spi-mxs.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632
  1. /*
  2. * Freescale MXS SPI master driver
  3. *
  4. * Copyright 2012 DENX Software Engineering, GmbH.
  5. * Copyright 2012 Freescale Semiconductor, Inc.
  6. * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
  7. *
  8. * Rework and transition to new API by:
  9. * Marek Vasut <marex@denx.de>
  10. *
  11. * Based on previous attempt by:
  12. * Fabio Estevam <fabio.estevam@freescale.com>
  13. *
  14. * Based on code from U-Boot bootloader by:
  15. * Marek Vasut <marex@denx.de>
  16. *
  17. * Based on spi-stmp.c, which is:
  18. * Author: Dmitry Pervushin <dimka@embeddedalley.com>
  19. *
  20. * This program is free software; you can redistribute it and/or modify
  21. * it under the terms of the GNU General Public License as published by
  22. * the Free Software Foundation; either version 2 of the License, or
  23. * (at your option) any later version.
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/init.h>
  32. #include <linux/ioport.h>
  33. #include <linux/of.h>
  34. #include <linux/of_device.h>
  35. #include <linux/of_gpio.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/delay.h>
  38. #include <linux/interrupt.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/dmaengine.h>
  41. #include <linux/highmem.h>
  42. #include <linux/clk.h>
  43. #include <linux/err.h>
  44. #include <linux/completion.h>
  45. #include <linux/gpio.h>
  46. #include <linux/regulator/consumer.h>
  47. #include <linux/module.h>
  48. #include <linux/pinctrl/consumer.h>
  49. #include <linux/stmp_device.h>
  50. #include <linux/spi/spi.h>
  51. #include <linux/spi/mxs-spi.h>
  52. #define DRIVER_NAME "mxs-spi"
  53. /* Use 10S timeout for very long transfers, it should suffice. */
  54. #define SSP_TIMEOUT 10000
  55. #define SG_MAXLEN 0xff00
  56. struct mxs_spi {
  57. struct mxs_ssp ssp;
  58. struct completion c;
  59. };
  60. static int mxs_spi_setup_transfer(struct spi_device *dev,
  61. struct spi_transfer *t)
  62. {
  63. struct mxs_spi *spi = spi_master_get_devdata(dev->master);
  64. struct mxs_ssp *ssp = &spi->ssp;
  65. uint8_t bits_per_word;
  66. uint32_t hz = 0;
  67. bits_per_word = dev->bits_per_word;
  68. if (t && t->bits_per_word)
  69. bits_per_word = t->bits_per_word;
  70. hz = dev->max_speed_hz;
  71. if (t && t->speed_hz)
  72. hz = min(hz, t->speed_hz);
  73. if (hz == 0) {
  74. dev_err(&dev->dev, "Cannot continue with zero clock\n");
  75. return -EINVAL;
  76. }
  77. mxs_ssp_set_clk_rate(ssp, hz);
  78. writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
  79. BF_SSP_CTRL1_WORD_LENGTH
  80. (BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
  81. ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
  82. ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
  83. ssp->base + HW_SSP_CTRL1(ssp));
  84. writel(0x0, ssp->base + HW_SSP_CMD0);
  85. writel(0x0, ssp->base + HW_SSP_CMD1);
  86. return 0;
  87. }
  88. static int mxs_spi_setup(struct spi_device *dev)
  89. {
  90. int err = 0;
  91. if (!dev->bits_per_word)
  92. dev->bits_per_word = 8;
  93. if (dev->mode & ~(SPI_CPOL | SPI_CPHA))
  94. return -EINVAL;
  95. err = mxs_spi_setup_transfer(dev, NULL);
  96. if (err) {
  97. dev_err(&dev->dev,
  98. "Failed to setup transfer, error = %d\n", err);
  99. }
  100. return err;
  101. }
  102. static uint32_t mxs_spi_cs_to_reg(unsigned cs)
  103. {
  104. uint32_t select = 0;
  105. /*
  106. * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
  107. *
  108. * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
  109. * in HW_SSP_CTRL0 register do have multiple usage, please refer to
  110. * the datasheet for further details. In SPI mode, they are used to
  111. * toggle the chip-select lines (nCS pins).
