i915_gem_gtt.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390
  1. /*
  2. * Copyright © 2010 Daniel Vetter
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. */
  24. #include <drm/drmP.h>
  25. #include <drm/i915_drm.h>
  26. #include "i915_drv.h"
  27. #include "i915_trace.h"
  28. #include "intel_drv.h"
  29. #define GEN6_PPGTT_PD_ENTRIES 512
  30. #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
  31. typedef uint64_t gen8_gtt_pte_t;
  32. typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
  33. /* PPGTT stuff */
  34. #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
  35. #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
  36. #define GEN6_PDE_VALID (1 << 0)
  37. /* gen6+ has bit 11-4 for physical addr bit 39-32 */
  38. #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  39. #define GEN6_PTE_VALID (1 << 0)
  40. #define GEN6_PTE_UNCACHED (1 << 1)
  41. #define HSW_PTE_UNCACHED (0)
  42. #define GEN6_PTE_CACHE_LLC (2 << 1)
  43. #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
  44. #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  45. #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
  46. /* Cacheability Control is a 4-bit value. The low three bits are stored in *
  47. * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
  48. */
  49. #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
  50. (((bits) & 0x8) << (11 - 3)))
  51. #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
  52. #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
  53. #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
  54. #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
  55. #define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
  56. #define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
  57. #define GEN8_LEGACY_PDPS 4
  58. #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
  59. #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
  60. #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
  61. #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
  62. static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
  63. enum i915_cache_level level,
  64. bool valid)
  65. {
  66. gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
  67. pte |= addr;
  68. if (level != I915_CACHE_NONE)
  69. pte |= PPAT_CACHED_INDEX;
  70. else
  71. pte |= PPAT_UNCACHED_INDEX;
  72. return pte;
  73. }
  74. static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
  75. dma_addr_t addr,
  76. enum i915_cache_level level)
  77. {
  78. gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
  79. pde |= addr;
  80. if (level != I915_CACHE_NONE)
  81. pde |= PPAT_CACHED_PDE_INDEX;
  82. else
  83. pde |= PPAT_UNCACHED_INDEX;
  84. return pde;
  85. }
  86. static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
  87. enum i915_cache_level level,
  88. bool valid)
  89. {
  90. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  91. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  92. switch (level) {
  93. case I915_CACHE_L3_LLC:
  94. case I915_CACHE_LLC:
  95. pte |= GEN6_PTE_CACHE_LLC;
  96. break;
  97. case I915_CACHE_NONE:
  98. pte |= GEN6_PTE_UNCACHED;
  99. break;
  100. default:
  101. WARN_ON(1);
  102. }
  103. return pte;
  104. }
  105. static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
  106. enum i915_cache_level level,
  107. bool valid)
  108. {
  109. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  110. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  111. switch (level) {
  112. case I915_CACHE_L3_LLC:
  113. pte |= GEN7_PTE_CACHE_L3_LLC;
  114. break;
  115. case I915_CACHE_LLC:
  116. pte |= GEN6_PTE_CACHE_LLC;
  117. break;
  118. case I915_CACHE_NONE:
  119. pte |= GEN6_PTE_UNCACHED;
  120. break;
  121. default:
  122. WARN_ON(1);
  123. }
  124. return pte;
  125. }
  126. #define BYT_PTE_WRITEABLE (1 << 1)
  127. #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
  128. static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
  129. enum i915_cache_level level,
  130. bool valid)
  131. {
  132. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  133. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  134. /* Mark the page as writeable. Other platforms don't have a
  135. * setting for read-only/writable, so this matches that behavior.
  136. */
  137. pte |= BYT_PTE_WRITEABLE;
  138. if (level != I915_CACHE_NONE)
  139. pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
  140. return pte;
  141. }
  142. static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
  143. enum i915_cache_level level,
  144. bool valid)
  145. {
  146. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  147. pte |= HSW_PTE_ADDR_ENCODE(addr);
  148. if (level != I915_CACHE_NONE)
  149. pte |= HSW_WB_LLC_AGE3;
  150. return pte;
  151. }
  152. static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
  153. enum i915_cache_level level,
  154. bool valid)
  155. {
  156. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  157. pte |= HSW_PTE_ADDR_ENCODE(addr);
  158. switch (level) {
  159. case I915_CACHE_NONE:
  160. break;
  161. case I915_CACHE_WT:
  162. pte |= HSW_WT_ELLC_LLC_AGE0;
  163. break;
  164. default:
  165. pte |= HSW_WB_ELLC_LLC_AGE0;
  166. break;
  167. }
  168. return pte;
  169. }
  170. static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
  171. unsigned first_entry,
  172. unsigned num_entries,
  173. bool use_scratch)
  174. {
  175. struct i915_hw_ppgtt *ppgtt =
  176. container_of(vm, struct i915_hw_ppgtt, base);
