timer.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596
  1. /*
  2. * linux/kernel/timer.c
  3. *
  4. * Kernel internal timers, basic process system calls
  5. *
  6. * Copyright (C) 1991, 1992 Linus Torvalds
  7. *
  8. * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
  9. *
  10. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  13. * serialize accesses to xtime/lost_ticks).
  14. * Copyright (C) 1998 Andrea Arcangeli
  15. * 1999-03-10 Improved NTP compatibility by Ulrich Windl
  16. * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
  17. * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
  18. * Copyright (C) 2000, 2001, 2002 Ingo Molnar
  19. * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  20. */
  21. #include <linux/kernel_stat.h>
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/percpu.h>
  25. #include <linux/init.h>
  26. #include <linux/mm.h>
  27. #include <linux/swap.h>
  28. #include <linux/pid_namespace.h>
  29. #include <linux/notifier.h>
  30. #include <linux/thread_info.h>
  31. #include <linux/time.h>
  32. #include <linux/jiffies.h>
  33. #include <linux/posix-timers.h>
  34. #include <linux/cpu.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/delay.h>
  37. #include <linux/tick.h>
  38. #include <linux/kallsyms.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/unistd.h>
  41. #include <asm/div64.h>
  42. #include <asm/timex.h>
  43. #include <asm/io.h>
  44. u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  45. EXPORT_SYMBOL(jiffies_64);
  46. /*
  47. * per-CPU timer vector definitions:
  48. */
  49. #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
  50. #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
  51. #define TVN_SIZE (1 << TVN_BITS)
  52. #define TVR_SIZE (1 << TVR_BITS)
  53. #define TVN_MASK (TVN_SIZE - 1)
  54. #define TVR_MASK (TVR_SIZE - 1)
  55. struct tvec {
  56. struct list_head vec[TVN_SIZE];
  57. };
  58. struct tvec_root {
  59. struct list_head vec[TVR_SIZE];
  60. };
  61. struct tvec_base {
  62. spinlock_t lock;
  63. struct timer_list *running_timer;
  64. unsigned long timer_jiffies;
  65. struct tvec_root tv1;
  66. struct tvec tv2;
  67. struct tvec tv3;
  68. struct tvec tv4;
  69. struct tvec tv5;
  70. } ____cacheline_aligned;
  71. struct tvec_base boot_tvec_bases;
  72. EXPORT_SYMBOL(boot_tvec_bases);
  73. static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
  74. /*
  75. * Note that all tvec_bases are 2 byte aligned and lower bit of
  76. * base in timer_list is guaranteed to be zero. Use the LSB for
  77. * the new flag to indicate whether the timer is deferrable
  78. */
  79. #define TBASE_DEFERRABLE_FLAG (0x1)
  80. /* Functions below help us manage 'deferrable' flag */
  81. static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
  82. {
  83. return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
  84. }
  85. static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
  86. {
  87. return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
  88. }
  89. static inline void timer_set_deferrable(struct timer_list *timer)
  90. {
  91. timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
  92. TBASE_DEFERRABLE_FLAG));
  93. }
  94. static inline void
  95. timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
  96. {
  97. timer->base = (struct tvec_base *)((unsigned long)(new_base) |
  98. tbase_get_deferrable(timer->base));
  99. }
  100. static unsigned long round_jiffies_common(unsigned long j, int cpu,
  101. bool force_up)
  102. {
  103. int rem;
  104. unsigned long original = j;
  105. /*
  106. * We don't want all cpus firing their timers at once hitting the
  107. * same lock or cachelines, so we skew each extra cpu with an extra
  108. * 3 jiffies. This 3 jiffies came originally from the mm/ code which
  109. * already did this.
  110. * The skew is done by adding 3*cpunr, then round, then subtract this
  111. * extra offset again.
  112. */
  113. j += cpu * 3;
  114. rem = j % HZ;
  115. /*
  116. * If the target jiffie is just after a whole second (which can happen
  117. * due to delays of the timer irq, long irq off times etc etc) then
  118. * we should round down to the whole second, not up. Use 1/4th second
  119. * as cutoff for this rounding as an extreme upper bound for this.
  120. * But never round down if @force_up is set.
  121. */
  122. if (rem < HZ/4 && !force_up) /* round down */
  123. j = j - rem;
  124. else /* round up */
  125. j = j - rem + HZ;
  126. /* now that we have rounded, subtract the extra skew again */
  127. j -= cpu * 3;
  128. if (j <= jiffies) /* rounding ate our timeout entirely; */
  129. return original;
  130. return j;
  131. }
  132. /**
  133. * __round_jiffies - function to round jiffies to a full second
  134. * @j: the time in (absolute) jiffies that should be rounded
  135. * @cpu: the processor number on which the timeout will happen
  136. *
  137. * __round_jiffies() rounds an absolute time in the future (in jiffies)
  138. * up or down to (approximately) full seconds. This is useful for timers
  139. * for which the exact time they fire does not matter too much, as long as
  140. * they fire approximately every X seconds.
