af_key.c 100 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/xfrm.h>
  30. #include <net/sock.h>
  31. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  32. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  33. /* List of all pfkey sockets. */
  34. static HLIST_HEAD(pfkey_table);
  35. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  36. static DEFINE_RWLOCK(pfkey_table_lock);
  37. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  38. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  39. struct pfkey_sock {
  40. /* struct sock must be the first member of struct pfkey_sock */
  41. struct sock sk;
  42. int registered;
  43. int promisc;
  44. };
  45. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  46. {
  47. return (struct pfkey_sock *)sk;
  48. }
  49. static void pfkey_sock_destruct(struct sock *sk)
  50. {
  51. skb_queue_purge(&sk->sk_receive_queue);
  52. if (!sock_flag(sk, SOCK_DEAD)) {
  53. printk("Attempt to release alive pfkey socket: %p\n", sk);
  54. return;
  55. }
  56. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  57. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  58. atomic_dec(&pfkey_socks_nr);
  59. }
  60. static void pfkey_table_grab(void)
  61. {
  62. write_lock_bh(&pfkey_table_lock);
  63. if (atomic_read(&pfkey_table_users)) {
  64. DECLARE_WAITQUEUE(wait, current);
  65. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  66. for(;;) {
  67. set_current_state(TASK_UNINTERRUPTIBLE);
  68. if (atomic_read(&pfkey_table_users) == 0)
  69. break;
  70. write_unlock_bh(&pfkey_table_lock);
  71. schedule();
  72. write_lock_bh(&pfkey_table_lock);
  73. }
  74. __set_current_state(TASK_RUNNING);
  75. remove_wait_queue(&pfkey_table_wait, &wait);
  76. }
  77. }
  78. static __inline__ void pfkey_table_ungrab(void)
  79. {
  80. write_unlock_bh(&pfkey_table_lock);
  81. wake_up(&pfkey_table_wait);
  82. }
  83. static __inline__ void pfkey_lock_table(void)
  84. {
  85. /* read_lock() synchronizes us to pfkey_table_grab */
  86. read_lock(&pfkey_table_lock);
  87. atomic_inc(&pfkey_table_users);
  88. read_unlock(&pfkey_table_lock);
  89. }
  90. static __inline__ void pfkey_unlock_table(void)
  91. {
  92. if (atomic_dec_and_test(&pfkey_table_users))
  93. wake_up(&pfkey_table_wait);
  94. }
  95. static const struct proto_ops pfkey_ops;
  96. static void pfkey_insert(struct sock *sk)
  97. {
  98. pfkey_table_grab();
  99. sk_add_node(sk, &pfkey_table);
  100. pfkey_table_ungrab();
  101. }
  102. static void pfkey_remove(struct sock *sk)
  103. {
  104. pfkey_table_grab();
  105. sk_del_node_init(sk);
  106. pfkey_table_ungrab();
  107. }
  108. static struct proto key_proto = {
  109. .name = "KEY",
  110. .owner = THIS_MODULE,
  111. .obj_size = sizeof(struct pfkey_sock),
  112. };
  113. static int pfkey_create(struct socket *sock, int protocol)
  114. {
  115. struct sock *sk;
  116. int err;
  117. if (!capable(CAP_NET_ADMIN))
  118. return -EPERM;
  119. if (sock->type != SOCK_RAW)
  120. return -ESOCKTNOSUPPORT;
  121. if (protocol != PF_KEY_V2)
  122. return -EPROTONOSUPPORT;
  123. err = -ENOMEM;
  124. sk = sk_alloc(PF_KEY, GFP_KERNEL, &key_proto, 1);
  125. if (sk == NULL)
  126. goto out;
  127. sock->ops = &pfkey_ops;
  128. sock_init_data(sock, sk);
  129. sk->sk_family = PF_KEY;
  130. sk->sk_destruct = pfkey_sock_destruct;
  131. atomic_inc(&pfkey_socks_nr);
  132. pfkey_insert(sk);
  133. return 0;
  134. out:
  135. return err;
  136. }
  137. static int pfkey_release(struct socket *sock)
  138. {
  139. struct sock *sk = sock->sk;
  140. if (!sk)
  141. return 0;
  142. pfkey_remove(sk);
  143. sock_orphan(sk);
  144. sock->sk = NULL;
  145. skb_queue_purge(&sk->sk_write_queue);
  146. sock_put(sk);
  147. return 0;
  148. }
  149. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  150. gfp_t allocation, struct sock *sk)
  151. {
  152. int err = -ENOBUFS;
  153. sock_hold(sk);
  154. if (*skb2 == NULL) {
  155. if (atomic_read(&skb->users) != 1) {
  156. *skb2 = skb_clone(skb, allocation);
  157. } else {
  158. *skb2 = skb;
  159. atomic_inc(&skb->users);
  160. }
  161. }
  162. if (*skb2 != NULL) {
  163. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  164. skb_orphan(*skb2);
  165. skb_set_owner_r(*skb2, sk);
  166. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  167. sk->sk_data_ready(sk, (*skb2)->len);
  168. *skb2 = NULL;
  169. err = 0;
  170. }
  171. }
  172. sock_put(sk);
  173. return err;
  174. }
  175. /* Send SKB to all pfkey sockets matching selected criteria. */
  176. #define BROADCAST_ALL 0
  177. #define BROADCAST_ONE 1
  178. #define BROADCAST_REGISTERED 2
  179. #define BROADCAST_PROMISC_ONLY 4
  180. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  181. int broadcast_flags, struct sock *one_sk)
  182. {
  183. struct sock *sk;
  184. struct hlist_node *node;
  185. struct sk_buff *skb2 = NULL;
  186. int err = -ESRCH;
  187. /* XXX Do we need something like netlink_overrun? I think
  188. * XXX PF_KEY socket apps will not mind current behavior.
  189. */
  190. if (!skb)
  191. return -ENOMEM;
  192. pfkey_lock_table();
  193. sk_for_each(sk, node, &pfkey_table) {
  194. struct pfkey_sock *pfk = pfkey_sk(sk);
  195. int err2;
  196. /* Yes, it means that if you are meant to receive this
  197. * pfkey message you receive it twice as promiscuous
  198. * socket.
  199. */
  200. if (pfk->promisc)
  201. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  202. /* the exact target will be processed later */
  203. if (sk == one_sk)
  204. continue;
  205. if (broadcast_flags != BROADCAST_ALL) {
  206. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  207. continue;
  208. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  209. !pfk->registered)
  210. continue;
  211. if (broadcast_flags & BROADCAST_ONE)
  212. continue;
  213. }
  214. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  215. /* Error is cleare after succecful sending to at least one
  216. * registered KM */
  217. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  218. err = err2;
  219. }
  220. pfkey_unlock_table();
  221. if (one_sk != NULL)
  222. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  223. if (skb2)
  224. kfree_skb(skb2);
  225. kfree_skb(skb);
  226. return err;
  227. }
  228. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  229. {
  230. *new = *orig;
  231. }
  232. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  233. {
  234. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  235. struct sadb_msg *hdr;
  236. if (!skb)
  237. return -ENOBUFS;
  238. /* Woe be to the platform trying to support PFKEY yet
  239. * having normal errnos outside the 1-255 range, inclusive.
  240. */
  241. err = -err;
  242. if (err == ERESTARTSYS ||
  243. err == ERESTARTNOHAND ||
  244. err == ERESTARTNOINTR)
  245. err = EINTR;
  246. if (err >= 512)
  247. err = EINVAL;
  248. BUG_ON(err <= 0 || err >= 256);
  249. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  250. pfkey_hdr_dup(hdr, orig);
  251. hdr->sadb_msg_errno = (uint8_t) err;
  252. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  253. sizeof(uint64_t));
  254. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  255. return 0;
  256. }
  257. static u8 sadb_ext_min_len[] = {
  258. [SADB_EXT_RESERVED] = (u8) 0,
  259. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  260. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  261. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  262. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  263. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  264. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  265. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  266. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  267. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  268. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  269. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  270. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  271. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  272. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  273. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  274. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  275. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  276. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  277. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  278. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  279. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  280. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  281. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  282. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  283. };
  284. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  285. static int verify_address_len(void *p)
  286. {
  287. struct sadb_address *sp = p;
  288. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  289. struct sockaddr_in *sin;
  290. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  291. struct sockaddr_in6 *sin6;
  292. #endif
  293. int len;
  294. switch (addr->sa_family) {
  295. case AF_INET:
  296. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  297. if (sp->sadb_address_len != len ||
  298. sp->sadb_address_prefixlen > 32)
  299. return -EINVAL;
  300. break;
  301. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  302. case AF_INET6:
  303. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  304. if (sp->sadb_address_len != len ||
  305. sp->sadb_address_prefixlen > 128)
  306. return -EINVAL;
  307. break;
  308. #endif
  309. default:
  310. /* It is user using kernel to keep track of security
  311. * associations for another protocol, such as
  312. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  313. * lengths.
  314. *
  315. * XXX Actually, association/policy database is not yet
  316. * XXX able to cope with arbitrary sockaddr families.
  317. * XXX When it can, remove this -EINVAL. -DaveM
  318. */
  319. return -EINVAL;
  320. break;
  321. }
  322. return 0;
  323. }
  324. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  325. {
  326. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  327. sec_ctx->sadb_x_ctx_len,
  328. sizeof(uint64_t));
  329. }
  330. static inline int verify_sec_ctx_len(void *p)
  331. {
  332. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  333. int len;
  334. if (sec_ctx->sadb_x_ctx_len > PAGE_SIZE)
  335. return -EINVAL;
  336. len = pfkey_sec_ctx_len(sec_ctx);
  337. if (sec_ctx->sadb_x_sec_len != len)
  338. return -EINVAL;
  339. return 0;
  340. }
  341. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  342. {
  343. struct xfrm_user_sec_ctx *uctx = NULL;
  344. int ctx_size = sec_ctx->sadb_x_ctx_len;
  345. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  346. if (!uctx)
  347. return NULL;
  348. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  349. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  350. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  351. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  352. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  353. memcpy(uctx + 1, sec_ctx + 1,
  354. uctx->ctx_len);
  355. return uctx;
  356. }
  357. static int present_and_same_family(struct sadb_address *src,
  358. struct sadb_address *dst)
  359. {
  360. struct sockaddr *s_addr, *d_addr;
  361. if (!src || !dst)
  362. return 0;
  363. s_addr = (struct sockaddr *)(src + 1);
  364. d_addr = (struct sockaddr *)(dst + 1);
  365. if (s_addr->sa_family != d_addr->sa_family)
  366. return 0;
  367. if (s_addr->sa_family != AF_INET
  368. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  369. && s_addr->sa_family != AF_INET6
  370. #endif
  371. )
  372. return 0;
  373. return 1;
  374. }
  375. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  376. {
  377. char *p = (char *) hdr;
  378. int len = skb->len;
  379. len -= sizeof(*hdr);
  380. p += sizeof(*hdr);
  381. while (len > 0) {
  382. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  383. uint16_t ext_type;
  384. int ext_len;
  385. ext_len = ehdr->sadb_ext_len;
  386. ext_len *= sizeof(uint64_t);
  387. ext_type = ehdr->sadb_ext_type;
  388. if (ext_len < sizeof(uint64_t) ||
  389. ext_len > len ||
  390. ext_type == SADB_EXT_RESERVED)
  391. return -EINVAL;
  392. if (ext_type <= SADB_EXT_MAX) {
  393. int min = (int) sadb_ext_min_len[ext_type];
  394. if (ext_len < min)
  395. return -EINVAL;
  396. if (ext_hdrs[ext_type-1] != NULL)
  397. return -EINVAL;
  398. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  399. ext_type == SADB_EXT_ADDRESS_DST ||
  400. ext_type == SADB_EXT_ADDRESS_PROXY ||
  401. ext_type == SADB_X_EXT_NAT_T_OA) {
  402. if (verify_address_len(p))
  403. return -EINVAL;
  404. }
  405. if (ext_type == SADB_X_EXT_SEC_CTX) {
  406. if (verify_sec_ctx_len(p))
  407. return -EINVAL;
  408. }
  409. ext_hdrs[ext_type-1] = p;
  410. }
  411. p += ext_len;
  412. len -= ext_len;
  413. }
  414. return 0;
  415. }
  416. static uint16_t
  417. pfkey_satype2proto(uint8_t satype)
  418. {
  419. switch (satype) {
  420. case SADB_SATYPE_UNSPEC:
  421. return IPSEC_PROTO_ANY;
  422. case SADB_SATYPE_AH:
  423. return IPPROTO_AH;
  424. case SADB_SATYPE_ESP:
  425. return IPPROTO_ESP;
  426. case SADB_X_SATYPE_IPCOMP:
  427. return IPPROTO_COMP;
  428. break;
  429. default:
  430. return 0;
  431. }
  432. /* NOTREACHED */
  433. }
  434. static uint8_t
  435. pfkey_proto2satype(uint16_t proto)
  436. {
  437. switch (proto) {
  438. case IPPROTO_AH:
  439. return SADB_SATYPE_AH;
  440. case IPPROTO_ESP:
  441. return SADB_SATYPE_ESP;
  442. case IPPROTO_COMP:
  443. return SADB_X_SATYPE_IPCOMP;
  444. break;
  445. default:
  446. return 0;
  447. }
  448. /* NOTREACHED */
  449. }
  450. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  451. * say specifically 'just raw sockets' as we encode them as 255.