  177. gen8_gtt_pte_t *pt_vaddr, scratch_pte;
  178. unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
  179. unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
  180. unsigned last_pte, i;
  181. scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
  182. I915_CACHE_LLC, use_scratch);
  183. while (num_entries) {
  184. struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
  185. last_pte = first_pte + num_entries;
  186. if (last_pte > GEN8_PTES_PER_PAGE)
  187. last_pte = GEN8_PTES_PER_PAGE;
  188. pt_vaddr = kmap_atomic(page_table);
  189. for (i = first_pte; i < last_pte; i++)
  190. pt_vaddr[i] = scratch_pte;
  191. kunmap_atomic(pt_vaddr);
  192. num_entries -= last_pte - first_pte;
  193. first_pte = 0;
  194. act_pt++;
  195. }
  196. }
  197. static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
  198. {
  199. struct i915_hw_ppgtt *ppgtt =
  200. container_of(vm, struct i915_hw_ppgtt, base);
  201. int i, j;
  202. for (i = 0; i < ppgtt->num_pd_pages ; i++) {
  203. if (ppgtt->pd_dma_addr[i]) {
  204. pci_unmap_page(ppgtt->base.dev->pdev,
  205. ppgtt->pd_dma_addr[i],
  206. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  207. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  208. dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
  209. if (addr)
  210. pci_unmap_page(ppgtt->base.dev->pdev,
  211. addr,
  212. PAGE_SIZE,
  213. PCI_DMA_BIDIRECTIONAL);
  214. }
  215. }
  216. kfree(ppgtt->gen8_pt_dma_addr[i]);
  217. }
  218. __free_pages(ppgtt->gen8_pt_pages, ppgtt->num_pt_pages << PAGE_SHIFT);
  219. __free_pages(ppgtt->pd_pages, ppgtt->num_pd_pages << PAGE_SHIFT);
  220. }
  221. /**
  222. * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
  223. * net effect resembling a 2-level page table in normal x86 terms. Each PDP
  224. * represents 1GB of memory
  225. * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
  226. *
  227. * TODO: Do something with the size parameter
  228. **/
  229. static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
  230. {
  231. struct page *pt_pages;
  232. int i, j, ret = -ENOMEM;
  233. const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
  234. const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
  235. if (size % (1<<30))
  236. DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
  237. /* FIXME: split allocation into smaller pieces. For now we only ever do
  238. * this once, but with full PPGTT, the multiple contiguous allocations
  239. * will be bad.
  240. */
  241. ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
  242. if (!ppgtt->pd_pages)
  243. return -ENOMEM;
  244. pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
  245. if (!pt_pages) {
  246. __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
  247. return -ENOMEM;
  248. }
  249. ppgtt->gen8_pt_pages = pt_pages;
  250. ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
  251. ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
  252. ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
  253. ppgtt->base.clear_range = gen8_ppgtt_clear_range;
  254. ppgtt->base.insert_entries = NULL;
  255. ppgtt->base.cleanup = gen8_ppgtt_cleanup;
  256. BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
  257. /*
  258. * - Create a mapping for the page directories.
  259. * - For each page directory:
  260. * allocate space for page table mappings.
  261. * map each page table
  262. */
  263. for (i = 0; i < max_pdp; i++) {
  264. dma_addr_t temp;
  265. temp = pci_map_page(ppgtt->base.dev->pdev,
  266. &ppgtt->pd_pages[i], 0,
  267. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  268. if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
  269. goto err_out;
  270. ppgtt->pd_dma_addr[i] = temp;
  271. ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
  272. if (!ppgtt->gen8_pt_dma_addr[i])
  273. goto err_out;
  274. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  275. struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
  276. temp = pci_map_page(ppgtt->base.dev->pdev,
  277. p, 0, PAGE_SIZE,
  278. PCI_DMA_BIDIRECTIONAL);
  279. if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
  280. goto err_out;
  281. ppgtt->gen8_pt_dma_addr[i][j] = temp;
  282. }
  283. }
  284. /* For now, the PPGTT helper functions all require that the PDEs are
  285. * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
  286. * will never need to touch the PDEs again */
  287. for (i = 0; i < max_pdp; i++) {
  288. gen8_ppgtt_pde_t *pd_vaddr;
  289. pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
  290. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  291. dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
  292. pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
  293. I915_CACHE_LLC);
  294. }
  295. kunmap_atomic(pd_vaddr);
  296. }
  297. ppgtt->base.clear_range(&ppgtt->base, 0,
  298. ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
  299. true);
  300. DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
  301. ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
  302. DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
  303. ppgtt->num_pt_pages,
  304. (ppgtt->num_pt_pages - num_pt_pages) +
  305. size % (1<<30));
  306. return -ENOSYS; /* Not ready yet */
  307. err_out:
  308. ppgtt->base.cleanup(&ppgtt->base);
  309. return ret;
  310. }
  311. static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
  312. {
  313. struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
