock);
  4431. /* clock.dot is the fast clock */
  4432. pipe_config->port_clock = clock.dot / 5;
  4433. }
  4434. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4435. struct intel_crtc_config *pipe_config)
  4436. {
  4437. struct drm_device *dev = crtc->base.dev;
  4438. struct drm_i915_private *dev_priv = dev->dev_private;
  4439. uint32_t tmp;
  4440. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4441. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4442. tmp = I915_READ(PIPECONF(crtc->pipe));
  4443. if (!(tmp & PIPECONF_ENABLE))
  4444. return false;
  4445. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4446. switch (tmp & PIPECONF_BPC_MASK) {
  4447. case PIPECONF_6BPC:
  4448. pipe_config->pipe_bpp = 18;
  4449. break;
  4450. case PIPECONF_8BPC:
  4451. pipe_config->pipe_bpp = 24;
  4452. break;
  4453. case PIPECONF_10BPC:
  4454. pipe_config->pipe_bpp = 30;
  4455. break;
  4456. default:
  4457. break;
  4458. }
  4459. }
  4460. if (INTEL_INFO(dev)->gen < 4)
  4461. pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
  4462. intel_get_pipe_timings(crtc, pipe_config);
  4463. i9xx_get_pfit_config(crtc, pipe_config);
  4464. if (INTEL_INFO(dev)->gen >= 4) {
  4465. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4466. pipe_config->pixel_multiplier =
  4467. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4468. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4469. pipe_config->dpll_hw_state.dpll_md = tmp;
  4470. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4471. tmp = I915_READ(DPLL(crtc->pipe));
  4472. pipe_config->pixel_multiplier =
  4473. ((tmp & SDVO_MULTIPLIER_MASK)
  4474. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4475. } else {
  4476. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4477. * port and will be fixed up in the encoder->get_config
  4478. * function. */
  4479. pipe_config->pixel_multiplier = 1;
  4480. }
  4481. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4482. if (!IS_VALLEYVIEW(dev)) {
  4483. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4484. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4485. } else {
  4486. /* Mask out read-only status bits. */
  4487. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4488. DPLL_PORTC_READY_MASK |
  4489. DPLL_PORTB_READY_MASK);
  4490. }
  4491. if (IS_VALLEYVIEW(dev))
  4492. vlv_crtc_clock_get(crtc, pipe_config);
  4493. else
  4494. i9xx_crtc_clock_get(crtc, pipe_config);
  4495. return true;
  4496. }
  4497. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4498. {
  4499. struct drm_i915_private *dev_priv = dev->dev_private;
  4500. struct drm_mode_config *mode_config = &dev->mode_config;
  4501. struct intel_encoder *encoder;
  4502. u32 val, final;
  4503. bool has_lvds = false;
  4504. bool has_cpu_edp = false;
  4505. bool has_panel = false;
  4506. bool has_ck505 = false;
  4507. bool can_ssc = false;
  4508. /* We need to take the global config into account */
  4509. list_for_each_entry(encoder, &mode_config->encoder_list,
  4510. base.head) {
  4511. switch (encoder->type) {
  4512. case INTEL_OUTPUT_LVDS:
  4513. has_panel = true;
  4514. has_lvds = true;
  4515. break;
  4516. case INTEL_OUTPUT_EDP:
  4517. has_panel = true;
  4518. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4519. has_cpu_edp = true;
  4520. break;
  4521. }
  4522. }
  4523. if (HAS_PCH_IBX(dev)) {
  4524. has_ck505 = dev_priv->vbt.display_clock_mode;
  4525. can_ssc = has_ck505;
  4526. } else {
  4527. has_ck505 = false;
  4528. can_ssc = true;
  4529. }
  4530. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4531. has_panel, has_lvds, has_ck505);
  4532. /* Ironlake: try to setup display ref clock before DPLL
  4533. * enabling. This is only under driver's control after
  4534. * PCH B stepping, previous chipset stepping should be
  4535. * ignoring this setting.
  4536. */
  4537. val = I915_READ(PCH_DREF_CONTROL);
  4538. /* As we must carefully and slowly disable/enable each source in turn,
  4539. * compute the final state we want first and check if we need to
  4540. * make any changes at all.
  4541. */
  4542. final = val;
  4543. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4544. if (has_ck505)
  4545. final |= DREF_NONSPREAD_CK505_ENABLE;
  4546. else
  4547. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4548. final &= ~DREF_SSC_SOURCE_MASK;
  4549. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4550. final &= ~DREF_SSC1_ENABLE;
  4551. if (has_panel) {
  4552. final |= DREF_SSC_SOURCE_ENABLE;
  4553. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4554. final |= DREF_SSC1_ENABLE;
  4555. if (has_cpu_edp) {
  4556. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4557. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4558. else
  4559. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4560. } else
  4561. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4562. } else {
  4563. final |= DREF_SSC_SOURCE_DISABLE;
  4564. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4565. }
  4566. if (final == val)
  4567. return;
  4568. /* Always enable nonspread source */
  4569. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4570. if (has_ck505)
  4571. val |= DREF_NONSPREAD_CK505_ENABLE;
  4572. else
  4573. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4574. if (has_panel) {
  4575. val &= ~DREF_SSC_SOURCE_MASK;
  4576. val |= DREF_SSC_SOURCE_ENABLE;
  4577. /* SSC must be turned on before enabling the CPU output */
  4578. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4579. DRM_DEBUG_KMS("Using SSC on panel\n");
  4580. val |= DREF_SSC1_ENABLE;
  4581. } else
  4582. val &= ~DREF_SSC1_ENABLE;
  4583. /* Get SSC going before enabling the outputs */
  4584. I915_WRITE(PCH_DREF_CONTROL, val);
  4585. POSTING_READ(PCH_DREF_CONTROL);
  4586. udelay(200);
  4587. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4588. /* Enable CPU source on CPU attached eDP */
  4589. if (has_cpu_edp) {
  4590. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4591. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4592. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4593. }
  4594. else
  4595. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4596. } else
  4597. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4598. I915_WRITE(PCH_DREF_CONTROL, val);
  4599. POSTING_READ(PCH_DREF_CONTROL);
  4600. udelay(200);
  4601. } else {
  4602. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4603. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4604. /* Turn off CPU output */
  4605. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4606. I915_WRITE(PCH_DREF_CONTROL, val);
  4607. POSTING_READ(PCH_DREF_CONTROL);
  4608. udelay(200);
  4609. /* Turn off the SSC source */
  4610. val &= ~DREF_SSC_SOURCE_MASK;
  4611. val |= DREF_SSC_SOURCE_DISABLE;
  4612. /* Turn off SSC1 */
  4613. val &= ~DREF_SSC1_ENABLE;
  4614. I915_WRITE(PCH_DREF_CONTROL, val);
  4615. POSTING_READ(PCH_DREF_CONTROL);
  4616. udelay(200);
  4617. }
  4618. BUG_ON(val != final);
  4619. }
  4620. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  4621. {
  4622. uint32_t tmp;
  4623. tmp = I915_READ(SOUTH_CHICKEN2);
  4624. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4625. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4626. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4627. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4628. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4629. tmp = I915_READ(SOUTH_CHICKEN2);
  4630. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4631. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4632. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4633. FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  4634. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4635. }
  4636. /* WaMPhyProgramming:hsw */
  4637. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  4638. {
  4639. uint32_t tmp;
  4640. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4641. tmp &= ~(0xFF << 24);
  4642. tmp |= (0x12 << 24);
  4643. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4644. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4645. tmp |= (1 << 11);
  4646. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4647. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4648. tmp |= (1 << 11);
  4649. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4650. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4651. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4652. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4653. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4654. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4655. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4656. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4657. tmp &= ~(7 << 13);
  4658. tmp |= (5 << 13);
  4659. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4660. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4661. tmp &= ~(7 << 13);
  4662. tmp |= (5 << 13);
  4663. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4664. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4665. tmp &= ~0xFF;
  4666. tmp |= 0x1C;
  4667. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4668. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4669. tmp &= ~0xFF;
  4670. tmp |= 0x1C;
  4671. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4672. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4673. tmp &= ~(0xFF << 16);
  4674. tmp |= (0x1C << 16);
  4675. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4676. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4677. tmp &= ~(0xFF << 16);
  4678. tmp |= (0x1C << 16);
  4679. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4680. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4681. tmp |= (1 << 27);
  4682. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4683. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4684. tmp |= (1 << 27);
  4685. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4686. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4687. tmp &= ~(0xF << 28);
  4688. tmp |= (4 << 28);
  4689. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4690. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4691. tmp &= ~(0xF << 28);
  4692. tmp |= (4 << 28);
  4693. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4694. }
  4695. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  4696. * Programming" based on the parameters passed:
  4697. * - Sequence to enable CLKOUT_DP
  4698. * - Sequence to enable CLKOUT_DP without spread
  4699. * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  4700. */
  4701. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  4702. bool with_fdi)
  4703. {
  4704. struct drm_i915_private *dev_priv = dev->dev_private;
  4705. uint32_t reg, tmp;
  4706. if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  4707. with_spread = true;
  4708. if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
  4709. with_fdi, "LP PCH doesn't have FDI\n"))
  4710. with_fdi = false;
  4711. mutex_lock(&dev_priv->dpio_lock);
  4712. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4713. tmp &= ~SBI_SSCCTL_DISABLE;
  4714. tmp |= SBI_SSCCTL_PATHALT;
  4715. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4716. udelay(24);
  4717. if (with_spread) {
  4718. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4719. tmp &= ~SBI_SSCCTL_PATHALT;
  4720. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4721. if (with_fdi) {
  4722. lpt_reset_fdi_mphy(dev_priv);
  4723. lpt_program_fdi_mphy(dev_priv);
  4724. }
  4725. }
  4726. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4727. SBI_GEN0 : SBI_DBUFF0;
  4728. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4729. tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4730. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4731. mutex_unlock(&dev_priv->dpio_lock);
  4732. }
  4733. /* Sequence to disable CLKOUT_DP */
  4734. static void lpt_disable_clkout_dp(struct drm_device *dev)
  4735. {
  4736. struct drm_i915_private *dev_priv = dev->dev_private;
  4737. uint32_t reg, tmp;
  4738. mutex_lock(&dev_priv->dpio_lock);
  4739. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4740. SBI_GEN0 : SBI_DBUFF0;
  4741. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4742. tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4743. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4744. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4745. if (!(tmp & SBI_SSCCTL_DISABLE)) {
  4746. if (!(tmp & SBI_SSCCTL_PATHALT)) {
  4747. tmp |= SBI_SSCCTL_PATHALT;
  4748. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4749. udelay(32);
  4750. }
  4751. tmp |= SBI_SSCCTL_DISABLE;
  4752. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4753. }
  4754. mutex_unlock(&dev_priv->dpio_lock);
  4755. }
  4756. static void lpt_init_pch_refclk(struct drm_device *dev)
  4757. {
  4758. struct drm_mode_config *mode_config = &dev->mode_config;
  4759. struct intel_encoder *encoder;
  4760. bool has_vga = false;
  4761. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4762. switch (encoder->type) {
  4763. case INTEL_OUTPUT_ANALOG:
  4764. has_vga = true;
  4765. break;
  4766. }
  4767. }
  4768. if (has_vga)
  4769. lpt_enable_clkout_dp(dev, true, true);
  4770. else
  4771. lpt_disable_clkout_dp(dev);
  4772. }
  4773. /*
  4774. * Initialize reference clocks when the driver loads
  4775. */
  4776. void intel_init_pch_refclk(struct drm_device *dev)
  4777. {
  4778. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4779. ironlake_init_pch_refclk(dev);
  4780. else if (HAS_PCH_LPT(dev))
  4781. lpt_init_pch_refclk(dev);
  4782. }
  4783. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4784. {
  4785. struct drm_device *dev = crtc->dev;
  4786. struct drm_i915_private *dev_priv = dev->dev_private;
  4787. struct intel_encoder *encoder;
  4788. int num_connectors = 0;
  4789. bool is_lvds = false;
  4790. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4791. switch (encoder->type) {
  4792. case INTEL_OUTPUT_LVDS:
  4793. is_lvds = true;
  4794. break;
  4795. }
  4796. num_connectors++;
  4797. }
  4798. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4799. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4800. dev_priv->vbt.lvds_ssc_freq);
  4801. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4802. }
  4803. return 120000;
  4804. }
  4805. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4806. {
  4807. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4808. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4809. int pipe = intel_crtc->pipe;
  4810. uint32_t val;
  4811. val = 0;
  4812. switch (intel_crtc->config.pipe_bpp) {
  4813. case 18:
  4814. val |= PIPECONF_6BPC;
  4815. break;
  4816. case 24:
  4817. val |= PIPECONF_8BPC;
  4818. break;
  4819. case 30:
  4820. val |= PIPECONF_10BPC;
  4821. break;
  4822. case 36:
  4823. val |= PIPECONF_12BPC;
  4824. break;
  4825. default:
  4826. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4827. BUG();
  4828. }
  4829. if (intel_crtc->config.dither)
  4830. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4831. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4832. val |= PIPECONF_INTERLACED_ILK;
  4833. else
  4834. val |= PIPECONF_PROGRESSIVE;
  4835. if (intel_crtc->config.limited_color_range)
  4836. val |= PIPECONF_COLOR_RANGE_SELECT;
  4837. I915_WRITE(PIPECONF(pipe), val);
  4838. POSTING_READ(PIPECONF(pipe));
  4839. }
  4840. /*
  4841. * Set up the pipe CSC unit.
  4842. *
  4843. * Currently only full range RGB to limited range RGB conversion
  4844. * is supported, but eventually this should handle various
  4845. * RGB<->YCbCr scenarios as well.
  4846. */
  4847. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4848. {
  4849. struct drm_device *dev = crtc->dev;
  4850. struct drm_i915_private *dev_priv = dev->dev_private;
  4851. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4852. int pipe = intel_crtc->pipe;
  4853. uint16_t coeff = 0x7800; /* 1.0 */
  4854. /*
  4855. * TODO: Check what kind of values actually come out of the pipe
  4856. * with these coeff/postoff values and adjust to get the best
  4857. * accuracy. Perhaps we even need to take the bpc value into
  4858. * consideration.
  4859. */
  4860. if (intel_crtc->config.limited_color_range)
  4861. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4862. /*
  4863. * GY/GU and RY/RU should be the other way around according
  4864. * to BSpec, but reality doesn't agree. Just set them up in
  4865. * a way that results in the correct picture.
  4866. */
  4867. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4868. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4869. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4870. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4871. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4872. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4873. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4874. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4875. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4876. if (INTEL_INFO(dev)->gen > 6) {
  4877. uint16_t postoff = 0;
  4878. if (intel_crtc->config.limited_color_range)
  4879. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4880. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4881. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4882. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4883. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4884. } else {
  4885. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4886. if (intel_crtc->config.limited_color_range)
  4887. mode |= CSC_BLACK_SCREEN_OFFSET;
  4888. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4889. }
  4890. }
  4891. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4892. {
  4893. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4894. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4895. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4896. uint32_t val;
  4897. val = 0;
  4898. if (intel_crtc->config.dither)
  4899. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4900. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4901. val |= PIPECONF_INTERLACED_ILK;
  4902. else
  4903. val |= PIPECONF_PROGRESSIVE;
  4904. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4905. POSTING_READ(PIPECONF(cpu_transcoder));
  4906. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4907. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4908. }
  4909. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4910. intel_clock_t *clock,
  4911. bool *has_reduced_clock,
  4912. intel_clock_t *reduced_clock)
  4913. {
  4914. struct drm_device *dev = crtc->dev;
  4915. struct drm_i915_private *dev_priv = dev->dev_private;
  4916. struct intel_encoder *intel_encoder;
  4917. int refclk;
  4918. const intel_limit_t *limit;
  4919. bool ret, is_lvds = false;
  4920. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4921. switch (intel_encoder->type) {
  4922. case INTEL_OUTPUT_LVDS:
  4923. is_lvds = true;
  4924. break;
  4925. }
  4926. }
  4927. refclk = ironlake_get_refclk(crtc);
  4928. /*
  4929. * Returns a set of divisors for the desired target clock with the given
  4930. * refclk, or FALSE. The returned values represent the clock equation:
  4931. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4932. */
  4933. limit = intel_limit(crtc, refclk);
  4934. ret = dev_priv->display.find_dpll(limit, crtc,
  4935. to_intel_crtc(crtc)->config.port_clock,
  4936. refclk, NULL, clock);
  4937. if (!ret)
  4938. return false;
  4939. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4940. /*
  4941. * Ensure we match the reduced clock's P to the target clock.
  4942. * If the clocks don't match, we can't switch the display clock
  4943. * by using the FP0/FP1. In such case we will disable the LVDS
  4944. * downclock feature.
  4945. */
  4946. *has_reduced_clock =
  4947. dev_priv->display.find_dpll(limit, crtc,
  4948. dev_priv->lvds_downclock,
  4949. refclk, clock,
  4950. reduced_clock);
  4951. }
  4952. return true;
  4953. }
  4954. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4955. {
  4956. /*
  4957. * Account for spread spectrum to avoid
  4958. * oversubscribing the link. Max center spread
  4959. * is 2.5%; use 5% for safety's sake.