  452. */
  453. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  454. {
  455. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  456. }
  457. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  458. {
  459. return (proto ? proto : IPSEC_PROTO_ANY);
  460. }
  461. static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
  462. xfrm_address_t *xaddr)
  463. {
  464. switch (((struct sockaddr*)(addr + 1))->sa_family) {
  465. case AF_INET:
  466. xaddr->a4 =
  467. ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
  468. return AF_INET;
  469. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  470. case AF_INET6:
  471. memcpy(xaddr->a6,
  472. &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
  473. sizeof(struct in6_addr));
  474. return AF_INET6;
  475. #endif
  476. default:
  477. return 0;
  478. }
  479. /* NOTREACHED */
  480. }
  481. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  482. {
  483. struct sadb_sa *sa;
  484. struct sadb_address *addr;
  485. uint16_t proto;
  486. unsigned short family;
  487. xfrm_address_t *xaddr;
  488. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  489. if (sa == NULL)
  490. return NULL;
  491. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  492. if (proto == 0)
  493. return NULL;
  494. /* sadb_address_len should be checked by caller */
  495. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  496. if (addr == NULL)
  497. return NULL;
  498. family = ((struct sockaddr *)(addr + 1))->sa_family;
  499. switch (family) {
  500. case AF_INET:
  501. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  502. break;
  503. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  504. case AF_INET6:
  505. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  506. break;
  507. #endif
  508. default:
  509. xaddr = NULL;
  510. }
  511. if (!xaddr)
  512. return NULL;
  513. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  514. }
  515. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  516. static int
  517. pfkey_sockaddr_size(sa_family_t family)
  518. {
  519. switch (family) {
  520. case AF_INET:
  521. return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
  522. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  523. case AF_INET6:
  524. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
  525. #endif
  526. default:
  527. return 0;
  528. }
  529. /* NOTREACHED */
  530. }
  531. static inline int pfkey_mode_from_xfrm(int mode)
  532. {
  533. switch(mode) {
  534. case XFRM_MODE_TRANSPORT:
  535. return IPSEC_MODE_TRANSPORT;
  536. case XFRM_MODE_TUNNEL:
  537. return IPSEC_MODE_TUNNEL;
  538. case XFRM_MODE_BEET:
  539. return IPSEC_MODE_BEET;
  540. default:
  541. return -1;
  542. }
  543. }
  544. static inline int pfkey_mode_to_xfrm(int mode)
  545. {
  546. switch(mode) {
  547. case IPSEC_MODE_ANY: /*XXX*/
  548. case IPSEC_MODE_TRANSPORT:
  549. return XFRM_MODE_TRANSPORT;
  550. case IPSEC_MODE_TUNNEL:
  551. return XFRM_MODE_TUNNEL;
  552. case IPSEC_MODE_BEET:
  553. return XFRM_MODE_BEET;
  554. default:
  555. return -1;
  556. }
  557. }
  558. static struct sk_buff * pfkey_xfrm_state2msg(struct xfrm_state *x, int add_keys, int hsc)
  559. {
  560. struct sk_buff *skb;
  561. struct sadb_msg *hdr;
  562. struct sadb_sa *sa;
  563. struct sadb_lifetime *lifetime;
  564. struct sadb_address *addr;
  565. struct sadb_key *key;
  566. struct sadb_x_sa2 *sa2;
  567. struct sockaddr_in *sin;
  568. struct sadb_x_sec_ctx *sec_ctx;
  569. struct xfrm_sec_ctx *xfrm_ctx;
  570. int ctx_size = 0;
  571. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  572. struct sockaddr_in6 *sin6;
  573. #endif
  574. int size;
  575. int auth_key_size = 0;
  576. int encrypt_key_size = 0;
  577. int sockaddr_size;
  578. struct xfrm_encap_tmpl *natt = NULL;
  579. int mode;
  580. /* address family check */
  581. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  582. if (!sockaddr_size)
  583. return ERR_PTR(-EINVAL);
  584. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  585. key(AE), (identity(SD),) (sensitivity)> */
  586. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  587. sizeof(struct sadb_lifetime) +
  588. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  589. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  590. sizeof(struct sadb_address)*2 +
  591. sockaddr_size*2 +
  592. sizeof(struct sadb_x_sa2);
  593. if ((xfrm_ctx = x->security)) {
  594. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  595. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  596. }
  597. /* identity & sensitivity */
  598. if ((x->props.family == AF_INET &&
  599. x->sel.saddr.a4 != x->props.saddr.a4)
  600. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  601. || (x->props.family == AF_INET6 &&
  602. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  603. #endif
  604. )
  605. size += sizeof(struct sadb_address) + sockaddr_size;
  606. if (add_keys) {
  607. if (x->aalg && x->aalg->alg_key_len) {
  608. auth_key_size =
  609. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  610. size += sizeof(struct sadb_key) + auth_key_size;
  611. }
  612. if (x->ealg && x->ealg->alg_key_len) {
  613. encrypt_key_size =
  614. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  615. size += sizeof(struct sadb_key) + encrypt_key_size;
  616. }
  617. }
  618. if (x->encap)
  619. natt = x->encap;
  620. if (natt && natt->encap_type) {
  621. size += sizeof(struct sadb_x_nat_t_type);
  622. size += sizeof(struct sadb_x_nat_t_port);
  623. size += sizeof(struct sadb_x_nat_t_port);
  624. }
  625. skb = alloc_skb(size + 16, GFP_ATOMIC);
  626. if (skb == NULL)
  627. return ERR_PTR(-ENOBUFS);
  628. /* call should fill header later */
  629. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  630. memset(hdr, 0, size); /* XXX do we need this ? */
  631. hdr->sadb_msg_len = size / sizeof(uint64_t);
  632. /* sa */
  633. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  634. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  635. sa->sadb_sa_exttype = SADB_EXT_SA;
  636. sa->sadb_sa_spi = x->id.spi;
  637. sa->sadb_sa_replay = x->props.replay_window;
  638. switch (x->km.state) {
  639. case XFRM_STATE_VALID:
  640. sa->sadb_sa_state = x->km.dying ?
  641. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  642. break;
  643. case XFRM_STATE_ACQ:
  644. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  645. break;
  646. default:
  647. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  648. break;
  649. }
  650. sa->sadb_sa_auth = 0;
  651. if (x->aalg) {
  652. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  653. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  654. }
  655. sa->sadb_sa_encrypt = 0;
  656. BUG_ON(x->ealg && x->calg);
  657. if (x->ealg) {
  658. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  659. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  660. }
  661. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  662. if (x->calg) {
  663. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  664. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  665. }
  666. sa->sadb_sa_flags = 0;
  667. if (x->props.flags & XFRM_STATE_NOECN)
  668. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  669. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  670. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  671. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  672. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  673. /* hard time */
  674. if (hsc & 2) {
  675. lifetime = (struct sadb_lifetime *) skb_put(skb,
  676. sizeof(struct sadb_lifetime));
  677. lifetime->sadb_lifetime_len =
  678. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  679. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  680. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  681. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  682. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  683. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  684. }
  685. /* soft time */
  686. if (hsc & 1) {
  687. lifetime = (struct sadb_lifetime *) skb_put(skb,
  688. sizeof(struct sadb_lifetime));
  689. lifetime->sadb_lifetime_len =
  690. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  691. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  692. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  693. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  694. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  695. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  696. }
  697. /* current time */
  698. lifetime = (struct sadb_lifetime *) skb_put(skb,
  699. sizeof(struct sadb_lifetime));
  700. lifetime->sadb_lifetime_len =
  701. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  702. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  703. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  704. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  705. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  706. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  707. /* src address */
  708. addr = (struct sadb_address*) skb_put(skb,
  709. sizeof(struct sadb_address)+sockaddr_size);
  710. addr->sadb_address_len =
  711. (sizeof(struct sadb_address)+sockaddr_size)/
  712. sizeof(uint64_t);
  713. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  714. /* "if the ports are non-zero, then the sadb_address_proto field,
  715. normally zero, MUST be filled in with the transport
  716. protocol's number." - RFC2367 */
  717. addr->sadb_address_proto = 0;
  718. addr->sadb_address_reserved = 0;
  719. if (x->props.family == AF_INET) {
  720. addr->sadb_address_prefixlen = 32;
  721. sin = (struct sockaddr_in *) (addr + 1);
  722. sin->sin_family = AF_INET;
  723. sin->sin_addr.s_addr = x->props.saddr.a4;
  724. sin->sin_port = 0;
  725. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  726. }
  727. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  728. else if (x->props.family == AF_INET6) {
  729. addr->sadb_address_prefixlen = 128;
  730. sin6 = (struct sockaddr_in6 *) (addr + 1);
  731. sin6->sin6_family = AF_INET6;
  732. sin6->sin6_port = 0;
  733. sin6->sin6_flowinfo = 0;
  734. memcpy(&sin6->sin6_addr, x->props.saddr.a6,
  735. sizeof(struct in6_addr));
  736. sin6->sin6_scope_id = 0;
  737. }
  738. #endif
  739. else
  740. BUG();
  741. /* dst address */
  742. addr = (struct sadb_address*) skb_put(skb,
  743. sizeof(struct sadb_address)+sockaddr_size);
  744. addr->sadb_address_len =
  745. (sizeof(struct sadb_address)+sockaddr_size)/
  746. sizeof(uint64_t);
  747. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  748. addr->sadb_address_proto = 0;
  749. addr->sadb_address_prefixlen = 32; /* XXX */
  750. addr->sadb_address_reserved = 0;
  751. if (x->props.family == AF_INET) {
  752. sin = (struct sockaddr_in *) (addr + 1);
  753. sin->sin_family = AF_INET;
  754. sin->sin_addr.s_addr = x->id.daddr.a4;
  755. sin->sin_port = 0;
  756. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  757. if (x->sel.saddr.a4 != x->props.saddr.a4) {
  758. addr = (struct sadb_address*) skb_put(skb,
  759. sizeof(struct sadb_address)+sockaddr_size);
  760. addr->sadb_address_len =
  761. (sizeof(struct sadb_address)+sockaddr_size)/
  762. sizeof(uint64_t);
  763. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  764. addr->sadb_address_proto =
  765. pfkey_proto_from_xfrm(x->sel.proto);
  766. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  767. addr->sadb_address_reserved = 0;
  768. sin = (struct sockaddr_in *) (addr + 1);
  769. sin->sin_family = AF_INET;
  770. sin->sin_addr.s_addr = x->sel.saddr.a4;
  771. sin->sin_port = x->sel.sport;
  772. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  773. }
  774. }
  775. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  776. else if (x->props.family == AF_INET6) {
  777. addr->sadb_address_prefixlen = 128;
  778. sin6 = (struct sockaddr_in6 *) (addr + 1);
  779. sin6->sin6_family = AF_INET6;
  780. sin6->sin6_port = 0;
  781. sin6->sin6_flowinfo = 0;
  782. memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
  783. sin6->sin6_scope_id = 0;
  784. if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
  785. sizeof(struct in6_addr))) {
  786. addr = (struct sadb_address *) skb_put(skb,
  787. sizeof(struct sadb_address)+sockaddr_size);
  788. addr->sadb_address_len =
  789. (sizeof(struct sadb_address)+sockaddr_size)/
  790. sizeof(uint64_t);
  791. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  792. addr->sadb_address_proto =
  793. pfkey_proto_from_xfrm(x->sel.proto);
  794. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  795. addr->sadb_address_reserved = 0;
  796. sin6 = (struct sockaddr_in6 *) (addr + 1);
  797. sin6->sin6_family = AF_INET6;
  798. sin6->sin6_port = x->sel.sport;
  799. sin6->sin6_flowinfo = 0;
  800. memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
  801. sizeof(struct in6_addr));
  802. sin6->sin6_scope_id = 0;
  803. }
  804. }
  805. #endif
  806. else
  807. BUG();
  808. /* auth key */
  809. if (add_keys && auth_key_size) {
  810. key = (struct sadb_key *) skb_put(skb,
  811. sizeof(struct sadb_key)+auth_key_size);
  812. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  813. sizeof(uint64_t);
  814. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  815. key->sadb_key_bits = x->aalg->alg_key_len;
  816. key->sadb_key_reserved = 0;
  817. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  818. }
  819. /* encrypt key */
  820. if (add_keys && encrypt_key_size) {
  821. key = (struct sadb_key *) skb_put(skb,
  822. sizeof(struct sadb_key)+encrypt_key_size);
  823. key->sadb_key_len = (sizeof(struct sadb_key) +
  824. encrypt_key_size) / sizeof(uint64_t);
  825. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  826. key->sadb_key_bits = x->ealg->alg_key_len;
  827. key->sadb_key_reserved = 0;
  828. memcpy(key + 1, x->ealg->alg_key,
  829. (x->ealg->alg_key_len+7)/8);
  830. }
  831. /* sa */
  832. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  833. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  834. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  835. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  836. kfree_skb(skb);
  837. return ERR_PTR(-EINVAL);
  838. }
  839. sa2->sadb_x_sa2_mode = mode;
  840. sa2->sadb_x_sa2_reserved1 = 0;
  841. sa2->sadb_x_sa2_reserved2 = 0;
  842. sa2->sadb_x_sa2_sequence = 0;
  843. sa2->sadb_x_sa2_reqid = x->props.reqid;
  844. if (natt && natt->encap_type) {
  845. struct sadb_x_nat_t_type *n_type;
  846. struct sadb_x_nat_t_port *n_port;
  847. /* type */
  848. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  849. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  850. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  851. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  852. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  853. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  854. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  855. /* source port */
  856. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  857. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  858. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  859. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  860. n_port->sadb_x_nat_t_port_reserved = 0;
  861. /* dest port */
  862. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  863. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  864. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  865. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  866. n_port->sadb_x_nat_t_port_reserved = 0;
  867. }
  868. /* security context */
  869. if (xfrm_ctx) {
  870. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  871. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  872. sec_ctx->sadb_x_sec_len =
  873. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  874. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  875. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  876. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  877. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  878. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  879. xfrm_ctx->ctx_len);
  880. }
  881. return skb;
  882. }
  883. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  884. void **ext_hdrs)
  885. {
  886. struct xfrm_state *x;
  887. struct sadb_lifetime *lifetime;
  888. struct sadb_sa *sa;
  889. struct sadb_key *key;
  890. struct sadb_x_sec_ctx *sec_ctx;
  891. uint16_t proto;
  892. int err;
  893. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  894. if (!sa ||
  895. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  896. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  897. return ERR_PTR(-EINVAL);
  898. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  899. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  900. return ERR_PTR(-EINVAL);
  901. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  902. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  903. return ERR_PTR(-EINVAL);
  904. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  905. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  906. return ERR_PTR(-EINVAL);
  907. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  908. if (proto == 0)
  909. return ERR_PTR(-EINVAL);
  910. /* default error is no buffer space */
  911. err = -ENOBUFS;
  912. /* RFC2367:
  913. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  914. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  915. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  916. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  917. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  918. not true.