  314. gen6_gtt_pte_t __iomem *pd_addr;
  315. uint32_t pd_entry;
  316. int i;
  317. WARN_ON(ppgtt->pd_offset & 0x3f);
  318. pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
  319. ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
  320. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  321. dma_addr_t pt_addr;
  322. pt_addr = ppgtt->pt_dma_addr[i];
  323. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  324. pd_entry |= GEN6_PDE_VALID;
  325. writel(pd_entry, pd_addr + i);
  326. }
  327. readl(pd_addr);
  328. }
  329. static int gen6_ppgtt_enable(struct drm_device *dev)
  330. {
  331. drm_i915_private_t *dev_priv = dev->dev_private;
  332. uint32_t pd_offset;
  333. struct intel_ring_buffer *ring;
  334. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  335. int i;
  336. BUG_ON(ppgtt->pd_offset & 0x3f);
  337. gen6_write_pdes(ppgtt);
  338. pd_offset = ppgtt->pd_offset;
  339. pd_offset /= 64; /* in cachelines, */
  340. pd_offset <<= 16;
  341. if (INTEL_INFO(dev)->gen == 6) {
  342. uint32_t ecochk, gab_ctl, ecobits;
  343. ecobits = I915_READ(GAC_ECO_BITS);
  344. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
  345. ECOBITS_PPGTT_CACHE64B);
  346. gab_ctl = I915_READ(GAB_CTL);
  347. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  348. ecochk = I915_READ(GAM_ECOCHK);
  349. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  350. ECOCHK_PPGTT_CACHE64B);
  351. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  352. } else if (INTEL_INFO(dev)->gen >= 7) {
  353. uint32_t ecochk, ecobits;
  354. ecobits = I915_READ(GAC_ECO_BITS);
  355. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  356. ecochk = I915_READ(GAM_ECOCHK);
  357. if (IS_HASWELL(dev)) {
  358. ecochk |= ECOCHK_PPGTT_WB_HSW;
  359. } else {
  360. ecochk |= ECOCHK_PPGTT_LLC_IVB;
  361. ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
  362. }
  363. I915_WRITE(GAM_ECOCHK, ecochk);
  364. /* GFX_MODE is per-ring on gen7+ */
  365. }
  366. for_each_ring(ring, dev_priv, i) {
  367. if (INTEL_INFO(dev)->gen >= 7)
  368. I915_WRITE(RING_MODE_GEN7(ring),
  369. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  370. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  371. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  372. }
  373. return 0;
  374. }
  375. /* PPGTT support for Sandybdrige/Gen6 and later */
  376. static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
  377. unsigned first_entry,
  378. unsigned num_entries,
  379. bool use_scratch)
  380. {
  381. struct i915_hw_ppgtt *ppgtt =
  382. container_of(vm, struct i915_hw_ppgtt, base);
  383. gen6_gtt_pte_t *pt_vaddr, scratch_pte;
  384. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  385. unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  386. unsigned last_pte, i;
  387. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
  388. while (num_entries) {
  389. last_pte = first_pte + num_entries;
  390. if (last_pte > I915_PPGTT_PT_ENTRIES)
  391. last_pte = I915_PPGTT_PT_ENTRIES;
  392. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  393. for (i = first_pte; i < last_pte; i++)
  394. pt_vaddr[i] = scratch_pte;
  395. kunmap_atomic(pt_vaddr);
  396. num_entries -= last_pte - first_pte;
  397. first_pte = 0;
  398. act_pt++;
  399. }
  400. }
  401. static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
  402. struct sg_table *pages,
  403. unsigned first_entry,
  404. enum i915_cache_level cache_level)
  405. {
  406. struct i915_hw_ppgtt *ppgtt =
  407. container_of(vm, struct i915_hw_ppgtt, base);
  408. gen6_gtt_pte_t *pt_vaddr;
  409. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  410. unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  411. struct sg_page_iter sg_iter;
  412. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  413. for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
  414. dma_addr_t page_addr;
  415. page_addr = sg_page_iter_dma_address(&sg_iter);
  416. pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
  417. if (++act_pte == I915_PPGTT_PT_ENTRIES) {
  418. kunmap_atomic(pt_vaddr);
  419. act_pt++;
  420. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  421. act_pte = 0;
  422. }
  423. }
  424. kunmap_atomic(pt_vaddr);
  425. }
  426. static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
  427. {
  428. struct i915_hw_ppgtt *ppgtt =
  429. container_of(vm, struct i915_hw_ppgtt, base);
  430. int i;
  431. drm_mm_takedown(&ppgtt->base.mm);
  432. if (ppgtt->pt_dma_addr) {
  433. for (i = 0; i < ppgtt->num_pd_entries; i++)
  434. pci_unmap_page(ppgtt->base.dev->pdev,
  435. ppgtt->pt_dma_addr[i],
  436. 4096, PCI_DMA_BIDIRECTIONAL);
  437. }
  438. kfree(ppgtt->pt_dma_addr);
  439. for (i = 0; i < ppgtt->num_pd_entries; i++)
  440. __free_page(ppgtt->pt_pages[i]);
  441. kfree(ppgtt->pt_pages);
  442. kfree(ppgtt);
  443. }
  444. static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
  445. {
  446. struct drm_device *dev = ppgtt->base.dev;
  447. struct drm_i915_private *dev_priv = dev->dev_private;
  448. unsigned first_pd_entry_in_global_pt;
  449. int i;
  450. int ret = -ENOMEM;
  451. /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
  452. * entries. For aliasing ppgtt support we just steal them at the end for
  453. * now. */
  454. first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
  455. ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
  456. ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
  457. ppgtt->enable = gen6_ppgtt_enable;
  458. ppgtt->base.clear_range = gen6_ppgtt_clear_range;