  4960. */
  4961. u32 bps = target_clock * bpp * 21 / 20;
  4962. return bps / (link_bw * 8) + 1;
  4963. }
  4964. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4965. {
  4966. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4967. }
  4968. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4969. u32 *fp,
  4970. intel_clock_t *reduced_clock, u32 *fp2)
  4971. {
  4972. struct drm_crtc *crtc = &intel_crtc->base;
  4973. struct drm_device *dev = crtc->dev;
  4974. struct drm_i915_private *dev_priv = dev->dev_private;
  4975. struct intel_encoder *intel_encoder;
  4976. uint32_t dpll;
  4977. int factor, num_connectors = 0;
  4978. bool is_lvds = false, is_sdvo = false;
  4979. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4980. switch (intel_encoder->type) {
  4981. case INTEL_OUTPUT_LVDS:
  4982. is_lvds = true;
  4983. break;
  4984. case INTEL_OUTPUT_SDVO:
  4985. case INTEL_OUTPUT_HDMI:
  4986. is_sdvo = true;
  4987. break;
  4988. }
  4989. num_connectors++;
  4990. }
  4991. /* Enable autotuning of the PLL clock (if permissible) */
  4992. factor = 21;
  4993. if (is_lvds) {
  4994. if ((intel_panel_use_ssc(dev_priv) &&
  4995. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4996. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4997. factor = 25;
  4998. } else if (intel_crtc->config.sdvo_tv_clock)
  4999. factor = 20;
  5000. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  5001. *fp |= FP_CB_TUNE;
  5002. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  5003. *fp2 |= FP_CB_TUNE;
  5004. dpll = 0;
  5005. if (is_lvds)
  5006. dpll |= DPLLB_MODE_LVDS;
  5007. else
  5008. dpll |= DPLLB_MODE_DAC_SERIAL;
  5009. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  5010. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  5011. if (is_sdvo)
  5012. dpll |= DPLL_SDVO_HIGH_SPEED;
  5013. if (intel_crtc->config.has_dp_encoder)
  5014. dpll |= DPLL_SDVO_HIGH_SPEED;
  5015. /* compute bitmask from p1 value */
  5016. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  5017. /* also FPA1 */
  5018. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  5019. switch (intel_crtc->config.dpll.p2) {
  5020. case 5:
  5021. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  5022. break;
  5023. case 7:
  5024. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  5025. break;
  5026. case 10:
  5027. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  5028. break;
  5029. case 14:
  5030. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  5031. break;
  5032. }
  5033. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  5034. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  5035. else
  5036. dpll |= PLL_REF_INPUT_DREFCLK;
  5037. return dpll | DPLL_VCO_ENABLE;
  5038. }
  5039. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  5040. int x, int y,
  5041. struct drm_framebuffer *fb)
  5042. {
  5043. struct drm_device *dev = crtc->dev;
  5044. struct drm_i915_private *dev_priv = dev->dev_private;
  5045. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5046. int pipe = intel_crtc->pipe;
  5047. int plane = intel_crtc->plane;
  5048. int num_connectors = 0;
  5049. intel_clock_t clock, reduced_clock;
  5050. u32 dpll = 0, fp = 0, fp2 = 0;
  5051. bool ok, has_reduced_clock = false;
  5052. bool is_lvds = false;
  5053. struct intel_encoder *encoder;
  5054. struct intel_shared_dpll *pll;
  5055. int ret;
  5056. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5057. switch (encoder->type) {
  5058. case INTEL_OUTPUT_LVDS:
  5059. is_lvds = true;
  5060. break;
  5061. }
  5062. num_connectors++;
  5063. }
  5064. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  5065. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  5066. ok = ironlake_compute_clocks(crtc, &clock,
  5067. &has_reduced_clock, &reduced_clock);
  5068. if (!ok && !intel_crtc->config.clock_set) {
  5069. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  5070. return -EINVAL;
  5071. }
  5072. /* Compat-code for transition, will disappear. */
  5073. if (!intel_crtc->config.clock_set) {
  5074. intel_crtc->config.dpll.n = clock.n;
  5075. intel_crtc->config.dpll.m1 = clock.m1;
  5076. intel_crtc->config.dpll.m2 = clock.m2;
  5077. intel_crtc->config.dpll.p1 = clock.p1;
  5078. intel_crtc->config.dpll.p2 = clock.p2;
  5079. }
  5080. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  5081. if (intel_crtc->config.has_pch_encoder) {
  5082. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  5083. if (has_reduced_clock)
  5084. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  5085. dpll = ironlake_compute_dpll(intel_crtc,
  5086. &fp, &reduced_clock,
  5087. has_reduced_clock ? &fp2 : NULL);
  5088. intel_crtc->config.dpll_hw_state.dpll = dpll;
  5089. intel_crtc->config.dpll_hw_state.fp0 = fp;
  5090. if (has_reduced_clock)
  5091. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  5092. else
  5093. intel_crtc->config.dpll_hw_state.fp1 = fp;
  5094. pll = intel_get_shared_dpll(intel_crtc);
  5095. if (pll == NULL) {
  5096. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  5097. pipe_name(pipe));
  5098. return -EINVAL;
  5099. }
  5100. } else
  5101. intel_put_shared_dpll(intel_crtc);
  5102. if (intel_crtc->config.has_dp_encoder)
  5103. intel_dp_set_m_n(intel_crtc);
  5104. if (is_lvds && has_reduced_clock && i915_powersave)
  5105. intel_crtc->lowfreq_avail = true;
  5106. else
  5107. intel_crtc->lowfreq_avail = false;
  5108. intel_set_pipe_timings(intel_crtc);
  5109. if (intel_crtc->config.has_pch_encoder) {
  5110. intel_cpu_transcoder_set_m_n(intel_crtc,
  5111. &intel_crtc->config.fdi_m_n);
  5112. }
  5113. ironlake_set_pipeconf(crtc);
  5114. /* Set up the display plane register */
  5115. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  5116. POSTING_READ(DSPCNTR(plane));
  5117. ret = intel_pipe_set_base(crtc, x, y, fb);
  5118. return ret;
  5119. }
  5120. static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
  5121. struct intel_link_m_n *m_n)
  5122. {
  5123. struct drm_device *dev = crtc->base.dev;
  5124. struct drm_i915_private *dev_priv = dev->dev_private;
  5125. enum pipe pipe = crtc->pipe;
  5126. m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
  5127. m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
  5128. m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
  5129. & ~TU_SIZE_MASK;
  5130. m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
  5131. m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
  5132. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5133. }
  5134. static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
  5135. enum transcoder transcoder,
  5136. struct intel_link_m_n *m_n)
  5137. {
  5138. struct drm_device *dev = crtc->base.dev;
  5139. struct drm_i915_private *dev_priv = dev->dev_private;
  5140. enum pipe pipe = crtc->pipe;
  5141. if (INTEL_INFO(dev)->gen >= 5) {
  5142. m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
  5143. m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
  5144. m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  5145. & ~TU_SIZE_MASK;
  5146. m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  5147. m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  5148. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5149. } else {
  5150. m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
  5151. m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
  5152. m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
  5153. & ~TU_SIZE_MASK;
  5154. m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
  5155. m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
  5156. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5157. }
  5158. }
  5159. void intel_dp_get_m_n(struct intel_crtc *crtc,
  5160. struct intel_crtc_config *pipe_config)
  5161. {
  5162. if (crtc->config.has_pch_encoder)
  5163. intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
  5164. else
  5165. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5166. &pipe_config->dp_m_n);
  5167. }
  5168. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  5169. struct intel_crtc_config *pipe_config)
  5170. {
  5171. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5172. &pipe_config->fdi_m_n);
  5173. }
  5174. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  5175. struct intel_crtc_config *pipe_config)
  5176. {
  5177. struct drm_device *dev = crtc->base.dev;
  5178. struct drm_i915_private *dev_priv = dev->dev_private;
  5179. uint32_t tmp;
  5180. tmp = I915_READ(PF_CTL(crtc->pipe));
  5181. if (tmp & PF_ENABLE) {
  5182. pipe_config->pch_pfit.enabled = true;
  5183. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  5184. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  5185. /* We currently do not free assignements of panel fitters on
  5186. * ivb/hsw (since we don't use the higher upscaling modes which
  5187. * differentiates them) so just WARN about this case for now. */
  5188. if (IS_GEN7(dev)) {
  5189. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  5190. PF_PIPE_SEL_IVB(crtc->pipe));
  5191. }
  5192. }
  5193. }
  5194. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  5195. struct intel_crtc_config *pipe_config)
  5196. {
  5197. struct drm_device *dev = crtc->base.dev;
  5198. struct drm_i915_private *dev_priv = dev->dev_private;
  5199. uint32_t tmp;
  5200. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5201. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5202. tmp = I915_READ(PIPECONF(crtc->pipe));
  5203. if (!(tmp & PIPECONF_ENABLE))
  5204. return false;
  5205. switch (tmp & PIPECONF_BPC_MASK) {
  5206. case PIPECONF_6BPC:
  5207. pipe_config->pipe_bpp = 18;
  5208. break;
  5209. case PIPECONF_8BPC:
  5210. pipe_config->pipe_bpp = 24;
  5211. break;
  5212. case PIPECONF_10BPC:
  5213. pipe_config->pipe_bpp = 30;
  5214. break;
  5215. case PIPECONF_12BPC:
  5216. pipe_config->pipe_bpp = 36;
  5217. break;
  5218. default:
  5219. break;
  5220. }
  5221. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  5222. struct intel_shared_dpll *pll;
  5223. pipe_config->has_pch_encoder = true;
  5224. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  5225. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5226. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5227. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5228. if (HAS_PCH_IBX(dev_priv->dev)) {
  5229. pipe_config->shared_dpll =
  5230. (enum intel_dpll_id) crtc->pipe;
  5231. } else {
  5232. tmp = I915_READ(PCH_DPLL_SEL);
  5233. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  5234. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  5235. else
  5236. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  5237. }
  5238. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  5239. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  5240. &pipe_config->dpll_hw_state));
  5241. tmp = pipe_config->dpll_hw_state.dpll;
  5242. pipe_config->pixel_multiplier =
  5243. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  5244. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  5245. ironlake_pch_clock_get(crtc, pipe_config);
  5246. } else {
  5247. pipe_config->pixel_multiplier = 1;
  5248. }
  5249. intel_get_pipe_timings(crtc, pipe_config);
  5250. ironlake_get_pfit_config(crtc, pipe_config);
  5251. return true;
  5252. }
  5253. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  5254. {
  5255. struct drm_device *dev = dev_priv->dev;
  5256. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  5257. struct intel_crtc *crtc;
  5258. unsigned long irqflags;
  5259. uint32_t val;
  5260. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5261. WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
  5262. pipe_name(crtc->pipe));
  5263. WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  5264. WARN(plls->spll_refcount, "SPLL enabled\n");
  5265. WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
  5266. WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
  5267. WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  5268. WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  5269. "CPU PWM1 enabled\n");
  5270. WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  5271. "CPU PWM2 enabled\n");
  5272. WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  5273. "PCH PWM1 enabled\n");
  5274. WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  5275. "Utility pin enabled\n");
  5276. WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  5277. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  5278. val = I915_READ(DEIMR);
  5279. WARN((val & ~DE_PCH_EVENT_IVB) != val,
  5280. "Unexpected DEIMR bits enabled: 0x%x\n", val);
  5281. val = I915_READ(SDEIMR);
  5282. WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
  5283. "Unexpected SDEIMR bits enabled: 0x%x\n", val);
  5284. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  5285. }
  5286. /*
  5287. * This function implements pieces of two sequences from BSpec:
  5288. * - Sequence for display software to disable LCPLL
  5289. * - Sequence for display software to allow package C8+
  5290. * The steps implemented here are just the steps that actually touch the LCPLL
  5291. * register. Callers should take care of disabling all the display engine
  5292. * functions, doing the mode unset, fixing interrupts, etc.
  5293. */
  5294. static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  5295. bool switch_to_fclk, bool allow_power_down)
  5296. {
  5297. uint32_t val;
  5298. assert_can_disable_lcpll(dev_priv);
  5299. val = I915_READ(LCPLL_CTL);
  5300. if (switch_to_fclk) {
  5301. val |= LCPLL_CD_SOURCE_FCLK;
  5302. I915_WRITE(LCPLL_CTL, val);
  5303. if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  5304. LCPLL_CD_SOURCE_FCLK_DONE, 1))
  5305. DRM_ERROR("Switching to FCLK failed\n");
  5306. val = I915_READ(LCPLL_CTL);
  5307. }
  5308. val |= LCPLL_PLL_DISABLE;
  5309. I915_WRITE(LCPLL_CTL, val);
  5310. POSTING_READ(LCPLL_CTL);
  5311. if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  5312. DRM_ERROR("LCPLL still locked\n");
  5313. val = I915_READ(D_COMP);
  5314. val |= D_COMP_COMP_DISABLE;
  5315. mutex_lock(&dev_priv->rps.hw_lock);
  5316. if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
  5317. DRM_ERROR("Failed to disable D_COMP\n");
  5318. mutex_unlock(&dev_priv->rps.hw_lock);
  5319. POSTING_READ(D_COMP);
  5320. ndelay(100);
  5321. if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
  5322. DRM_ERROR("D_COMP RCOMP still in progress\n");
  5323. if (allow_power_down) {
  5324. val = I915_READ(LCPLL_CTL);
  5325. val |= LCPLL_POWER_DOWN_ALLOW;
  5326. I915_WRITE(LCPLL_CTL, val);
  5327. POSTING_READ(LCPLL_CTL);
  5328. }
  5329. }
  5330. /*
  5331. * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  5332. * source.
  5333. */
  5334. static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  5335. {
  5336. uint32_t val;
  5337. val = I915_READ(LCPLL_CTL);
  5338. if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  5339. LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  5340. return;
  5341. /* Make sure we're not on PC8 state before disabling PC8, otherwise
  5342. * we'll hang the machine! */
  5343. dev_priv->uncore.funcs.force_wake_get(dev_priv);
  5344. if (val & LCPLL_POWER_DOWN_ALLOW) {
  5345. val &= ~LCPLL_POWER_DOWN_ALLOW;
  5346. I915_WRITE(LCPLL_CTL, val);
  5347. POSTING_READ(LCPLL_CTL);
  5348. }
  5349. val = I915_READ(D_COMP);
  5350. val |= D_COMP_COMP_FORCE;
  5351. val &= ~D_COMP_COMP_DISABLE;
  5352. mutex_lock(&dev_priv->rps.hw_lock);
  5353. if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
  5354. DRM_ERROR("Failed to enable D_COMP\n");
  5355. mutex_unlock(&dev_priv->rps.hw_lock);
  5356. POSTING_READ(D_COMP);
  5357. val = I915_READ(LCPLL_CTL);
  5358. val &= ~LCPLL_PLL_DISABLE;
  5359. I915_WRITE(LCPLL_CTL, val);
  5360. if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  5361. DRM_ERROR("LCPLL not locked yet\n");
  5362. if (val & LCPLL_CD_SOURCE_FCLK) {
  5363. val = I915_READ(LCPLL_CTL);
  5364. val &= ~LCPLL_CD_SOURCE_FCLK;
  5365. I915_WRITE(LCPLL_CTL, val);
  5366. if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  5367. LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  5368. DRM_ERROR("Switching back to LCPLL failed\n");
  5369. }
  5370. dev_priv->uncore.funcs.force_wake_put(dev_priv);
  5371. }
  5372. void hsw_enable_pc8_work(struct work_struct *__work)
  5373. {
  5374. struct drm_i915_private *dev_priv =
  5375. container_of(to_delayed_work(__work), struct drm_i915_private,
  5376. pc8.enable_work);
  5377. struct drm_device *dev = dev_priv->dev;
  5378. uint32_t val;
  5379. if (dev_priv->pc8.enabled)
  5380. return;
  5381. DRM_DEBUG_KMS("Enabling package C8+\n");
  5382. dev_priv->pc8.enabled = true;
  5383. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5384. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5385. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5386. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5387. }
  5388. lpt_disable_clkout_dp(dev);
  5389. hsw_pc8_disable_interrupts(dev);
  5390. hsw_disable_lcpll(dev_priv, true, true);
  5391. }
  5392. static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5393. {
  5394. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5395. WARN(dev_priv->pc8.disable_count < 1,
  5396. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5397. dev_priv->pc8.disable_count--;
  5398. if (dev_priv->pc8.disable_count != 0)
  5399. return;
  5400. schedule_delayed_work(&dev_priv->pc8.enable_work,
  5401. msecs_to_jiffies(i915_pc8_timeout));
  5402. }
  5403. static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5404. {
  5405. struct drm_device *dev = dev_priv->dev;
  5406. uint32_t val;
  5407. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5408. WARN(dev_priv->pc8.disable_count < 0,
  5409. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5410. dev_priv->pc8.disable_count++;
  5411. if (dev_priv->pc8.disable_count != 1)
  5412. return;
  5413. cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
  5414. if (!dev_priv->pc8.enabled)
  5415. return;
  5416. DRM_DEBUG_KMS("Disabling package C8+\n");
  5417. hsw_restore_lcpll(dev_priv);
  5418. hsw_pc8_restore_interrupts(dev);
  5419. lpt_init_pch_refclk(dev);
  5420. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5421. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5422. val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  5423. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5424. }
  5425. intel_prepare_ddi(dev);
  5426. i915_gem_init_swizzling(dev);
  5427. mutex_lock(&dev_priv->rps.hw_lock);
  5428. gen6_update_ring_freq(dev);
  5429. mutex_unlock(&dev_priv->rps.hw_lock);
  5430. dev_priv->pc8.enabled = false;
  5431. }
  5432. void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5433. {
  5434. mutex_lock(&dev_priv->pc8.lock);
  5435. __hsw_enable_package_c8(dev_priv);
  5436. mutex_unlock(&dev_priv->pc8.lock);
  5437. }
  5438. void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5439. {
  5440. mutex_lock(&dev_priv->pc8.lock);
  5441. __hsw_disable_package_c8(dev_priv);
  5442. mutex_unlock(&dev_priv->pc8.lock);
  5443. }
  5444. static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
  5445. {
  5446. struct drm_device *dev = dev_priv->dev;
  5447. struct intel_crtc *crtc;
  5448. uint32_t val;
  5449. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5450. if (crtc->base.enabled)
  5451. return false;
  5452. /* This case is still possible since we have the i915.disable_power_well
  5453. * parameter and also the KVMr or something else might be requesting the
  5454. * power well. */
  5455. val = I915_READ(HSW_PWR_WELL_DRIVER);
  5456. if (val != 0) {
  5457. DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
  5458. return false;
  5459. }
  5460. return true;
  5461. }
  5462. /* Since we're called from modeset_global_resources there's no way to
  5463. * symmetrically increase and decrease the refcount, so we use
  5464. * dev_priv->pc8.requirements_met to track whether we already have the refcount
  5465. * or not.
  5466. */
  5467. static void hsw_update_package_c8(struct drm_device *dev)
  5468. {
  5469. struct drm_i915_private *dev_priv = dev->dev_private;
  5470. bool allow;
  5471. if (!i915_enable_pc8)
  5472. return;
  5473. mutex_lock(&dev_priv->pc8.lock);
  5474. allow = hsw_can_enable_package_c8(dev_priv);
  5475. if (allow == dev_priv->pc8.requirements_met)
  5476. goto done;
  5477. dev_priv->pc8.requirements_met = allow;
  5478. if (allow)
  5479. __hsw_enable_package_c8(dev_priv);
  5480. else
  5481. __hsw_disable_package_c8(dev_priv);
  5482. done:
  5483. mutex_unlock(&dev_priv->pc8.lock);
  5484. }
  5485. static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
  5486. {
  5487. if (!dev_priv->pc8.gpu_idle) {
  5488. dev_priv->pc8.gpu_idle = true;
  5489. hsw_enable_package_c8(dev_priv);
  5490. }
  5491. }
  5492. static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
  5493. {
  5494. if (dev_priv->pc8.gpu_idle) {
  5495. dev_priv->pc8.gpu_idle = false;
  5496. hsw_disable_package_c8(dev_priv);
  5497. }
  5498. }
  5499. #define for_each_power_domain(domain, mask) \
  5500. for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
  5501. if ((1 << (domain)) & (mask))
  5502. static unsigned long get_pipe_power_domains(struct drm_device *dev,
  5503. enum pipe pipe, bool pfit_enabled)
  5504. {
  5505. unsigned long mask;
  5506. enum transcoder transcoder;
  5507. transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
  5508. mask = BIT(POWER_DOMAIN_PIPE(pipe));
  5509. mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
  5510. if (pfit_enabled)
  5511. mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
  5512. return mask;
  5513. }
  5514. void intel_display_set_init_power(struct drm_device *dev, bool enable)
  5515. {
  5516. struct drm_i915_private *dev_priv = dev->dev_private;
  5517. if (dev_priv->power_domains.init_power_on == enable)
  5518. return;
  5519. if (enable)
  5520. intel_display_power_get(dev, POWER_DOMAIN_INIT);
  5521. else
  5522. intel_display_power_put(dev, POWER_DOMAIN_INIT);
  5523. dev_priv->power_domains.init_power_on = enable;
  5524. }
  5525. static void modeset_update_power_wells(struct drm_device *dev)
  5526. {
  5527. unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
  5528. struct intel_crtc *crtc;
  5529. /*
  5530. * First get all needed power domains, then put all unneeded, to avoid
  5531. * any unnecessary toggling of the power wells.
  5532. */
  5533. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5534. enum intel_display_power_domain domain;
  5535. if (!crtc->base.enabled)
  5536. continue;
  5537. pipe_domains[crtc->pipe] = get_pipe_power_domains(dev,
  5538. crtc->pipe,
  5539. crtc->config.pch_pfit.enabled);
  5540. for_each_power_domain(domain, pipe_domains[crtc->pipe])
  5541. intel_display_power_get(dev, domain);
  5542. }
  5543. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5544. enum intel_display_power_domain domain;
  5545. for_each_power_domain(domain, crtc->enabled_power_domains)
  5546. intel_display_power_put(dev, domain);
  5547. crtc->enabled_power_domains = pipe_domains[crtc->pipe];
  5548. }
  5549. intel_display_set_init_power(dev, false);
  5550. }
  5551. static void haswell_modeset_global_resources(struct drm_device *dev)
  5552. {
  5553. modeset_update_power_wells(dev);
  5554. hsw_update_package_c8(dev);
  5555. }
  5556. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5557. int x, int y,
  5558. struct drm_framebuffer *fb)
  5559. {
  5560. struct drm_device *dev = crtc->dev;
  5561. struct drm_i915_private *dev_priv = dev->dev_private;
  5562. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5563. int plane = intel_crtc->plane;
  5564. int ret;
  5565. if (!intel_ddi_pll_mode_set(crtc))
  5566. return -EINVAL;
  5567. if (intel_crtc->config.has_dp_encoder)
  5568. intel_dp_set_m_n(intel_crtc);
  5569. intel_crtc->lowfreq_avail = false;
  5570. intel_set_pipe_timings(intel_crtc);
  5571. if (intel_crtc->config.has_pch_encoder) {
  5572. intel_cpu_transcoder_set_m_n(intel_crtc,
  5573. &intel_crtc->config.fdi_m_n);
  5574. }
  5575. haswell_set_pipeconf(crtc);
  5576. intel_set_pipe_csc(crtc);
  5577. /* Set up the display plane register */
  5578. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5579. POSTING_READ(DSPCNTR(plane));
  5580. ret = intel_pipe_set_base(crtc, x, y, fb);
  5581. return ret;
  5582. }
  5583. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5584. struct intel_crtc_config *pipe_config)
  5585. {
  5586. struct drm_device *dev = crtc->base.dev;
  5587. struct drm_i915_private *dev_priv = dev->dev_private;
  5588. enum intel_display_power_domain pfit_domain;
  5589. uint32_t tmp;
  5590. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5591. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5592. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5593. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5594. enum pipe trans_edp_pipe;
  5595. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5596. default:
  5597. WARN(1, "unknown pipe linked to edp transcoder\n");
  5598. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5599. case TRANS_DDI_EDP_INPUT_A_ON:
  5600. trans_edp_pipe = PIPE_A;
  5601. break;
  5602. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5603. trans_edp_pipe = PIPE_B;
  5604. break;
  5605. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5606. trans_edp_pipe = PIPE_C;
  5607. break;
  5608. }
  5609. if (trans_edp_pipe == crtc->pipe)
  5610. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5611. }
  5612. if (!intel_display_power_enabled(dev,
  5613. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5614. return false;
  5615. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5616. if (!(tmp & PIPECONF_ENABLE))
  5617. return false;
  5618. /*
  5619. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5620. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5621. * the PCH transcoder is on.