  919. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  920. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  921. */
  922. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  923. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  924. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  925. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  926. return ERR_PTR(-EINVAL);
  927. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  928. if (key != NULL &&
  929. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  930. ((key->sadb_key_bits+7) / 8 == 0 ||
  931. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  932. return ERR_PTR(-EINVAL);
  933. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  934. if (key != NULL &&
  935. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  936. ((key->sadb_key_bits+7) / 8 == 0 ||
  937. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  938. return ERR_PTR(-EINVAL);
  939. x = xfrm_state_alloc();
  940. if (x == NULL)
  941. return ERR_PTR(-ENOBUFS);
  942. x->id.proto = proto;
  943. x->id.spi = sa->sadb_sa_spi;
  944. x->props.replay_window = sa->sadb_sa_replay;
  945. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  946. x->props.flags |= XFRM_STATE_NOECN;
  947. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  948. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  949. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  950. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  951. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  952. if (lifetime != NULL) {
  953. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  954. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  955. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  956. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  957. }
  958. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  959. if (lifetime != NULL) {
  960. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  961. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  962. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  963. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  964. }
  965. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  966. if (sec_ctx != NULL) {
  967. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  968. if (!uctx)
  969. goto out;
  970. err = security_xfrm_state_alloc(x, uctx);
  971. kfree(uctx);
  972. if (err)
  973. goto out;
  974. }
  975. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  976. if (sa->sadb_sa_auth) {
  977. int keysize = 0;
  978. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  979. if (!a) {
  980. err = -ENOSYS;
  981. goto out;
  982. }
  983. if (key)
  984. keysize = (key->sadb_key_bits + 7) / 8;
  985. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  986. if (!x->aalg)
  987. goto out;
  988. strcpy(x->aalg->alg_name, a->name);
  989. x->aalg->alg_key_len = 0;
  990. if (key) {
  991. x->aalg->alg_key_len = key->sadb_key_bits;
  992. memcpy(x->aalg->alg_key, key+1, keysize);
  993. }
  994. x->props.aalgo = sa->sadb_sa_auth;
  995. /* x->algo.flags = sa->sadb_sa_flags; */
  996. }
  997. if (sa->sadb_sa_encrypt) {
  998. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  999. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1000. if (!a) {
  1001. err = -ENOSYS;
  1002. goto out;
  1003. }
  1004. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1005. if (!x->calg)
  1006. goto out;
  1007. strcpy(x->calg->alg_name, a->name);
  1008. x->props.calgo = sa->sadb_sa_encrypt;
  1009. } else {
  1010. int keysize = 0;
  1011. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1012. if (!a) {
  1013. err = -ENOSYS;
  1014. goto out;
  1015. }
  1016. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1017. if (key)
  1018. keysize = (key->sadb_key_bits + 7) / 8;
  1019. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1020. if (!x->ealg)
  1021. goto out;
  1022. strcpy(x->ealg->alg_name, a->name);
  1023. x->ealg->alg_key_len = 0;
  1024. if (key) {
  1025. x->ealg->alg_key_len = key->sadb_key_bits;
  1026. memcpy(x->ealg->alg_key, key+1, keysize);
  1027. }
  1028. x->props.ealgo = sa->sadb_sa_encrypt;
  1029. }
  1030. }
  1031. /* x->algo.flags = sa->sadb_sa_flags; */
  1032. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1033. &x->props.saddr);
  1034. if (!x->props.family) {
  1035. err = -EAFNOSUPPORT;
  1036. goto out;
  1037. }
  1038. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1039. &x->id.daddr);
  1040. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1041. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1042. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1043. if (mode < 0) {
  1044. err = -EINVAL;
  1045. goto out;
  1046. }
  1047. x->props.mode = mode;
  1048. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1049. }
  1050. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1051. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1052. /* Nobody uses this, but we try. */
  1053. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1054. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1055. }
  1056. if (!x->sel.family)
  1057. x->sel.family = x->props.family;
  1058. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1059. struct sadb_x_nat_t_type* n_type;
  1060. struct xfrm_encap_tmpl *natt;
  1061. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1062. if (!x->encap)
  1063. goto out;
  1064. natt = x->encap;
  1065. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1066. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1067. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1068. struct sadb_x_nat_t_port* n_port =
  1069. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1070. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1071. }
  1072. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1073. struct sadb_x_nat_t_port* n_port =
  1074. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1075. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1076. }
  1077. }
  1078. err = xfrm_init_state(x);
  1079. if (err)
  1080. goto out;
  1081. x->km.seq = hdr->sadb_msg_seq;
  1082. return x;
  1083. out:
  1084. x->km.state = XFRM_STATE_DEAD;
  1085. xfrm_state_put(x);
  1086. return ERR_PTR(err);
  1087. }
  1088. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1089. {
  1090. return -EOPNOTSUPP;
  1091. }
  1092. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1093. {
  1094. struct sk_buff *resp_skb;
  1095. struct sadb_x_sa2 *sa2;
  1096. struct sadb_address *saddr, *daddr;
  1097. struct sadb_msg *out_hdr;
  1098. struct xfrm_state *x = NULL;
  1099. int mode;
  1100. u32 reqid;
  1101. u8 proto;
  1102. unsigned short family;
  1103. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1104. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1105. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1106. return -EINVAL;
  1107. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1108. if (proto == 0)
  1109. return -EINVAL;
  1110. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1111. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1112. if (mode < 0)
  1113. return -EINVAL;
  1114. reqid = sa2->sadb_x_sa2_reqid;
  1115. } else {
  1116. mode = 0;
  1117. reqid = 0;
  1118. }
  1119. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1120. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1121. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1122. switch (family) {
  1123. case AF_INET:
  1124. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1125. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1126. break;
  1127. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1128. case AF_INET6:
  1129. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1130. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1131. break;
  1132. #endif
  1133. }
  1134. if (hdr->sadb_msg_seq) {
  1135. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1136. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1137. xfrm_state_put(x);
  1138. x = NULL;
  1139. }
  1140. }
  1141. if (!x)
  1142. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1143. if (x == NULL)
  1144. return -ENOENT;
  1145. resp_skb = ERR_PTR(-ENOENT);
  1146. spin_lock_bh(&x->lock);
  1147. if (x->km.state != XFRM_STATE_DEAD) {
  1148. struct sadb_spirange *range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1149. u32 min_spi, max_spi;
  1150. if (range != NULL) {
  1151. min_spi = range->sadb_spirange_min;
  1152. max_spi = range->sadb_spirange_max;
  1153. } else {
  1154. min_spi = 0x100;
  1155. max_spi = 0x0fffffff;
  1156. }
  1157. xfrm_alloc_spi(x, htonl(min_spi), htonl(max_spi));
  1158. if (x->id.spi)
  1159. resp_skb = pfkey_xfrm_state2msg(x, 0, 3);
  1160. }
  1161. spin_unlock_bh(&x->lock);
  1162. if (IS_ERR(resp_skb)) {
  1163. xfrm_state_put(x);
  1164. return PTR_ERR(resp_skb);
  1165. }
  1166. out_hdr = (struct sadb_msg *) resp_skb->data;
  1167. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1168. out_hdr->sadb_msg_type = SADB_GETSPI;
  1169. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1170. out_hdr->sadb_msg_errno = 0;
  1171. out_hdr->sadb_msg_reserved = 0;
  1172. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1173. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1174. xfrm_state_put(x);
  1175. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1176. return 0;
  1177. }
  1178. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1179. {
  1180. struct xfrm_state *x;
  1181. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1182. return -EOPNOTSUPP;
  1183. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1184. return 0;
  1185. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1186. if (x == NULL)
  1187. return 0;
  1188. spin_lock_bh(&x->lock);
  1189. if (x->km.state == XFRM_STATE_ACQ) {
  1190. x->km.state = XFRM_STATE_ERROR;
  1191. wake_up(&km_waitq);
  1192. }
  1193. spin_unlock_bh(&x->lock);
  1194. xfrm_state_put(x);
  1195. return 0;
  1196. }
  1197. static inline int event2poltype(int event)
  1198. {
  1199. switch (event) {
  1200. case XFRM_MSG_DELPOLICY:
  1201. return SADB_X_SPDDELETE;
  1202. case XFRM_MSG_NEWPOLICY:
  1203. return SADB_X_SPDADD;
  1204. case XFRM_MSG_UPDPOLICY:
  1205. return SADB_X_SPDUPDATE;
  1206. case XFRM_MSG_POLEXPIRE:
  1207. // return SADB_X_SPDEXPIRE;
  1208. default:
  1209. printk("pfkey: Unknown policy event %d\n", event);
  1210. break;
  1211. }
  1212. return 0;
  1213. }
  1214. static inline int event2keytype(int event)
  1215. {
  1216. switch (event) {
  1217. case XFRM_MSG_DELSA:
  1218. return SADB_DELETE;
  1219. case XFRM_MSG_NEWSA:
  1220. return SADB_ADD;
  1221. case XFRM_MSG_UPDSA:
  1222. return SADB_UPDATE;
  1223. case XFRM_MSG_EXPIRE:
  1224. return SADB_EXPIRE;
  1225. default:
  1226. printk("pfkey: Unknown SA event %d\n", event);
  1227. break;
  1228. }
  1229. return 0;
  1230. }
  1231. /* ADD/UPD/DEL */
  1232. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1233. {
  1234. struct sk_buff *skb;
  1235. struct sadb_msg *hdr;
  1236. int hsc = 3;
  1237. if (c->event == XFRM_MSG_DELSA)
  1238. hsc = 0;
  1239. skb = pfkey_xfrm_state2msg(x, 0, hsc);
  1240. if (IS_ERR(skb))
  1241. return PTR_ERR(skb);
  1242. hdr = (struct sadb_msg *) skb->data;
  1243. hdr->sadb_msg_version = PF_KEY_V2;
  1244. hdr->sadb_msg_type = event2keytype(c->event);
  1245. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1246. hdr->sadb_msg_errno = 0;
  1247. hdr->sadb_msg_reserved = 0;
  1248. hdr->sadb_msg_seq = c->seq;
  1249. hdr->sadb_msg_pid = c->pid;
  1250. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1251. return 0;
  1252. }
  1253. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1254. {
  1255. struct xfrm_state *x;
  1256. int err;
  1257. struct km_event c;
  1258. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1259. if (IS_ERR(x))
  1260. return PTR_ERR(x);
  1261. xfrm_state_hold(x);
  1262. if (hdr->sadb_msg_type == SADB_ADD)
  1263. err = xfrm_state_add(x);
  1264. else
  1265. err = xfrm_state_update(x);
  1266. xfrm_audit_state_add(x, err ? 0 : 1,
  1267. audit_get_loginuid(current->audit_context), 0);
  1268. if (err < 0) {
  1269. x->km.state = XFRM_STATE_DEAD;
  1270. __xfrm_state_put(x);
  1271. goto out;
  1272. }
  1273. if (hdr->sadb_msg_type == SADB_ADD)
  1274. c.event = XFRM_MSG_NEWSA;
  1275. else
  1276. c.event = XFRM_MSG_UPDSA;
  1277. c.seq = hdr->sadb_msg_seq;
  1278. c.pid = hdr->sadb_msg_pid;
  1279. km_state_notify(x, &c);
  1280. out:
  1281. xfrm_state_put(x);
  1282. return err;
  1283. }
  1284. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1285. {
  1286. struct xfrm_state *x;
  1287. struct km_event c;
  1288. int err;
  1289. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1290. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1291. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1292. return -EINVAL;
  1293. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1294. if (x == NULL)
  1295. return -ESRCH;
  1296. if ((err = security_xfrm_state_delete(x)))
  1297. goto out;
  1298. if (xfrm_state_kern(x)) {
  1299. err = -EPERM;
  1300. goto out;
  1301. }
  1302. err = xfrm_state_delete(x);
  1303. if (err < 0)
  1304. goto out;
  1305. c.seq = hdr->sadb_msg_seq;
  1306. c.pid = hdr->sadb_msg_pid;
  1307. c.event = XFRM_MSG_DELSA;
  1308. km_state_notify(x, &c);
  1309. out:
  1310. xfrm_audit_state_delete(x, err ? 0 : 1,
  1311. audit_get_loginuid(current->audit_context), 0);
  1312. xfrm_state_put(x);
  1313. return err;
  1314. }
  1315. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1316. {
  1317. __u8 proto;
  1318. struct sk_buff *out_skb;
  1319. struct sadb_msg *out_hdr;
  1320. struct xfrm_state *x;
  1321. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1322. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1323. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1324. return -EINVAL;
  1325. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1326. if (x == NULL)
  1327. return -ESRCH;
  1328. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1329. proto = x->id.proto;
  1330. xfrm_state_put(x);
  1331. if (IS_ERR(out_skb))
  1332. return PTR_ERR(out_skb);
  1333. out_hdr = (struct sadb_msg *) out_skb->data;
  1334. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1335. out_hdr->sadb_msg_type = SADB_DUMP;
  1336. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1337. out_hdr->sadb_msg_errno = 0;
  1338. out_hdr->sadb_msg_reserved = 0;
  1339. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1340. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1341. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1342. return 0;
  1343. }
  1344. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1345. gfp_t allocation)
  1346. {
  1347. struct sk_buff *skb;
  1348. struct sadb_msg *hdr;
  1349. int len, auth_len, enc_len, i;
  1350. auth_len = xfrm_count_auth_supported();
  1351. if (auth_len) {
  1352. auth_len *= sizeof(struct sadb_alg);
  1353. auth_len += sizeof(struct sadb_supported);
  1354. }
  1355. enc_len = xfrm_count_enc_supported();
  1356. if (enc_len) {
  1357. enc_len *= sizeof(struct sadb_alg);
  1358. enc_len += sizeof(struct sadb_supported);
  1359. }
  1360. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1361. skb = alloc_skb(len + 16, allocation);
  1362. if (!skb)