  459. ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
  460. ppgtt->base.cleanup = gen6_ppgtt_cleanup;
  461. ppgtt->base.scratch = dev_priv->gtt.base.scratch;
  462. ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
  463. GFP_KERNEL);
  464. if (!ppgtt->pt_pages)
  465. return -ENOMEM;
  466. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  467. ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
  468. if (!ppgtt->pt_pages[i])
  469. goto err_pt_alloc;
  470. }
  471. ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
  472. GFP_KERNEL);
  473. if (!ppgtt->pt_dma_addr)
  474. goto err_pt_alloc;
  475. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  476. dma_addr_t pt_addr;
  477. pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
  478. PCI_DMA_BIDIRECTIONAL);
  479. if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
  480. ret = -EIO;
  481. goto err_pd_pin;
  482. }
  483. ppgtt->pt_dma_addr[i] = pt_addr;
  484. }
  485. ppgtt->base.clear_range(&ppgtt->base, 0,
  486. ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
  487. ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
  488. return 0;
  489. err_pd_pin:
  490. if (ppgtt->pt_dma_addr) {
  491. for (i--; i >= 0; i--)
  492. pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
  493. 4096, PCI_DMA_BIDIRECTIONAL);
  494. }
  495. err_pt_alloc:
  496. kfree(ppgtt->pt_dma_addr);
  497. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  498. if (ppgtt->pt_pages[i])
  499. __free_page(ppgtt->pt_pages[i]);
  500. }
  501. kfree(ppgtt->pt_pages);
  502. return ret;
  503. }
  504. static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
  505. {
  506. struct drm_i915_private *dev_priv = dev->dev_private;
  507. struct i915_hw_ppgtt *ppgtt;
  508. int ret;
  509. ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
  510. if (!ppgtt)
  511. return -ENOMEM;
  512. ppgtt->base.dev = dev;
  513. if (INTEL_INFO(dev)->gen < 8)
  514. ret = gen6_ppgtt_init(ppgtt);
  515. else if (IS_GEN8(dev))
  516. ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
  517. else
  518. BUG();
  519. if (ret)
  520. kfree(ppgtt);
  521. else {
  522. dev_priv->mm.aliasing_ppgtt = ppgtt;
  523. drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
  524. ppgtt->base.total);
  525. }
  526. return ret;
  527. }
  528. void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
  529. {
  530. struct drm_i915_private *dev_priv = dev->dev_private;
  531. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  532. if (!ppgtt)
  533. return;
  534. ppgtt->base.cleanup(&ppgtt->base);
  535. dev_priv->mm.aliasing_ppgtt = NULL;
  536. }
  537. void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
  538. struct drm_i915_gem_object *obj,
  539. enum i915_cache_level cache_level)
  540. {
  541. ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
  542. i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
  543. cache_level);
  544. }
  545. void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
  546. struct drm_i915_gem_object *obj)
  547. {
  548. ppgtt->base.clear_range(&ppgtt->base,
  549. i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
  550. obj->base.size >> PAGE_SHIFT,
  551. true);
  552. }
  553. extern int intel_iommu_gfx_mapped;
  554. /* Certain Gen5 chipsets require require idling the GPU before
  555. * unmapping anything from the GTT when VT-d is enabled.
  556. */
  557. static inline bool needs_idle_maps(struct drm_device *dev)
  558. {
  559. #ifdef CONFIG_INTEL_IOMMU
  560. /* Query intel_iommu to see if we need the workaround. Presumably that
  561. * was loaded first.
  562. */
  563. if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
  564. return true;
  565. #endif
  566. return false;
  567. }
  568. static bool do_idling(struct drm_i915_private *dev_priv)
  569. {
  570. bool ret = dev_priv->mm.interruptible;
  571. if (unlikely(dev_priv->gtt.do_idle_maps)) {
  572. dev_priv->mm.interruptible = false;
  573. if (i915_gpu_idle(dev_priv->dev)) {
  574. DRM_ERROR("Couldn't idle GPU\n");
  575. /* Wait a bit, in hopes it avoids the hang */
  576. udelay(10);
  577. }
  578. }
  579. return ret;
  580. }
  581. static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
  582. {
  583. if (unlikely(dev_priv->gtt.do_idle_maps))
  584. dev_priv->mm.interruptible = interruptible;
  585. }
  586. void i915_check_and_clear_faults(struct drm_device *dev)
  587. {
  588. struct drm_i915_private *dev_priv = dev->dev_private;
  589. struct intel_ring_buffer *ring;
  590. int i;
  591. if (INTEL_INFO(dev)->gen < 6)
  592. return;
  593. for_each_ring(ring, dev_priv, i) {
  594. u32 fault_reg;
  595. fault_reg = I915_READ(RING_FAULT_REG(ring));
  596. if (fault_reg & RING_FAULT_VALID) {
  597. DRM_DEBUG_DRIVER("Unexpected fault\n"
  598. "\tAddr: 0x%08lx\\n"
  599. "\tAddress space: %s\n"
  600. "\tSource ID: %d\n"
  601. "\tType: %d\n",
  602. fault_reg & PAGE_MASK,
  603. fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
  604. RING_FAULT_SRCID(fault_reg),
  605. RING_FAULT_FAULT_TYPE(fault_reg));
  606. I915_WRITE(RING_FAULT_REG(ring),
  607. fault_reg & ~RING_FAULT_VALID);
  608. }
  609. }
  610. POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
  611. }
  612. void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
  613. {
  614. struct drm_i915_private *dev_priv = dev->dev_private;
  615. /* Don't bother messing with faults pre GEN6 as we have little
  616. * documentation supporting that it's a good idea.