  5622. */
  5623. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5624. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5625. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5626. pipe_config->has_pch_encoder = true;
  5627. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5628. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5629. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5630. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5631. }
  5632. intel_get_pipe_timings(crtc, pipe_config);
  5633. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5634. if (intel_display_power_enabled(dev, pfit_domain))
  5635. ironlake_get_pfit_config(crtc, pipe_config);
  5636. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5637. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5638. pipe_config->pixel_multiplier = 1;
  5639. return true;
  5640. }
  5641. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5642. int x, int y,
  5643. struct drm_framebuffer *fb)
  5644. {
  5645. struct drm_device *dev = crtc->dev;
  5646. struct drm_i915_private *dev_priv = dev->dev_private;
  5647. struct intel_encoder *encoder;
  5648. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5649. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5650. int pipe = intel_crtc->pipe;
  5651. int ret;
  5652. drm_vblank_pre_modeset(dev, pipe);
  5653. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5654. drm_vblank_post_modeset(dev, pipe);
  5655. if (ret != 0)
  5656. return ret;
  5657. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5658. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5659. encoder->base.base.id,
  5660. drm_get_encoder_name(&encoder->base),
  5661. mode->base.id, mode->name);
  5662. encoder->mode_set(encoder);
  5663. }
  5664. return 0;
  5665. }
  5666. static struct {
  5667. int clock;
  5668. u32 config;
  5669. } hdmi_audio_clock[] = {
  5670. { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
  5671. { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
  5672. { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
  5673. { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
  5674. { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
  5675. { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
  5676. { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
  5677. { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
  5678. { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
  5679. { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
  5680. };
  5681. /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
  5682. static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
  5683. {
  5684. int i;
  5685. for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
  5686. if (mode->clock == hdmi_audio_clock[i].clock)
  5687. break;
  5688. }
  5689. if (i == ARRAY_SIZE(hdmi_audio_clock)) {
  5690. DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
  5691. i = 1;
  5692. }
  5693. DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
  5694. hdmi_audio_clock[i].clock,
  5695. hdmi_audio_clock[i].config);
  5696. return hdmi_audio_clock[i].config;
  5697. }
  5698. static bool intel_eld_uptodate(struct drm_connector *connector,
  5699. int reg_eldv, uint32_t bits_eldv,
  5700. int reg_elda, uint32_t bits_elda,
  5701. int reg_edid)
  5702. {
  5703. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5704. uint8_t *eld = connector->eld;
  5705. uint32_t i;
  5706. i = I915_READ(reg_eldv);
  5707. i &= bits_eldv;
  5708. if (!eld[0])
  5709. return !i;
  5710. if (!i)
  5711. return false;
  5712. i = I915_READ(reg_elda);
  5713. i &= ~bits_elda;
  5714. I915_WRITE(reg_elda, i);
  5715. for (i = 0; i < eld[2]; i++)
  5716. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5717. return false;
  5718. return true;
  5719. }
  5720. static void g4x_write_eld(struct drm_connector *connector,
  5721. struct drm_crtc *crtc,
  5722. struct drm_display_mode *mode)
  5723. {
  5724. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5725. uint8_t *eld = connector->eld;
  5726. uint32_t eldv;
  5727. uint32_t len;
  5728. uint32_t i;
  5729. i = I915_READ(G4X_AUD_VID_DID);
  5730. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5731. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5732. else
  5733. eldv = G4X_ELDV_DEVCTG;
  5734. if (intel_eld_uptodate(connector,
  5735. G4X_AUD_CNTL_ST, eldv,
  5736. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5737. G4X_HDMIW_HDMIEDID))
  5738. return;
  5739. i = I915_READ(G4X_AUD_CNTL_ST);
  5740. i &= ~(eldv | G4X_ELD_ADDR);
  5741. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5742. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5743. if (!eld[0])
  5744. return;
  5745. len = min_t(uint8_t, eld[2], len);
  5746. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5747. for (i = 0; i < len; i++)
  5748. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5749. i = I915_READ(G4X_AUD_CNTL_ST);
  5750. i |= eldv;
  5751. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5752. }
  5753. static void haswell_write_eld(struct drm_connector *connector,
  5754. struct drm_crtc *crtc,
  5755. struct drm_display_mode *mode)
  5756. {
  5757. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5758. uint8_t *eld = connector->eld;
  5759. struct drm_device *dev = crtc->dev;
  5760. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5761. uint32_t eldv;
  5762. uint32_t i;
  5763. int len;
  5764. int pipe = to_intel_crtc(crtc)->pipe;
  5765. int tmp;
  5766. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5767. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5768. int aud_config = HSW_AUD_CFG(pipe);
  5769. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5770. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5771. /* Audio output enable */
  5772. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5773. tmp = I915_READ(aud_cntrl_st2);
  5774. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5775. I915_WRITE(aud_cntrl_st2, tmp);
  5776. /* Wait for 1 vertical blank */
  5777. intel_wait_for_vblank(dev, pipe);
  5778. /* Set ELD valid state */
  5779. tmp = I915_READ(aud_cntrl_st2);
  5780. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
  5781. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5782. I915_WRITE(aud_cntrl_st2, tmp);
  5783. tmp = I915_READ(aud_cntrl_st2);
  5784. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
  5785. /* Enable HDMI mode */
  5786. tmp = I915_READ(aud_config);
  5787. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
  5788. /* clear N_programing_enable and N_value_index */
  5789. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5790. I915_WRITE(aud_config, tmp);
  5791. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5792. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5793. intel_crtc->eld_vld = true;
  5794. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5795. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5796. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5797. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5798. } else {
  5799. I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
  5800. }
  5801. if (intel_eld_uptodate(connector,
  5802. aud_cntrl_st2, eldv,
  5803. aud_cntl_st, IBX_ELD_ADDRESS,
  5804. hdmiw_hdmiedid))
  5805. return;
  5806. i = I915_READ(aud_cntrl_st2);
  5807. i &= ~eldv;
  5808. I915_WRITE(aud_cntrl_st2, i);
  5809. if (!eld[0])
  5810. return;
  5811. i = I915_READ(aud_cntl_st);
  5812. i &= ~IBX_ELD_ADDRESS;
  5813. I915_WRITE(aud_cntl_st, i);
  5814. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5815. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5816. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5817. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5818. for (i = 0; i < len; i++)
  5819. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5820. i = I915_READ(aud_cntrl_st2);
  5821. i |= eldv;
  5822. I915_WRITE(aud_cntrl_st2, i);
  5823. }
  5824. static void ironlake_write_eld(struct drm_connector *connector,
  5825. struct drm_crtc *crtc,
  5826. struct drm_display_mode *mode)
  5827. {
  5828. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5829. uint8_t *eld = connector->eld;
  5830. uint32_t eldv;
  5831. uint32_t i;
  5832. int len;
  5833. int hdmiw_hdmiedid;
  5834. int aud_config;
  5835. int aud_cntl_st;
  5836. int aud_cntrl_st2;
  5837. int pipe = to_intel_crtc(crtc)->pipe;
  5838. if (HAS_PCH_IBX(connector->dev)) {
  5839. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5840. aud_config = IBX_AUD_CFG(pipe);
  5841. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5842. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5843. } else {
  5844. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5845. aud_config = CPT_AUD_CFG(pipe);
  5846. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5847. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5848. }
  5849. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5850. i = I915_READ(aud_cntl_st);
  5851. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5852. if (!i) {
  5853. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5854. /* operate blindly on all ports */
  5855. eldv = IBX_ELD_VALIDB;
  5856. eldv |= IBX_ELD_VALIDB << 4;
  5857. eldv |= IBX_ELD_VALIDB << 8;
  5858. } else {
  5859. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5860. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5861. }
  5862. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5863. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5864. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5865. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5866. } else {
  5867. I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
  5868. }
  5869. if (intel_eld_uptodate(connector,
  5870. aud_cntrl_st2, eldv,
  5871. aud_cntl_st, IBX_ELD_ADDRESS,
  5872. hdmiw_hdmiedid))
  5873. return;
  5874. i = I915_READ(aud_cntrl_st2);
  5875. i &= ~eldv;
  5876. I915_WRITE(aud_cntrl_st2, i);
  5877. if (!eld[0])
  5878. return;
  5879. i = I915_READ(aud_cntl_st);
  5880. i &= ~IBX_ELD_ADDRESS;
  5881. I915_WRITE(aud_cntl_st, i);
  5882. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5883. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5884. for (i = 0; i < len; i++)
  5885. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5886. i = I915_READ(aud_cntrl_st2);
  5887. i |= eldv;
  5888. I915_WRITE(aud_cntrl_st2, i);
  5889. }
  5890. void intel_write_eld(struct drm_encoder *encoder,
  5891. struct drm_display_mode *mode)
  5892. {
  5893. struct drm_crtc *crtc = encoder->crtc;
  5894. struct drm_connector *connector;
  5895. struct drm_device *dev = encoder->dev;
  5896. struct drm_i915_private *dev_priv = dev->dev_private;
  5897. connector = drm_select_eld(encoder, mode);
  5898. if (!connector)
  5899. return;
  5900. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5901. connector->base.id,
  5902. drm_get_connector_name(connector),
  5903. connector->encoder->base.id,
  5904. drm_get_encoder_name(connector->encoder));
  5905. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5906. if (dev_priv->display.write_eld)
  5907. dev_priv->display.write_eld(connector, crtc, mode);
  5908. }
  5909. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5910. {
  5911. struct drm_device *dev = crtc->dev;
  5912. struct drm_i915_private *dev_priv = dev->dev_private;
  5913. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5914. bool visible = base != 0;
  5915. u32 cntl;
  5916. if (intel_crtc->cursor_visible == visible)
  5917. return;
  5918. cntl = I915_READ(_CURACNTR);
  5919. if (visible) {
  5920. /* On these chipsets we can only modify the base whilst
  5921. * the cursor is disabled.
  5922. */
  5923. I915_WRITE(_CURABASE, base);
  5924. cntl &= ~(CURSOR_FORMAT_MASK);
  5925. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5926. cntl |= CURSOR_ENABLE |
  5927. CURSOR_GAMMA_ENABLE |
  5928. CURSOR_FORMAT_ARGB;
  5929. } else
  5930. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5931. I915_WRITE(_CURACNTR, cntl);
  5932. intel_crtc->cursor_visible = visible;
  5933. }
  5934. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5935. {
  5936. struct drm_device *dev = crtc->dev;
  5937. struct drm_i915_private *dev_priv = dev->dev_private;
  5938. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5939. int pipe = intel_crtc->pipe;
  5940. bool visible = base != 0;
  5941. if (intel_crtc->cursor_visible != visible) {
  5942. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5943. if (base) {
  5944. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5945. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5946. cntl |= pipe << 28; /* Connect to correct pipe */
  5947. } else {
  5948. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5949. cntl |= CURSOR_MODE_DISABLE;
  5950. }
  5951. I915_WRITE(CURCNTR(pipe), cntl);
  5952. intel_crtc->cursor_visible = visible;
  5953. }
  5954. /* and commit changes on next vblank */
  5955. I915_WRITE(CURBASE(pipe), base);
  5956. }
  5957. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5958. {
  5959. struct drm_device *dev = crtc->dev;
  5960. struct drm_i915_private *dev_priv = dev->dev_private;
  5961. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5962. int pipe = intel_crtc->pipe;
  5963. bool visible = base != 0;
  5964. if (intel_crtc->cursor_visible != visible) {
  5965. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5966. if (base) {
  5967. cntl &= ~CURSOR_MODE;
  5968. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5969. } else {
  5970. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5971. cntl |= CURSOR_MODE_DISABLE;
  5972. }
  5973. if (IS_HASWELL(dev)) {
  5974. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5975. cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
  5976. }
  5977. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5978. intel_crtc->cursor_visible = visible;
  5979. }
  5980. /* and commit changes on next vblank */
  5981. I915_WRITE(CURBASE_IVB(pipe), base);
  5982. }
  5983. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5984. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5985. bool on)
  5986. {
  5987. struct drm_device *dev = crtc->dev;
  5988. struct drm_i915_private *dev_priv = dev->dev_private;
  5989. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5990. int pipe = intel_crtc->pipe;
  5991. int x = intel_crtc->cursor_x;
  5992. int y = intel_crtc->cursor_y;
  5993. u32 base = 0, pos = 0;
  5994. bool visible;
  5995. if (on)
  5996. base = intel_crtc->cursor_addr;
  5997. if (x >= intel_crtc->config.pipe_src_w)
  5998. base = 0;
  5999. if (y >= intel_crtc->config.pipe_src_h)
  6000. base = 0;
  6001. if (x < 0) {
  6002. if (x + intel_crtc->cursor_width <= 0)
  6003. base = 0;
  6004. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  6005. x = -x;
  6006. }
  6007. pos |= x << CURSOR_X_SHIFT;
  6008. if (y < 0) {
  6009. if (y + intel_crtc->cursor_height <= 0)
  6010. base = 0;
  6011. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  6012. y = -y;
  6013. }
  6014. pos |= y << CURSOR_Y_SHIFT;
  6015. visible = base != 0;
  6016. if (!visible && !intel_crtc->cursor_visible)
  6017. return;
  6018. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  6019. I915_WRITE(CURPOS_IVB(pipe), pos);
  6020. ivb_update_cursor(crtc, base);
  6021. } else {
  6022. I915_WRITE(CURPOS(pipe), pos);
  6023. if (IS_845G(dev) || IS_I865G(dev))
  6024. i845_update_cursor(crtc, base);
  6025. else
  6026. i9xx_update_cursor(crtc, base);
  6027. }
  6028. }
  6029. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  6030. struct drm_file *file,
  6031. uint32_t handle,
  6032. uint32_t width, uint32_t height)
  6033. {
  6034. struct drm_device *dev = crtc->dev;
  6035. struct drm_i915_private *dev_priv = dev->dev_private;
  6036. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6037. struct drm_i915_gem_object *obj;
  6038. uint32_t addr;
  6039. int ret;
  6040. /* if we want to turn off the cursor ignore width and height */
  6041. if (!handle) {
  6042. DRM_DEBUG_KMS("cursor off\n");
  6043. addr = 0;
  6044. obj = NULL;
  6045. mutex_lock(&dev->struct_mutex);
  6046. goto finish;
  6047. }
  6048. /* Currently we only support 64x64 cursors */
  6049. if (width != 64 || height != 64) {
  6050. DRM_ERROR("we currently only support 64x64 cursors\n");
  6051. return -EINVAL;
  6052. }
  6053. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  6054. if (&obj->base == NULL)
  6055. return -ENOENT;
  6056. if (obj->base.size < width * height * 4) {
  6057. DRM_ERROR("buffer is to small\n");
  6058. ret = -ENOMEM;
  6059. goto fail;
  6060. }
  6061. /* we only need to pin inside GTT if cursor is non-phy */
  6062. mutex_lock(&dev->struct_mutex);
  6063. if (!dev_priv->info->cursor_needs_physical) {
  6064. unsigned alignment;
  6065. if (obj->tiling_mode) {
  6066. DRM_ERROR("cursor cannot be tiled\n");
  6067. ret = -EINVAL;
  6068. goto fail_locked;
  6069. }
  6070. /* Note that the w/a also requires 2 PTE of padding following
  6071. * the bo. We currently fill all unused PTE with the shadow
  6072. * page and so we should always have valid PTE following the
  6073. * cursor preventing the VT-d warning.
  6074. */
  6075. alignment = 0;
  6076. if (need_vtd_wa(dev))
  6077. alignment = 64*1024;
  6078. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  6079. if (ret) {
  6080. DRM_ERROR("failed to move cursor bo into the GTT\n");
  6081. goto fail_locked;
  6082. }
  6083. ret = i915_gem_object_put_fence(obj);
  6084. if (ret) {
  6085. DRM_ERROR("failed to release fence for cursor");
  6086. goto fail_unpin;
  6087. }
  6088. addr = i915_gem_obj_ggtt_offset(obj);
  6089. } else {
  6090. int align = IS_I830(dev) ? 16 * 1024 : 256;
  6091. ret = i915_gem_attach_phys_object(dev, obj,
  6092. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  6093. align);
  6094. if (ret) {
  6095. DRM_ERROR("failed to attach phys object\n");
  6096. goto fail_locked;
  6097. }
  6098. addr = obj->phys_obj->handle->busaddr;
  6099. }
  6100. if (IS_GEN2(dev))
  6101. I915_WRITE(CURSIZE, (height << 12) | width);
  6102. finish:
  6103. if (intel_crtc->cursor_bo) {
  6104. if (dev_priv->info->cursor_needs_physical) {
  6105. if (intel_crtc->cursor_bo != obj)
  6106. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  6107. } else
  6108. i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
  6109. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  6110. }
  6111. mutex_unlock(&dev->struct_mutex);
  6112. intel_crtc->cursor_addr = addr;
  6113. intel_crtc->cursor_bo = obj;
  6114. intel_crtc->cursor_width = width;
  6115. intel_crtc->cursor_height = height;
  6116. if (intel_crtc->active)
  6117. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  6118. return 0;
  6119. fail_unpin:
  6120. i915_gem_object_unpin_from_display_plane(obj);
  6121. fail_locked:
  6122. mutex_unlock(&dev->struct_mutex);
  6123. fail:
  6124. drm_gem_object_unreference_unlocked(&obj->base);
  6125. return ret;
  6126. }
  6127. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  6128. {
  6129. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6130. intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
  6131. intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
  6132. if (intel_crtc->active)
  6133. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  6134. return 0;
  6135. }
  6136. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  6137. u16 *blue, uint32_t start, uint32_t size)
  6138. {
  6139. int end = (start + size > 256) ? 256 : start + size, i;
  6140. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6141. for (i = start; i < end; i++) {
  6142. intel_crtc->lut_r[i] = red[i] >> 8;
  6143. intel_crtc->lut_g[i] = green[i] >> 8;
  6144. intel_crtc->lut_b[i] = blue[i] >> 8;
  6145. }
  6146. intel_crtc_load_lut(crtc);
  6147. }
  6148. /* VESA 640x480x72Hz mode to set on the pipe */
  6149. static struct drm_display_mode load_detect_mode = {
  6150. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  6151. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  6152. };
  6153. static struct drm_framebuffer *
  6154. intel_framebuffer_create(struct drm_device *dev,
  6155. struct drm_mode_fb_cmd2 *mode_cmd,
  6156. struct drm_i915_gem_object *obj)
  6157. {
  6158. struct intel_framebuffer *intel_fb;
  6159. int ret;
  6160. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  6161. if (!intel_fb) {
  6162. drm_gem_object_unreference_unlocked(&obj->base);
  6163. return ERR_PTR(-ENOMEM);
  6164. }
  6165. ret = i915_mutex_lock_interruptible(dev);
  6166. if (ret)
  6167. goto err;
  6168. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  6169. mutex_unlock(&dev->struct_mutex);
  6170. if (ret)
  6171. goto err;
  6172. return &intel_fb->base;
  6173. err:
  6174. drm_gem_object_unreference_unlocked(&obj->base);
  6175. kfree(intel_fb);
  6176. return ERR_PTR(ret);
  6177. }
  6178. static u32
  6179. intel_framebuffer_pitch_for_width(int width, int bpp)
  6180. {
  6181. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  6182. return ALIGN(pitch, 64);
  6183. }
  6184. static u32
  6185. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  6186. {
  6187. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  6188. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  6189. }
  6190. static struct drm_framebuffer *
  6191. intel_framebuffer_create_for_mode(struct drm_device *dev,
  6192. struct drm_display_mode *mode,
  6193. int depth, int bpp)
  6194. {
  6195. struct drm_i915_gem_object *obj;
  6196. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  6197. obj = i915_gem_alloc_object(dev,
  6198. intel_framebuffer_size_for_mode(mode, bpp));
  6199. if (obj == NULL)
  6200. return ERR_PTR(-ENOMEM);
  6201. mode_cmd.width = mode->hdisplay;
  6202. mode_cmd.height = mode->vdisplay;
  6203. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  6204. bpp);
  6205. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  6206. return intel_framebuffer_create(dev, &mode_cmd, obj);
  6207. }
  6208. static struct drm_framebuffer *
  6209. mode_fits_in_fbdev(struct drm_device *dev,
  6210. struct drm_display_mode *mode)
  6211. {
  6212. #ifdef CONFIG_DRM_I915_FBDEV
  6213. struct drm_i915_private *dev_priv = dev->dev_private;
  6214. struct drm_i915_gem_object *obj;
  6215. struct drm_framebuffer *fb;
  6216. if (dev_priv->fbdev == NULL)
  6217. return NULL;
  6218. obj = dev_priv->fbdev->ifb.obj;
  6219. if (obj == NULL)
  6220. return NULL;
  6221. fb = &dev_priv->fbdev->ifb.base;
  6222. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  6223. fb->bits_per_pixel))
  6224. return NULL;
  6225. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  6226. return NULL;
  6227. return fb;
  6228. #else
  6229. return NULL;
  6230. #endif
  6231. }
  6232. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  6233. struct drm_display_mode *mode,
  6234. struct intel_load_detect_pipe *old)
  6235. {
  6236. struct intel_crtc *intel_crtc;
  6237. struct intel_encoder *intel_encoder =
  6238. intel_attached_encoder(connector);
  6239. struct drm_crtc *possible_crtc;
  6240. struct drm_encoder *encoder = &intel_encoder->base;
  6241. struct drm_crtc *crtc = NULL;
  6242. struct drm_device *dev = encoder->dev;
  6243. struct drm_framebuffer *fb;
  6244. int i = -1;
  6245. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6246. connector->base.id, drm_get_connector_name(connector),
  6247. encoder->base.id, drm_get_encoder_name(encoder));
  6248. /*
  6249. * Algorithm gets a little messy:
  6250. *
  6251. * - if the connector already has an assigned crtc, use it (but make
  6252. * sure it's on first)
  6253. *
  6254. * - try to find the first unused crtc that can drive this connector,
  6255. * and use that if we find one
  6256. */
  6257. /* See if we already have a CRTC for this connector */
  6258. if (encoder->crtc) {
  6259. crtc = encoder->crtc;
  6260. mutex_lock(&crtc->mutex);
  6261. old->dpms_mode = connector->dpms;
  6262. old->load_detect_temp = false;
  6263. /* Make sure the crtc and connector are running */
  6264. if (connector->dpms != DRM_MODE_DPMS_ON)
  6265. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  6266. return true;
  6267. }
  6268. /* Find an unused one (if possible) */
  6269. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  6270. i++;
  6271. if (!(encoder->possible_crtcs & (1 << i)))
  6272. continue;
  6273. if (!possible_crtc->enabled) {
  6274. crtc = possible_crtc;
  6275. break;
  6276. }
  6277. }
  6278. /*
  6279. * If we didn't find an unused CRTC, don't use any.
  6280. */
  6281. if (!crtc) {
  6282. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  6283. return false;
  6284. }
  6285. mutex_lock(&crtc->mutex);
  6286. intel_encoder->new_crtc = to_intel_crtc(crtc);
  6287. to_intel_connector(connector)->new_encoder = intel_encoder;
  6288. intel_crtc = to_intel_crtc(crtc);
  6289. old->dpms_mode = connector->dpms;
  6290. old->load_detect_temp = true;
  6291. old->release_fb = NULL;
  6292. if (!mode)
  6293. mode = &load_detect_mode;
  6294. /* We need a framebuffer large enough to accommodate all accesses
  6295. * that the plane may generate whilst we perform load detection.
  6296. * We can not rely on the fbcon either being present (we get called
  6297. * during its initialisation to detect all boot displays, or it may
  6298. * not even exist) or that it is large enough to satisfy the
  6299. * requested mode.