  112. */
  113. if (cs & 1)
  114. select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
  115. if (cs & 2)
  116. select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;
  117. return select;
  118. }
  119. static void mxs_spi_set_cs(struct mxs_spi *spi, unsigned cs)
  120. {
  121. const uint32_t mask =
  122. BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ;
  123. uint32_t select;
  124. struct mxs_ssp *ssp = &spi->ssp;
  125. writel(mask, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  126. select = mxs_spi_cs_to_reg(cs);
  127. writel(select, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  128. }
  129. static inline void mxs_spi_enable(struct mxs_spi *spi)
  130. {
  131. struct mxs_ssp *ssp = &spi->ssp;
  132. writel(BM_SSP_CTRL0_LOCK_CS,
  133. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  134. writel(BM_SSP_CTRL0_IGNORE_CRC,
  135. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  136. }
  137. static inline void mxs_spi_disable(struct mxs_spi *spi)
  138. {
  139. struct mxs_ssp *ssp = &spi->ssp;
  140. writel(BM_SSP_CTRL0_LOCK_CS,
  141. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  142. writel(BM_SSP_CTRL0_IGNORE_CRC,
  143. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  144. }
  145. static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
  146. {
  147. const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
  148. struct mxs_ssp *ssp = &spi->ssp;
  149. uint32_t reg;
  150. do {
  151. reg = readl_relaxed(ssp->base + offset);
  152. if (!set)
  153. reg = ~reg;
  154. reg &= mask;
  155. if (reg == mask)
  156. return 0;
  157. } while (time_before(jiffies, timeout));
  158. return -ETIMEDOUT;
  159. }
  160. static void mxs_ssp_dma_irq_callback(void *param)
  161. {
  162. struct mxs_spi *spi = param;
  163. complete(&spi->c);
  164. }
  165. static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
  166. {
  167. struct mxs_ssp *ssp = dev_id;
  168. dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
  169. __func__, __LINE__,
  170. readl(ssp->base + HW_SSP_CTRL1(ssp)),
  171. readl(ssp->base + HW_SSP_STATUS(ssp)));
  172. return IRQ_HANDLED;
  173. }
  174. static int mxs_spi_txrx_dma(struct mxs_spi *spi, int cs,
  175. unsigned char *buf, int len,
  176. int *first, int *last, int write)
  177. {
  178. struct mxs_ssp *ssp = &spi->ssp;
  179. struct dma_async_tx_descriptor *desc = NULL;
  180. const bool vmalloced_buf = is_vmalloc_addr(buf);
  181. const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
  182. const int sgs = DIV_ROUND_UP(len, desc_len);
  183. int sg_count;
  184. int min, ret;
  185. uint32_t ctrl0;
  186. struct page *vm_page;
  187. void *sg_buf;
  188. struct {
  189. uint32_t pio[4];
  190. struct scatterlist sg;
  191. } *dma_xfer;
  192. if (!len)
  193. return -EINVAL;
  194. dma_xfer = kzalloc(sizeof(*dma_xfer) * sgs, GFP_KERNEL);
  195. if (!dma_xfer)
  196. return -ENOMEM;
  197. INIT_COMPLETION(spi->c);
  198. ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
  199. ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
  200. ctrl0 |= BM_SSP_CTRL0_DATA_XFER | mxs_spi_cs_to_reg(cs);
  201. if (*first)
  202. ctrl0 |= BM_SSP_CTRL0_LOCK_CS;
  203. if (!write)
  204. ctrl0 |= BM_SSP_CTRL0_READ;
  205. /* Queue the DMA data transfer. */
  206. for (sg_count = 0; sg_count < sgs; sg_count++) {
  207. min = min(len, desc_len);
  208. /* Prepare the transfer descriptor. */
  209. if ((sg_count + 1 == sgs) && *last)
  210. ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;