  617. */
  618. if (INTEL_INFO(dev)->gen < 6)
  619. return;
  620. i915_check_and_clear_faults(dev);
  621. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  622. dev_priv->gtt.base.start / PAGE_SIZE,
  623. dev_priv->gtt.base.total / PAGE_SIZE,
  624. false);
  625. }
  626. void i915_gem_restore_gtt_mappings(struct drm_device *dev)
  627. {
  628. struct drm_i915_private *dev_priv = dev->dev_private;
  629. struct drm_i915_gem_object *obj;
  630. i915_check_and_clear_faults(dev);
  631. /* First fill our portion of the GTT with scratch pages */
  632. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  633. dev_priv->gtt.base.start / PAGE_SIZE,
  634. dev_priv->gtt.base.total / PAGE_SIZE,
  635. true);
  636. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  637. i915_gem_clflush_object(obj, obj->pin_display);
  638. i915_gem_gtt_bind_object(obj, obj->cache_level);
  639. }
  640. i915_gem_chipset_flush(dev);
  641. }
  642. int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
  643. {
  644. if (obj->has_dma_mapping)
  645. return 0;
  646. if (!dma_map_sg(&obj->base.dev->pdev->dev,
  647. obj->pages->sgl, obj->pages->nents,
  648. PCI_DMA_BIDIRECTIONAL))
  649. return -ENOSPC;
  650. return 0;
  651. }
  652. static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
  653. {
  654. #ifdef writeq
  655. writeq(pte, addr);
  656. #else
  657. iowrite32((u32)pte, addr);
  658. iowrite32(pte >> 32, addr + 4);
  659. #endif
  660. }
  661. static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
  662. struct sg_table *st,
  663. unsigned int first_entry,
  664. enum i915_cache_level level)
  665. {
  666. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  667. gen8_gtt_pte_t __iomem *gtt_entries =
  668. (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  669. int i = 0;
  670. struct sg_page_iter sg_iter;
  671. dma_addr_t addr;
  672. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  673. addr = sg_dma_address(sg_iter.sg) +
  674. (sg_iter.sg_pgoffset << PAGE_SHIFT);
  675. gen8_set_pte(&gtt_entries[i],
  676. gen8_pte_encode(addr, level, true));
  677. i++;
  678. }
  679. /*
  680. * XXX: This serves as a posting read to make sure that the PTE has
  681. * actually been updated. There is some concern that even though
  682. * registers and PTEs are within the same BAR that they are potentially
  683. * of NUMA access patterns. Therefore, even with the way we assume
  684. * hardware should work, we must keep this posting read for paranoia.
  685. */
  686. if (i != 0)
  687. WARN_ON(readq(&gtt_entries[i-1])
  688. != gen8_pte_encode(addr, level, true));
  689. #if 0 /* TODO: Still needed on GEN8? */
  690. /* This next bit makes the above posting read even more important. We
  691. * want to flush the TLBs only after we're certain all the PTE updates
  692. * have finished.
  693. */
  694. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  695. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  696. #endif
  697. }
  698. /*
  699. * Binds an object into the global gtt with the specified cache level. The object
  700. * will be accessible to the GPU via commands whose operands reference offsets
  701. * within the global GTT as well as accessible by the GPU through the GMADR
  702. * mapped BAR (dev_priv->mm.gtt->gtt).
  703. */
  704. static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
  705. struct sg_table *st,
  706. unsigned int first_entry,
  707. enum i915_cache_level level)
  708. {
  709. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  710. gen6_gtt_pte_t __iomem *gtt_entries =
  711. (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  712. int i = 0;
  713. struct sg_page_iter sg_iter;
  714. dma_addr_t addr;
  715. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  716. addr = sg_page_iter_dma_address(&sg_iter);
  717. iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
  718. i++;
  719. }
  720. /* XXX: This serves as a posting read to make sure that the PTE has
  721. * actually been updated. There is some concern that even though
  722. * registers and PTEs are within the same BAR that they are potentially
  723. * of NUMA access patterns. Therefore, even with the way we assume
  724. * hardware should work, we must keep this posting read for paranoia.
  725. */
  726. if (i != 0)
  727. WARN_ON(readl(&gtt_entries[i-1]) !=
  728. vm->pte_encode(addr, level, true));
  729. /* This next bit makes the above posting read even more important. We
  730. * want to flush the TLBs only after we're certain all the PTE updates
  731. * have finished.