  6300. */
  6301. fb = mode_fits_in_fbdev(dev, mode);
  6302. if (fb == NULL) {
  6303. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6304. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6305. old->release_fb = fb;
  6306. } else
  6307. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6308. if (IS_ERR(fb)) {
  6309. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6310. mutex_unlock(&crtc->mutex);
  6311. return false;
  6312. }
  6313. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  6314. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6315. if (old->release_fb)
  6316. old->release_fb->funcs->destroy(old->release_fb);
  6317. mutex_unlock(&crtc->mutex);
  6318. return false;
  6319. }
  6320. /* let the connector get through one full cycle before testing */
  6321. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6322. return true;
  6323. }
  6324. void intel_release_load_detect_pipe(struct drm_connector *connector,
  6325. struct intel_load_detect_pipe *old)
  6326. {
  6327. struct intel_encoder *intel_encoder =
  6328. intel_attached_encoder(connector);
  6329. struct drm_encoder *encoder = &intel_encoder->base;
  6330. struct drm_crtc *crtc = encoder->crtc;
  6331. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6332. connector->base.id, drm_get_connector_name(connector),
  6333. encoder->base.id, drm_get_encoder_name(encoder));
  6334. if (old->load_detect_temp) {
  6335. to_intel_connector(connector)->new_encoder = NULL;
  6336. intel_encoder->new_crtc = NULL;
  6337. intel_set_mode(crtc, NULL, 0, 0, NULL);
  6338. if (old->release_fb) {
  6339. drm_framebuffer_unregister_private(old->release_fb);
  6340. drm_framebuffer_unreference(old->release_fb);
  6341. }
  6342. mutex_unlock(&crtc->mutex);
  6343. return;
  6344. }
  6345. /* Switch crtc and encoder back off if necessary */
  6346. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  6347. connector->funcs->dpms(connector, old->dpms_mode);
  6348. mutex_unlock(&crtc->mutex);
  6349. }
  6350. static int i9xx_pll_refclk(struct drm_device *dev,
  6351. const struct intel_crtc_config *pipe_config)
  6352. {
  6353. struct drm_i915_private *dev_priv = dev->dev_private;
  6354. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6355. if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
  6356. return dev_priv->vbt.lvds_ssc_freq * 1000;
  6357. else if (HAS_PCH_SPLIT(dev))
  6358. return 120000;
  6359. else if (!IS_GEN2(dev))
  6360. return 96000;
  6361. else
  6362. return 48000;
  6363. }
  6364. /* Returns the clock of the currently programmed mode of the given pipe. */
  6365. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  6366. struct intel_crtc_config *pipe_config)
  6367. {
  6368. struct drm_device *dev = crtc->base.dev;
  6369. struct drm_i915_private *dev_priv = dev->dev_private;
  6370. int pipe = pipe_config->cpu_transcoder;
  6371. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6372. u32 fp;
  6373. intel_clock_t clock;
  6374. int refclk = i9xx_pll_refclk(dev, pipe_config);
  6375. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6376. fp = pipe_config->dpll_hw_state.fp0;
  6377. else
  6378. fp = pipe_config->dpll_hw_state.fp1;
  6379. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6380. if (IS_PINEVIEW(dev)) {
  6381. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6382. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6383. } else {
  6384. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6385. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6386. }
  6387. if (!IS_GEN2(dev)) {
  6388. if (IS_PINEVIEW(dev))
  6389. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6390. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6391. else
  6392. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6393. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6394. switch (dpll & DPLL_MODE_MASK) {
  6395. case DPLLB_MODE_DAC_SERIAL:
  6396. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6397. 5 : 10;
  6398. break;
  6399. case DPLLB_MODE_LVDS:
  6400. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6401. 7 : 14;
  6402. break;
  6403. default:
  6404. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6405. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6406. return;
  6407. }
  6408. if (IS_PINEVIEW(dev))
  6409. pineview_clock(refclk, &clock);
  6410. else
  6411. i9xx_clock(refclk, &clock);
  6412. } else {
  6413. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6414. if (is_lvds) {
  6415. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6416. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6417. clock.p2 = 14;
  6418. } else {
  6419. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6420. clock.p1 = 2;
  6421. else {
  6422. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6423. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6424. }
  6425. if (dpll & PLL_P2_DIVIDE_BY_4)
  6426. clock.p2 = 4;
  6427. else
  6428. clock.p2 = 2;
  6429. }
  6430. i9xx_clock(refclk, &clock);
  6431. }
  6432. /*
  6433. * This value includes pixel_multiplier. We will use
  6434. * port_clock to compute adjusted_mode.crtc_clock in the
  6435. * encoder's get_config() function.
  6436. */
  6437. pipe_config->port_clock = clock.dot;
  6438. }
  6439. int intel_dotclock_calculate(int link_freq,
  6440. const struct intel_link_m_n *m_n)
  6441. {
  6442. /*
  6443. * The calculation for the data clock is:
  6444. * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
  6445. * But we want to avoid losing precison if possible, so:
  6446. * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
  6447. *
  6448. * and the link clock is simpler:
  6449. * link_clock = (m * link_clock) / n
  6450. */
  6451. if (!m_n->link_n)
  6452. return 0;
  6453. return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
  6454. }
  6455. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  6456. struct intel_crtc_config *pipe_config)
  6457. {
  6458. struct drm_device *dev = crtc->base.dev;
  6459. /* read out port_clock from the DPLL */
  6460. i9xx_crtc_clock_get(crtc, pipe_config);
  6461. /*
  6462. * This value does not include pixel_multiplier.
  6463. * We will check that port_clock and adjusted_mode.crtc_clock
  6464. * agree once we know their relationship in the encoder's
  6465. * get_config() function.
  6466. */
  6467. pipe_config->adjusted_mode.crtc_clock =
  6468. intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
  6469. &pipe_config->fdi_m_n);
  6470. }
  6471. /** Returns the currently programmed mode of the given pipe. */
  6472. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6473. struct drm_crtc *crtc)
  6474. {
  6475. struct drm_i915_private *dev_priv = dev->dev_private;
  6476. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6477. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  6478. struct drm_display_mode *mode;
  6479. struct intel_crtc_config pipe_config;
  6480. int htot = I915_READ(HTOTAL(cpu_transcoder));
  6481. int hsync = I915_READ(HSYNC(cpu_transcoder));
  6482. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  6483. int vsync = I915_READ(VSYNC(cpu_transcoder));
  6484. enum pipe pipe = intel_crtc->pipe;
  6485. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6486. if (!mode)
  6487. return NULL;
  6488. /*
  6489. * Construct a pipe_config sufficient for getting the clock info
  6490. * back out of crtc_clock_get.
  6491. *
  6492. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  6493. * to use a real value here instead.
  6494. */
  6495. pipe_config.cpu_transcoder = (enum transcoder) pipe;
  6496. pipe_config.pixel_multiplier = 1;
  6497. pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
  6498. pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
  6499. pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
  6500. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  6501. mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
  6502. mode->hdisplay = (htot & 0xffff) + 1;
  6503. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6504. mode->hsync_start = (hsync & 0xffff) + 1;
  6505. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6506. mode->vdisplay = (vtot & 0xffff) + 1;
  6507. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6508. mode->vsync_start = (vsync & 0xffff) + 1;
  6509. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6510. drm_mode_set_name(mode);
  6511. return mode;
  6512. }
  6513. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6514. {
  6515. struct drm_device *dev = crtc->dev;
  6516. drm_i915_private_t *dev_priv = dev->dev_private;
  6517. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6518. int pipe = intel_crtc->pipe;
  6519. int dpll_reg = DPLL(pipe);
  6520. int dpll;
  6521. if (HAS_PCH_SPLIT(dev))
  6522. return;
  6523. if (!dev_priv->lvds_downclock_avail)
  6524. return;
  6525. dpll = I915_READ(dpll_reg);
  6526. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6527. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6528. assert_panel_unlocked(dev_priv, pipe);
  6529. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6530. I915_WRITE(dpll_reg, dpll);
  6531. intel_wait_for_vblank(dev, pipe);
  6532. dpll = I915_READ(dpll_reg);
  6533. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6534. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6535. }
  6536. }
  6537. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6538. {
  6539. struct drm_device *dev = crtc->dev;
  6540. drm_i915_private_t *dev_priv = dev->dev_private;
  6541. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6542. if (HAS_PCH_SPLIT(dev))
  6543. return;
  6544. if (!dev_priv->lvds_downclock_avail)
  6545. return;
  6546. /*
  6547. * Since this is called by a timer, we should never get here in
  6548. * the manual case.
  6549. */
  6550. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6551. int pipe = intel_crtc->pipe;
  6552. int dpll_reg = DPLL(pipe);
  6553. int dpll;
  6554. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6555. assert_panel_unlocked(dev_priv, pipe);
  6556. dpll = I915_READ(dpll_reg);
  6557. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6558. I915_WRITE(dpll_reg, dpll);
  6559. intel_wait_for_vblank(dev, pipe);
  6560. dpll = I915_READ(dpll_reg);
  6561. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6562. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6563. }
  6564. }
  6565. void intel_mark_busy(struct drm_device *dev)
  6566. {
  6567. struct drm_i915_private *dev_priv = dev->dev_private;
  6568. hsw_package_c8_gpu_busy(dev_priv);
  6569. i915_update_gfx_val(dev_priv);
  6570. }
  6571. void intel_mark_idle(struct drm_device *dev)
  6572. {
  6573. struct drm_i915_private *dev_priv = dev->dev_private;
  6574. struct drm_crtc *crtc;
  6575. hsw_package_c8_gpu_idle(dev_priv);
  6576. if (!i915_powersave)
  6577. return;
  6578. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6579. if (!crtc->fb)
  6580. continue;
  6581. intel_decrease_pllclock(crtc);
  6582. }
  6583. if (dev_priv->info->gen >= 6)
  6584. gen6_rps_idle(dev->dev_private);
  6585. }
  6586. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6587. struct intel_ring_buffer *ring)
  6588. {
  6589. struct drm_device *dev = obj->base.dev;
  6590. struct drm_crtc *crtc;
  6591. if (!i915_powersave)
  6592. return;
  6593. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6594. if (!crtc->fb)
  6595. continue;
  6596. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6597. continue;
  6598. intel_increase_pllclock(crtc);
  6599. if (ring && intel_fbc_enabled(dev))
  6600. ring->fbc_dirty = true;
  6601. }
  6602. }
  6603. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6604. {
  6605. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6606. struct drm_device *dev = crtc->dev;
  6607. struct intel_unpin_work *work;
  6608. unsigned long flags;
  6609. spin_lock_irqsave(&dev->event_lock, flags);
  6610. work = intel_crtc->unpin_work;
  6611. intel_crtc->unpin_work = NULL;
  6612. spin_unlock_irqrestore(&dev->event_lock, flags);
  6613. if (work) {
  6614. cancel_work_sync(&work->work);
  6615. kfree(work);
  6616. }
  6617. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6618. drm_crtc_cleanup(crtc);
  6619. kfree(intel_crtc);
  6620. }
  6621. static void intel_unpin_work_fn(struct work_struct *__work)
  6622. {
  6623. struct intel_unpin_work *work =
  6624. container_of(__work, struct intel_unpin_work, work);
  6625. struct drm_device *dev = work->crtc->dev;
  6626. mutex_lock(&dev->struct_mutex);
  6627. intel_unpin_fb_obj(work->old_fb_obj);
  6628. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6629. drm_gem_object_unreference(&work->old_fb_obj->base);
  6630. intel_update_fbc(dev);
  6631. mutex_unlock(&dev->struct_mutex);
  6632. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6633. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6634. kfree(work);
  6635. }
  6636. static void do_intel_finish_page_flip(struct drm_device *dev,
  6637. struct drm_crtc *crtc)
  6638. {
  6639. drm_i915_private_t *dev_priv = dev->dev_private;
  6640. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6641. struct intel_unpin_work *work;
  6642. unsigned long flags;
  6643. /* Ignore early vblank irqs */
  6644. if (intel_crtc == NULL)
  6645. return;
  6646. spin_lock_irqsave(&dev->event_lock, flags);
  6647. work = intel_crtc->unpin_work;
  6648. /* Ensure we don't miss a work->pending update ... */
  6649. smp_rmb();
  6650. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6651. spin_unlock_irqrestore(&dev->event_lock, flags);
  6652. return;
  6653. }
  6654. /* and that the unpin work is consistent wrt ->pending. */
  6655. smp_rmb();
  6656. intel_crtc->unpin_work = NULL;
  6657. if (work->event)
  6658. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6659. drm_vblank_put(dev, intel_crtc->pipe);
  6660. spin_unlock_irqrestore(&dev->event_lock, flags);
  6661. wake_up_all(&dev_priv->pending_flip_queue);
  6662. queue_work(dev_priv->wq, &work->work);
  6663. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6664. }
  6665. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6666. {
  6667. drm_i915_private_t *dev_priv = dev->dev_private;
  6668. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6669. do_intel_finish_page_flip(dev, crtc);
  6670. }
  6671. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6672. {
  6673. drm_i915_private_t *dev_priv = dev->dev_private;
  6674. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6675. do_intel_finish_page_flip(dev, crtc);
  6676. }
  6677. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6678. {
  6679. drm_i915_private_t *dev_priv = dev->dev_private;
  6680. struct intel_crtc *intel_crtc =
  6681. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6682. unsigned long flags;
  6683. /* NB: An MMIO update of the plane base pointer will also
  6684. * generate a page-flip completion irq, i.e. every modeset
  6685. * is also accompanied by a spurious intel_prepare_page_flip().
  6686. */
  6687. spin_lock_irqsave(&dev->event_lock, flags);
  6688. if (intel_crtc->unpin_work)
  6689. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6690. spin_unlock_irqrestore(&dev->event_lock, flags);
  6691. }
  6692. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6693. {
  6694. /* Ensure that the work item is consistent when activating it ... */
  6695. smp_wmb();
  6696. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6697. /* and that it is marked active as soon as the irq could fire. */
  6698. smp_wmb();
  6699. }
  6700. static int intel_gen2_queue_flip(struct drm_device *dev,
  6701. struct drm_crtc *crtc,
  6702. struct drm_framebuffer *fb,
  6703. struct drm_i915_gem_object *obj,
  6704. uint32_t flags)
  6705. {
  6706. struct drm_i915_private *dev_priv = dev->dev_private;
  6707. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6708. u32 flip_mask;
  6709. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6710. int ret;
  6711. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6712. if (ret)
  6713. goto err;
  6714. ret = intel_ring_begin(ring, 6);
  6715. if (ret)
  6716. goto err_unpin;
  6717. /* Can't queue multiple flips, so wait for the previous
  6718. * one to finish before executing the next.
  6719. */
  6720. if (intel_crtc->plane)
  6721. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6722. else
  6723. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6724. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6725. intel_ring_emit(ring, MI_NOOP);
  6726. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6727. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6728. intel_ring_emit(ring, fb->pitches[0]);
  6729. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6730. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6731. intel_mark_page_flip_active(intel_crtc);
  6732. __intel_ring_advance(ring);
  6733. return 0;
  6734. err_unpin:
  6735. intel_unpin_fb_obj(obj);
  6736. err:
  6737. return ret;
  6738. }
  6739. static int intel_gen3_queue_flip(struct drm_device *dev,
  6740. struct drm_crtc *crtc,
  6741. struct drm_framebuffer *fb,
  6742. struct drm_i915_gem_object *obj,
  6743. uint32_t flags)
  6744. {
  6745. struct drm_i915_private *dev_priv = dev->dev_private;
  6746. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6747. u32 flip_mask;
  6748. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6749. int ret;
  6750. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6751. if (ret)
  6752. goto err;
  6753. ret = intel_ring_begin(ring, 6);
  6754. if (ret)
  6755. goto err_unpin;
  6756. if (intel_crtc->plane)
  6757. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6758. else
  6759. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6760. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6761. intel_ring_emit(ring, MI_NOOP);
  6762. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6763. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6764. intel_ring_emit(ring, fb->pitches[0]);
  6765. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6766. intel_ring_emit(ring, MI_NOOP);
  6767. intel_mark_page_flip_active(intel_crtc);
  6768. __intel_ring_advance(ring);
  6769. return 0;
  6770. err_unpin:
  6771. intel_unpin_fb_obj(obj);
  6772. err:
  6773. return ret;
  6774. }
  6775. static int intel_gen4_queue_flip(struct drm_device *dev,
  6776. struct drm_crtc *crtc,
  6777. struct drm_framebuffer *fb,
  6778. struct drm_i915_gem_object *obj,
  6779. uint32_t flags)
  6780. {
  6781. struct drm_i915_private *dev_priv = dev->dev_private;
  6782. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6783. uint32_t pf, pipesrc;
  6784. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6785. int ret;
  6786. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6787. if (ret)
  6788. goto err;
  6789. ret = intel_ring_begin(ring, 4);
  6790. if (ret)
  6791. goto err_unpin;
  6792. /* i965+ uses the linear or tiled offsets from the
  6793. * Display Registers (which do not change across a page-flip)
  6794. * so we need only reprogram the base address.
  6795. */
  6796. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6797. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6798. intel_ring_emit(ring, fb->pitches[0]);
  6799. intel_ring_emit(ring,
  6800. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6801. obj->tiling_mode);
  6802. /* XXX Enabling the panel-fitter across page-flip is so far
  6803. * untested on non-native modes, so ignore it for now.
  6804. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6805. */
  6806. pf = 0;
  6807. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6808. intel_ring_emit(ring, pf | pipesrc);
  6809. intel_mark_page_flip_active(intel_crtc);
  6810. __intel_ring_advance(ring);
  6811. return 0;
  6812. err_unpin:
  6813. intel_unpin_fb_obj(obj);
  6814. err:
  6815. return ret;
  6816. }
  6817. static int intel_gen6_queue_flip(struct drm_device *dev,
  6818. struct drm_crtc *crtc,
  6819. struct drm_framebuffer *fb,
  6820. struct drm_i915_gem_object *obj,
  6821. uint32_t flags)
  6822. {
  6823. struct drm_i915_private *dev_priv = dev->dev_private;
  6824. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6825. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6826. uint32_t pf, pipesrc;
  6827. int ret;
  6828. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6829. if (ret)
  6830. goto err;
  6831. ret = intel_ring_begin(ring, 4);
  6832. if (ret)
  6833. goto err_unpin;
  6834. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6835. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6836. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6837. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6838. /* Contrary to the suggestions in the documentation,
  6839. * "Enable Panel Fitter" does not seem to be required when page
  6840. * flipping with a non-native mode, and worse causes a normal
  6841. * modeset to fail.
  6842. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6843. */
  6844. pf = 0;
  6845. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6846. intel_ring_emit(ring, pf | pipesrc);
  6847. intel_mark_page_flip_active(intel_crtc);
  6848. __intel_ring_advance(ring);
  6849. return 0;
  6850. err_unpin:
  6851. intel_unpin_fb_obj(obj);
  6852. err:
  6853. return ret;
  6854. }
  6855. static int intel_gen7_queue_flip(struct drm_device *dev,
  6856. struct drm_crtc *crtc,
  6857. struct drm_framebuffer *fb,
  6858. struct drm_i915_gem_object *obj,
  6859. uint32_t flags)
  6860. {
  6861. struct drm_i915_private *dev_priv = dev->dev_private;
  6862. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6863. struct intel_ring_buffer *ring;
  6864. uint32_t plane_bit = 0;
  6865. int len, ret;
  6866. ring = obj->ring;
  6867. if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
  6868. ring = &dev_priv->ring[BCS];
  6869. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6870. if (ret)
  6871. goto err;
  6872. switch(intel_crtc->plane) {
  6873. case PLANE_A:
  6874. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6875. break;
  6876. case PLANE_B:
  6877. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6878. break;
  6879. case PLANE_C:
  6880. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6881. break;
  6882. default:
  6883. WARN_ONCE(1, "unknown plane in flip command\n");
  6884. ret = -ENODEV;
  6885. goto err_unpin;
  6886. }
  6887. len = 4;
  6888. if (ring->id == RCS)
  6889. len += 6;
  6890. ret = intel_ring_begin(ring, len);
  6891. if (ret)
  6892. goto err_unpin;
  6893. /* Unmask the flip-done completion message. Note that the bspec says that
  6894. * we should do this for both the BCS and RCS, and that we must not unmask
  6895. * more than one flip event at any time (or ensure that one flip message
  6896. * can be sent by waiting for flip-done prior to queueing new flips).
  6897. * Experimentation says that BCS works despite DERRMR masking all
  6898. * flip-done completion events and that unmasking all planes at once
  6899. * for the RCS also doesn't appear to drop events. Setting the DERRMR
  6900. * to zero does lead to lockups within MI_DISPLAY_FLIP.
  6901. */
  6902. if (ring->id == RCS) {
  6903. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  6904. intel_ring_emit(ring, DERRMR);
  6905. intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  6906. DERRMR_PIPEB_PRI_FLIP_DONE |
  6907. DERRMR_PIPEC_PRI_FLIP_DONE));
  6908. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
  6909. intel_ring_emit(ring, DERRMR);
  6910. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  6911. }
  6912. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6913. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6914. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6915. intel_ring_emit(ring, (MI_NOOP));
  6916. intel_mark_page_flip_active(intel_crtc);
  6917. __intel_ring_advance(ring);
  6918. return 0;
  6919. err_unpin:
  6920. intel_unpin_fb_obj(obj);
  6921. err:
  6922. return ret;
  6923. }
  6924. static int intel_default_queue_flip(struct drm_device *dev,
  6925. struct drm_crtc *crtc,
  6926. struct drm_framebuffer *fb,
  6927. struct drm_i915_gem_object *obj,
  6928. uint32_t flags)
  6929. {
  6930. return -ENODEV;
  6931. }
  6932. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6933. struct drm_framebuffer *fb,
  6934. struct drm_pending_vblank_event *event,
  6935. uint32_t page_flip_flags)
  6936. {
  6937. struct drm_device *dev = crtc->dev;
  6938. struct drm_i915_private *dev_priv = dev->dev_private;
  6939. struct drm_framebuffer *old_fb = crtc->fb;
  6940. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6941. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6942. struct intel_unpin_work *work;
  6943. unsigned long flags;
  6944. int ret;
  6945. /* Can't change pixel format via MI display flips. */
  6946. if (fb->pixel_format != crtc->fb->pixel_format)
  6947. return -EINVAL;
  6948. /*
  6949. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6950. * Note that pitch changes could also affect these register.