  1363. goto out_put_algs;
  1364. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1365. pfkey_hdr_dup(hdr, orig);
  1366. hdr->sadb_msg_errno = 0;
  1367. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1368. if (auth_len) {
  1369. struct sadb_supported *sp;
  1370. struct sadb_alg *ap;
  1371. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1372. ap = (struct sadb_alg *) (sp + 1);
  1373. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1374. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1375. for (i = 0; ; i++) {
  1376. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1377. if (!aalg)
  1378. break;
  1379. if (aalg->available)
  1380. *ap++ = aalg->desc;
  1381. }
  1382. }
  1383. if (enc_len) {
  1384. struct sadb_supported *sp;
  1385. struct sadb_alg *ap;
  1386. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1387. ap = (struct sadb_alg *) (sp + 1);
  1388. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1389. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1390. for (i = 0; ; i++) {
  1391. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1392. if (!ealg)
  1393. break;
  1394. if (ealg->available)
  1395. *ap++ = ealg->desc;
  1396. }
  1397. }
  1398. out_put_algs:
  1399. return skb;
  1400. }
  1401. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1402. {
  1403. struct pfkey_sock *pfk = pfkey_sk(sk);
  1404. struct sk_buff *supp_skb;
  1405. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1406. return -EINVAL;
  1407. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1408. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1409. return -EEXIST;
  1410. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1411. }
  1412. xfrm_probe_algs();
  1413. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1414. if (!supp_skb) {
  1415. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1416. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1417. return -ENOBUFS;
  1418. }
  1419. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1420. return 0;
  1421. }
  1422. static int key_notify_sa_flush(struct km_event *c)
  1423. {
  1424. struct sk_buff *skb;
  1425. struct sadb_msg *hdr;
  1426. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1427. if (!skb)
  1428. return -ENOBUFS;
  1429. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1430. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1431. hdr->sadb_msg_type = SADB_FLUSH;
  1432. hdr->sadb_msg_seq = c->seq;
  1433. hdr->sadb_msg_pid = c->pid;
  1434. hdr->sadb_msg_version = PF_KEY_V2;
  1435. hdr->sadb_msg_errno = (uint8_t) 0;
  1436. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1437. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1438. return 0;
  1439. }
  1440. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1441. {
  1442. unsigned proto;
  1443. struct km_event c;
  1444. struct xfrm_audit audit_info;
  1445. int err;
  1446. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1447. if (proto == 0)
  1448. return -EINVAL;
  1449. audit_info.loginuid = audit_get_loginuid(current->audit_context);
  1450. audit_info.secid = 0;
  1451. err = xfrm_state_flush(proto, &audit_info);
  1452. if (err)
  1453. return err;
  1454. c.data.proto = proto;
  1455. c.seq = hdr->sadb_msg_seq;
  1456. c.pid = hdr->sadb_msg_pid;
  1457. c.event = XFRM_MSG_FLUSHSA;
  1458. km_state_notify(NULL, &c);
  1459. return 0;
  1460. }
  1461. struct pfkey_dump_data
  1462. {
  1463. struct sk_buff *skb;
  1464. struct sadb_msg *hdr;
  1465. struct sock *sk;
  1466. };
  1467. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1468. {
  1469. struct pfkey_dump_data *data = ptr;
  1470. struct sk_buff *out_skb;
  1471. struct sadb_msg *out_hdr;
  1472. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1473. if (IS_ERR(out_skb))
  1474. return PTR_ERR(out_skb);
  1475. out_hdr = (struct sadb_msg *) out_skb->data;
  1476. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  1477. out_hdr->sadb_msg_type = SADB_DUMP;
  1478. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1479. out_hdr->sadb_msg_errno = 0;
  1480. out_hdr->sadb_msg_reserved = 0;
  1481. out_hdr->sadb_msg_seq = count;
  1482. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  1483. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  1484. return 0;
  1485. }
  1486. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1487. {
  1488. u8 proto;
  1489. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  1490. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1491. if (proto == 0)
  1492. return -EINVAL;
  1493. return xfrm_state_walk(proto, dump_sa, &data);
  1494. }
  1495. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1496. {
  1497. struct pfkey_sock *pfk = pfkey_sk(sk);
  1498. int satype = hdr->sadb_msg_satype;
  1499. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1500. /* XXX we mangle packet... */
  1501. hdr->sadb_msg_errno = 0;
  1502. if (satype != 0 && satype != 1)
  1503. return -EINVAL;
  1504. pfk->promisc = satype;
  1505. }
  1506. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1507. return 0;
  1508. }
  1509. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1510. {
  1511. int i;
  1512. u32 reqid = *(u32*)ptr;
  1513. for (i=0; i<xp->xfrm_nr; i++) {
  1514. if (xp->xfrm_vec[i].reqid == reqid)
  1515. return -EEXIST;
  1516. }
  1517. return 0;
  1518. }
  1519. static u32 gen_reqid(void)
  1520. {
  1521. u32 start;
  1522. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1523. start = reqid;
  1524. do {
  1525. ++reqid;
  1526. if (reqid == 0)
  1527. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1528. if (xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, check_reqid,
  1529. (void*)&reqid) != -EEXIST)
  1530. return reqid;
  1531. } while (reqid != start);
  1532. return 0;
  1533. }
  1534. static int
  1535. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1536. {
  1537. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1538. struct sockaddr_in *sin;
  1539. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1540. struct sockaddr_in6 *sin6;
  1541. #endif
  1542. int mode;
  1543. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1544. return -ELOOP;
  1545. if (rq->sadb_x_ipsecrequest_mode == 0)
  1546. return -EINVAL;
  1547. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1548. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1549. return -EINVAL;
  1550. t->mode = mode;
  1551. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1552. t->optional = 1;
  1553. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1554. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1555. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1556. t->reqid = 0;
  1557. if (!t->reqid && !(t->reqid = gen_reqid()))
  1558. return -ENOBUFS;
  1559. }
  1560. /* addresses present only in tunnel mode */
  1561. if (t->mode == XFRM_MODE_TUNNEL) {
  1562. struct sockaddr *sa;
  1563. sa = (struct sockaddr *)(rq+1);
  1564. switch(sa->sa_family) {
  1565. case AF_INET:
  1566. sin = (struct sockaddr_in*)sa;
  1567. t->saddr.a4 = sin->sin_addr.s_addr;
  1568. sin++;
  1569. if (sin->sin_family != AF_INET)
  1570. return -EINVAL;
  1571. t->id.daddr.a4 = sin->sin_addr.s_addr;
  1572. break;
  1573. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1574. case AF_INET6:
  1575. sin6 = (struct sockaddr_in6*)sa;
  1576. memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1577. sin6++;
  1578. if (sin6->sin6_family != AF_INET6)
  1579. return -EINVAL;
  1580. memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1581. break;
  1582. #endif
  1583. default:
  1584. return -EINVAL;
  1585. }
  1586. t->encap_family = sa->sa_family;
  1587. } else
  1588. t->encap_family = xp->family;
  1589. /* No way to set this via kame pfkey */
  1590. t->aalgos = t->ealgos = t->calgos = ~0;
  1591. xp->xfrm_nr++;
  1592. return 0;
  1593. }
  1594. static int
  1595. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1596. {
  1597. int err;
  1598. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1599. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1600. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1601. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1602. return err;
  1603. len -= rq->sadb_x_ipsecrequest_len;
  1604. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1605. }
  1606. return 0;
  1607. }
  1608. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1609. {
  1610. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1611. if (xfrm_ctx) {
  1612. int len = sizeof(struct sadb_x_sec_ctx);
  1613. len += xfrm_ctx->ctx_len;
  1614. return PFKEY_ALIGN8(len);
  1615. }
  1616. return 0;
  1617. }
  1618. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1619. {
  1620. struct xfrm_tmpl *t;
  1621. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1622. int socklen = 0;
  1623. int i;
  1624. for (i=0; i<xp->xfrm_nr; i++) {
  1625. t = xp->xfrm_vec + i;
  1626. socklen += (t->encap_family == AF_INET ?
  1627. sizeof(struct sockaddr_in) :
  1628. sizeof(struct sockaddr_in6));
  1629. }
  1630. return sizeof(struct sadb_msg) +
  1631. (sizeof(struct sadb_lifetime) * 3) +
  1632. (sizeof(struct sadb_address) * 2) +
  1633. (sockaddr_size * 2) +
  1634. sizeof(struct sadb_x_policy) +
  1635. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1636. (socklen * 2) +
  1637. pfkey_xfrm_policy2sec_ctx_size(xp);
  1638. }
  1639. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1640. {
  1641. struct sk_buff *skb;
  1642. int size;
  1643. size = pfkey_xfrm_policy2msg_size(xp);
  1644. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1645. if (skb == NULL)
  1646. return ERR_PTR(-ENOBUFS);
  1647. return skb;
  1648. }
  1649. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1650. {
  1651. struct sadb_msg *hdr;
  1652. struct sadb_address *addr;
  1653. struct sadb_lifetime *lifetime;
  1654. struct sadb_x_policy *pol;
  1655. struct sockaddr_in *sin;
  1656. struct sadb_x_sec_ctx *sec_ctx;
  1657. struct xfrm_sec_ctx *xfrm_ctx;
  1658. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1659. struct sockaddr_in6 *sin6;
  1660. #endif
  1661. int i;
  1662. int size;
  1663. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1664. int socklen = (xp->family == AF_INET ?
  1665. sizeof(struct sockaddr_in) :
  1666. sizeof(struct sockaddr_in6));
  1667. size = pfkey_xfrm_policy2msg_size(xp);
  1668. /* call should fill header later */
  1669. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1670. memset(hdr, 0, size); /* XXX do we need this ? */
  1671. /* src address */
  1672. addr = (struct sadb_address*) skb_put(skb,
  1673. sizeof(struct sadb_address)+sockaddr_size);
  1674. addr->sadb_address_len =
  1675. (sizeof(struct sadb_address)+sockaddr_size)/
  1676. sizeof(uint64_t);
  1677. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1678. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1679. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1680. addr->sadb_address_reserved = 0;
  1681. /* src address */
  1682. if (xp->family == AF_INET) {
  1683. sin = (struct sockaddr_in *) (addr + 1);
  1684. sin->sin_family = AF_INET;
  1685. sin->sin_addr.s_addr = xp->selector.saddr.a4;
  1686. sin->sin_port = xp->selector.sport;
  1687. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1688. }
  1689. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1690. else if (xp->family == AF_INET6) {
  1691. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1692. sin6->sin6_family = AF_INET6;
  1693. sin6->sin6_port = xp->selector.sport;
  1694. sin6->sin6_flowinfo = 0;
  1695. memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
  1696. sizeof(struct in6_addr));
  1697. sin6->sin6_scope_id = 0;
  1698. }
  1699. #endif
  1700. else
  1701. BUG();
  1702. /* dst address */
  1703. addr = (struct sadb_address*) skb_put(skb,
  1704. sizeof(struct sadb_address)+sockaddr_size);
  1705. addr->sadb_address_len =
  1706. (sizeof(struct sadb_address)+sockaddr_size)/
  1707. sizeof(uint64_t);
  1708. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1709. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1710. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1711. addr->sadb_address_reserved = 0;
  1712. if (xp->family == AF_INET) {
  1713. sin = (struct sockaddr_in *) (addr + 1);
  1714. sin->sin_family = AF_INET;
  1715. sin->sin_addr.s_addr = xp->selector.daddr.a4;
  1716. sin->sin_port = xp->selector.dport;
  1717. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1718. }
  1719. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1720. else if (xp->family == AF_INET6) {
  1721. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1722. sin6->sin6_family = AF_INET6;
  1723. sin6->sin6_port = xp->selector.dport;
  1724. sin6->sin6_flowinfo = 0;
  1725. memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
  1726. sizeof(struct in6_addr));
  1727. sin6->sin6_scope_id = 0;
  1728. }
  1729. #endif
  1730. else
  1731. BUG();
  1732. /* hard time */
  1733. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1734. sizeof(struct sadb_lifetime));
  1735. lifetime->sadb_lifetime_len =
  1736. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1737. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1738. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1739. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1740. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1741. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1742. /* soft time */
  1743. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1744. sizeof(struct sadb_lifetime));
  1745. lifetime->sadb_lifetime_len =
  1746. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1747. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1748. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1749. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1750. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1751. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1752. /* current time */
  1753. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1754. sizeof(struct sadb_lifetime));
  1755. lifetime->sadb_lifetime_len =
  1756. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1757. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1758. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1759. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1760. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1761. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1762. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1763. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1764. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1765. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1766. if (xp->action == XFRM_POLICY_ALLOW) {
  1767. if (xp->xfrm_nr)
  1768. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1769. else
  1770. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1771. }
  1772. pol->sadb_x_policy_dir = dir+1;
  1773. pol->sadb_x_policy_id = xp->index;
  1774. pol->sadb_x_policy_priority = xp->priority;
  1775. for (i=0; i<xp->xfrm_nr; i++) {
  1776. struct sadb_x_ipsecrequest *rq;
  1777. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1778. int req_size;
  1779. int mode;
  1780. req_size = sizeof(struct sadb_x_ipsecrequest);
  1781. if (t->mode == XFRM_MODE_TUNNEL)
  1782. req_size += ((t->encap_family == AF_INET ?