  732. */
  733. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  734. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  735. }
  736. static void gen8_ggtt_clear_range(struct i915_address_space *vm,
  737. unsigned int first_entry,
  738. unsigned int num_entries,
  739. bool use_scratch)
  740. {
  741. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  742. gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
  743. (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  744. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  745. int i;
  746. if (WARN(num_entries > max_entries,
  747. "First entry = %d; Num entries = %d (max=%d)\n",
  748. first_entry, num_entries, max_entries))
  749. num_entries = max_entries;
  750. scratch_pte = gen8_pte_encode(vm->scratch.addr,
  751. I915_CACHE_LLC,
  752. use_scratch);
  753. for (i = 0; i < num_entries; i++)
  754. gen8_set_pte(&gtt_base[i], scratch_pte);
  755. readl(gtt_base);
  756. }
  757. static void gen6_ggtt_clear_range(struct i915_address_space *vm,
  758. unsigned int first_entry,
  759. unsigned int num_entries,
  760. bool use_scratch)
  761. {
  762. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  763. gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
  764. (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  765. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  766. int i;
  767. if (WARN(num_entries > max_entries,
  768. "First entry = %d; Num entries = %d (max=%d)\n",
  769. first_entry, num_entries, max_entries))
  770. num_entries = max_entries;
  771. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
  772. for (i = 0; i < num_entries; i++)
  773. iowrite32(scratch_pte, &gtt_base[i]);
  774. readl(gtt_base);
  775. }
  776. static void i915_ggtt_insert_entries(struct i915_address_space *vm,
  777. struct sg_table *st,
  778. unsigned int pg_start,
  779. enum i915_cache_level cache_level)
  780. {
  781. unsigned int flags = (cache_level == I915_CACHE_NONE) ?
  782. AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
  783. intel_gtt_insert_sg_entries(st, pg_start, flags);
  784. }
  785. static void i915_ggtt_clear_range(struct i915_address_space *vm,
  786. unsigned int first_entry,
  787. unsigned int num_entries,
  788. bool unused)
  789. {
  790. intel_gtt_clear_range(first_entry, num_entries);
  791. }
  792. void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
  793. enum i915_cache_level cache_level)
  794. {
  795. struct drm_device *dev = obj->base.dev;
  796. struct drm_i915_private *dev_priv = dev->dev_private;
  797. const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
  798. dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
  799. entry,
  800. cache_level);
  801. obj->has_global_gtt_mapping = 1;
  802. }
  803. void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
  804. {
  805. struct drm_device *dev = obj->base.dev;
  806. struct drm_i915_private *dev_priv = dev->dev_private;
  807. const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
  808. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  809. entry,
  810. obj->base.size >> PAGE_SHIFT,
  811. true);
  812. obj->has_global_gtt_mapping = 0;
  813. }
  814. void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
  815. {
  816. struct drm_device *dev = obj->base.dev;
  817. struct drm_i915_private *dev_priv = dev->dev_private;
  818. bool interruptible;
  819. interruptible = do_idling(dev_priv);
  820. if (!obj->has_dma_mapping)
  821. dma_unmap_sg(&dev->pdev->dev,
  822. obj->pages->sgl, obj->pages->nents,
  823. PCI_DMA_BIDIRECTIONAL);
  824. undo_idling(dev_priv, interruptible);
  825. }
  826. static void i915_gtt_color_adjust(struct drm_mm_node *node,
  827. unsigned long color,
  828. unsigned long *start,
  829. unsigned long *end)
  830. {
  831. if (node->color != color)
  832. *start += 4096;
  833. if (!list_empty(&node->node_list)) {
  834. node = list_entry(node->node_list.next,
  835. struct drm_mm_node,
  836. node_list);
  837. if (node->allocated && node->color != color)
  838. *end -= 4096;
  839. }
  840. }
  841. void i915_gem_setup_global_gtt(struct drm_device *dev,
  842. unsigned long start,
  843. unsigned long mappable_end,
  844. unsigned long end)
  845. {
  846. /* Let GEM Manage all of the aperture.
  847. *
  848. * However, leave one page at the end still bound to the scratch page.
  849. * There are a number of places where the hardware apparently prefetches
  850. * past the end of the object, and we've seen multiple hangs with the
  851. * GPU head pointer stuck in a batchbuffer bound at the last page of the
  852. * aperture. One page should be enough to keep any prefetching inside
  853. * of the aperture.