  6951. */
  6952. if (INTEL_INFO(dev)->gen > 3 &&
  6953. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6954. fb->pitches[0] != crtc->fb->pitches[0]))
  6955. return -EINVAL;
  6956. work = kzalloc(sizeof(*work), GFP_KERNEL);
  6957. if (work == NULL)
  6958. return -ENOMEM;
  6959. work->event = event;
  6960. work->crtc = crtc;
  6961. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6962. INIT_WORK(&work->work, intel_unpin_work_fn);
  6963. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6964. if (ret)
  6965. goto free_work;
  6966. /* We borrow the event spin lock for protecting unpin_work */
  6967. spin_lock_irqsave(&dev->event_lock, flags);
  6968. if (intel_crtc->unpin_work) {
  6969. spin_unlock_irqrestore(&dev->event_lock, flags);
  6970. kfree(work);
  6971. drm_vblank_put(dev, intel_crtc->pipe);
  6972. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6973. return -EBUSY;
  6974. }
  6975. intel_crtc->unpin_work = work;
  6976. spin_unlock_irqrestore(&dev->event_lock, flags);
  6977. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6978. flush_workqueue(dev_priv->wq);
  6979. ret = i915_mutex_lock_interruptible(dev);
  6980. if (ret)
  6981. goto cleanup;
  6982. /* Reference the objects for the scheduled work. */
  6983. drm_gem_object_reference(&work->old_fb_obj->base);
  6984. drm_gem_object_reference(&obj->base);
  6985. crtc->fb = fb;
  6986. work->pending_flip_obj = obj;
  6987. work->enable_stall_check = true;
  6988. atomic_inc(&intel_crtc->unpin_work_count);
  6989. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6990. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
  6991. if (ret)
  6992. goto cleanup_pending;
  6993. intel_disable_fbc(dev);
  6994. intel_mark_fb_busy(obj, NULL);
  6995. mutex_unlock(&dev->struct_mutex);
  6996. trace_i915_flip_request(intel_crtc->plane, obj);
  6997. return 0;
  6998. cleanup_pending:
  6999. atomic_dec(&intel_crtc->unpin_work_count);
  7000. crtc->fb = old_fb;
  7001. drm_gem_object_unreference(&work->old_fb_obj->base);
  7002. drm_gem_object_unreference(&obj->base);
  7003. mutex_unlock(&dev->struct_mutex);
  7004. cleanup:
  7005. spin_lock_irqsave(&dev->event_lock, flags);
  7006. intel_crtc->unpin_work = NULL;
  7007. spin_unlock_irqrestore(&dev->event_lock, flags);
  7008. drm_vblank_put(dev, intel_crtc->pipe);
  7009. free_work:
  7010. kfree(work);
  7011. return ret;
  7012. }
  7013. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  7014. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  7015. .load_lut = intel_crtc_load_lut,
  7016. };
  7017. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  7018. struct drm_crtc *crtc)
  7019. {
  7020. struct drm_device *dev;
  7021. struct drm_crtc *tmp;
  7022. int crtc_mask = 1;
  7023. WARN(!crtc, "checking null crtc?\n");
  7024. dev = crtc->dev;
  7025. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  7026. if (tmp == crtc)
  7027. break;
  7028. crtc_mask <<= 1;
  7029. }
  7030. if (encoder->possible_crtcs & crtc_mask)
  7031. return true;
  7032. return false;
  7033. }
  7034. /**
  7035. * intel_modeset_update_staged_output_state
  7036. *
  7037. * Updates the staged output configuration state, e.g. after we've read out the
  7038. * current hw state.
  7039. */
  7040. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  7041. {
  7042. struct intel_encoder *encoder;
  7043. struct intel_connector *connector;
  7044. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7045. base.head) {
  7046. connector->new_encoder =
  7047. to_intel_encoder(connector->base.encoder);
  7048. }
  7049. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7050. base.head) {
  7051. encoder->new_crtc =
  7052. to_intel_crtc(encoder->base.crtc);
  7053. }
  7054. }
  7055. /**
  7056. * intel_modeset_commit_output_state
  7057. *
  7058. * This function copies the stage display pipe configuration to the real one.
  7059. */
  7060. static void intel_modeset_commit_output_state(struct drm_device *dev)
  7061. {
  7062. struct intel_encoder *encoder;
  7063. struct intel_connector *connector;
  7064. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7065. base.head) {
  7066. connector->base.encoder = &connector->new_encoder->base;
  7067. }
  7068. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7069. base.head) {
  7070. encoder->base.crtc = &encoder->new_crtc->base;
  7071. }
  7072. }
  7073. static void
  7074. connected_sink_compute_bpp(struct intel_connector * connector,
  7075. struct intel_crtc_config *pipe_config)
  7076. {
  7077. int bpp = pipe_config->pipe_bpp;
  7078. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  7079. connector->base.base.id,
  7080. drm_get_connector_name(&connector->base));
  7081. /* Don't use an invalid EDID bpc value */
  7082. if (connector->base.display_info.bpc &&
  7083. connector->base.display_info.bpc * 3 < bpp) {
  7084. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  7085. bpp, connector->base.display_info.bpc*3);
  7086. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  7087. }
  7088. /* Clamp bpp to 8 on screens without EDID 1.4 */
  7089. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  7090. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  7091. bpp);
  7092. pipe_config->pipe_bpp = 24;
  7093. }
  7094. }
  7095. static int
  7096. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  7097. struct drm_framebuffer *fb,
  7098. struct intel_crtc_config *pipe_config)
  7099. {
  7100. struct drm_device *dev = crtc->base.dev;
  7101. struct intel_connector *connector;
  7102. int bpp;
  7103. switch (fb->pixel_format) {
  7104. case DRM_FORMAT_C8:
  7105. bpp = 8*3; /* since we go through a colormap */
  7106. break;
  7107. case DRM_FORMAT_XRGB1555:
  7108. case DRM_FORMAT_ARGB1555:
  7109. /* checked in intel_framebuffer_init already */
  7110. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  7111. return -EINVAL;
  7112. case DRM_FORMAT_RGB565:
  7113. bpp = 6*3; /* min is 18bpp */
  7114. break;
  7115. case DRM_FORMAT_XBGR8888:
  7116. case DRM_FORMAT_ABGR8888:
  7117. /* checked in intel_framebuffer_init already */
  7118. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  7119. return -EINVAL;
  7120. case DRM_FORMAT_XRGB8888:
  7121. case DRM_FORMAT_ARGB8888:
  7122. bpp = 8*3;
  7123. break;
  7124. case DRM_FORMAT_XRGB2101010:
  7125. case DRM_FORMAT_ARGB2101010:
  7126. case DRM_FORMAT_XBGR2101010:
  7127. case DRM_FORMAT_ABGR2101010:
  7128. /* checked in intel_framebuffer_init already */
  7129. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  7130. return -EINVAL;
  7131. bpp = 10*3;
  7132. break;
  7133. /* TODO: gen4+ supports 16 bpc floating point, too. */
  7134. default:
  7135. DRM_DEBUG_KMS("unsupported depth\n");
  7136. return -EINVAL;
  7137. }
  7138. pipe_config->pipe_bpp = bpp;
  7139. /* Clamp display bpp to EDID value */
  7140. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7141. base.head) {
  7142. if (!connector->new_encoder ||
  7143. connector->new_encoder->new_crtc != crtc)
  7144. continue;
  7145. connected_sink_compute_bpp(connector, pipe_config);
  7146. }
  7147. return bpp;
  7148. }
  7149. static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
  7150. {
  7151. DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
  7152. "type: 0x%x flags: 0x%x\n",
  7153. mode->crtc_clock,
  7154. mode->crtc_hdisplay, mode->crtc_hsync_start,
  7155. mode->crtc_hsync_end, mode->crtc_htotal,
  7156. mode->crtc_vdisplay, mode->crtc_vsync_start,
  7157. mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
  7158. }
  7159. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  7160. struct intel_crtc_config *pipe_config,
  7161. const char *context)
  7162. {
  7163. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  7164. context, pipe_name(crtc->pipe));
  7165. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  7166. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  7167. pipe_config->pipe_bpp, pipe_config->dither);
  7168. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  7169. pipe_config->has_pch_encoder,
  7170. pipe_config->fdi_lanes,
  7171. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  7172. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  7173. pipe_config->fdi_m_n.tu);
  7174. DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  7175. pipe_config->has_dp_encoder,
  7176. pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
  7177. pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
  7178. pipe_config->dp_m_n.tu);
  7179. DRM_DEBUG_KMS("requested mode:\n");
  7180. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  7181. DRM_DEBUG_KMS("adjusted mode:\n");
  7182. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  7183. intel_dump_crtc_timings(&pipe_config->adjusted_mode);
  7184. DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
  7185. DRM_DEBUG_KMS("pipe src size: %dx%d\n",
  7186. pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  7187. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  7188. pipe_config->gmch_pfit.control,
  7189. pipe_config->gmch_pfit.pgm_ratios,
  7190. pipe_config->gmch_pfit.lvds_border_bits);
  7191. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
  7192. pipe_config->pch_pfit.pos,
  7193. pipe_config->pch_pfit.size,
  7194. pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
  7195. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  7196. DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
  7197. }
  7198. static bool check_encoder_cloning(struct drm_crtc *crtc)
  7199. {
  7200. int num_encoders = 0;
  7201. bool uncloneable_encoders = false;
  7202. struct intel_encoder *encoder;
  7203. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  7204. base.head) {
  7205. if (&encoder->new_crtc->base != crtc)
  7206. continue;
  7207. num_encoders++;
  7208. if (!encoder->cloneable)
  7209. uncloneable_encoders = true;
  7210. }
  7211. return !(num_encoders > 1 && uncloneable_encoders);
  7212. }
  7213. static struct intel_crtc_config *
  7214. intel_modeset_pipe_config(struct drm_crtc *crtc,
  7215. struct drm_framebuffer *fb,
  7216. struct drm_display_mode *mode)
  7217. {
  7218. struct drm_device *dev = crtc->dev;
  7219. struct intel_encoder *encoder;
  7220. struct intel_crtc_config *pipe_config;
  7221. int plane_bpp, ret = -EINVAL;
  7222. bool retry = true;
  7223. if (!check_encoder_cloning(crtc)) {
  7224. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  7225. return ERR_PTR(-EINVAL);
  7226. }
  7227. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  7228. if (!pipe_config)
  7229. return ERR_PTR(-ENOMEM);
  7230. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  7231. drm_mode_copy(&pipe_config->requested_mode, mode);
  7232. pipe_config->cpu_transcoder =
  7233. (enum transcoder) to_intel_crtc(crtc)->pipe;
  7234. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  7235. /*
  7236. * Sanitize sync polarity flags based on requested ones. If neither
  7237. * positive or negative polarity is requested, treat this as meaning
  7238. * negative polarity.
  7239. */
  7240. if (!(pipe_config->adjusted_mode.flags &
  7241. (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  7242. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  7243. if (!(pipe_config->adjusted_mode.flags &
  7244. (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  7245. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  7246. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  7247. * plane pixel format and any sink constraints into account. Returns the
  7248. * source plane bpp so that dithering can be selected on mismatches
  7249. * after encoders and crtc also have had their say. */
  7250. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  7251. fb, pipe_config);
  7252. if (plane_bpp < 0)
  7253. goto fail;
  7254. /*
  7255. * Determine the real pipe dimensions. Note that stereo modes can
  7256. * increase the actual pipe size due to the frame doubling and
  7257. * insertion of additional space for blanks between the frame. This
  7258. * is stored in the crtc timings. We use the requested mode to do this
  7259. * computation to clearly distinguish it from the adjusted mode, which
  7260. * can be changed by the connectors in the below retry loop.
  7261. */
  7262. drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
  7263. pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
  7264. pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
  7265. encoder_retry:
  7266. /* Ensure the port clock defaults are reset when retrying. */
  7267. pipe_config->port_clock = 0;
  7268. pipe_config->pixel_multiplier = 1;
  7269. /* Fill in default crtc timings, allow encoders to overwrite them. */
  7270. drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
  7271. /* Pass our mode to the connectors and the CRTC to give them a chance to
  7272. * adjust it according to limitations or connector properties, and also
  7273. * a chance to reject the mode entirely.
  7274. */
  7275. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7276. base.head) {
  7277. if (&encoder->new_crtc->base != crtc)
  7278. continue;
  7279. if (!(encoder->compute_config(encoder, pipe_config))) {
  7280. DRM_DEBUG_KMS("Encoder config failure\n");
  7281. goto fail;
  7282. }
  7283. }
  7284. /* Set default port clock if not overwritten by the encoder. Needs to be
  7285. * done afterwards in case the encoder adjusts the mode. */
  7286. if (!pipe_config->port_clock)
  7287. pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
  7288. * pipe_config->pixel_multiplier;
  7289. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  7290. if (ret < 0) {
  7291. DRM_DEBUG_KMS("CRTC fixup failed\n");
  7292. goto fail;
  7293. }
  7294. if (ret == RETRY) {
  7295. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  7296. ret = -EINVAL;
  7297. goto fail;
  7298. }
  7299. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  7300. retry = false;
  7301. goto encoder_retry;
  7302. }
  7303. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  7304. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  7305. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  7306. return pipe_config;
  7307. fail:
  7308. kfree(pipe_config);
  7309. return ERR_PTR(ret);
  7310. }
  7311. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  7312. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  7313. static void
  7314. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  7315. unsigned *prepare_pipes, unsigned *disable_pipes)
  7316. {
  7317. struct intel_crtc *intel_crtc;
  7318. struct drm_device *dev = crtc->dev;
  7319. struct intel_encoder *encoder;
  7320. struct intel_connector *connector;
  7321. struct drm_crtc *tmp_crtc;
  7322. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  7323. /* Check which crtcs have changed outputs connected to them, these need
  7324. * to be part of the prepare_pipes mask. We don't (yet) support global
  7325. * modeset across multiple crtcs, so modeset_pipes will only have one
  7326. * bit set at most. */
  7327. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7328. base.head) {
  7329. if (connector->base.encoder == &connector->new_encoder->base)
  7330. continue;
  7331. if (connector->base.encoder) {
  7332. tmp_crtc = connector->base.encoder->crtc;
  7333. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7334. }
  7335. if (connector->new_encoder)
  7336. *prepare_pipes |=
  7337. 1 << connector->new_encoder->new_crtc->pipe;
  7338. }
  7339. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7340. base.head) {
  7341. if (encoder->base.crtc == &encoder->new_crtc->base)
  7342. continue;
  7343. if (encoder->base.crtc) {
  7344. tmp_crtc = encoder->base.crtc;
  7345. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7346. }
  7347. if (encoder->new_crtc)
  7348. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  7349. }
  7350. /* Check for any pipes that will be fully disabled ... */
  7351. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7352. base.head) {
  7353. bool used = false;
  7354. /* Don't try to disable disabled crtcs. */
  7355. if (!intel_crtc->base.enabled)
  7356. continue;
  7357. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7358. base.head) {
  7359. if (encoder->new_crtc == intel_crtc)
  7360. used = true;
  7361. }
  7362. if (!used)
  7363. *disable_pipes |= 1 << intel_crtc->pipe;
  7364. }
  7365. /* set_mode is also used to update properties on life display pipes. */
  7366. intel_crtc = to_intel_crtc(crtc);
  7367. if (crtc->enabled)
  7368. *prepare_pipes |= 1 << intel_crtc->pipe;
  7369. /*
  7370. * For simplicity do a full modeset on any pipe where the output routing
  7371. * changed. We could be more clever, but that would require us to be
  7372. * more careful with calling the relevant encoder->mode_set functions.
  7373. */
  7374. if (*prepare_pipes)
  7375. *modeset_pipes = *prepare_pipes;
  7376. /* ... and mask these out. */
  7377. *modeset_pipes &= ~(*disable_pipes);
  7378. *prepare_pipes &= ~(*disable_pipes);
  7379. /*
  7380. * HACK: We don't (yet) fully support global modesets. intel_set_config
  7381. * obies this rule, but the modeset restore mode of
  7382. * intel_modeset_setup_hw_state does not.