  211. if (ssp->devid == IMX23_SSP) {
  212. ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
  213. ctrl0 |= min;
  214. }
  215. dma_xfer[sg_count].pio[0] = ctrl0;
  216. dma_xfer[sg_count].pio[3] = min;
  217. if (vmalloced_buf) {
  218. vm_page = vmalloc_to_page(buf);
  219. if (!vm_page) {
  220. ret = -ENOMEM;
  221. goto err_vmalloc;
  222. }
  223. sg_buf = page_address(vm_page) +
  224. ((size_t)buf & ~PAGE_MASK);
  225. } else {
  226. sg_buf = buf;
  227. }
  228. sg_init_one(&dma_xfer[sg_count].sg, sg_buf, min);
  229. ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
  230. write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  231. len -= min;
  232. buf += min;
  233. /* Queue the PIO register write transfer. */
  234. desc = dmaengine_prep_slave_sg(ssp->dmach,
  235. (struct scatterlist *)dma_xfer[sg_count].pio,
  236. (ssp->devid == IMX23_SSP) ? 1 : 4,
  237. DMA_TRANS_NONE,
  238. sg_count ? DMA_PREP_INTERRUPT : 0);
  239. if (!desc) {
  240. dev_err(ssp->dev,
  241. "Failed to get PIO reg. write descriptor.\n");
  242. ret = -EINVAL;
  243. goto err_mapped;
  244. }
  245. desc = dmaengine_prep_slave_sg(ssp->dmach,
  246. &dma_xfer[sg_count].sg, 1,
  247. write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
  248. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  249. if (!desc) {
  250. dev_err(ssp->dev,
  251. "Failed to get DMA data write descriptor.\n");
  252. ret = -EINVAL;
  253. goto err_mapped;
  254. }
  255. }
  256. /*
  257. * The last descriptor must have this callback,
  258. * to finish the DMA transaction.
  259. */
  260. desc->callback = mxs_ssp_dma_irq_callback;
  261. desc->callback_param = spi;
  262. /* Start the transfer. */
  263. dmaengine_submit(desc);
  264. dma_async_issue_pending(ssp->dmach);
  265. ret = wait_for_completion_timeout(&spi->c,
  266. msecs_to_jiffies(SSP_TIMEOUT));
  267. if (!ret) {
  268. dev_err(ssp->dev, "DMA transfer timeout\n");
  269. ret = -ETIMEDOUT;
  270. dmaengine_terminate_all(ssp->dmach);
  271. goto err_vmalloc;
  272. }
  273. ret = 0;
  274. err_vmalloc:
  275. while (--sg_count >= 0) {
  276. err_mapped:
  277. dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
  278. write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  279. }
  280. kfree(dma_xfer);
  281. return ret;
  282. }
  283. static int mxs_spi_txrx_pio(struct mxs_spi *spi, int cs,
  284. unsigned char *buf, int len,
  285. int *first, int *last, int write)
  286. {
  287. struct mxs_ssp *ssp = &spi->ssp;
  288. if (*first)
  289. mxs_spi_enable(spi);
  290. mxs_spi_set_cs(spi, cs);
  291. while (len--) {
  292. if (*last && len == 0)
  293. mxs_spi_disable(spi);
  294. if (ssp->devid == IMX23_SSP) {
  295. writel(BM_SSP_CTRL0_XFER_COUNT,
  296. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  297. writel(1,
  298. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  299. } else {
  300. writel(1, ssp->base + HW_SSP_XFER_SIZE);
  301. }
  302. if (write)
  303. writel(BM_SSP_CTRL0_READ,
  304. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  305. else
  306. writel(BM_SSP_CTRL0_READ,
  307. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  308. writel(BM_SSP_CTRL0_RUN,
  309. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  310. if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
  311. return -ETIMEDOUT;
  312. if (write)
  313. writel(*buf, ssp->base + HW_SSP_DATA(ssp));
  314. writel(BM_SSP_CTRL0_DATA_XFER,