  141. *
  142. * By rounding these timers to whole seconds, all such timers will fire
  143. * at the same time, rather than at various times spread out. The goal
  144. * of this is to have the CPU wake up less, which saves power.
  145. *
  146. * The exact rounding is skewed for each processor to avoid all
  147. * processors firing at the exact same time, which could lead
  148. * to lock contention or spurious cache line bouncing.
  149. *
  150. * The return value is the rounded version of the @j parameter.
  151. */
  152. unsigned long __round_jiffies(unsigned long j, int cpu)
  153. {
  154. return round_jiffies_common(j, cpu, false);
  155. }
  156. EXPORT_SYMBOL_GPL(__round_jiffies);
  157. /**
  158. * __round_jiffies_relative - function to round jiffies to a full second
  159. * @j: the time in (relative) jiffies that should be rounded
  160. * @cpu: the processor number on which the timeout will happen
  161. *
  162. * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
  163. * up or down to (approximately) full seconds. This is useful for timers
  164. * for which the exact time they fire does not matter too much, as long as
  165. * they fire approximately every X seconds.
  166. *
  167. * By rounding these timers to whole seconds, all such timers will fire
  168. * at the same time, rather than at various times spread out. The goal
  169. * of this is to have the CPU wake up less, which saves power.
  170. *
  171. * The exact rounding is skewed for each processor to avoid all
  172. * processors firing at the exact same time, which could lead
  173. * to lock contention or spurious cache line bouncing.
  174. *
  175. * The return value is the rounded version of the @j parameter.
  176. */
  177. unsigned long __round_jiffies_relative(unsigned long j, int cpu)
  178. {
  179. unsigned long j0 = jiffies;
  180. /* Use j0 because jiffies might change while we run */
  181. return round_jiffies_common(j + j0, cpu, false) - j0;
  182. }
  183. EXPORT_SYMBOL_GPL(__round_jiffies_relative);
  184. /**
  185. * round_jiffies - function to round jiffies to a full second
  186. * @j: the time in (absolute) jiffies that should be rounded
  187. *
  188. * round_jiffies() rounds an absolute time in the future (in jiffies)
  189. * up or down to (approximately) full seconds. This is useful for timers
  190. * for which the exact time they fire does not matter too much, as long as
  191. * they fire approximately every X seconds.
  192. *
  193. * By rounding these timers to whole seconds, all such timers will fire
  194. * at the same time, rather than at various times spread out. The goal
  195. * of this is to have the CPU wake up less, which saves power.
  196. *
  197. * The return value is the rounded version of the @j parameter.
  198. */
  199. unsigned long round_jiffies(unsigned long j)
  200. {
  201. return round_jiffies_common(j, raw_smp_processor_id(), false);
  202. }
  203. EXPORT_SYMBOL_GPL(round_jiffies);
  204. /**
  205. * round_jiffies_relative - function to round jiffies to a full second
  206. * @j: the time in (relative) jiffies that should be rounded
  207. *
  208. * round_jiffies_relative() rounds a time delta in the future (in jiffies)
  209. * up or down to (approximately) full seconds. This is useful for timers
  210. * for which the exact time they fire does not matter too much, as long as
  211. * they fire approximately every X seconds.
  212. *
  213. * By rounding these timers to whole seconds, all such timers will fire
  214. * at the same time, rather than at various times spread out. The goal
  215. * of this is to have the CPU wake up less, which saves power.
  216. *
  217. * The return value is the rounded version of the @j parameter.
  218. */
  219. unsigned long round_jiffies_relative(unsigned long j)
  220. {
  221. return __round_jiffies_relative(j, raw_smp_processor_id());
  222. }
  223. EXPORT_SYMBOL_GPL(round_jiffies_relative);
  224. /**
  225. * __round_jiffies_up - function to round jiffies up to a full second
  226. * @j: the time in (absolute) jiffies that should be rounded
  227. * @cpu: the processor number on which the timeout will happen
  228. *
  229. * This is the same as __round_jiffies() except that it will never
  230. * round down. This is useful for timeouts for which the exact time
  231. * of firing does not matter too much, as long as they don't fire too
  232. * early.