  7383. */
  7384. *modeset_pipes &= 1 << intel_crtc->pipe;
  7385. *prepare_pipes &= 1 << intel_crtc->pipe;
  7386. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  7387. *modeset_pipes, *prepare_pipes, *disable_pipes);
  7388. }
  7389. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  7390. {
  7391. struct drm_encoder *encoder;
  7392. struct drm_device *dev = crtc->dev;
  7393. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  7394. if (encoder->crtc == crtc)
  7395. return true;
  7396. return false;
  7397. }
  7398. static void
  7399. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  7400. {
  7401. struct intel_encoder *intel_encoder;
  7402. struct intel_crtc *intel_crtc;
  7403. struct drm_connector *connector;
  7404. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  7405. base.head) {
  7406. if (!intel_encoder->base.crtc)
  7407. continue;
  7408. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  7409. if (prepare_pipes & (1 << intel_crtc->pipe))
  7410. intel_encoder->connectors_active = false;
  7411. }
  7412. intel_modeset_commit_output_state(dev);
  7413. /* Update computed state. */
  7414. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7415. base.head) {
  7416. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  7417. }
  7418. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7419. if (!connector->encoder || !connector->encoder->crtc)
  7420. continue;
  7421. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  7422. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  7423. struct drm_property *dpms_property =
  7424. dev->mode_config.dpms_property;
  7425. connector->dpms = DRM_MODE_DPMS_ON;
  7426. drm_object_property_set_value(&connector->base,
  7427. dpms_property,
  7428. DRM_MODE_DPMS_ON);
  7429. intel_encoder = to_intel_encoder(connector->encoder);
  7430. intel_encoder->connectors_active = true;
  7431. }
  7432. }
  7433. }
  7434. static bool intel_fuzzy_clock_check(int clock1, int clock2)
  7435. {
  7436. int diff;
  7437. if (clock1 == clock2)
  7438. return true;
  7439. if (!clock1 || !clock2)
  7440. return false;
  7441. diff = abs(clock1 - clock2);
  7442. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  7443. return true;
  7444. return false;
  7445. }
  7446. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  7447. list_for_each_entry((intel_crtc), \
  7448. &(dev)->mode_config.crtc_list, \
  7449. base.head) \
  7450. if (mask & (1 <<(intel_crtc)->pipe))
  7451. static bool
  7452. intel_pipe_config_compare(struct drm_device *dev,
  7453. struct intel_crtc_config *current_config,
  7454. struct intel_crtc_config *pipe_config)
  7455. {
  7456. #define PIPE_CONF_CHECK_X(name) \
  7457. if (current_config->name != pipe_config->name) { \
  7458. DRM_ERROR("mismatch in " #name " " \
  7459. "(expected 0x%08x, found 0x%08x)\n", \
  7460. current_config->name, \
  7461. pipe_config->name); \
  7462. return false; \
  7463. }
  7464. #define PIPE_CONF_CHECK_I(name) \
  7465. if (current_config->name != pipe_config->name) { \
  7466. DRM_ERROR("mismatch in " #name " " \
  7467. "(expected %i, found %i)\n", \
  7468. current_config->name, \
  7469. pipe_config->name); \
  7470. return false; \
  7471. }
  7472. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  7473. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  7474. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  7475. "(expected %i, found %i)\n", \
  7476. current_config->name & (mask), \
  7477. pipe_config->name & (mask)); \
  7478. return false; \
  7479. }
  7480. #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
  7481. if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
  7482. DRM_ERROR("mismatch in " #name " " \
  7483. "(expected %i, found %i)\n", \
  7484. current_config->name, \
  7485. pipe_config->name); \
  7486. return false; \
  7487. }
  7488. #define PIPE_CONF_QUIRK(quirk) \
  7489. ((current_config->quirks | pipe_config->quirks) & (quirk))
  7490. PIPE_CONF_CHECK_I(cpu_transcoder);
  7491. PIPE_CONF_CHECK_I(has_pch_encoder);
  7492. PIPE_CONF_CHECK_I(fdi_lanes);
  7493. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  7494. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  7495. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  7496. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  7497. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  7498. PIPE_CONF_CHECK_I(has_dp_encoder);
  7499. PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
  7500. PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
  7501. PIPE_CONF_CHECK_I(dp_m_n.link_m);
  7502. PIPE_CONF_CHECK_I(dp_m_n.link_n);
  7503. PIPE_CONF_CHECK_I(dp_m_n.tu);
  7504. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  7505. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  7506. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  7507. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  7508. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  7509. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  7510. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  7511. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  7512. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  7513. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  7514. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  7515. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  7516. PIPE_CONF_CHECK_I(pixel_multiplier);
  7517. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7518. DRM_MODE_FLAG_INTERLACE);
  7519. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  7520. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7521. DRM_MODE_FLAG_PHSYNC);
  7522. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7523. DRM_MODE_FLAG_NHSYNC);
  7524. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7525. DRM_MODE_FLAG_PVSYNC);
  7526. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7527. DRM_MODE_FLAG_NVSYNC);
  7528. }
  7529. PIPE_CONF_CHECK_I(pipe_src_w);
  7530. PIPE_CONF_CHECK_I(pipe_src_h);
  7531. PIPE_CONF_CHECK_I(gmch_pfit.control);
  7532. /* pfit ratios are autocomputed by the hw on gen4+ */
  7533. if (INTEL_INFO(dev)->gen < 4)
  7534. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  7535. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  7536. PIPE_CONF_CHECK_I(pch_pfit.enabled);
  7537. if (current_config->pch_pfit.enabled) {
  7538. PIPE_CONF_CHECK_I(pch_pfit.pos);
  7539. PIPE_CONF_CHECK_I(pch_pfit.size);
  7540. }
  7541. PIPE_CONF_CHECK_I(ips_enabled);
  7542. PIPE_CONF_CHECK_I(double_wide);
  7543. PIPE_CONF_CHECK_I(shared_dpll);
  7544. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  7545. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  7546. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  7547. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  7548. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
  7549. PIPE_CONF_CHECK_I(pipe_bpp);
  7550. if (!IS_HASWELL(dev)) {
  7551. PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
  7552. PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
  7553. }
  7554. #undef PIPE_CONF_CHECK_X
  7555. #undef PIPE_CONF_CHECK_I
  7556. #undef PIPE_CONF_CHECK_FLAGS
  7557. #undef PIPE_CONF_CHECK_CLOCK_FUZZY
  7558. #undef PIPE_CONF_QUIRK
  7559. return true;
  7560. }
  7561. static void
  7562. check_connector_state(struct drm_device *dev)
  7563. {
  7564. struct intel_connector *connector;
  7565. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7566. base.head) {
  7567. /* This also checks the encoder/connector hw state with the
  7568. * ->get_hw_state callbacks. */
  7569. intel_connector_check_state(connector);
  7570. WARN(&connector->new_encoder->base != connector->base.encoder,
  7571. "connector's staged encoder doesn't match current encoder\n");
  7572. }
  7573. }
  7574. static void
  7575. check_encoder_state(struct drm_device *dev)
  7576. {
  7577. struct intel_encoder *encoder;
  7578. struct intel_connector *connector;
  7579. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7580. base.head) {
  7581. bool enabled = false;
  7582. bool active = false;
  7583. enum pipe pipe, tracked_pipe;
  7584. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  7585. encoder->base.base.id,
  7586. drm_get_encoder_name(&encoder->base));
  7587. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  7588. "encoder's stage crtc doesn't match current crtc\n");
  7589. WARN(encoder->connectors_active && !encoder->base.crtc,
  7590. "encoder's active_connectors set, but no crtc\n");
  7591. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7592. base.head) {
  7593. if (connector->base.encoder != &encoder->base)
  7594. continue;
  7595. enabled = true;
  7596. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  7597. active = true;
  7598. }
  7599. WARN(!!encoder->base.crtc != enabled,
  7600. "encoder's enabled state mismatch "
  7601. "(expected %i, found %i)\n",
  7602. !!encoder->base.crtc, enabled);
  7603. WARN(active && !encoder->base.crtc,
  7604. "active encoder with no crtc\n");
  7605. WARN(encoder->connectors_active != active,
  7606. "encoder's computed active state doesn't match tracked active state "
  7607. "(expected %i, found %i)\n", active, encoder->connectors_active);
  7608. active = encoder->get_hw_state(encoder, &pipe);
  7609. WARN(active != encoder->connectors_active,
  7610. "encoder's hw state doesn't match sw tracking "
  7611. "(expected %i, found %i)\n",
  7612. encoder->connectors_active, active);
  7613. if (!encoder->base.crtc)
  7614. continue;
  7615. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  7616. WARN(active && pipe != tracked_pipe,
  7617. "active encoder's pipe doesn't match"
  7618. "(expected %i, found %i)\n",
  7619. tracked_pipe, pipe);
  7620. }
  7621. }
  7622. static void
  7623. check_crtc_state(struct drm_device *dev)
  7624. {
  7625. drm_i915_private_t *dev_priv = dev->dev_private;
  7626. struct intel_crtc *crtc;
  7627. struct intel_encoder *encoder;
  7628. struct intel_crtc_config pipe_config;
  7629. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7630. base.head) {
  7631. bool enabled = false;
  7632. bool active = false;
  7633. memset(&pipe_config, 0, sizeof(pipe_config));
  7634. DRM_DEBUG_KMS("[CRTC:%d]\n",
  7635. crtc->base.base.id);
  7636. WARN(crtc->active && !crtc->base.enabled,
  7637. "active crtc, but not enabled in sw tracking\n");
  7638. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7639. base.head) {
  7640. if (encoder->base.crtc != &crtc->base)
  7641. continue;
  7642. enabled = true;
  7643. if (encoder->connectors_active)
  7644. active = true;
  7645. }
  7646. WARN(active != crtc->active,
  7647. "crtc's computed active state doesn't match tracked active state "
  7648. "(expected %i, found %i)\n", active, crtc->active);
  7649. WARN(enabled != crtc->base.enabled,
  7650. "crtc's computed enabled state doesn't match tracked enabled state "
  7651. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  7652. active = dev_priv->display.get_pipe_config(crtc,
  7653. &pipe_config);
  7654. /* hw state is inconsistent with the pipe A quirk */
  7655. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  7656. active = crtc->active;
  7657. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7658. base.head) {
  7659. enum pipe pipe;
  7660. if (encoder->base.crtc != &crtc->base)
  7661. continue;
  7662. if (encoder->get_config &&
  7663. encoder->get_hw_state(encoder, &pipe))
  7664. encoder->get_config(encoder, &pipe_config);
  7665. }
  7666. WARN(crtc->active != active,
  7667. "crtc active state doesn't match with hw state "
  7668. "(expected %i, found %i)\n", crtc->active, active);
  7669. if (active &&
  7670. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7671. WARN(1, "pipe state doesn't match!\n");
  7672. intel_dump_pipe_config(crtc, &pipe_config,
  7673. "[hw state]");
  7674. intel_dump_pipe_config(crtc, &crtc->config,
  7675. "[sw state]");
  7676. }
  7677. }
  7678. }
  7679. static void
  7680. check_shared_dpll_state(struct drm_device *dev)
  7681. {
  7682. drm_i915_private_t *dev_priv = dev->dev_private;
  7683. struct intel_crtc *crtc;
  7684. struct intel_dpll_hw_state dpll_hw_state;
  7685. int i;
  7686. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7687. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7688. int enabled_crtcs = 0, active_crtcs = 0;
  7689. bool active;
  7690. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7691. DRM_DEBUG_KMS("%s\n", pll->name);
  7692. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7693. WARN(pll->active > pll->refcount,
  7694. "more active pll users than references: %i vs %i\n",
  7695. pll->active, pll->refcount);
  7696. WARN(pll->active && !pll->on,
  7697. "pll in active use but not on in sw tracking\n");
  7698. WARN(pll->on && !pll->active,
  7699. "pll in on but not on in use in sw tracking\n");
  7700. WARN(pll->on != active,
  7701. "pll on state mismatch (expected %i, found %i)\n",
  7702. pll->on, active);
  7703. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7704. base.head) {
  7705. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7706. enabled_crtcs++;
  7707. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7708. active_crtcs++;
  7709. }
  7710. WARN(pll->active != active_crtcs,
  7711. "pll active crtcs mismatch (expected %i, found %i)\n",
  7712. pll->active, active_crtcs);
  7713. WARN(pll->refcount != enabled_crtcs,
  7714. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7715. pll->refcount, enabled_crtcs);
  7716. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7717. sizeof(dpll_hw_state)),
  7718. "pll hw state mismatch\n");
  7719. }
  7720. }
  7721. void
  7722. intel_modeset_check_state(struct drm_device *dev)
  7723. {
  7724. check_connector_state(dev);
  7725. check_encoder_state(dev);
  7726. check_crtc_state(dev);
  7727. check_shared_dpll_state(dev);
  7728. }
  7729. void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
  7730. int dotclock)
  7731. {
  7732. /*
  7733. * FDI already provided one idea for the dotclock.
  7734. * Yell if the encoder disagrees.
  7735. */
  7736. WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
  7737. "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
  7738. pipe_config->adjusted_mode.crtc_clock, dotclock);
  7739. }
  7740. static int __intel_set_mode(struct drm_crtc *crtc,
  7741. struct drm_display_mode *mode,
  7742. int x, int y, struct drm_framebuffer *fb)
  7743. {
  7744. struct drm_device *dev = crtc->dev;
  7745. drm_i915_private_t *dev_priv = dev->dev_private;
  7746. struct drm_display_mode *saved_mode, *saved_hwmode;
  7747. struct intel_crtc_config *pipe_config = NULL;
  7748. struct intel_crtc *intel_crtc;
  7749. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7750. int ret = 0;
  7751. saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
  7752. if (!saved_mode)
  7753. return -ENOMEM;
  7754. saved_hwmode = saved_mode + 1;
  7755. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7756. &prepare_pipes, &disable_pipes);
  7757. *saved_hwmode = crtc->hwmode;
  7758. *saved_mode = crtc->mode;
  7759. /* Hack: Because we don't (yet) support global modeset on multiple
  7760. * crtcs, we don't keep track of the new mode for more than one crtc.
  7761. * Hence simply check whether any bit is set in modeset_pipes in all the
  7762. * pieces of code that are not yet converted to deal with mutliple crtcs
  7763. * changing their mode at the same time. */
  7764. if (modeset_pipes) {
  7765. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7766. if (IS_ERR(pipe_config)) {
  7767. ret = PTR_ERR(pipe_config);
  7768. pipe_config = NULL;
  7769. goto out;
  7770. }
  7771. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7772. "[modeset]");
  7773. }
  7774. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7775. intel_crtc_disable(&intel_crtc->base);
  7776. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7777. if (intel_crtc->base.enabled)
  7778. dev_priv->display.crtc_disable(&intel_crtc->base);
  7779. }
  7780. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7781. * to set it here already despite that we pass it down the callchain.
  7782. */
  7783. if (modeset_pipes) {
  7784. crtc->mode = *mode;
  7785. /* mode_set/enable/disable functions rely on a correct pipe
  7786. * config. */
  7787. to_intel_crtc(crtc)->config = *pipe_config;
  7788. }
  7789. /* Only after disabling all output pipelines that will be changed can we
  7790. * update the the output configuration. */
  7791. intel_modeset_update_state(dev, prepare_pipes);
  7792. if (dev_priv->display.modeset_global_resources)
  7793. dev_priv->display.modeset_global_resources(dev);
  7794. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7795. * on the DPLL.
  7796. */
  7797. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7798. ret = intel_crtc_mode_set(&intel_crtc->base,
  7799. x, y, fb);
  7800. if (ret)
  7801. goto done;
  7802. }
  7803. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7804. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7805. dev_priv->display.crtc_enable(&intel_crtc->base);
  7806. if (modeset_pipes) {
  7807. /* Store real post-adjustment hardware mode. */
  7808. crtc->hwmode = pipe_config->adjusted_mode;
  7809. /* Calculate and store various constants which
  7810. * are later needed by vblank and swap-completion
  7811. * timestamping. They are derived from true hwmode.
  7812. */
  7813. drm_calc_timestamping_constants(crtc);
  7814. }
  7815. /* FIXME: add subpixel order */
  7816. done:
  7817. if (ret && crtc->enabled) {
  7818. crtc->hwmode = *saved_hwmode;
  7819. crtc->mode = *saved_mode;
  7820. }
  7821. out:
  7822. kfree(pipe_config);
  7823. kfree(saved_mode);
  7824. return ret;
  7825. }
  7826. static int intel_set_mode(struct drm_crtc *crtc,
  7827. struct drm_display_mode *mode,
  7828. int x, int y, struct drm_framebuffer *fb)
  7829. {
  7830. int ret;
  7831. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7832. if (ret == 0)
  7833. intel_modeset_check_state(crtc->dev);
  7834. return ret;
  7835. }
  7836. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7837. {
  7838. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7839. }
  7840. #undef for_each_intel_crtc_masked
  7841. static void intel_set_config_free(struct intel_set_config *config)
  7842. {
  7843. if (!config)
  7844. return;
  7845. kfree(config->save_connector_encoders);
  7846. kfree(config->save_encoder_crtcs);
  7847. kfree(config);
  7848. }
  7849. static int intel_set_config_save_state(struct drm_device *dev,
  7850. struct intel_set_config *config)
  7851. {
  7852. struct drm_encoder *encoder;
  7853. struct drm_connector *connector;
  7854. int count;
  7855. config->save_encoder_crtcs =
  7856. kcalloc(dev->mode_config.num_encoder,
  7857. sizeof(struct drm_crtc *), GFP_KERNEL);
  7858. if (!config->save_encoder_crtcs)
  7859. return -ENOMEM;
  7860. config->save_connector_encoders =
  7861. kcalloc(dev->mode_config.num_connector,
  7862. sizeof(struct drm_encoder *), GFP_KERNEL);
  7863. if (!config->save_connector_encoders)
  7864. return -ENOMEM;
  7865. /* Copy data. Note that driver private data is not affected.
  7866. * Should anything bad happen only the expected state is
  7867. * restored, not the drivers personal bookkeeping.
  7868. */
  7869. count = 0;
  7870. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7871. config->save_encoder_crtcs[count++] = encoder->crtc;
  7872. }
  7873. count = 0;
  7874. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7875. config->save_connector_encoders[count++] = connector->encoder;
  7876. }
  7877. return 0;
  7878. }
  7879. static void intel_set_config_restore_state(struct drm_device *dev,
  7880. struct intel_set_config *config)
  7881. {
  7882. struct intel_encoder *encoder;
  7883. struct intel_connector *connector;
  7884. int count;
  7885. count = 0;
  7886. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7887. encoder->new_crtc =
  7888. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7889. }
  7890. count = 0;
  7891. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7892. connector->new_encoder =
  7893. to_intel_encoder(config->save_connector_encoders[count++]);
  7894. }
  7895. }
  7896. static bool
  7897. is_crtc_connector_off(struct drm_mode_set *set)
  7898. {
  7899. int i;
  7900. if (set->num_connectors == 0)
  7901. return false;
  7902. if (WARN_ON(set->connectors == NULL))
  7903. return false;
  7904. for (i = 0; i < set->num_connectors; i++)
  7905. if (set->connectors[i]->encoder &&
  7906. set->connectors[i]->encoder->crtc == set->crtc &&
  7907. set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
  7908. return true;
  7909. return false;
  7910. }
  7911. static void
  7912. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7913. struct intel_set_config *config)
  7914. {
  7915. /* We should be able to check here if the fb has the same properties
  7916. * and then just flip_or_move it */
  7917. if (is_crtc_connector_off(set)) {
  7918. config->mode_changed = true;
  7919. } else if (set->crtc->fb != set->fb) {
  7920. /* If we have no fb then treat it as a full mode set */
  7921. if (set->crtc->fb == NULL) {
  7922. struct intel_crtc *intel_crtc =
  7923. to_intel_crtc(set->crtc);
  7924. if (intel_crtc->active && i915_fastboot) {
  7925. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7926. config->fb_changed = true;
  7927. } else {
  7928. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7929. config->mode_changed = true;
  7930. }
  7931. } else if (set->fb == NULL) {
  7932. config->mode_changed = true;
  7933. } else if (set->fb->pixel_format !=
  7934. set->crtc->fb->pixel_format) {
  7935. config->mode_changed = true;
  7936. } else {
  7937. config->fb_changed = true;
  7938. }
  7939. }
  7940. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7941. config->fb_changed = true;
  7942. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7943. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7944. drm_mode_debug_printmodeline(&set->crtc->mode);
  7945. drm_mode_debug_printmodeline(set->mode);
  7946. config->mode_changed = true;
  7947. }
  7948. DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
  7949. set->crtc->base.id, config->mode_changed, config->fb_changed);
  7950. }
  7951. static int
  7952. intel_modeset_stage_output_state(struct drm_device *dev,
  7953. struct drm_mode_set *set,
  7954. struct intel_set_config *config)
  7955. {
  7956. struct drm_crtc *new_crtc;
  7957. struct intel_connector *connector;
  7958. struct intel_encoder *encoder;
  7959. int ro;
  7960. /* The upper layers ensure that we either disable a crtc or have a list
  7961. * of connectors. For paranoia, double-check this. */
  7962. WARN_ON(!set->fb && (set->num_connectors != 0));
  7963. WARN_ON(set->fb && (set->num_connectors == 0));
  7964. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7965. base.head) {
  7966. /* Otherwise traverse passed in connector list and get encoders
  7967. * for them. */
  7968. for (ro = 0; ro < set->num_connectors; ro++) {
  7969. if (set->connectors[ro] == &connector->base) {
  7970. connector->new_encoder = connector->encoder;
  7971. break;
  7972. }
  7973. }
  7974. /* If we disable the crtc, disable all its connectors. Also, if
  7975. * the connector is on the changing crtc but not on the new
  7976. * connector list, disable it. */
  7977. if ((!set->fb || ro == set->num_connectors) &&
  7978. connector->base.encoder &&
  7979. connector->base.encoder->crtc == set->crtc) {
  7980. connector->new_encoder = NULL;
  7981. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7982. connector->base.base.id,
  7983. drm_get_connector_name(&connector->base));
  7984. }
  7985. if (&connector->new_encoder->base != connector->base.encoder) {
  7986. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7987. config->mode_changed = true;
  7988. }
  7989. }
  7990. /* connector->new_encoder is now updated for all connectors. */
  7991. /* Update crtc of enabled connectors. */
  7992. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7993. base.head) {
  7994. if (!connector->new_encoder)
  7995. continue;
  7996. new_crtc = connector->new_encoder->base.crtc;
  7997. for (ro = 0; ro < set->num_connectors; ro++) {
  7998. if (set->connectors[ro] == &connector->base)
  7999. new_crtc = set->crtc;
  8000. }
  8001. /* Make sure the new CRTC will work with the encoder */
  8002. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  8003. new_crtc)) {
  8004. return -EINVAL;
  8005. }
  8006. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  8007. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  8008. connector->base.base.id,
  8009. drm_get_connector_name(&connector->base),
  8010. new_crtc->base.id);
  8011. }
  8012. /* Check for any encoders that needs to be disabled. */
  8013. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8014. base.head) {
  8015. list_for_each_entry(connector,
  8016. &dev->mode_config.connector_list,
  8017. base.head) {
  8018. if (connector->new_encoder == encoder) {
  8019. WARN_ON(!connector->new_encoder->new_crtc);
  8020. goto next_encoder;
  8021. }
  8022. }
  8023. encoder->new_crtc = NULL;
  8024. next_encoder:
  8025. /* Only now check for crtc changes so we don't miss encoders
  8026. * that will be disabled. */
  8027. if (&encoder->new_crtc->base != encoder->base.crtc) {
  8028. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  8029. config->mode_changed = true;
  8030. }
  8031. }
  8032. /* Now we've also updated encoder->new_crtc for all encoders. */
  8033. return 0;
  8034. }
  8035. static int intel_crtc_set_config(struct drm_mode_set *set)
  8036. {
  8037. struct drm_device *dev;
  8038. struct drm_mode_set save_set;
  8039. struct intel_set_config *config;
  8040. int ret;
  8041. BUG_ON(!set);
  8042. BUG_ON(!set->crtc);
  8043. BUG_ON(!set->crtc->helper_private);
  8044. /* Enforce sane interface api - has been abused by the fb helper. */
  8045. BUG_ON(!set->mode && set->fb);
  8046. BUG_ON(set->fb && set->num_connectors == 0);
  8047. if (set->fb) {
  8048. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  8049. set->crtc->base.id, set->fb->base.id,
  8050. (int)set->num_connectors, set->x, set->y);
  8051. } else {
  8052. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  8053. }
  8054. dev = set->crtc->dev;
  8055. ret = -ENOMEM;
  8056. config = kzalloc(sizeof(*config), GFP_KERNEL);
  8057. if (!config)
  8058. goto out_config;
  8059. ret = intel_set_config_save_state(dev, config);
  8060. if (ret)
  8061. goto out_config;
  8062. save_set.crtc = set->crtc;
  8063. save_set.mode = &set->crtc->mode;
  8064. save_set.x = set->crtc->x;
  8065. save_set.y = set->crtc->y;
  8066. save_set.fb = set->crtc->fb;
  8067. /* Compute whether we need a full modeset, only an fb base update or no
  8068. * change at all. In the future we might also check whether only the
  8069. * mode changed, e.g. for LVDS where we only change the panel fitter in
  8070. * such cases. */
  8071. intel_set_config_compute_mode_changes(set, config);
  8072. ret = intel_modeset_stage_output_state(dev, set, config);
  8073. if (ret)
  8074. goto fail;
  8075. if (config->mode_changed) {
  8076. ret = intel_set_mode(set->crtc, set->mode,
  8077. set->x, set->y, set->fb);
  8078. } else if (config->fb_changed) {
  8079. intel_crtc_wait_for_pending_flips(set->crtc);
  8080. ret = intel_pipe_set_base(set->crtc,
  8081. set->x, set->y, set->fb);
  8082. }
  8083. if (ret) {
  8084. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  8085. set->crtc->base.id, ret);
  8086. fail:
  8087. intel_set_config_restore_state(dev, config);
  8088. /* Try to restore the config */
  8089. if (config->mode_changed &&
  8090. intel_set_mode(save_set.crtc, save_set.mode,
  8091. save_set.x, save_set.y, save_set.fb))
  8092. DRM_ERROR("failed to restore config after modeset failure\n");
  8093. }
  8094. out_config:
  8095. intel_set_config_free(config);
  8096. return ret;
  8097. }
  8098. static const struct drm_crtc_funcs intel_crtc_funcs = {
  8099. .cursor_set = intel_crtc_cursor_set,
  8100. .cursor_move = intel_crtc_cursor_move,
  8101. .gamma_set = intel_crtc_gamma_set,
  8102. .set_config = intel_crtc_set_config,
  8103. .destroy = intel_crtc_destroy,
  8104. .page_flip = intel_crtc_page_flip,
  8105. };
  8106. static void intel_cpu_pll_init(struct drm_device *dev)
  8107. {
  8108. if (HAS_DDI(dev))
  8109. intel_ddi_pll_init(dev);
  8110. }
  8111. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  8112. struct intel_shared_dpll *pll,
  8113. struct intel_dpll_hw_state *hw_state)
  8114. {
  8115. uint32_t val;
  8116. val = I915_READ(PCH_DPLL(pll->id));
  8117. hw_state->dpll = val;
  8118. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  8119. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  8120. return val & DPLL_VCO_ENABLE;
  8121. }
  8122. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  8123. struct intel_shared_dpll *pll)
  8124. {
  8125. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  8126. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  8127. }
  8128. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  8129. struct intel_shared_dpll *pll)
  8130. {
  8131. /* PCH refclock must be enabled first */
  8132. assert_pch_refclk_enabled(dev_priv);
  8133. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  8134. /* Wait for the clocks to stabilize. */
  8135. POSTING_READ(PCH_DPLL(pll->id));
  8136. udelay(150);
  8137. /* The pixel multiplier can only be updated once the
  8138. * DPLL is enabled and the clocks are stable.
  8139. *
  8140. * So write it again.