  1783. sizeof(struct sockaddr_in) :
  1784. sizeof(struct sockaddr_in6)) * 2);
  1785. else
  1786. size -= 2*socklen;
  1787. rq = (void*)skb_put(skb, req_size);
  1788. pol->sadb_x_policy_len += req_size/8;
  1789. memset(rq, 0, sizeof(*rq));
  1790. rq->sadb_x_ipsecrequest_len = req_size;
  1791. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1792. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1793. return -EINVAL;
  1794. rq->sadb_x_ipsecrequest_mode = mode;
  1795. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1796. if (t->reqid)
  1797. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1798. if (t->optional)
  1799. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1800. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1801. if (t->mode == XFRM_MODE_TUNNEL) {
  1802. switch (t->encap_family) {
  1803. case AF_INET:
  1804. sin = (void*)(rq+1);
  1805. sin->sin_family = AF_INET;
  1806. sin->sin_addr.s_addr = t->saddr.a4;
  1807. sin->sin_port = 0;
  1808. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1809. sin++;
  1810. sin->sin_family = AF_INET;
  1811. sin->sin_addr.s_addr = t->id.daddr.a4;
  1812. sin->sin_port = 0;
  1813. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1814. break;
  1815. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1816. case AF_INET6:
  1817. sin6 = (void*)(rq+1);
  1818. sin6->sin6_family = AF_INET6;
  1819. sin6->sin6_port = 0;
  1820. sin6->sin6_flowinfo = 0;
  1821. memcpy(&sin6->sin6_addr, t->saddr.a6,
  1822. sizeof(struct in6_addr));
  1823. sin6->sin6_scope_id = 0;
  1824. sin6++;
  1825. sin6->sin6_family = AF_INET6;
  1826. sin6->sin6_port = 0;
  1827. sin6->sin6_flowinfo = 0;
  1828. memcpy(&sin6->sin6_addr, t->id.daddr.a6,
  1829. sizeof(struct in6_addr));
  1830. sin6->sin6_scope_id = 0;
  1831. break;
  1832. #endif
  1833. default:
  1834. break;
  1835. }
  1836. }
  1837. }
  1838. /* security context */
  1839. if ((xfrm_ctx = xp->security)) {
  1840. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1841. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1842. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1843. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1844. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1845. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1846. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1847. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1848. xfrm_ctx->ctx_len);
  1849. }
  1850. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1851. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1852. return 0;
  1853. }
  1854. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1855. {
  1856. struct sk_buff *out_skb;
  1857. struct sadb_msg *out_hdr;
  1858. int err;
  1859. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1860. if (IS_ERR(out_skb)) {
  1861. err = PTR_ERR(out_skb);
  1862. goto out;
  1863. }
  1864. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1865. if (err < 0)
  1866. return err;
  1867. out_hdr = (struct sadb_msg *) out_skb->data;
  1868. out_hdr->sadb_msg_version = PF_KEY_V2;
  1869. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1870. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1871. else
  1872. out_hdr->sadb_msg_type = event2poltype(c->event);
  1873. out_hdr->sadb_msg_errno = 0;
  1874. out_hdr->sadb_msg_seq = c->seq;
  1875. out_hdr->sadb_msg_pid = c->pid;
  1876. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1877. out:
  1878. return 0;
  1879. }
  1880. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1881. {
  1882. int err = 0;
  1883. struct sadb_lifetime *lifetime;
  1884. struct sadb_address *sa;
  1885. struct sadb_x_policy *pol;
  1886. struct xfrm_policy *xp;
  1887. struct km_event c;
  1888. struct sadb_x_sec_ctx *sec_ctx;
  1889. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1890. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1891. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1892. return -EINVAL;
  1893. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1894. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1895. return -EINVAL;
  1896. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1897. return -EINVAL;
  1898. xp = xfrm_policy_alloc(GFP_KERNEL);
  1899. if (xp == NULL)
  1900. return -ENOBUFS;
  1901. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1902. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1903. xp->priority = pol->sadb_x_policy_priority;
  1904. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1905. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1906. if (!xp->family) {
  1907. err = -EINVAL;
  1908. goto out;
  1909. }
  1910. xp->selector.family = xp->family;
  1911. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1912. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1913. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1914. if (xp->selector.sport)
  1915. xp->selector.sport_mask = htons(0xffff);
  1916. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1917. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1918. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1919. /* Amusing, we set this twice. KAME apps appear to set same value
  1920. * in both addresses.
  1921. */
  1922. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1923. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1924. if (xp->selector.dport)
  1925. xp->selector.dport_mask = htons(0xffff);
  1926. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1927. if (sec_ctx != NULL) {
  1928. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1929. if (!uctx) {
  1930. err = -ENOBUFS;
  1931. goto out;
  1932. }
  1933. err = security_xfrm_policy_alloc(xp, uctx);
  1934. kfree(uctx);
  1935. if (err)
  1936. goto out;
  1937. }
  1938. xp->lft.soft_byte_limit = XFRM_INF;
  1939. xp->lft.hard_byte_limit = XFRM_INF;
  1940. xp->lft.soft_packet_limit = XFRM_INF;
  1941. xp->lft.hard_packet_limit = XFRM_INF;
  1942. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1943. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1944. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1945. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1946. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1947. }
  1948. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1949. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1950. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1951. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1952. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1953. }
  1954. xp->xfrm_nr = 0;
  1955. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1956. (err = parse_ipsecrequests(xp, pol)) < 0)
  1957. goto out;
  1958. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1959. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1960. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1961. audit_get_loginuid(current->audit_context), 0);
  1962. if (err)
  1963. goto out;
  1964. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1965. c.event = XFRM_MSG_UPDPOLICY;
  1966. else
  1967. c.event = XFRM_MSG_NEWPOLICY;
  1968. c.seq = hdr->sadb_msg_seq;
  1969. c.pid = hdr->sadb_msg_pid;
  1970. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1971. xfrm_pol_put(xp);
  1972. return 0;
  1973. out:
  1974. security_xfrm_policy_free(xp);
  1975. kfree(xp);
  1976. return err;
  1977. }
  1978. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1979. {
  1980. int err;
  1981. struct sadb_address *sa;
  1982. struct sadb_x_policy *pol;
  1983. struct xfrm_policy *xp, tmp;
  1984. struct xfrm_selector sel;
  1985. struct km_event c;
  1986. struct sadb_x_sec_ctx *sec_ctx;
  1987. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1988. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1989. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1990. return -EINVAL;
  1991. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1992. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1993. return -EINVAL;
  1994. memset(&sel, 0, sizeof(sel));
  1995. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1996. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1997. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1998. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1999. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2000. if (sel.sport)
  2001. sel.sport_mask = htons(0xffff);
  2002. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  2003. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2004. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2005. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2006. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2007. if (sel.dport)
  2008. sel.dport_mask = htons(0xffff);
  2009. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  2010. memset(&tmp, 0, sizeof(struct xfrm_policy));
  2011. if (sec_ctx != NULL) {
  2012. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2013. if (!uctx)
  2014. return -ENOMEM;
  2015. err = security_xfrm_policy_alloc(&tmp, uctx);
  2016. kfree(uctx);
  2017. if (err)
  2018. return err;
  2019. }
  2020. xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN, pol->sadb_x_policy_dir-1,
  2021. &sel, tmp.security, 1, &err);
  2022. security_xfrm_policy_free(&tmp);
  2023. if (xp == NULL)
  2024. return -ENOENT;
  2025. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2026. audit_get_loginuid(current->audit_context), 0);
  2027. if (err)
  2028. goto out;
  2029. c.seq = hdr->sadb_msg_seq;
  2030. c.pid = hdr->sadb_msg_pid;
  2031. c.event = XFRM_MSG_DELPOLICY;
  2032. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2033. out:
  2034. xfrm_pol_put(xp);
  2035. return err;
  2036. }
  2037. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2038. {
  2039. int err;
  2040. struct sk_buff *out_skb;
  2041. struct sadb_msg *out_hdr;
  2042. err = 0;
  2043. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2044. if (IS_ERR(out_skb)) {
  2045. err = PTR_ERR(out_skb);
  2046. goto out;
  2047. }
  2048. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2049. if (err < 0)
  2050. goto out;
  2051. out_hdr = (struct sadb_msg *) out_skb->data;
  2052. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2053. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2054. out_hdr->sadb_msg_satype = 0;
  2055. out_hdr->sadb_msg_errno = 0;
  2056. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2057. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2058. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  2059. err = 0;
  2060. out:
  2061. return err;
  2062. }
  2063. #ifdef CONFIG_NET_KEY_MIGRATE
  2064. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2065. {
  2066. switch (family) {
  2067. case AF_INET:
  2068. return PFKEY_ALIGN8(sizeof(struct sockaddr_in) * 2);
  2069. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2070. case AF_INET6:
  2071. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6) * 2);
  2072. #endif
  2073. default:
  2074. return 0;
  2075. }
  2076. /* NOTREACHED */
  2077. }
  2078. static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq,
  2079. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2080. u16 *family)
  2081. {
  2082. struct sockaddr *sa = (struct sockaddr *)(rq + 1);
  2083. if (rq->sadb_x_ipsecrequest_len <
  2084. pfkey_sockaddr_pair_size(sa->sa_family))
  2085. return -EINVAL;
  2086. switch (sa->sa_family) {
  2087. case AF_INET:
  2088. {
  2089. struct sockaddr_in *sin;
  2090. sin = (struct sockaddr_in *)sa;
  2091. if ((sin+1)->sin_family != AF_INET)
  2092. return -EINVAL;
  2093. memcpy(&saddr->a4, &sin->sin_addr, sizeof(saddr->a4));
  2094. sin++;
  2095. memcpy(&daddr->a4, &sin->sin_addr, sizeof(daddr->a4));
  2096. *family = AF_INET;
  2097. break;
  2098. }
  2099. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2100. case AF_INET6:
  2101. {
  2102. struct sockaddr_in6 *sin6;
  2103. sin6 = (struct sockaddr_in6 *)sa;
  2104. if ((sin6+1)->sin6_family != AF_INET6)
  2105. return -EINVAL;
  2106. memcpy(&saddr->a6, &sin6->sin6_addr,
  2107. sizeof(saddr->a6));
  2108. sin6++;
  2109. memcpy(&daddr->a6, &sin6->sin6_addr,
  2110. sizeof(daddr->a6));
  2111. *family = AF_INET6;
  2112. break;
  2113. }
  2114. #endif
  2115. default:
  2116. return -EINVAL;
  2117. }
  2118. return 0;
  2119. }
  2120. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2121. struct xfrm_migrate *m)
  2122. {
  2123. int err;
  2124. struct sadb_x_ipsecrequest *rq2;
  2125. int mode;
  2126. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2127. len < rq1->sadb_x_ipsecrequest_len)
  2128. return -EINVAL;
  2129. /* old endoints */
  2130. err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr,
  2131. &m->old_family);
  2132. if (err)
  2133. return err;
  2134. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2135. len -= rq1->sadb_x_ipsecrequest_len;
  2136. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2137. len < rq2->sadb_x_ipsecrequest_len)
  2138. return -EINVAL;
  2139. /* new endpoints */
  2140. err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr,
  2141. &m->new_family);
  2142. if (err)
  2143. return err;
  2144. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2145. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2146. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2147. return -EINVAL;
  2148. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2149. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2150. return -EINVAL;