  854. */
  855. struct drm_i915_private *dev_priv = dev->dev_private;
  856. struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
  857. struct drm_mm_node *entry;
  858. struct drm_i915_gem_object *obj;
  859. unsigned long hole_start, hole_end;
  860. BUG_ON(mappable_end > end);
  861. /* Subtract the guard page ... */
  862. drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
  863. if (!HAS_LLC(dev))
  864. dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
  865. /* Mark any preallocated objects as occupied */
  866. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  867. struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
  868. int ret;
  869. DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
  870. i915_gem_obj_ggtt_offset(obj), obj->base.size);
  871. WARN_ON(i915_gem_obj_ggtt_bound(obj));
  872. ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
  873. if (ret)
  874. DRM_DEBUG_KMS("Reservation failed\n");
  875. obj->has_global_gtt_mapping = 1;
  876. list_add(&vma->vma_link, &obj->vma_list);
  877. }
  878. dev_priv->gtt.base.start = start;
  879. dev_priv->gtt.base.total = end - start;
  880. /* Clear any non-preallocated blocks */
  881. drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
  882. const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
  883. DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
  884. hole_start, hole_end);
  885. ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
  886. }
  887. /* And finally clear the reserved guard page */
  888. ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
  889. }
  890. static bool
  891. intel_enable_ppgtt(struct drm_device *dev)
  892. {
  893. if (i915_enable_ppgtt >= 0)
  894. return i915_enable_ppgtt;
  895. #ifdef CONFIG_INTEL_IOMMU
  896. /* Disable ppgtt on SNB if VT-d is on. */
  897. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  898. return false;
  899. #endif
  900. return true;
  901. }
  902. void i915_gem_init_global_gtt(struct drm_device *dev)
  903. {
  904. struct drm_i915_private *dev_priv = dev->dev_private;
  905. unsigned long gtt_size, mappable_size;
  906. gtt_size = dev_priv->gtt.base.total;
  907. mappable_size = dev_priv->gtt.mappable_end;
  908. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  909. int ret;
  910. if (INTEL_INFO(dev)->gen <= 7) {
  911. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  912. * aperture accordingly when using aliasing ppgtt. */
  913. gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
  914. }
  915. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  916. ret = i915_gem_init_aliasing_ppgtt(dev);
  917. if (!ret)
  918. return;
  919. DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
  920. drm_mm_takedown(&dev_priv->gtt.base.mm);
  921. gtt_size += GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
  922. }
  923. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  924. }
  925. static int setup_scratch_page(struct drm_device *dev)
  926. {
  927. struct drm_i915_private *dev_priv = dev->dev_private;
  928. struct page *page;
  929. dma_addr_t dma_addr;
  930. page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
  931. if (page == NULL)
  932. return -ENOMEM;
  933. get_page(page);
  934. set_pages_uc(page, 1);
  935. #ifdef CONFIG_INTEL_IOMMU
  936. dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
  937. PCI_DMA_BIDIRECTIONAL);
  938. if (pci_dma_mapping_error(dev->pdev, dma_addr))
  939. return -EINVAL;
  940. #else
  941. dma_addr = page_to_phys(page);
  942. #endif
  943. dev_priv->gtt.base.scratch.page = page;
  944. dev_priv->gtt.base.scratch.addr = dma_addr;
  945. return 0;
  946. }
  947. static void teardown_scratch_page(struct drm_device *dev)
  948. {
  949. struct drm_i915_private *dev_priv = dev->dev_private;
  950. struct page *page = dev_priv->gtt.base.scratch.page;
  951. set_pages_wb(page, 1);
  952. pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
  953. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  954. put_page(page);
  955. __free_page(page);
  956. }
  957. static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
  958. {
  959. snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
  960. snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
  961. return snb_gmch_ctl << 20;
  962. }
  963. static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
  964. {
  965. bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
  966. bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
  967. if (bdw_gmch_ctl)
  968. bdw_gmch_ctl = 1 << bdw_gmch_ctl;
  969. return bdw_gmch_ctl << 20;
  970. }
  971. static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
  972. {
  973. snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
  974. snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
  975. return snb_gmch_ctl << 25; /* 32 MB units */
  976. }
  977. static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
  978. {
  979. bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
  980. bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
  981. return bdw_gmch_ctl << 25; /* 32 MB units */
  982. }
  983. static int ggtt_probe_common(struct drm_device *dev,
  984. size_t gtt_size)
  985. {
  986. struct drm_i915_private *dev_priv = dev->dev_private;
  987. phys_addr_t gtt_bus_addr;
  988. int ret;
  989. /* For Modern GENs the PTEs and register space are split in the BAR */
  990. gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
  991. (pci_resource_len(dev->pdev, 0) / 2);
  992. dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
  993. if (!dev_priv->gtt.gsm) {
  994. DRM_ERROR("Failed to map the gtt page table\n");
  995. return -ENOMEM;
  996. }
  997. ret = setup_scratch_page(dev);
  998. if (ret) {
  999. DRM_ERROR("Scratch setup failed\n");
  1000. /* iounmap will also get called at remove, but meh */
  1001. iounmap(dev_priv->gtt.gsm);
  1002. }
  1003. return ret;
  1004. }
  1005. /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
  1006. * bits. When using advanced contexts each context stores its own PAT, but
  1007. * writing this data shouldn't be harmful even in those cases. */
  1008. static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