  315. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  316. if (!write) {
  317. if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
  318. BM_SSP_STATUS_FIFO_EMPTY, 0))
  319. return -ETIMEDOUT;
  320. *buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
  321. }
  322. if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
  323. return -ETIMEDOUT;
  324. buf++;
  325. }
  326. if (len <= 0)
  327. return 0;
  328. return -ETIMEDOUT;
  329. }
  330. static int mxs_spi_transfer_one(struct spi_master *master,
  331. struct spi_message *m)
  332. {
  333. struct mxs_spi *spi = spi_master_get_devdata(master);
  334. struct mxs_ssp *ssp = &spi->ssp;
  335. int first, last;
  336. struct spi_transfer *t, *tmp_t;
  337. int status = 0;
  338. int cs;
  339. first = last = 0;
  340. cs = m->spi->chip_select;
  341. list_for_each_entry_safe(t, tmp_t, &m->transfers, transfer_list) {
  342. status = mxs_spi_setup_transfer(m->spi, t);
  343. if (status)
  344. break;
  345. if (&t->transfer_list == m->transfers.next)
  346. first = 1;
  347. if (&t->transfer_list == m->transfers.prev)
  348. last = 1;
  349. if ((t->rx_buf && t->tx_buf) || (t->rx_dma && t->tx_dma)) {
  350. dev_err(ssp->dev,
  351. "Cannot send and receive simultaneously\n");
  352. status = -EINVAL;
  353. break;
  354. }
  355. /*
  356. * Small blocks can be transfered via PIO.
  357. * Measured by empiric means:
  358. *
  359. * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
  360. *
  361. * DMA only: 2.164808 seconds, 473.0KB/s
  362. * Combined: 1.676276 seconds, 610.9KB/s
  363. */
  364. if (t->len < 32) {
  365. writel(BM_SSP_CTRL1_DMA_ENABLE,
  366. ssp->base + HW_SSP_CTRL1(ssp) +
  367. STMP_OFFSET_REG_CLR);
  368. if (t->tx_buf)
  369. status = mxs_spi_txrx_pio(spi, cs,
  370. (void *)t->tx_buf,
  371. t->len, &first, &last, 1);
  372. if (t->rx_buf)
  373. status = mxs_spi_txrx_pio(spi, cs,
  374. t->rx_buf, t->len,
  375. &first, &last, 0);
  376. } else {
  377. writel(BM_SSP_CTRL1_DMA_ENABLE,
  378. ssp->base + HW_SSP_CTRL1(ssp) +
  379. STMP_OFFSET_REG_SET);
  380. if (t->tx_buf)
  381. status = mxs_spi_txrx_dma(spi, cs,
  382. (void *)t->tx_buf, t->len,
  383. &first, &last, 1);
  384. if (t->rx_buf)
  385. status = mxs_spi_txrx_dma(spi, cs,
  386. t->rx_buf, t->len,
  387. &first, &last, 0);
  388. }
  389. if (status) {
  390. stmp_reset_block(ssp->base);
  391. break;
  392. }
  393. m->actual_length += t->len;
  394. first = last = 0;
  395. }
  396. m->status = status;
  397. spi_finalize_current_message(master);
  398. return status;
  399. }
  400. static const struct of_device_id mxs_spi_dt_ids[] = {
  401. { .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
  402. { .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
  403. { /* sentinel */ }
  404. };
  405. MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);
  406. static int mxs_spi_probe(struct platform_device *pdev)
  407. {
  408. const struct of_device_id *of_id =
  409. of_match_device(mxs_spi_dt_ids, &pdev->dev);
  410. struct device_node *np = pdev->dev.of_node;
  411. struct spi_master *master;
  412. struct mxs_spi *spi;
  413. struct mxs_ssp *ssp;
  414. struct resource *iores;
  415. struct pinctrl *pinctrl;
  416. struct clk *clk;
  417. void __iomem *base;
  418. int devid, clk_freq;
  419. int ret = 0, irq_err;
  420. /*
  421. * Default clock speed for the SPI core. 160MHz seems to
  422. * work reasonably well with most SPI flashes, so use this
  423. * as a default. Override with "clock-frequency" DT prop.