  8141. */
  8142. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  8143. POSTING_READ(PCH_DPLL(pll->id));
  8144. udelay(200);
  8145. }
  8146. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  8147. struct intel_shared_dpll *pll)
  8148. {
  8149. struct drm_device *dev = dev_priv->dev;
  8150. struct intel_crtc *crtc;
  8151. /* Make sure no transcoder isn't still depending on us. */
  8152. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  8153. if (intel_crtc_to_shared_dpll(crtc) == pll)
  8154. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  8155. }
  8156. I915_WRITE(PCH_DPLL(pll->id), 0);
  8157. POSTING_READ(PCH_DPLL(pll->id));
  8158. udelay(200);
  8159. }
  8160. static char *ibx_pch_dpll_names[] = {
  8161. "PCH DPLL A",
  8162. "PCH DPLL B",
  8163. };
  8164. static void ibx_pch_dpll_init(struct drm_device *dev)
  8165. {
  8166. struct drm_i915_private *dev_priv = dev->dev_private;
  8167. int i;
  8168. dev_priv->num_shared_dpll = 2;
  8169. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8170. dev_priv->shared_dplls[i].id = i;
  8171. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  8172. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  8173. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  8174. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  8175. dev_priv->shared_dplls[i].get_hw_state =
  8176. ibx_pch_dpll_get_hw_state;
  8177. }
  8178. }
  8179. static void intel_shared_dpll_init(struct drm_device *dev)
  8180. {
  8181. struct drm_i915_private *dev_priv = dev->dev_private;
  8182. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  8183. ibx_pch_dpll_init(dev);
  8184. else
  8185. dev_priv->num_shared_dpll = 0;
  8186. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  8187. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  8188. dev_priv->num_shared_dpll);
  8189. }
  8190. static void intel_crtc_init(struct drm_device *dev, int pipe)
  8191. {
  8192. drm_i915_private_t *dev_priv = dev->dev_private;
  8193. struct intel_crtc *intel_crtc;
  8194. int i;
  8195. intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
  8196. if (intel_crtc == NULL)
  8197. return;
  8198. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  8199. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  8200. for (i = 0; i < 256; i++) {
  8201. intel_crtc->lut_r[i] = i;
  8202. intel_crtc->lut_g[i] = i;
  8203. intel_crtc->lut_b[i] = i;
  8204. }
  8205. /* Swap pipes & planes for FBC on pre-965 */
  8206. intel_crtc->pipe = pipe;
  8207. intel_crtc->plane = pipe;
  8208. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  8209. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  8210. intel_crtc->plane = !pipe;
  8211. }
  8212. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  8213. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  8214. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  8215. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  8216. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  8217. }
  8218. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  8219. struct drm_file *file)
  8220. {
  8221. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  8222. struct drm_mode_object *drmmode_obj;
  8223. struct intel_crtc *crtc;
  8224. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  8225. return -ENODEV;
  8226. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  8227. DRM_MODE_OBJECT_CRTC);
  8228. if (!drmmode_obj) {
  8229. DRM_ERROR("no such CRTC id\n");
  8230. return -EINVAL;
  8231. }
  8232. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  8233. pipe_from_crtc_id->pipe = crtc->pipe;
  8234. return 0;
  8235. }
  8236. static int intel_encoder_clones(struct intel_encoder *encoder)
  8237. {
  8238. struct drm_device *dev = encoder->base.dev;
  8239. struct intel_encoder *source_encoder;
  8240. int index_mask = 0;
  8241. int entry = 0;
  8242. list_for_each_entry(source_encoder,
  8243. &dev->mode_config.encoder_list, base.head) {
  8244. if (encoder == source_encoder)
  8245. index_mask |= (1 << entry);
  8246. /* Intel hw has only one MUX where enocoders could be cloned. */
  8247. if (encoder->cloneable && source_encoder->cloneable)
  8248. index_mask |= (1 << entry);
  8249. entry++;
  8250. }
  8251. return index_mask;
  8252. }
  8253. static bool has_edp_a(struct drm_device *dev)
  8254. {
  8255. struct drm_i915_private *dev_priv = dev->dev_private;
  8256. if (!IS_MOBILE(dev))
  8257. return false;
  8258. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  8259. return false;
  8260. if (IS_GEN5(dev) &&
  8261. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  8262. return false;
  8263. return true;
  8264. }
  8265. static void intel_setup_outputs(struct drm_device *dev)
  8266. {
  8267. struct drm_i915_private *dev_priv = dev->dev_private;
  8268. struct intel_encoder *encoder;
  8269. bool dpd_is_edp = false;
  8270. intel_lvds_init(dev);
  8271. if (!IS_ULT(dev))
  8272. intel_crt_init(dev);
  8273. if (HAS_DDI(dev)) {
  8274. int found;
  8275. /* Haswell uses DDI functions to detect digital outputs */
  8276. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  8277. /* DDI A only supports eDP */
  8278. if (found)
  8279. intel_ddi_init(dev, PORT_A);
  8280. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  8281. * register */
  8282. found = I915_READ(SFUSE_STRAP);
  8283. if (found & SFUSE_STRAP_DDIB_DETECTED)
  8284. intel_ddi_init(dev, PORT_B);
  8285. if (found & SFUSE_STRAP_DDIC_DETECTED)
  8286. intel_ddi_init(dev, PORT_C);
  8287. if (found & SFUSE_STRAP_DDID_DETECTED)
  8288. intel_ddi_init(dev, PORT_D);
  8289. } else if (HAS_PCH_SPLIT(dev)) {
  8290. int found;
  8291. dpd_is_edp = intel_dpd_is_edp(dev);
  8292. if (has_edp_a(dev))
  8293. intel_dp_init(dev, DP_A, PORT_A);
  8294. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  8295. /* PCH SDVOB multiplex with HDMIB */
  8296. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  8297. if (!found)
  8298. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  8299. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  8300. intel_dp_init(dev, PCH_DP_B, PORT_B);
  8301. }
  8302. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  8303. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  8304. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  8305. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  8306. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  8307. intel_dp_init(dev, PCH_DP_C, PORT_C);
  8308. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  8309. intel_dp_init(dev, PCH_DP_D, PORT_D);
  8310. } else if (IS_VALLEYVIEW(dev)) {
  8311. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  8312. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  8313. PORT_B);
  8314. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  8315. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  8316. }
  8317. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
  8318. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
  8319. PORT_C);
  8320. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  8321. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
  8322. PORT_C);
  8323. }
  8324. intel_dsi_init(dev);
  8325. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  8326. bool found = false;
  8327. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8328. DRM_DEBUG_KMS("probing SDVOB\n");
  8329. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  8330. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  8331. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  8332. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  8333. }
  8334. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  8335. intel_dp_init(dev, DP_B, PORT_B);
  8336. }
  8337. /* Before G4X SDVOC doesn't have its own detect register */
  8338. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8339. DRM_DEBUG_KMS("probing SDVOC\n");
  8340. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  8341. }
  8342. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  8343. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  8344. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  8345. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  8346. }
  8347. if (SUPPORTS_INTEGRATED_DP(dev))
  8348. intel_dp_init(dev, DP_C, PORT_C);
  8349. }
  8350. if (SUPPORTS_INTEGRATED_DP(dev) &&
  8351. (I915_READ(DP_D) & DP_DETECTED))
  8352. intel_dp_init(dev, DP_D, PORT_D);
  8353. } else if (IS_GEN2(dev))
  8354. intel_dvo_init(dev);
  8355. if (SUPPORTS_TV(dev))
  8356. intel_tv_init(dev);
  8357. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  8358. encoder->base.possible_crtcs = encoder->crtc_mask;
  8359. encoder->base.possible_clones =
  8360. intel_encoder_clones(encoder);
  8361. }
  8362. intel_init_pch_refclk(dev);
  8363. drm_helper_move_panel_connectors_to_head(dev);
  8364. }
  8365. void intel_framebuffer_fini(struct intel_framebuffer *fb)
  8366. {
  8367. drm_framebuffer_cleanup(&fb->base);
  8368. WARN_ON(!fb->obj->framebuffer_references--);
  8369. drm_gem_object_unreference_unlocked(&fb->obj->base);
  8370. }
  8371. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  8372. {
  8373. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8374. intel_framebuffer_fini(intel_fb);
  8375. kfree(intel_fb);
  8376. }
  8377. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  8378. struct drm_file *file,
  8379. unsigned int *handle)
  8380. {
  8381. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8382. struct drm_i915_gem_object *obj = intel_fb->obj;
  8383. return drm_gem_handle_create(file, &obj->base, handle);
  8384. }
  8385. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  8386. .destroy = intel_user_framebuffer_destroy,
  8387. .create_handle = intel_user_framebuffer_create_handle,
  8388. };
  8389. int intel_framebuffer_init(struct drm_device *dev,
  8390. struct intel_framebuffer *intel_fb,
  8391. struct drm_mode_fb_cmd2 *mode_cmd,
  8392. struct drm_i915_gem_object *obj)
  8393. {
  8394. int aligned_height, tile_height;
  8395. int pitch_limit;
  8396. int ret;
  8397. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  8398. if (obj->tiling_mode == I915_TILING_Y) {
  8399. DRM_DEBUG("hardware does not support tiling Y\n");
  8400. return -EINVAL;
  8401. }
  8402. if (mode_cmd->pitches[0] & 63) {
  8403. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  8404. mode_cmd->pitches[0]);
  8405. return -EINVAL;
  8406. }
  8407. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  8408. pitch_limit = 32*1024;
  8409. } else if (INTEL_INFO(dev)->gen >= 4) {
  8410. if (obj->tiling_mode)
  8411. pitch_limit = 16*1024;
  8412. else
  8413. pitch_limit = 32*1024;
  8414. } else if (INTEL_INFO(dev)->gen >= 3) {
  8415. if (obj->tiling_mode)
  8416. pitch_limit = 8*1024;
  8417. else
  8418. pitch_limit = 16*1024;
  8419. } else
  8420. /* XXX DSPC is limited to 4k tiled */
  8421. pitch_limit = 8*1024;
  8422. if (mode_cmd->pitches[0] > pitch_limit) {
  8423. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  8424. obj->tiling_mode ? "tiled" : "linear",
  8425. mode_cmd->pitches[0], pitch_limit);
  8426. return -EINVAL;
  8427. }
  8428. if (obj->tiling_mode != I915_TILING_NONE &&
  8429. mode_cmd->pitches[0] != obj->stride) {
  8430. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  8431. mode_cmd->pitches[0], obj->stride);
  8432. return -EINVAL;
  8433. }
  8434. /* Reject formats not supported by any plane early. */
  8435. switch (mode_cmd->pixel_format) {
  8436. case DRM_FORMAT_C8:
  8437. case DRM_FORMAT_RGB565:
  8438. case DRM_FORMAT_XRGB8888:
  8439. case DRM_FORMAT_ARGB8888:
  8440. break;
  8441. case DRM_FORMAT_XRGB1555:
  8442. case DRM_FORMAT_ARGB1555:
  8443. if (INTEL_INFO(dev)->gen > 3) {
  8444. DRM_DEBUG("unsupported pixel format: %s\n",
  8445. drm_get_format_name(mode_cmd->pixel_format));
  8446. return -EINVAL;
  8447. }
  8448. break;
  8449. case DRM_FORMAT_XBGR8888:
  8450. case DRM_FORMAT_ABGR8888:
  8451. case DRM_FORMAT_XRGB2101010:
  8452. case DRM_FORMAT_ARGB2101010:
  8453. case DRM_FORMAT_XBGR2101010:
  8454. case DRM_FORMAT_ABGR2101010:
  8455. if (INTEL_INFO(dev)->gen < 4) {
  8456. DRM_DEBUG("unsupported pixel format: %s\n",
  8457. drm_get_format_name(mode_cmd->pixel_format));
  8458. return -EINVAL;
  8459. }
  8460. break;
  8461. case DRM_FORMAT_YUYV:
  8462. case DRM_FORMAT_UYVY:
  8463. case DRM_FORMAT_YVYU:
  8464. case DRM_FORMAT_VYUY:
  8465. if (INTEL_INFO(dev)->gen < 5) {
  8466. DRM_DEBUG("unsupported pixel format: %s\n",
  8467. drm_get_format_name(mode_cmd->pixel_format));
  8468. return -EINVAL;
  8469. }
  8470. break;
  8471. default:
  8472. DRM_DEBUG("unsupported pixel format: %s\n",
  8473. drm_get_format_name(mode_cmd->pixel_format));
  8474. return -EINVAL;
  8475. }
  8476. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  8477. if (mode_cmd->offsets[0] != 0)
  8478. return -EINVAL;
  8479. tile_height = IS_GEN2(dev) ? 16 : 8;
  8480. aligned_height = ALIGN(mode_cmd->height,
  8481. obj->tiling_mode ? tile_height : 1);
  8482. /* FIXME drm helper for size checks (especially planar formats)? */
  8483. if (obj->base.size < aligned_height * mode_cmd->pitches[0])
  8484. return -EINVAL;
  8485. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  8486. intel_fb->obj = obj;
  8487. intel_fb->obj->framebuffer_references++;
  8488. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  8489. if (ret) {
  8490. DRM_ERROR("framebuffer init failed %d\n", ret);
  8491. return ret;
  8492. }
  8493. return 0;
  8494. }
  8495. static struct drm_framebuffer *
  8496. intel_user_framebuffer_create(struct drm_device *dev,
  8497. struct drm_file *filp,
  8498. struct drm_mode_fb_cmd2 *mode_cmd)
  8499. {
  8500. struct drm_i915_gem_object *obj;
  8501. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  8502. mode_cmd->handles[0]));
  8503. if (&obj->base == NULL)
  8504. return ERR_PTR(-ENOENT);
  8505. return intel_framebuffer_create(dev, mode_cmd, obj);
  8506. }
  8507. #ifndef CONFIG_DRM_I915_FBDEV
  8508. static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
  8509. {
  8510. }
  8511. #endif
  8512. static const struct drm_mode_config_funcs intel_mode_funcs = {
  8513. .fb_create = intel_user_framebuffer_create,
  8514. .output_poll_changed = intel_fbdev_output_poll_changed,
  8515. };
  8516. /* Set up chip specific display functions */
  8517. static void intel_init_display(struct drm_device *dev)
  8518. {
  8519. struct drm_i915_private *dev_priv = dev->dev_private;
  8520. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  8521. dev_priv->display.find_dpll = g4x_find_best_dpll;
  8522. else if (IS_VALLEYVIEW(dev))
  8523. dev_priv->display.find_dpll = vlv_find_best_dpll;
  8524. else if (IS_PINEVIEW(dev))
  8525. dev_priv->display.find_dpll = pnv_find_best_dpll;
  8526. else
  8527. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  8528. if (HAS_DDI(dev)) {
  8529. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  8530. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  8531. dev_priv->display.crtc_enable = haswell_crtc_enable;
  8532. dev_priv->display.crtc_disable = haswell_crtc_disable;
  8533. dev_priv->display.off = haswell_crtc_off;
  8534. dev_priv->display.update_plane = ironlake_update_plane;
  8535. } else if (HAS_PCH_SPLIT(dev)) {
  8536. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  8537. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  8538. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  8539. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  8540. dev_priv->display.off = ironlake_crtc_off;
  8541. dev_priv->display.update_plane = ironlake_update_plane;
  8542. } else if (IS_VALLEYVIEW(dev)) {
  8543. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8544. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8545. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  8546. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8547. dev_priv->display.off = i9xx_crtc_off;
  8548. dev_priv->display.update_plane = i9xx_update_plane;
  8549. } else {
  8550. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8551. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8552. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  8553. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8554. dev_priv->display.off = i9xx_crtc_off;
  8555. dev_priv->display.update_plane = i9xx_update_plane;
  8556. }
  8557. /* Returns the core display clock speed */
  8558. if (IS_VALLEYVIEW(dev))
  8559. dev_priv->display.get_display_clock_speed =
  8560. valleyview_get_display_clock_speed;
  8561. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  8562. dev_priv->display.get_display_clock_speed =
  8563. i945_get_display_clock_speed;
  8564. else if (IS_I915G(dev))
  8565. dev_priv->display.get_display_clock_speed =
  8566. i915_get_display_clock_speed;
  8567. else if (IS_I945GM(dev) || IS_845G(dev))
  8568. dev_priv->display.get_display_clock_speed =
  8569. i9xx_misc_get_display_clock_speed;
  8570. else if (IS_PINEVIEW(dev))
  8571. dev_priv->display.get_display_clock_speed =
  8572. pnv_get_display_clock_speed;
  8573. else if (IS_I915GM(dev))
  8574. dev_priv->display.get_display_clock_speed =
  8575. i915gm_get_display_clock_speed;
  8576. else if (IS_I865G(dev))
  8577. dev_priv->display.get_display_clock_speed =
  8578. i865_get_display_clock_speed;
  8579. else if (IS_I85X(dev))
  8580. dev_priv->display.get_display_clock_speed =
  8581. i855_get_display_clock_speed;
  8582. else /* 852, 830 */
  8583. dev_priv->display.get_display_clock_speed =
  8584. i830_get_display_clock_speed;
  8585. if (HAS_PCH_SPLIT(dev)) {
  8586. if (IS_GEN5(dev)) {
  8587. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  8588. dev_priv->display.write_eld = ironlake_write_eld;
  8589. } else if (IS_GEN6(dev)) {
  8590. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  8591. dev_priv->display.write_eld = ironlake_write_eld;
  8592. } else if (IS_IVYBRIDGE(dev)) {
  8593. /* FIXME: detect B0+ stepping and use auto training */
  8594. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  8595. dev_priv->display.write_eld = ironlake_write_eld;
  8596. dev_priv->display.modeset_global_resources =
  8597. ivb_modeset_global_resources;
  8598. } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
  8599. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  8600. dev_priv->display.write_eld = haswell_write_eld;
  8601. dev_priv->display.modeset_global_resources =
  8602. haswell_modeset_global_resources;
  8603. }
  8604. } else if (IS_G4X(dev)) {
  8605. dev_priv->display.write_eld = g4x_write_eld;
  8606. }
  8607. /* Default just returns -ENODEV to indicate unsupported */
  8608. dev_priv->display.queue_flip = intel_default_queue_flip;
  8609. switch (INTEL_INFO(dev)->gen) {
  8610. case 2:
  8611. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8612. break;
  8613. case 3:
  8614. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8615. break;
  8616. case 4:
  8617. case 5:
  8618. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8619. break;
  8620. case 6:
  8621. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8622. break;
  8623. case 7:
  8624. case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
  8625. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8626. break;
  8627. }
  8628. }
  8629. /*
  8630. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8631. * resume, or other times. This quirk makes sure that's the case for
  8632. * affected systems.
  8633. */
  8634. static void quirk_pipea_force(struct drm_device *dev)
  8635. {
  8636. struct drm_i915_private *dev_priv = dev->dev_private;
  8637. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8638. DRM_INFO("applying pipe a force quirk\n");
  8639. }
  8640. /*
  8641. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8642. */
  8643. static void quirk_ssc_force_disable(struct drm_device *dev)
  8644. {
  8645. struct drm_i915_private *dev_priv = dev->dev_private;
  8646. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8647. DRM_INFO("applying lvds SSC disable quirk\n");
  8648. }
  8649. /*
  8650. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8651. * brightness value
  8652. */
  8653. static void quirk_invert_brightness(struct drm_device *dev)
  8654. {
  8655. struct drm_i915_private *dev_priv = dev->dev_private;
  8656. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8657. DRM_INFO("applying inverted panel brightness quirk\n");
  8658. }
  8659. /*
  8660. * Some machines (Dell XPS13) suffer broken backlight controls if
  8661. * BLM_PCH_PWM_ENABLE is set.
  8662. */
  8663. static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
  8664. {
  8665. struct drm_i915_private *dev_priv = dev->dev_private;
  8666. dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
  8667. DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
  8668. }
  8669. struct intel_quirk {
  8670. int device;
  8671. int subsystem_vendor;
  8672. int subsystem_device;
  8673. void (*hook)(struct drm_device *dev);
  8674. };
  8675. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  8676. struct intel_dmi_quirk {
  8677. void (*hook)(struct drm_device *dev);
  8678. const struct dmi_system_id (*dmi_id_list)[];
  8679. };
  8680. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  8681. {
  8682. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  8683. return 1;
  8684. }
  8685. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  8686. {
  8687. .dmi_id_list = &(const struct dmi_system_id[]) {
  8688. {
  8689. .callback = intel_dmi_reverse_brightness,
  8690. .ident = "NCR Corporation",
  8691. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  8692. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  8693. },
  8694. },
  8695. { } /* terminating entry */
  8696. },
  8697. .hook = quirk_invert_brightness,
  8698. },
  8699. };
  8700. static struct intel_quirk intel_quirks[] = {
  8701. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8702. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8703. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8704. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8705. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8706. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8707. /* 830 needs to leave pipe A & dpll A up */
  8708. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8709. /* Lenovo U160 cannot use SSC on LVDS */
  8710. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8711. /* Sony Vaio Y cannot use SSC on LVDS */
  8712. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8713. /*
  8714. * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
  8715. * seem to use inverted backlight PWM.