  233. */
  234. unsigned long __round_jiffies_up(unsigned long j, int cpu)
  235. {
  236. return round_jiffies_common(j, cpu, true);
  237. }
  238. EXPORT_SYMBOL_GPL(__round_jiffies_up);
  239. /**
  240. * __round_jiffies_up_relative - function to round jiffies up to a full second
  241. * @j: the time in (relative) jiffies that should be rounded
  242. * @cpu: the processor number on which the timeout will happen
  243. *
  244. * This is the same as __round_jiffies_relative() except that it will never
  245. * round down. This is useful for timeouts for which the exact time
  246. * of firing does not matter too much, as long as they don't fire too
  247. * early.
  248. */
  249. unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
  250. {
  251. unsigned long j0 = jiffies;
  252. /* Use j0 because jiffies might change while we run */
  253. return round_jiffies_common(j + j0, cpu, true) - j0;
  254. }
  255. EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
  256. /**
  257. * round_jiffies_up - function to round jiffies up to a full second
  258. * @j: the time in (absolute) jiffies that should be rounded
  259. *
  260. * This is the same as round_jiffies() except that it will never
  261. * round down. This is useful for timeouts for which the exact time
  262. * of firing does not matter too much, as long as they don't fire too
  263. * early.
  264. */
  265. unsigned long round_jiffies_up(unsigned long j)
  266. {
  267. return round_jiffies_common(j, raw_smp_processor_id(), true);
  268. }
  269. EXPORT_SYMBOL_GPL(round_jiffies_up);
  270. /**
  271. * round_jiffies_up_relative - function to round jiffies up to a full second
  272. * @j: the time in (relative) jiffies that should be rounded
  273. *
  274. * This is the same as round_jiffies_relative() except that it will never
  275. * round down. This is useful for timeouts for which the exact time
  276. * of firing does not matter too much, as long as they don't fire too
  277. * early.
  278. */
  279. unsigned long round_jiffies_up_relative(unsigned long j)
  280. {
  281. return __round_jiffies_up_relative(j, raw_smp_processor_id());
  282. }
  283. EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
  284. static inline void set_running_timer(struct tvec_base *base,
  285. struct timer_list *timer)
  286. {
  287. #ifdef CONFIG_SMP
  288. base->running_timer = timer;
  289. #endif
  290. }
  291. static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
  292. {
  293. unsigned long expires = timer->expires;
  294. unsigned long idx = expires - base->timer_jiffies;
  295. struct list_head *vec;
  296. if (idx < TVR_SIZE) {
  297. int i = expires & TVR_MASK;
  298. vec = base->tv1.vec + i;
  299. } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
  300. int i = (expires >> TVR_BITS) & TVN_MASK;
  301. vec = base->tv2.vec + i;
  302. } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
  303. int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
  304. vec = base->tv3.vec + i;
  305. } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
  306. int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
  307. vec = base->tv4.vec + i;
  308. } else if ((signed long) idx < 0) {
  309. /*
  310. * Can happen if you add a timer with expires == jiffies,
  311. * or you set a timer to go off in the past
  312. */
  313. vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
  314. } else {
  315. int i;
  316. /* If the timeout is larger than 0xffffffff on 64-bit
  317. * architectures then we use the maximum timeout:
  318. */
  319. if (idx > 0xffffffffUL) {
  320. idx = 0xffffffffUL;
  321. expires = idx + base->timer_jiffies;
  322. }
  323. i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
  324. vec = base->tv5.vec + i;
  325. }
  326. /*
  327. * Timers are FIFO:
  328. */
  329. list_add_tail(&timer->entry, vec);
  330. }
  331. #ifdef CONFIG_TIMER_STATS
  332. void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
  333. {
  334. if (timer->start_site)
  335. return;
  336. timer->start_site = addr;
  337. memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
  338. timer->start_pid = current->pid;
  339. }
  340. static void timer_stats_account_timer(struct timer_list *timer)
  341. {
  342. unsigned int flag = 0;
  343. if (unlikely(tbase_get_deferrable(timer->base)))
  344. flag |= TIMER_STATS_FLAG_DEFERRABLE;
  345. timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
  346. timer->function, timer->start_comm, flag);
  347. }
  348. #else
  349. static void timer_stats_account_timer(struct timer_list *timer) {}
  350. #endif
  351. #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
  352. static struct debug_obj_descr timer_debug_descr;
  353. /*
  354. * fixup_init is called when:
  355. * - an active object is initialized
  356. */
  357. static int timer_fixup_init(void *addr, enum debug_obj_state state)
  358. {
  359. struct timer_list *timer = addr;
  360. switch (state) {
  361. case ODEBUG_STATE_ACTIVE:
  362. del_timer_sync(timer);
  363. debug_object_init(timer, &timer_debug_descr);
  364. return 1;
  365. default:
  366. return 0;
  367. }
  368. }
  369. /*
  370. * fixup_activate is called when:
  371. * - an active object is activated
  372. * - an unknown object is activated (might be a statically initialized object)
  373. */
  374. static int timer_fixup_activate(void *addr, enum debug_obj_state state)
  375. {
  376. struct timer_list *timer = addr;
  377. switch (state) {
  378. case ODEBUG_STATE_NOTAVAILABLE:
  379. /*
  380. * This is not really a fixup. The timer was
  381. * statically initialized. We just make sure that it
  382. * is tracked in the object tracker.