  1009. {
  1010. #define GEN8_PPAT_UC (0<<0)
  1011. #define GEN8_PPAT_WC (1<<0)
  1012. #define GEN8_PPAT_WT (2<<0)
  1013. #define GEN8_PPAT_WB (3<<0)
  1014. #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
  1015. /* FIXME(BDW): Bspec is completely confused about cache control bits. */
  1016. #define GEN8_PPAT_LLC (1<<2)
  1017. #define GEN8_PPAT_LLCELLC (2<<2)
  1018. #define GEN8_PPAT_LLCeLLC (3<<2)
  1019. #define GEN8_PPAT_AGE(x) (x<<4)
  1020. #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
  1021. uint64_t pat;
  1022. pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
  1023. GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
  1024. GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
  1025. GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
  1026. GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
  1027. GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
  1028. GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
  1029. GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
  1030. /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
  1031. * write would work. */
  1032. I915_WRITE(GEN8_PRIVATE_PAT, pat);
  1033. I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
  1034. }
  1035. static int gen8_gmch_probe(struct drm_device *dev,
  1036. size_t *gtt_total,
  1037. size_t *stolen,
  1038. phys_addr_t *mappable_base,
  1039. unsigned long *mappable_end)
  1040. {
  1041. struct drm_i915_private *dev_priv = dev->dev_private;
  1042. unsigned int gtt_size;
  1043. u16 snb_gmch_ctl;
  1044. int ret;
  1045. /* TODO: We're not aware of mappable constraints on gen8 yet */
  1046. *mappable_base = pci_resource_start(dev->pdev, 2);
  1047. *mappable_end = pci_resource_len(dev->pdev, 2);
  1048. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
  1049. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
  1050. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  1051. *stolen = gen8_get_stolen_size(snb_gmch_ctl);
  1052. gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
  1053. *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
  1054. gen8_setup_private_ppat(dev_priv);
  1055. ret = ggtt_probe_common(dev, gtt_size);
  1056. dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
  1057. dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
  1058. return ret;
  1059. }
  1060. static int gen6_gmch_probe(struct drm_device *dev,
  1061. size_t *gtt_total,
  1062. size_t *stolen,
  1063. phys_addr_t *mappable_base,
  1064. unsigned long *mappable_end)
  1065. {
  1066. struct drm_i915_private *dev_priv = dev->dev_private;
  1067. unsigned int gtt_size;
  1068. u16 snb_gmch_ctl;
  1069. int ret;
  1070. *mappable_base = pci_resource_start(dev->pdev, 2);
  1071. *mappable_end = pci_resource_len(dev->pdev, 2);
  1072. /* 64/512MB is the current min/max we actually know of, but this is just
  1073. * a coarse sanity check.
  1074. */
  1075. if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
  1076. DRM_ERROR("Unknown GMADR size (%lx)\n",
  1077. dev_priv->gtt.mappable_end);
  1078. return -ENXIO;
  1079. }
  1080. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
  1081. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
  1082. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  1083. *stolen = gen6_get_stolen_size(snb_gmch_ctl);
  1084. gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
  1085. *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
  1086. ret = ggtt_probe_common(dev, gtt_size);
  1087. dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
  1088. dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
  1089. return ret;
  1090. }
  1091. static void gen6_gmch_remove(struct i915_address_space *vm)
  1092. {
  1093. struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
  1094. iounmap(gtt->gsm);
  1095. teardown_scratch_page(vm->dev);
  1096. }
  1097. static int i915_gmch_probe(struct drm_device *dev,
  1098. size_t *gtt_total,
  1099. size_t *stolen,
  1100. phys_addr_t *mappable_base,
  1101. unsigned long *mappable_end)
  1102. {
  1103. struct drm_i915_private *dev_priv = dev->dev_private;
  1104. int ret;
  1105. ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
  1106. if (!ret) {
  1107. DRM_ERROR("failed to set up gmch\n");
  1108. return -EIO;
  1109. }
  1110. intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
  1111. dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
  1112. dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
  1113. dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
  1114. return 0;
  1115. }
  1116. static void i915_gmch_remove(struct i915_address_space *vm)
  1117. {
  1118. intel_gmch_remove();
  1119. }
  1120. int i915_gem_gtt_init(struct drm_device *dev)
  1121. {
  1122. struct drm_i915_private *dev_priv = dev->dev_private;
  1123. struct i915_gtt *gtt = &dev_priv->gtt;
  1124. int ret;
  1125. if (INTEL_INFO(dev)->gen <= 5) {
  1126. gtt->gtt_probe = i915_gmch_probe;
  1127. gtt->base.cleanup = i915_gmch_remove;
  1128. } else if (INTEL_INFO(dev)->gen < 8) {
  1129. gtt->gtt_probe = gen6_gmch_probe;
  1130. gtt->base.cleanup = gen6_gmch_remove;
  1131. if (IS_HASWELL(dev) && dev_priv->ellc_size)
  1132. gtt->base.pte_encode = iris_pte_encode;
  1133. else if (IS_HASWELL(dev))
  1134. gtt->base.pte_encode = hsw_pte_encode;
  1135. else if (IS_VALLEYVIEW(dev))
  1136. gtt->base.pte_encode = byt_pte_encode;
  1137. else if (INTEL_INFO(dev)->gen >= 7)
  1138. gtt->base.pte_encode = ivb_pte_encode;
  1139. else
  1140. gtt->base.pte_encode = snb_pte_encode;
  1141. } else {
  1142. dev_priv->gtt.gtt_probe = gen8_gmch_probe;
  1143. dev_priv->gtt.base.cleanup = gen6_gmch_remove;
  1144. }
  1145. ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
  1146. &gtt->mappable_base, &gtt->mappable_end);
  1147. if (ret)
  1148. return ret;
  1149. gtt->base.dev = dev;
  1150. /* GMADR is the PCI mmio aperture into the global GTT. */
  1151. DRM_INFO("Memory usable by graphics device = %zdM\n",
  1152. gtt->base.total >> 20);
  1153. DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
  1154. DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
  1155. return 0;
  1156. }