  424. */
  425. const int clk_freq_default = 160000000;
  426. iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  427. irq_err = platform_get_irq(pdev, 0);
  428. if (!iores || irq_err < 0)
  429. return -EINVAL;
  430. base = devm_ioremap_resource(&pdev->dev, iores);
  431. if (IS_ERR(base))
  432. return PTR_ERR(base);
  433. pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
  434. if (IS_ERR(pinctrl))
  435. return PTR_ERR(pinctrl);
  436. clk = devm_clk_get(&pdev->dev, NULL);
  437. if (IS_ERR(clk))
  438. return PTR_ERR(clk);
  439. devid = (enum mxs_ssp_id) of_id->data;
  440. ret = of_property_read_u32(np, "clock-frequency",
  441. &clk_freq);
  442. if (ret)
  443. clk_freq = clk_freq_default;
  444. master = spi_alloc_master(&pdev->dev, sizeof(*spi));
  445. if (!master)
  446. return -ENOMEM;
  447. master->transfer_one_message = mxs_spi_transfer_one;
  448. master->setup = mxs_spi_setup;
  449. master->bits_per_word_mask = SPI_BPW_MASK(8);
  450. master->mode_bits = SPI_CPOL | SPI_CPHA;
  451. master->num_chipselect = 3;
  452. master->dev.of_node = np;
  453. master->flags = SPI_MASTER_HALF_DUPLEX;
  454. spi = spi_master_get_devdata(master);
  455. ssp = &spi->ssp;
  456. ssp->dev = &pdev->dev;
  457. ssp->clk = clk;
  458. ssp->base = base;
  459. ssp->devid = devid;
  460. init_completion(&spi->c);
  461. ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
  462. DRIVER_NAME, ssp);
  463. if (ret)
  464. goto out_master_free;
  465. ssp->dmach = dma_request_slave_channel(&pdev->dev, "rx-tx");
  466. if (!ssp->dmach) {
  467. dev_err(ssp->dev, "Failed to request DMA\n");
  468. ret = -ENODEV;
  469. goto out_master_free;
  470. }
  471. clk_prepare_enable(ssp->clk);
  472. clk_set_rate(ssp->clk, clk_freq);
  473. ssp->clk_rate = clk_get_rate(ssp->clk) / 1000;
  474. stmp_reset_block(ssp->base);
  475. platform_set_drvdata(pdev, master);
  476. ret = spi_register_master(master);
  477. if (ret) {
  478. dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
  479. goto out_free_dma;
  480. }
  481. return 0;
  482. out_free_dma:
  483. dma_release_channel(ssp->dmach);
  484. clk_disable_unprepare(ssp->clk);
  485. out_master_free:
  486. spi_master_put(master);
  487. return ret;
  488. }
  489. static int mxs_spi_remove(struct platform_device *pdev)
  490. {
  491. struct spi_master *master;
  492. struct mxs_spi *spi;
  493. struct mxs_ssp *ssp;
  494. master = spi_master_get(platform_get_drvdata(pdev));
  495. spi = spi_master_get_devdata(master);
  496. ssp = &spi->ssp;
  497. spi_unregister_master(master);
  498. dma_release_channel(ssp->dmach);
  499. clk_disable_unprepare(ssp->clk);
  500. spi_master_put(master);
  501. return 0;
  502. }
  503. static struct platform_driver mxs_spi_driver = {
  504. .probe = mxs_spi_probe,
  505. .remove = mxs_spi_remove,
  506. .driver = {
  507. .name = DRIVER_NAME,
  508. .owner = THIS_MODULE,
  509. .of_match_table = mxs_spi_dt_ids,
  510. },
  511. };
  512. module_platform_driver(mxs_spi_driver);
  513. MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
  514. MODULE_DESCRIPTION("MXS SPI master driver");
  515. MODULE_LICENSE("GPL");
  516. MODULE_ALIAS("platform:mxs-spi");