  8716. */
  8717. { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
  8718. /* Dell XPS13 HD Sandy Bridge */
  8719. { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
  8720. /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
  8721. { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
  8722. };
  8723. static void intel_init_quirks(struct drm_device *dev)
  8724. {
  8725. struct pci_dev *d = dev->pdev;
  8726. int i;
  8727. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8728. struct intel_quirk *q = &intel_quirks[i];
  8729. if (d->device == q->device &&
  8730. (d->subsystem_vendor == q->subsystem_vendor ||
  8731. q->subsystem_vendor == PCI_ANY_ID) &&
  8732. (d->subsystem_device == q->subsystem_device ||
  8733. q->subsystem_device == PCI_ANY_ID))
  8734. q->hook(dev);
  8735. }
  8736. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8737. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8738. intel_dmi_quirks[i].hook(dev);
  8739. }
  8740. }
  8741. /* Disable the VGA plane that we never use */
  8742. static void i915_disable_vga(struct drm_device *dev)
  8743. {
  8744. struct drm_i915_private *dev_priv = dev->dev_private;
  8745. u8 sr1;
  8746. u32 vga_reg = i915_vgacntrl_reg(dev);
  8747. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8748. outb(SR01, VGA_SR_INDEX);
  8749. sr1 = inb(VGA_SR_DATA);
  8750. outb(sr1 | 1<<5, VGA_SR_DATA);
  8751. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8752. udelay(300);
  8753. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8754. POSTING_READ(vga_reg);
  8755. }
  8756. void intel_modeset_init_hw(struct drm_device *dev)
  8757. {
  8758. struct drm_i915_private *dev_priv = dev->dev_private;
  8759. intel_prepare_ddi(dev);
  8760. intel_init_clock_gating(dev);
  8761. /* Enable the CRI clock source so we can get at the display */
  8762. if (IS_VALLEYVIEW(dev))
  8763. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  8764. DPLL_INTEGRATED_CRI_CLK_VLV);
  8765. intel_init_dpio(dev);
  8766. mutex_lock(&dev->struct_mutex);
  8767. intel_enable_gt_powersave(dev);
  8768. mutex_unlock(&dev->struct_mutex);
  8769. }
  8770. void intel_modeset_suspend_hw(struct drm_device *dev)
  8771. {
  8772. intel_suspend_hw(dev);
  8773. }
  8774. void intel_modeset_init(struct drm_device *dev)
  8775. {
  8776. struct drm_i915_private *dev_priv = dev->dev_private;
  8777. int i, j, ret;
  8778. drm_mode_config_init(dev);
  8779. dev->mode_config.min_width = 0;
  8780. dev->mode_config.min_height = 0;
  8781. dev->mode_config.preferred_depth = 24;
  8782. dev->mode_config.prefer_shadow = 1;
  8783. dev->mode_config.funcs = &intel_mode_funcs;
  8784. intel_init_quirks(dev);
  8785. intel_init_pm(dev);
  8786. if (INTEL_INFO(dev)->num_pipes == 0)
  8787. return;
  8788. intel_init_display(dev);
  8789. if (IS_GEN2(dev)) {
  8790. dev->mode_config.max_width = 2048;
  8791. dev->mode_config.max_height = 2048;
  8792. } else if (IS_GEN3(dev)) {
  8793. dev->mode_config.max_width = 4096;
  8794. dev->mode_config.max_height = 4096;
  8795. } else {
  8796. dev->mode_config.max_width = 8192;
  8797. dev->mode_config.max_height = 8192;
  8798. }
  8799. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8800. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8801. INTEL_INFO(dev)->num_pipes,
  8802. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8803. for_each_pipe(i) {
  8804. intel_crtc_init(dev, i);
  8805. for (j = 0; j < dev_priv->num_plane; j++) {
  8806. ret = intel_plane_init(dev, i, j);
  8807. if (ret)
  8808. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8809. pipe_name(i), sprite_name(i, j), ret);
  8810. }
  8811. }
  8812. intel_cpu_pll_init(dev);
  8813. intel_shared_dpll_init(dev);
  8814. /* Just disable it once at startup */
  8815. i915_disable_vga(dev);
  8816. intel_setup_outputs(dev);
  8817. /* Just in case the BIOS is doing something questionable. */
  8818. intel_disable_fbc(dev);
  8819. }
  8820. static void
  8821. intel_connector_break_all_links(struct intel_connector *connector)
  8822. {
  8823. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8824. connector->base.encoder = NULL;
  8825. connector->encoder->connectors_active = false;
  8826. connector->encoder->base.crtc = NULL;
  8827. }
  8828. static void intel_enable_pipe_a(struct drm_device *dev)
  8829. {
  8830. struct intel_connector *connector;
  8831. struct drm_connector *crt = NULL;
  8832. struct intel_load_detect_pipe load_detect_temp;
  8833. /* We can't just switch on the pipe A, we need to set things up with a
  8834. * proper mode and output configuration. As a gross hack, enable pipe A
  8835. * by enabling the load detect pipe once. */
  8836. list_for_each_entry(connector,
  8837. &dev->mode_config.connector_list,
  8838. base.head) {
  8839. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8840. crt = &connector->base;
  8841. break;
  8842. }
  8843. }
  8844. if (!crt)
  8845. return;
  8846. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8847. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8848. }
  8849. static bool
  8850. intel_check_plane_mapping(struct intel_crtc *crtc)
  8851. {
  8852. struct drm_device *dev = crtc->base.dev;
  8853. struct drm_i915_private *dev_priv = dev->dev_private;
  8854. u32 reg, val;
  8855. if (INTEL_INFO(dev)->num_pipes == 1)
  8856. return true;
  8857. reg = DSPCNTR(!crtc->plane);
  8858. val = I915_READ(reg);
  8859. if ((val & DISPLAY_PLANE_ENABLE) &&
  8860. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8861. return false;
  8862. return true;
  8863. }
  8864. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8865. {
  8866. struct drm_device *dev = crtc->base.dev;
  8867. struct drm_i915_private *dev_priv = dev->dev_private;
  8868. u32 reg;
  8869. /* Clear any frame start delays used for debugging left by the BIOS */
  8870. reg = PIPECONF(crtc->config.cpu_transcoder);
  8871. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8872. /* We need to sanitize the plane -> pipe mapping first because this will
  8873. * disable the crtc (and hence change the state) if it is wrong. Note
  8874. * that gen4+ has a fixed plane -> pipe mapping. */
  8875. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8876. struct intel_connector *connector;
  8877. bool plane;
  8878. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8879. crtc->base.base.id);
  8880. /* Pipe has the wrong plane attached and the plane is active.
  8881. * Temporarily change the plane mapping and disable everything
  8882. * ... */
  8883. plane = crtc->plane;
  8884. crtc->plane = !plane;
  8885. dev_priv->display.crtc_disable(&crtc->base);
  8886. crtc->plane = plane;
  8887. /* ... and break all links. */
  8888. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8889. base.head) {
  8890. if (connector->encoder->base.crtc != &crtc->base)
  8891. continue;
  8892. intel_connector_break_all_links(connector);
  8893. }
  8894. WARN_ON(crtc->active);
  8895. crtc->base.enabled = false;
  8896. }
  8897. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8898. crtc->pipe == PIPE_A && !crtc->active) {
  8899. /* BIOS forgot to enable pipe A, this mostly happens after
  8900. * resume. Force-enable the pipe to fix this, the update_dpms
  8901. * call below we restore the pipe to the right state, but leave
  8902. * the required bits on. */
  8903. intel_enable_pipe_a(dev);
  8904. }
  8905. /* Adjust the state of the output pipe according to whether we
  8906. * have active connectors/encoders. */
  8907. intel_crtc_update_dpms(&crtc->base);
  8908. if (crtc->active != crtc->base.enabled) {
  8909. struct intel_encoder *encoder;
  8910. /* This can happen either due to bugs in the get_hw_state
  8911. * functions or because the pipe is force-enabled due to the
  8912. * pipe A quirk. */
  8913. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8914. crtc->base.base.id,
  8915. crtc->base.enabled ? "enabled" : "disabled",
  8916. crtc->active ? "enabled" : "disabled");
  8917. crtc->base.enabled = crtc->active;
  8918. /* Because we only establish the connector -> encoder ->
  8919. * crtc links if something is active, this means the
  8920. * crtc is now deactivated. Break the links. connector
  8921. * -> encoder links are only establish when things are
  8922. * actually up, hence no need to break them. */
  8923. WARN_ON(crtc->active);
  8924. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8925. WARN_ON(encoder->connectors_active);
  8926. encoder->base.crtc = NULL;
  8927. }
  8928. }
  8929. }
  8930. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8931. {
  8932. struct intel_connector *connector;
  8933. struct drm_device *dev = encoder->base.dev;
  8934. /* We need to check both for a crtc link (meaning that the
  8935. * encoder is active and trying to read from a pipe) and the
  8936. * pipe itself being active. */
  8937. bool has_active_crtc = encoder->base.crtc &&
  8938. to_intel_crtc(encoder->base.crtc)->active;
  8939. if (encoder->connectors_active && !has_active_crtc) {
  8940. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8941. encoder->base.base.id,
  8942. drm_get_encoder_name(&encoder->base));
  8943. /* Connector is active, but has no active pipe. This is
  8944. * fallout from our resume register restoring. Disable
  8945. * the encoder manually again. */
  8946. if (encoder->base.crtc) {
  8947. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8948. encoder->base.base.id,
  8949. drm_get_encoder_name(&encoder->base));
  8950. encoder->disable(encoder);
  8951. }
  8952. /* Inconsistent output/port/pipe state happens presumably due to
  8953. * a bug in one of the get_hw_state functions. Or someplace else
  8954. * in our code, like the register restore mess on resume. Clamp
  8955. * things to off as a safer default. */
  8956. list_for_each_entry(connector,
  8957. &dev->mode_config.connector_list,
  8958. base.head) {
  8959. if (connector->encoder != encoder)
  8960. continue;
  8961. intel_connector_break_all_links(connector);
  8962. }
  8963. }
  8964. /* Enabled encoders without active connectors will be fixed in
  8965. * the crtc fixup. */
  8966. }
  8967. void i915_redisable_vga(struct drm_device *dev)
  8968. {
  8969. struct drm_i915_private *dev_priv = dev->dev_private;
  8970. u32 vga_reg = i915_vgacntrl_reg(dev);
  8971. /* This function can be called both from intel_modeset_setup_hw_state or
  8972. * at a very early point in our resume sequence, where the power well
  8973. * structures are not yet restored. Since this function is at a very
  8974. * paranoid "someone might have enabled VGA while we were not looking"
  8975. * level, just check if the power well is enabled instead of trying to
  8976. * follow the "don't touch the power well if we don't need it" policy
  8977. * the rest of the driver uses. */
  8978. if (HAS_POWER_WELL(dev) &&
  8979. (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
  8980. return;
  8981. if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
  8982. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8983. i915_disable_vga(dev);
  8984. }
  8985. }
  8986. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8987. {
  8988. struct drm_i915_private *dev_priv = dev->dev_private;
  8989. enum pipe pipe;
  8990. struct intel_crtc *crtc;
  8991. struct intel_encoder *encoder;
  8992. struct intel_connector *connector;
  8993. int i;
  8994. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8995. base.head) {
  8996. memset(&crtc->config, 0, sizeof(crtc->config));
  8997. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8998. &crtc->config);
  8999. crtc->base.enabled = crtc->active;
  9000. crtc->primary_enabled = crtc->active;
  9001. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  9002. crtc->base.base.id,
  9003. crtc->active ? "enabled" : "disabled");
  9004. }
  9005. /* FIXME: Smash this into the new shared dpll infrastructure. */
  9006. if (HAS_DDI(dev))
  9007. intel_ddi_setup_hw_pll_state(dev);
  9008. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  9009. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  9010. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  9011. pll->active = 0;
  9012. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  9013. base.head) {
  9014. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  9015. pll->active++;
  9016. }
  9017. pll->refcount = pll->active;
  9018. DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
  9019. pll->name, pll->refcount, pll->on);
  9020. }
  9021. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  9022. base.head) {
  9023. pipe = 0;
  9024. if (encoder->get_hw_state(encoder, &pipe)) {
  9025. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  9026. encoder->base.crtc = &crtc->base;
  9027. if (encoder->get_config)
  9028. encoder->get_config(encoder, &crtc->config);
  9029. } else {
  9030. encoder->base.crtc = NULL;
  9031. }
  9032. encoder->connectors_active = false;
  9033. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
  9034. encoder->base.base.id,
  9035. drm_get_encoder_name(&encoder->base),
  9036. encoder->base.crtc ? "enabled" : "disabled",
  9037. pipe_name(pipe));
  9038. }
  9039. list_for_each_entry(connector, &dev->mode_config.connector_list,
  9040. base.head) {
  9041. if (connector->get_hw_state(connector)) {
  9042. connector->base.dpms = DRM_MODE_DPMS_ON;
  9043. connector->encoder->connectors_active = true;
  9044. connector->base.encoder = &connector->encoder->base;
  9045. } else {
  9046. connector->base.dpms = DRM_MODE_DPMS_OFF;
  9047. connector->base.encoder = NULL;
  9048. }
  9049. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  9050. connector->base.base.id,
  9051. drm_get_connector_name(&connector->base),
  9052. connector->base.encoder ? "enabled" : "disabled");
  9053. }
  9054. }
  9055. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  9056. * and i915 state tracking structures. */
  9057. void intel_modeset_setup_hw_state(struct drm_device *dev,
  9058. bool force_restore)
  9059. {
  9060. struct drm_i915_private *dev_priv = dev->dev_private;
  9061. enum pipe pipe;
  9062. struct intel_crtc *crtc;
  9063. struct intel_encoder *encoder;
  9064. int i;
  9065. intel_modeset_readout_hw_state(dev);
  9066. /*
  9067. * Now that we have the config, copy it to each CRTC struct
  9068. * Note that this could go away if we move to using crtc_config
  9069. * checking everywhere.
  9070. */
  9071. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  9072. base.head) {
  9073. if (crtc->active && i915_fastboot) {
  9074. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  9075. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  9076. crtc->base.base.id);
  9077. drm_mode_debug_printmodeline(&crtc->base.mode);
  9078. }
  9079. }
  9080. /* HW state is read out, now we need to sanitize this mess. */
  9081. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  9082. base.head) {
  9083. intel_sanitize_encoder(encoder);
  9084. }
  9085. for_each_pipe(pipe) {
  9086. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  9087. intel_sanitize_crtc(crtc);
  9088. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  9089. }
  9090. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  9091. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  9092. if (!pll->on || pll->active)
  9093. continue;
  9094. DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  9095. pll->disable(dev_priv, pll);
  9096. pll->on = false;
  9097. }
  9098. if (IS_HASWELL(dev))
  9099. ilk_wm_get_hw_state(dev);
  9100. if (force_restore) {
  9101. i915_redisable_vga(dev);
  9102. /*
  9103. * We need to use raw interfaces for restoring state to avoid
  9104. * checking (bogus) intermediate states.
  9105. */
  9106. for_each_pipe(pipe) {
  9107. struct drm_crtc *crtc =
  9108. dev_priv->pipe_to_crtc_mapping[pipe];
  9109. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  9110. crtc->fb);
  9111. }
  9112. } else {
  9113. intel_modeset_update_staged_output_state(dev);
  9114. }
  9115. intel_modeset_check_state(dev);
  9116. drm_mode_config_reset(dev);
  9117. }
  9118. void intel_modeset_gem_init(struct drm_device *dev)
  9119. {
  9120. intel_modeset_init_hw(dev);
  9121. intel_setup_overlay(dev);
  9122. intel_modeset_setup_hw_state(dev, false);
  9123. }
  9124. void intel_modeset_cleanup(struct drm_device *dev)
  9125. {
  9126. struct drm_i915_private *dev_priv = dev->dev_private;
  9127. struct drm_crtc *crtc;
  9128. struct drm_connector *connector;
  9129. /*
  9130. * Interrupts and polling as the first thing to avoid creating havoc.
  9131. * Too much stuff here (turning of rps, connectors, ...) would
  9132. * experience fancy races otherwise.
  9133. */
  9134. drm_irq_uninstall(dev);
  9135. cancel_work_sync(&dev_priv->hotplug_work);
  9136. /*
  9137. * Due to the hpd irq storm handling the hotplug work can re-arm the
  9138. * poll handlers. Hence disable polling after hpd handling is shut down.
  9139. */
  9140. drm_kms_helper_poll_fini(dev);
  9141. mutex_lock(&dev->struct_mutex);
  9142. intel_unregister_dsm_handler();
  9143. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  9144. /* Skip inactive CRTCs */
  9145. if (!crtc->fb)
  9146. continue;
  9147. intel_increase_pllclock(crtc);
  9148. }
  9149. intel_disable_fbc(dev);
  9150. intel_disable_gt_powersave(dev);
  9151. ironlake_teardown_rc6(dev);
  9152. mutex_unlock(&dev->struct_mutex);
  9153. /* flush any delayed tasks or pending work */
  9154. flush_scheduled_work();
  9155. /* destroy backlight, if any, before the connectors */
  9156. intel_panel_destroy_backlight(dev);
  9157. /* destroy the sysfs files before encoders/connectors */
  9158. list_for_each_entry(connector, &dev->mode_config.connector_list, head)
  9159. drm_sysfs_connector_remove(connector);
  9160. drm_mode_config_cleanup(dev);
  9161. intel_cleanup_overlay(dev);
  9162. }
  9163. /*
  9164. * Return which encoder is currently attached for connector.
  9165. */
  9166. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  9167. {
  9168. return &intel_attached_encoder(connector)->base;
  9169. }
  9170. void intel_connector_attach_encoder(struct intel_connector *connector,
  9171. struct intel_encoder *encoder)
  9172. {
  9173. connector->encoder = encoder;
  9174. drm_mode_connector_attach_encoder(&connector->base,
  9175. &encoder->base);
  9176. }
  9177. /*
  9178. * set vga decode state - true == enable VGA decode
  9179. */
  9180. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  9181. {
  9182. struct drm_i915_private *dev_priv = dev->dev_private;
  9183. u16 gmch_ctrl;
  9184. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  9185. if (state)
  9186. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  9187. else
  9188. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  9189. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  9190. return 0;
  9191. }
  9192. struct intel_display_error_state {
  9193. u32 power_well_driver;
  9194. int num_transcoders;
  9195. struct intel_cursor_error_state {
  9196. u32 control;
  9197. u32 position;
  9198. u32 base;
  9199. u32 size;
  9200. } cursor[I915_MAX_PIPES];
  9201. struct intel_pipe_error_state {
  9202. u32 source;
  9203. } pipe[I915_MAX_PIPES];
  9204. struct intel_plane_error_state {
  9205. u32 control;
  9206. u32 stride;
  9207. u32 size;
  9208. u32 pos;
  9209. u32 addr;
  9210. u32 surface;
  9211. u32 tile_offset;
  9212. } plane[I915_MAX_PIPES];
  9213. struct intel_transcoder_error_state {
  9214. enum transcoder cpu_transcoder;
  9215. u32 conf;
  9216. u32 htotal;
  9217. u32 hblank;
  9218. u32 hsync;
  9219. u32 vtotal;
  9220. u32 vblank;
  9221. u32 vsync;
  9222. } transcoder[4];
  9223. };
  9224. struct intel_display_error_state *
  9225. intel_display_capture_error_state(struct drm_device *dev)
  9226. {
  9227. drm_i915_private_t *dev_priv = dev->dev_private;
  9228. struct intel_display_error_state *error;
  9229. int transcoders[] = {
  9230. TRANSCODER_A,
  9231. TRANSCODER_B,
  9232. TRANSCODER_C,
  9233. TRANSCODER_EDP,
  9234. };
  9235. int i;
  9236. if (INTEL_INFO(dev)->num_pipes == 0)
  9237. return NULL;
  9238. error = kzalloc(sizeof(*error), GFP_ATOMIC);
  9239. if (error == NULL)
  9240. return NULL;
  9241. if (HAS_POWER_WELL(dev))
  9242. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  9243. for_each_pipe(i) {
  9244. if (!intel_display_power_enabled(dev, POWER_DOMAIN_PIPE(i)))
  9245. continue;
  9246. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  9247. error->cursor[i].control = I915_READ(CURCNTR(i));
  9248. error->cursor[i].position = I915_READ(CURPOS(i));
  9249. error->cursor[i].base = I915_READ(CURBASE(i));
  9250. } else {
  9251. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  9252. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  9253. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  9254. }
  9255. error->plane[i].control = I915_READ(DSPCNTR(i));
  9256. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  9257. if (INTEL_INFO(dev)->gen <= 3) {
  9258. error->plane[i].size = I915_READ(DSPSIZE(i));
  9259. error->plane[i].pos = I915_READ(DSPPOS(i));
  9260. }
  9261. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9262. error->plane[i].addr = I915_READ(DSPADDR(i));
  9263. if (INTEL_INFO(dev)->gen >= 4) {
  9264. error->plane[i].surface = I915_READ(DSPSURF(i));
  9265. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  9266. }
  9267. error->pipe[i].source = I915_READ(PIPESRC(i));
  9268. }
  9269. error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  9270. if (HAS_DDI(dev_priv->dev))
  9271. error->num_transcoders++; /* Account for eDP. */
  9272. for (i = 0; i < error->num_transcoders; i++) {
  9273. enum transcoder cpu_transcoder = transcoders[i];
  9274. if (!intel_display_power_enabled(dev,
  9275. POWER_DOMAIN_TRANSCODER(cpu_transcoder)))
  9276. continue;
  9277. error->transcoder[i].cpu_transcoder = cpu_transcoder;
  9278. error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  9279. error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  9280. error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  9281. error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  9282. error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  9283. error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  9284. error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  9285. }
  9286. return error;
  9287. }
  9288. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  9289. void
  9290. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  9291. struct drm_device *dev,
  9292. struct intel_display_error_state *error)
  9293. {
  9294. int i;
  9295. if (!error)
  9296. return;
  9297. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  9298. if (HAS_POWER_WELL(dev))
  9299. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  9300. error->power_well_driver);
  9301. for_each_pipe(i) {
  9302. err_printf(m, "Pipe [%d]:\n", i);
  9303. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  9304. err_printf(m, "Plane [%d]:\n", i);
  9305. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  9306. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  9307. if (INTEL_INFO(dev)->gen <= 3) {
  9308. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  9309. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  9310. }
  9311. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9312. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  9313. if (INTEL_INFO(dev)->gen >= 4) {
  9314. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  9315. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  9316. }
  9317. err_printf(m, "Cursor [%d]:\n", i);
  9318. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  9319. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  9320. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  9321. }
  9322. for (i = 0; i < error->num_transcoders; i++) {
  9323. err_printf(m, "CPU transcoder: %c\n",
  9324. transcoder_name(error->transcoder[i].cpu_transcoder));
  9325. err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
  9326. err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
  9327. err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
  9328. err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
  9329. err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
  9330. err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
  9331. err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
  9332. }
  9333. }