  2151. m->mode = mode;
  2152. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2153. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2154. rq2->sadb_x_ipsecrequest_len));
  2155. }
  2156. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2157. struct sadb_msg *hdr, void **ext_hdrs)
  2158. {
  2159. int i, len, ret, err = -EINVAL;
  2160. u8 dir;
  2161. struct sadb_address *sa;
  2162. struct sadb_x_policy *pol;
  2163. struct sadb_x_ipsecrequest *rq;
  2164. struct xfrm_selector sel;
  2165. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2166. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2167. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2168. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2169. err = -EINVAL;
  2170. goto out;
  2171. }
  2172. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2173. if (!pol) {
  2174. err = -EINVAL;
  2175. goto out;
  2176. }
  2177. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2178. err = -EINVAL;
  2179. goto out;
  2180. }
  2181. dir = pol->sadb_x_policy_dir - 1;
  2182. memset(&sel, 0, sizeof(sel));
  2183. /* set source address info of selector */
  2184. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2185. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2186. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2187. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2188. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2189. if (sel.sport)
  2190. sel.sport_mask = htons(0xffff);
  2191. /* set destination address info of selector */
  2192. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2193. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2194. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2195. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2196. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2197. if (sel.dport)
  2198. sel.dport_mask = htons(0xffff);
  2199. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2200. /* extract ipsecrequests */
  2201. i = 0;
  2202. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2203. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2204. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2205. if (ret < 0) {
  2206. err = ret;
  2207. goto out;
  2208. } else {
  2209. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2210. len -= ret;
  2211. i++;
  2212. }
  2213. }
  2214. if (!i || len > 0) {
  2215. err = -EINVAL;
  2216. goto out;
  2217. }
  2218. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i);
  2219. out:
  2220. return err;
  2221. }
  2222. #else
  2223. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2224. struct sadb_msg *hdr, void **ext_hdrs)
  2225. {
  2226. return -ENOPROTOOPT;
  2227. }
  2228. #endif
  2229. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2230. {
  2231. unsigned int dir;
  2232. int err = 0, delete;
  2233. struct sadb_x_policy *pol;
  2234. struct xfrm_policy *xp;
  2235. struct km_event c;
  2236. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2237. return -EINVAL;
  2238. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2239. if (dir >= XFRM_POLICY_MAX)
  2240. return -EINVAL;
  2241. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2242. xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
  2243. delete, &err);
  2244. if (xp == NULL)
  2245. return -ENOENT;
  2246. if (delete) {
  2247. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2248. audit_get_loginuid(current->audit_context), 0);
  2249. if (err)
  2250. goto out;
  2251. c.seq = hdr->sadb_msg_seq;
  2252. c.pid = hdr->sadb_msg_pid;
  2253. c.data.byid = 1;
  2254. c.event = XFRM_MSG_DELPOLICY;
  2255. km_policy_notify(xp, dir, &c);
  2256. } else {
  2257. err = key_pol_get_resp(sk, xp, hdr, dir);
  2258. }
  2259. out:
  2260. xfrm_pol_put(xp);
  2261. return err;
  2262. }
  2263. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2264. {
  2265. struct pfkey_dump_data *data = ptr;
  2266. struct sk_buff *out_skb;
  2267. struct sadb_msg *out_hdr;
  2268. int err;
  2269. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2270. if (IS_ERR(out_skb))
  2271. return PTR_ERR(out_skb);
  2272. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2273. if (err < 0)
  2274. return err;
  2275. out_hdr = (struct sadb_msg *) out_skb->data;
  2276. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  2277. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2278. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2279. out_hdr->sadb_msg_errno = 0;
  2280. out_hdr->sadb_msg_seq = count;
  2281. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  2282. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  2283. return 0;
  2284. }
  2285. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2286. {
  2287. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  2288. return xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, dump_sp, &data);
  2289. }
  2290. static int key_notify_policy_flush(struct km_event *c)
  2291. {
  2292. struct sk_buff *skb_out;
  2293. struct sadb_msg *hdr;
  2294. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2295. if (!skb_out)
  2296. return -ENOBUFS;
  2297. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2298. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2299. hdr->sadb_msg_seq = c->seq;
  2300. hdr->sadb_msg_pid = c->pid;
  2301. hdr->sadb_msg_version = PF_KEY_V2;
  2302. hdr->sadb_msg_errno = (uint8_t) 0;
  2303. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2304. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2305. return 0;
  2306. }
  2307. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2308. {
  2309. struct km_event c;
  2310. struct xfrm_audit audit_info;
  2311. int err;
  2312. audit_info.loginuid = audit_get_loginuid(current->audit_context);
  2313. audit_info.secid = 0;
  2314. err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
  2315. if (err)
  2316. return err;
  2317. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2318. c.event = XFRM_MSG_FLUSHPOLICY;
  2319. c.pid = hdr->sadb_msg_pid;
  2320. c.seq = hdr->sadb_msg_seq;
  2321. km_policy_notify(NULL, 0, &c);
  2322. return 0;
  2323. }
  2324. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2325. struct sadb_msg *hdr, void **ext_hdrs);
  2326. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2327. [SADB_RESERVED] = pfkey_reserved,
  2328. [SADB_GETSPI] = pfkey_getspi,
  2329. [SADB_UPDATE] = pfkey_add,
  2330. [SADB_ADD] = pfkey_add,
  2331. [SADB_DELETE] = pfkey_delete,
  2332. [SADB_GET] = pfkey_get,
  2333. [SADB_ACQUIRE] = pfkey_acquire,
  2334. [SADB_REGISTER] = pfkey_register,
  2335. [SADB_EXPIRE] = NULL,
  2336. [SADB_FLUSH] = pfkey_flush,
  2337. [SADB_DUMP] = pfkey_dump,
  2338. [SADB_X_PROMISC] = pfkey_promisc,
  2339. [SADB_X_PCHANGE] = NULL,
  2340. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2341. [SADB_X_SPDADD] = pfkey_spdadd,
  2342. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2343. [SADB_X_SPDGET] = pfkey_spdget,
  2344. [SADB_X_SPDACQUIRE] = NULL,
  2345. [SADB_X_SPDDUMP] = pfkey_spddump,
  2346. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2347. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2348. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2349. [SADB_X_MIGRATE] = pfkey_migrate,
  2350. };
  2351. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2352. {
  2353. void *ext_hdrs[SADB_EXT_MAX];
  2354. int err;
  2355. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2356. BROADCAST_PROMISC_ONLY, NULL);
  2357. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2358. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2359. if (!err) {
  2360. err = -EOPNOTSUPP;
  2361. if (pfkey_funcs[hdr->sadb_msg_type])
  2362. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2363. }
  2364. return err;
  2365. }
  2366. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2367. {
  2368. struct sadb_msg *hdr = NULL;
  2369. if (skb->len < sizeof(*hdr)) {
  2370. *errp = -EMSGSIZE;
  2371. } else {
  2372. hdr = (struct sadb_msg *) skb->data;
  2373. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2374. hdr->sadb_msg_reserved != 0 ||
  2375. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2376. hdr->sadb_msg_type > SADB_MAX)) {
  2377. hdr = NULL;
  2378. *errp = -EINVAL;
  2379. } else if (hdr->sadb_msg_len != (skb->len /
  2380. sizeof(uint64_t)) ||
  2381. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2382. sizeof(uint64_t))) {
  2383. hdr = NULL;
  2384. *errp = -EMSGSIZE;
  2385. } else {
  2386. *errp = 0;
  2387. }
  2388. }
  2389. return hdr;
  2390. }
  2391. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2392. {
  2393. return t->aalgos & (1 << d->desc.sadb_alg_id);
  2394. }
  2395. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2396. {
  2397. return t->ealgos & (1 << d->desc.sadb_alg_id);
  2398. }
  2399. static int count_ah_combs(struct xfrm_tmpl *t)
  2400. {
  2401. int i, sz = 0;
  2402. for (i = 0; ; i++) {
  2403. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2404. if (!aalg)
  2405. break;
  2406. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2407. sz += sizeof(struct sadb_comb);
  2408. }
  2409. return sz + sizeof(struct sadb_prop);
  2410. }
  2411. static int count_esp_combs(struct xfrm_tmpl *t)
  2412. {
  2413. int i, k, sz = 0;
  2414. for (i = 0; ; i++) {
  2415. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2416. if (!ealg)
  2417. break;
  2418. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2419. continue;
  2420. for (k = 1; ; k++) {
  2421. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2422. if (!aalg)
  2423. break;
  2424. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2425. sz += sizeof(struct sadb_comb);
  2426. }
  2427. }
  2428. return sz + sizeof(struct sadb_prop);
  2429. }
  2430. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2431. {
  2432. struct sadb_prop *p;
  2433. int i;
  2434. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2435. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2436. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2437. p->sadb_prop_replay = 32;
  2438. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2439. for (i = 0; ; i++) {
  2440. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2441. if (!aalg)
  2442. break;
  2443. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2444. struct sadb_comb *c;
  2445. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2446. memset(c, 0, sizeof(*c));
  2447. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2448. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2449. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2450. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2451. c->sadb_comb_hard_addtime = 24*60*60;
  2452. c->sadb_comb_soft_addtime = 20*60*60;
  2453. c->sadb_comb_hard_usetime = 8*60*60;
  2454. c->sadb_comb_soft_usetime = 7*60*60;
  2455. }
  2456. }
  2457. }
  2458. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2459. {
  2460. struct sadb_prop *p;
  2461. int i, k;
  2462. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2463. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2464. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2465. p->sadb_prop_replay = 32;
  2466. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2467. for (i=0; ; i++) {
  2468. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2469. if (!ealg)
  2470. break;
  2471. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2472. continue;
  2473. for (k = 1; ; k++) {
  2474. struct sadb_comb *c;
  2475. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2476. if (!aalg)
  2477. break;
  2478. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2479. continue;
  2480. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2481. memset(c, 0, sizeof(*c));
  2482. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2483. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2484. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2485. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2486. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2487. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2488. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2489. c->sadb_comb_hard_addtime = 24*60*60;
  2490. c->sadb_comb_soft_addtime = 20*60*60;
  2491. c->sadb_comb_hard_usetime = 8*60*60;
  2492. c->sadb_comb_soft_usetime = 7*60*60;
  2493. }
  2494. }
  2495. }
  2496. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2497. {
  2498. return 0;
  2499. }
  2500. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2501. {
  2502. struct sk_buff *out_skb;
  2503. struct sadb_msg *out_hdr;
  2504. int hard;
  2505. int hsc;
  2506. hard = c->data.hard;
  2507. if (hard)
  2508. hsc = 2;
  2509. else
  2510. hsc = 1;
  2511. out_skb = pfkey_xfrm_state2msg(x, 0, hsc);
  2512. if (IS_ERR(out_skb))
  2513. return PTR_ERR(out_skb);
  2514. out_hdr = (struct sadb_msg *) out_skb->data;
  2515. out_hdr->sadb_msg_version = PF_KEY_V2;
  2516. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2517. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2518. out_hdr->sadb_msg_errno = 0;
  2519. out_hdr->sadb_msg_reserved = 0;
  2520. out_hdr->sadb_msg_seq = 0;
  2521. out_hdr->sadb_msg_pid = 0;
  2522. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2523. return 0;
  2524. }
  2525. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2526. {
  2527. switch (c->event) {
  2528. case XFRM_MSG_EXPIRE:
  2529. return key_notify_sa_expire(x, c);
  2530. case XFRM_MSG_DELSA:
  2531. case XFRM_MSG_NEWSA:
  2532. case XFRM_MSG_UPDSA:
  2533. return key_notify_sa(x, c);
  2534. case XFRM_MSG_FLUSHSA:
  2535. return key_notify_sa_flush(c);
  2536. case XFRM_MSG_NEWAE: /* not yet supported */
  2537. break;
  2538. default:
  2539. printk("pfkey: Unknown SA event %d\n", c->event);
  2540. break;
  2541. }
  2542. return 0;
  2543. }
  2544. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2545. {
  2546. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2547. return 0;
  2548. switch (c->event) {
  2549. case XFRM_MSG_POLEXPIRE:
  2550. return key_notify_policy_expire(xp, c);
  2551. case XFRM_MSG_DELPOLICY:
  2552. case XFRM_MSG_NEWPOLICY:
  2553. case XFRM_MSG_UPDPOLICY:
  2554. return key_notify_policy(xp, dir, c);
  2555. case XFRM_MSG_FLUSHPOLICY:
  2556. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2557. break;
  2558. return key_notify_policy_flush(c);
  2559. default:
  2560. printk("pfkey: Unknown policy event %d\n", c->event);
  2561. break;
  2562. }
  2563. return 0;
  2564. }
  2565. static u32 get_acqseq(void)
  2566. {
  2567. u32 res;
  2568. static u32 acqseq;
  2569. static DEFINE_SPINLOCK(acqseq_lock);
  2570. spin_lock_bh(&acqseq_lock);
  2571. res = (++acqseq ? : ++acqseq);
  2572. spin_unlock_bh(&acqseq_lock);
  2573. return res;
  2574. }
  2575. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2576. {
  2577. struct sk_buff *skb;
  2578. struct sadb_msg *hdr;
  2579. struct sadb_address *addr;
  2580. struct sadb_x_policy *pol;
  2581. struct sockaddr_in *sin;
  2582. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2583. struct sockaddr_in6 *sin6;
  2584. #endif
  2585. int sockaddr_size;
  2586. int size;
  2587. struct sadb_x_sec_ctx *sec_ctx;
  2588. struct xfrm_sec_ctx *xfrm_ctx;
  2589. int ctx_size = 0;
  2590. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2591. if (!sockaddr_size)
  2592. return -EINVAL;
  2593. size = sizeof(struct sadb_msg) +
  2594. (sizeof(struct sadb_address) * 2) +
  2595. (sockaddr_size * 2) +
  2596. sizeof(struct sadb_x_policy);
  2597. if (x->id.proto == IPPROTO_AH)
  2598. size += count_ah_combs(t);
  2599. else if (x->id.proto == IPPROTO_ESP)
  2600. size += count_esp_combs(t);
  2601. if ((xfrm_ctx = x->security)) {
  2602. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2603. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2604. }
  2605. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2606. if (skb == NULL)
  2607. return -ENOMEM;
  2608. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2609. hdr->sadb_msg_version = PF_KEY_V2;
  2610. hdr->sadb_msg_type = SADB_ACQUIRE;
  2611. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2612. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2613. hdr->sadb_msg_errno = 0;
  2614. hdr->sadb_msg_reserved = 0;
  2615. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2616. hdr->sadb_msg_pid = 0;
  2617. /* src address */
  2618. addr = (struct sadb_address*) skb_put(skb,
  2619. sizeof(struct sadb_address)+sockaddr_size);
  2620. addr->sadb_address_len =
  2621. (sizeof(struct sadb_address)+sockaddr_size)/
  2622. sizeof(uint64_t);
  2623. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2624. addr->sadb_address_proto = 0;
  2625. addr->sadb_address_reserved = 0;
  2626. if (x->props.family == AF_INET) {
  2627. addr->sadb_address_prefixlen = 32;
  2628. sin = (struct sockaddr_in *) (addr + 1);
  2629. sin->sin_family = AF_INET;
  2630. sin->sin_addr.s_addr = x->props.saddr.a4;
  2631. sin->sin_port = 0;
  2632. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2633. }
  2634. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2635. else if (x->props.family == AF_INET6) {
  2636. addr->sadb_address_prefixlen = 128;
  2637. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2638. sin6->sin6_family = AF_INET6;
  2639. sin6->sin6_port = 0;
  2640. sin6->sin6_flowinfo = 0;
  2641. memcpy(&sin6->sin6_addr,
  2642. x->props.saddr.a6, sizeof(struct in6_addr));
  2643. sin6->sin6_scope_id = 0;
  2644. }
  2645. #endif
  2646. else
  2647. BUG();
  2648. /* dst address */
  2649. addr = (struct sadb_address*) skb_put(skb,
  2650. sizeof(struct sadb_address)+sockaddr_size);
  2651. addr->sadb_address_len =
  2652. (sizeof(struct sadb_address)+sockaddr_size)/
  2653. sizeof(uint64_t);
  2654. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2655. addr->sadb_address_proto = 0;
  2656. addr->sadb_address_reserved = 0;
  2657. if (x->props.family == AF_INET) {
  2658. addr->sadb_address_prefixlen = 32;
  2659. sin = (struct sockaddr_in *) (addr + 1);
  2660. sin->sin_family = AF_INET;
  2661. sin->sin_addr.s_addr = x->id.daddr.a4;
  2662. sin->sin_port = 0;
  2663. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2664. }
  2665. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2666. else if (x->props.family == AF_INET6) {
  2667. addr->sadb_address_prefixlen = 128;
  2668. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2669. sin6->sin6_family = AF_INET6;
  2670. sin6->sin6_port = 0;
  2671. sin6->sin6_flowinfo = 0;
  2672. memcpy(&sin6->sin6_addr,
  2673. x->id.daddr.a6, sizeof(struct in6_addr));
  2674. sin6->sin6_scope_id = 0;
  2675. }
  2676. #endif
  2677. else
  2678. BUG();
  2679. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2680. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2681. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2682. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2683. pol->sadb_x_policy_dir = dir+1;
  2684. pol->sadb_x_policy_id = xp->index;
  2685. /* Set sadb_comb's. */
  2686. if (x->id.proto == IPPROTO_AH)
  2687. dump_ah_combs(skb, t);
  2688. else if (x->id.proto == IPPROTO_ESP)
  2689. dump_esp_combs(skb, t);
  2690. /* security context */
  2691. if (xfrm_ctx) {
  2692. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2693. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2694. sec_ctx->sadb_x_sec_len =
  2695. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2696. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2697. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2698. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2699. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2700. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2701. xfrm_ctx->ctx_len);
  2702. }
  2703. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2704. }
  2705. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2706. u8 *data, int len, int *dir)
  2707. {
  2708. struct xfrm_policy *xp;
  2709. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2710. struct sadb_x_sec_ctx *sec_ctx;
  2711. switch (sk->sk_family) {
  2712. case AF_INET:
  2713. if (opt != IP_IPSEC_POLICY) {
  2714. *dir = -EOPNOTSUPP;
  2715. return NULL;
  2716. }
  2717. break;
  2718. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2719. case AF_INET6:
  2720. if (opt != IPV6_IPSEC_POLICY) {
  2721. *dir = -EOPNOTSUPP;
  2722. return NULL;
  2723. }
  2724. break;
  2725. #endif
  2726. default:
  2727. *dir = -EINVAL;
  2728. return NULL;
  2729. }
  2730. *dir = -EINVAL;
  2731. if (len < sizeof(struct sadb_x_policy) ||
  2732. pol->sadb_x_policy_len*8 > len ||
  2733. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2734. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2735. return NULL;
  2736. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2737. if (xp == NULL) {
  2738. *dir = -ENOBUFS;
  2739. return NULL;
  2740. }
  2741. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2742. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2743. xp->lft.soft_byte_limit = XFRM_INF;
  2744. xp->lft.hard_byte_limit = XFRM_INF;
  2745. xp->lft.soft_packet_limit = XFRM_INF;
  2746. xp->lft.hard_packet_limit = XFRM_INF;
  2747. xp->family = sk->sk_family;
  2748. xp->xfrm_nr = 0;
  2749. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2750. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2751. goto out;
  2752. /* security context too */
  2753. if (len >= (pol->sadb_x_policy_len*8 +
  2754. sizeof(struct sadb_x_sec_ctx))) {
  2755. char *p = (char *)pol;
  2756. struct xfrm_user_sec_ctx *uctx;
  2757. p += pol->sadb_x_policy_len*8;
  2758. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2759. if (len < pol->sadb_x_policy_len*8 +
  2760. sec_ctx->sadb_x_sec_len) {
  2761. *dir = -EINVAL;
  2762. goto out;
  2763. }
  2764. if ((*dir = verify_sec_ctx_len(p)))
  2765. goto out;
  2766. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2767. *dir = security_xfrm_policy_alloc(xp, uctx);
  2768. kfree(uctx);
  2769. if (*dir)
  2770. goto out;
  2771. }
  2772. *dir = pol->sadb_x_policy_dir-1;
  2773. return xp;
  2774. out:
  2775. security_xfrm_policy_free(xp);
  2776. kfree(xp);
  2777. return NULL;
  2778. }
  2779. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2780. {
  2781. struct sk_buff *skb;
  2782. struct sadb_msg *hdr;
  2783. struct sadb_sa *sa;
  2784. struct sadb_address *addr;
  2785. struct sadb_x_nat_t_port *n_port;
  2786. struct sockaddr_in *sin;
  2787. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2788. struct sockaddr_in6 *sin6;
  2789. #endif
  2790. int sockaddr_size;
  2791. int size;
  2792. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2793. struct xfrm_encap_tmpl *natt = NULL;
  2794. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2795. if (!sockaddr_size)
  2796. return -EINVAL;
  2797. if (!satype)
  2798. return -EINVAL;
  2799. if (!x->encap)
  2800. return -EINVAL;
  2801. natt = x->encap;
  2802. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2803. *
  2804. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2805. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2806. */
  2807. size = sizeof(struct sadb_msg) +
  2808. sizeof(struct sadb_sa) +
  2809. (sizeof(struct sadb_address) * 2) +
  2810. (sockaddr_size * 2) +
  2811. (sizeof(struct sadb_x_nat_t_port) * 2);
  2812. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2813. if (skb == NULL)
  2814. return -ENOMEM;
  2815. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2816. hdr->sadb_msg_version = PF_KEY_V2;
  2817. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2818. hdr->sadb_msg_satype = satype;
  2819. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2820. hdr->sadb_msg_errno = 0;
  2821. hdr->sadb_msg_reserved = 0;
  2822. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2823. hdr->sadb_msg_pid = 0;
  2824. /* SA */
  2825. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2826. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2827. sa->sadb_sa_exttype = SADB_EXT_SA;
  2828. sa->sadb_sa_spi = x->id.spi;
  2829. sa->sadb_sa_replay = 0;
  2830. sa->sadb_sa_state = 0;
  2831. sa->sadb_sa_auth = 0;
  2832. sa->sadb_sa_encrypt = 0;
  2833. sa->sadb_sa_flags = 0;
  2834. /* ADDRESS_SRC (old addr) */
  2835. addr = (struct sadb_address*)
  2836. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2837. addr->sadb_address_len =
  2838. (sizeof(struct sadb_address)+sockaddr_size)/
  2839. sizeof(uint64_t);
  2840. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2841. addr->sadb_address_proto = 0;
  2842. addr->sadb_address_reserved = 0;
  2843. if (x->props.family == AF_INET) {
  2844. addr->sadb_address_prefixlen = 32;
  2845. sin = (struct sockaddr_in *) (addr + 1);
  2846. sin->sin_family = AF_INET;
  2847. sin->sin_addr.s_addr = x->props.saddr.a4;
  2848. sin->sin_port = 0;
  2849. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2850. }
  2851. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2852. else if (x->props.family == AF_INET6) {
  2853. addr->sadb_address_prefixlen = 128;
  2854. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2855. sin6->sin6_family = AF_INET6;
  2856. sin6->sin6_port = 0;
  2857. sin6->sin6_flowinfo = 0;
  2858. memcpy(&sin6->sin6_addr,
  2859. x->props.saddr.a6, sizeof(struct in6_addr));
  2860. sin6->sin6_scope_id = 0;
  2861. }
  2862. #endif
  2863. else
  2864. BUG();
  2865. /* NAT_T_SPORT (old port) */
  2866. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2867. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2868. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2869. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2870. n_port->sadb_x_nat_t_port_reserved = 0;
  2871. /* ADDRESS_DST (new addr) */
  2872. addr = (struct sadb_address*)
  2873. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2874. addr->sadb_address_len =
  2875. (sizeof(struct sadb_address)+sockaddr_size)/
  2876. sizeof(uint64_t);
  2877. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2878. addr->sadb_address_proto = 0;
  2879. addr->sadb_address_reserved = 0;
  2880. if (x->props.family == AF_INET) {
  2881. addr->sadb_address_prefixlen = 32;
  2882. sin = (struct sockaddr_in *) (addr + 1);
  2883. sin->sin_family = AF_INET;
  2884. sin->sin_addr.s_addr = ipaddr->a4;
  2885. sin->sin_port = 0;
  2886. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2887. }
  2888. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2889. else if (x->props.family == AF_INET6) {
  2890. addr->sadb_address_prefixlen = 128;
  2891. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2892. sin6->sin6_family = AF_INET6;
  2893. sin6->sin6_port = 0;
  2894. sin6->sin6_flowinfo = 0;
  2895. memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
  2896. sin6->sin6_scope_id = 0;
  2897. }
  2898. #endif
  2899. else
  2900. BUG();
  2901. /* NAT_T_DPORT (new port) */
  2902. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2903. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2904. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2905. n_port->sadb_x_nat_t_port_port = sport;
  2906. n_port->sadb_x_nat_t_port_reserved = 0;
  2907. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2908. }
  2909. #ifdef CONFIG_NET_KEY_MIGRATE
  2910. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2911. struct xfrm_selector *sel)
  2912. {
  2913. struct sadb_address *addr;
  2914. struct sockaddr_in *sin;
  2915. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2916. struct sockaddr_in6 *sin6;
  2917. #endif
  2918. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2919. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2920. addr->sadb_address_exttype = type;
  2921. addr->sadb_address_proto = sel->proto;
  2922. addr->sadb_address_reserved = 0;
  2923. switch (type) {
  2924. case SADB_EXT_ADDRESS_SRC:
  2925. if (sel->family == AF_INET) {
  2926. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2927. sin = (struct sockaddr_in *)(addr + 1);
  2928. sin->sin_family = AF_INET;
  2929. memcpy(&sin->sin_addr.s_addr, &sel->saddr,
  2930. sizeof(sin->sin_addr.s_addr));
  2931. sin->sin_port = 0;
  2932. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2933. }
  2934. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2935. else if (sel->family == AF_INET6) {
  2936. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2937. sin6 = (struct sockaddr_in6 *)(addr + 1);
  2938. sin6->sin6_family = AF_INET6;
  2939. sin6->sin6_port = 0;
  2940. sin6->sin6_flowinfo = 0;
  2941. sin6->sin6_scope_id = 0;
  2942. memcpy(&sin6->sin6_addr.s6_addr, &sel->saddr,
  2943. sizeof(sin6->sin6_addr.s6_addr));
  2944. }
  2945. #endif
  2946. break;
  2947. case SADB_EXT_ADDRESS_DST:
  2948. if (sel->family == AF_INET) {
  2949. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2950. sin = (struct sockaddr_in *)(addr + 1);
  2951. sin->sin_family = AF_INET;
  2952. memcpy(&sin->sin_addr.s_addr, &sel->daddr,
  2953. sizeof(sin->sin_addr.s_addr));
  2954. sin->sin_port = 0;
  2955. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2956. }
  2957. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2958. else if (sel->family == AF_INET6) {
  2959. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2960. sin6 = (struct sockaddr_in6 *)(addr + 1);
  2961. sin6->sin6_family = AF_INET6;
  2962. sin6->sin6_port = 0;
  2963. sin6->sin6_flowinfo = 0;
  2964. sin6->sin6_scope_id = 0;
  2965. memcpy(&sin6->sin6_addr.s6_addr, &sel->daddr,
  2966. sizeof(sin6->sin6_addr.s6_addr));
  2967. }
  2968. #endif
  2969. break;
  2970. default:
  2971. return -EINVAL;
  2972. }
  2973. return 0;
  2974. }
  2975. static int set_ipsecrequest(struct sk_buff *skb,
  2976. uint8_t proto, uint8_t mode, int level,
  2977. uint32_t reqid, uint8_t family,
  2978. xfrm_address_t *src, xfrm_address_t *dst)
  2979. {
  2980. struct sadb_x_ipsecrequest *rq;
  2981. struct sockaddr_in *sin;
  2982. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2983. struct sockaddr_in6 *sin6;
  2984. #endif
  2985. int size_req;
  2986. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2987. pfkey_sockaddr_pair_size(family);
  2988. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2989. memset(rq, 0, size_req);
  2990. rq->sadb_x_ipsecrequest_len = size_req;
  2991. rq->sadb_x_ipsecrequest_proto = proto;
  2992. rq->sadb_x_ipsecrequest_mode = mode;
  2993. rq->sadb_x_ipsecrequest_level = level;
  2994. rq->sadb_x_ipsecrequest_reqid = reqid;
  2995. switch (family) {
  2996. case AF_INET:
  2997. sin = (struct sockaddr_in *)(rq + 1);
  2998. sin->sin_family = AF_INET;
  2999. memcpy(&sin->sin_addr.s_addr, src,
  3000. sizeof(sin->sin_addr.s_addr));
  3001. sin++;
  3002. sin->sin_family = AF_INET;
  3003. memcpy(&sin->sin_addr.s_addr, dst,
  3004. sizeof(sin->sin_addr.s_addr));
  3005. break;
  3006. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3007. case AF_INET6:
  3008. sin6 = (struct sockaddr_in6 *)(rq + 1);
  3009. sin6->sin6_family = AF_INET6;
  3010. sin6->sin6_port = 0;
  3011. sin6->sin6_flowinfo = 0;
  3012. sin6->sin6_scope_id = 0;
  3013. memcpy(&sin6->sin6_addr.s6_addr, src,
  3014. sizeof(sin6->sin6_addr.s6_addr));
  3015. sin6++;
  3016. sin6->sin6_family = AF_INET6;
  3017. sin6->sin6_port = 0;
  3018. sin6->sin6_flowinfo = 0;
  3019. sin6->sin6_scope_id = 0;
  3020. memcpy(&sin6->sin6_addr.s6_addr, dst,
  3021. sizeof(sin6->sin6_addr.s6_addr));
  3022. break;
  3023. #endif
  3024. default:
  3025. return -EINVAL;
  3026. }
  3027. return 0;
  3028. }
  3029. #endif
  3030. #ifdef CONFIG_NET_KEY_MIGRATE
  3031. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3032. struct xfrm_migrate *m, int num_bundles)
  3033. {
  3034. int i;
  3035. int sasize_sel;
  3036. int size = 0;
  3037. int size_pol = 0;
  3038. struct sk_buff *skb;
  3039. struct sadb_msg *hdr;
  3040. struct sadb_x_policy *pol;
  3041. struct xfrm_migrate *mp;
  3042. if (type != XFRM_POLICY_TYPE_MAIN)
  3043. return 0;
  3044. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  3045. return -EINVAL;
  3046. /* selector */
  3047. sasize_sel = pfkey_sockaddr_size(sel->family);
  3048. if (!sasize_sel)
  3049. return -EINVAL;
  3050. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  3051. /* policy info */
  3052. size_pol += sizeof(struct sadb_x_policy);
  3053. /* ipsecrequests */
  3054. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3055. /* old locator pair */
  3056. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3057. pfkey_sockaddr_pair_size(mp->old_family);
  3058. /* new locator pair */
  3059. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3060. pfkey_sockaddr_pair_size(mp->new_family);
  3061. }
  3062. size += sizeof(struct sadb_msg) + size_pol;
  3063. /* alloc buffer */
  3064. skb = alloc_skb(size, GFP_ATOMIC);
  3065. if (skb == NULL)
  3066. return -ENOMEM;
  3067. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  3068. hdr->sadb_msg_version = PF_KEY_V2;
  3069. hdr->sadb_msg_type = SADB_X_MIGRATE;
  3070. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  3071. hdr->sadb_msg_len = size / 8;
  3072. hdr->sadb_msg_errno = 0;
  3073. hdr->sadb_msg_reserved = 0;
  3074. hdr->sadb_msg_seq = 0;
  3075. hdr->sadb_msg_pid = 0;
  3076. /* selector src */
  3077. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3078. /* selector dst */
  3079. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3080. /* policy information */
  3081. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  3082. pol->sadb_x_policy_len = size_pol / 8;
  3083. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3084. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3085. pol->sadb_x_policy_dir = dir + 1;
  3086. pol->sadb_x_policy_id = 0;
  3087. pol->sadb_x_policy_priority = 0;
  3088. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3089. /* old ipsecrequest */
  3090. int mode = pfkey_mode_from_xfrm(mp->mode);
  3091. if (mode < 0)
  3092. return -EINVAL;
  3093. if (set_ipsecrequest(skb, mp->proto, mode,
  3094. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3095. mp->reqid, mp->old_family,
  3096. &mp->old_saddr, &mp->old_daddr) < 0) {
  3097. return -EINVAL;
  3098. }
  3099. /* new ipsecrequest */
  3100. if (set_ipsecrequest(skb, mp->proto, mode,
  3101. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3102. mp->reqid, mp->new_family,
  3103. &mp->new_saddr, &mp->new_daddr) < 0) {
  3104. return -EINVAL;
  3105. }
  3106. }
  3107. /* broadcast migrate message to sockets */
  3108. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  3109. return 0;
  3110. }
  3111. #else
  3112. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3113. struct xfrm_migrate *m, int num_bundles)
  3114. {
  3115. return -ENOPROTOOPT;
  3116. }
  3117. #endif
  3118. static int pfkey_sendmsg(struct kiocb *kiocb,
  3119. struct socket *sock, struct msghdr *msg, size_t len)
  3120. {
  3121. struct sock *sk = sock->sk;
  3122. struct sk_buff *skb = NULL;
  3123. struct sadb_msg *hdr = NULL;
  3124. int err;
  3125. err = -EOPNOTSUPP;
  3126. if (msg->msg_flags & MSG_OOB)
  3127. goto out;
  3128. err = -EMSGSIZE;
  3129. if ((unsigned)len > sk->sk_sndbuf - 32)
  3130. goto out;
  3131. err = -ENOBUFS;
  3132. skb = alloc_skb(len, GFP_KERNEL);
  3133. if (skb == NULL)
  3134. goto out;
  3135. err = -EFAULT;
  3136. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3137. goto out;
  3138. hdr = pfkey_get_base_msg(skb, &err);
  3139. if (!hdr)
  3140. goto out;
  3141. mutex_lock(&xfrm_cfg_mutex);
  3142. err = pfkey_process(sk, skb, hdr);
  3143. mutex_unlock(&xfrm_cfg_mutex);
  3144. out:
  3145. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3146. err = 0;
  3147. if (skb)
  3148. kfree_skb(skb);
  3149. return err ? : len;
  3150. }
  3151. static int pfkey_recvmsg(struct kiocb *kiocb,
  3152. struct socket *sock, struct msghdr *msg, size_t len,
  3153. int flags)
  3154. {
  3155. struct sock *sk = sock->sk;
  3156. struct sk_buff *skb;
  3157. int copied, err;
  3158. err = -EINVAL;
  3159. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3160. goto out;
  3161. msg->msg_namelen = 0;
  3162. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3163. if (skb == NULL)
  3164. goto out;
  3165. copied = skb->len;
  3166. if (copied > len) {
  3167. msg->msg_flags |= MSG_TRUNC;
  3168. copied = len;
  3169. }
  3170. skb_reset_transport_header(skb);
  3171. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3172. if (err)
  3173. goto out_free;
  3174. sock_recv_timestamp(msg, sk, skb);
  3175. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3176. out_free:
  3177. skb_free_datagram(sk, skb);
  3178. out:
  3179. return err;
  3180. }
  3181. static const struct proto_ops pfkey_ops = {
  3182. .family = PF_KEY,
  3183. .owner = THIS_MODULE,
  3184. /* Operations that make no sense on pfkey sockets. */
  3185. .bind = sock_no_bind,
  3186. .connect = sock_no_connect,
  3187. .socketpair = sock_no_socketpair,
  3188. .accept = sock_no_accept,
  3189. .getname = sock_no_getname,
  3190. .ioctl = sock_no_ioctl,
  3191. .listen = sock_no_listen,
  3192. .shutdown = sock_no_shutdown,
  3193. .setsockopt = sock_no_setsockopt,
  3194. .getsockopt = sock_no_getsockopt,
  3195. .mmap = sock_no_mmap,
  3196. .sendpage = sock_no_sendpage,
  3197. /* Now the operations that really occur. */
  3198. .release = pfkey_release,
  3199. .poll = datagram_poll,
  3200. .sendmsg = pfkey_sendmsg,
  3201. .recvmsg = pfkey_recvmsg,
  3202. };
  3203. static struct net_proto_family pfkey_family_ops = {
  3204. .family = PF_KEY,
  3205. .create = pfkey_create,
  3206. .owner = THIS_MODULE,
  3207. };
  3208. #ifdef CONFIG_PROC_FS
  3209. static int pfkey_read_proc(char *buffer, char **start, off_t offset,
  3210. int length, int *eof, void *data)
  3211. {
  3212. off_t pos = 0;
  3213. off_t begin = 0;
  3214. int len = 0;
  3215. struct sock *s;
  3216. struct hlist_node *node;
  3217. len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n");
  3218. read_lock(&pfkey_table_lock);
  3219. sk_for_each(s, node, &pfkey_table) {
  3220. len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu",
  3221. s,
  3222. atomic_read(&s->sk_refcnt),
  3223. atomic_read(&s->sk_rmem_alloc),
  3224. atomic_read(&s->sk_wmem_alloc),
  3225. sock_i_uid(s),
  3226. sock_i_ino(s)
  3227. );
  3228. buffer[len++] = '\n';
  3229. pos = begin + len;
  3230. if (pos < offset) {
  3231. len = 0;
  3232. begin = pos;
  3233. }
  3234. if(pos > offset + length)
  3235. goto done;
  3236. }
  3237. *eof = 1;
  3238. done:
  3239. read_unlock(&pfkey_table_lock);
  3240. *start = buffer + (offset - begin);
  3241. len -= (offset - begin);
  3242. if (len > length)
  3243. len = length;
  3244. if (len < 0)
  3245. len = 0;
  3246. return len;
  3247. }
  3248. #endif
  3249. static struct xfrm_mgr pfkeyv2_mgr =
  3250. {
  3251. .id = "pfkeyv2",
  3252. .notify = pfkey_send_notify,
  3253. .acquire = pfkey_send_acquire,
  3254. .compile_policy = pfkey_compile_policy,
  3255. .new_mapping = pfkey_send_new_mapping,
  3256. .notify_policy = pfkey_send_policy_notify,
  3257. .migrate = pfkey_send_migrate,
  3258. };
  3259. static void __exit ipsec_pfkey_exit(void)
  3260. {
  3261. xfrm_unregister_km(&pfkeyv2_mgr);
  3262. remove_proc_entry("pfkey", init_net.proc_net);
  3263. sock_unregister(PF_KEY);
  3264. proto_unregister(&key_proto);
  3265. }
  3266. static int __init ipsec_pfkey_init(void)
  3267. {
  3268. int err = proto_register(&key_proto, 0);
  3269. if (err != 0)
  3270. goto out;
  3271. err = sock_register(&pfkey_family_ops);
  3272. if (err != 0)
  3273. goto out_unregister_key_proto;
  3274. #ifdef CONFIG_PROC_FS
  3275. err = -ENOMEM;
  3276. if (create_proc_read_entry("pfkey", 0, init_net.proc_net, pfkey_read_proc, NULL) == NULL)
  3277. goto out_sock_unregister;
  3278. #endif
  3279. err = xfrm_register_km(&pfkeyv2_mgr);
  3280. if (err != 0)
  3281. goto out_remove_proc_entry;
  3282. out:
  3283. return err;
  3284. out_remove_proc_entry:
  3285. #ifdef CONFIG_PROC_FS
  3286. remove_proc_entry("net/pfkey", NULL);
  3287. out_sock_unregister:
  3288. #endif
  3289. sock_unregister(PF_KEY);
  3290. out_unregister_key_proto:
  3291. proto_unregister(&key_proto);
  3292. goto out;
  3293. }
  3294. module_init(ipsec_pfkey_init);
  3295. module_exit(ipsec_pfkey_exit);
  3296. MODULE_LICENSE("GPL");
  3297. MODULE_ALIAS_NETPROTO(PF_KEY);