  383. */
  384. if (timer->entry.next == NULL &&
  385. timer->entry.prev == TIMER_ENTRY_STATIC) {
  386. debug_object_init(timer, &timer_debug_descr);
  387. debug_object_activate(timer, &timer_debug_descr);
  388. return 0;
  389. } else {
  390. WARN_ON_ONCE(1);
  391. }
  392. return 0;
  393. case ODEBUG_STATE_ACTIVE:
  394. WARN_ON(1);
  395. default:
  396. return 0;
  397. }
  398. }
  399. /*
  400. * fixup_free is called when:
  401. * - an active object is freed
  402. */
  403. static int timer_fixup_free(void *addr, enum debug_obj_state state)
  404. {
  405. struct timer_list *timer = addr;
  406. switch (state) {
  407. case ODEBUG_STATE_ACTIVE:
  408. del_timer_sync(timer);
  409. debug_object_free(timer, &timer_debug_descr);
  410. return 1;
  411. default:
  412. return 0;
  413. }
  414. }
  415. static struct debug_obj_descr timer_debug_descr = {
  416. .name = "timer_list",
  417. .fixup_init = timer_fixup_init,
  418. .fixup_activate = timer_fixup_activate,
  419. .fixup_free = timer_fixup_free,
  420. };
  421. static inline void debug_timer_init(struct timer_list *timer)
  422. {
  423. debug_object_init(timer, &timer_debug_descr);
  424. }
  425. static inline void debug_timer_activate(struct timer_list *timer)
  426. {
  427. debug_object_activate(timer, &timer_debug_descr);
  428. }
  429. static inline void debug_timer_deactivate(struct timer_list *timer)
  430. {
  431. debug_object_deactivate(timer, &timer_debug_descr);
  432. }
  433. static inline void debug_timer_free(struct timer_list *timer)
  434. {
  435. debug_object_free(timer, &timer_debug_descr);
  436. }
  437. static void __init_timer(struct timer_list *timer);
  438. void init_timer_on_stack(struct timer_list *timer)
  439. {
  440. debug_object_init_on_stack(timer, &timer_debug_descr);
  441. __init_timer(timer);
  442. }
  443. EXPORT_SYMBOL_GPL(init_timer_on_stack);
  444. void destroy_timer_on_stack(struct timer_list *timer)
  445. {
  446. debug_object_free(timer, &timer_debug_descr);
  447. }
  448. EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
  449. #else
  450. static inline void debug_timer_init(struct timer_list *timer) { }
  451. static inline void debug_timer_activate(struct timer_list *timer) { }
  452. static inline void debug_timer_deactivate(struct timer_list *timer) { }
  453. #endif
  454. static void __init_timer(struct timer_list *timer)
  455. {
  456. timer->entry.next = NULL;
  457. timer->base = __raw_get_cpu_var(tvec_bases);
  458. #ifdef CONFIG_TIMER_STATS
  459. timer->start_site = NULL;
  460. timer->start_pid = -1;
  461. memset(timer->start_comm, 0, TASK_COMM_LEN);
  462. #endif
  463. }
  464. /**
  465. * init_timer - initialize a timer.
  466. * @timer: the timer to be initialized
  467. *
  468. * init_timer() must be done to a timer prior calling *any* of the
  469. * other timer functions.
  470. */
  471. void init_timer(struct timer_list *timer)
  472. {
  473. debug_timer_init(timer);
  474. __init_timer(timer);
  475. }
  476. EXPORT_SYMBOL(init_timer);
  477. void init_timer_deferrable(struct timer_list *timer)
  478. {
  479. init_timer(timer);
  480. timer_set_deferrable(timer);
  481. }
  482. EXPORT_SYMBOL(init_timer_deferrable);
  483. static inline void detach_timer(struct timer_list *timer,
  484. int clear_pending)
  485. {
  486. struct list_head *entry = &timer->entry;
  487. debug_timer_deactivate(timer);
  488. __list_del(entry->prev, entry->next);
  489. if (clear_pending)
  490. entry->next = NULL;
  491. entry->prev = LIST_POISON2;
  492. }
  493. /*
  494. * We are using hashed locking: holding per_cpu(tvec_bases).lock
  495. * means that all timers which are tied to this base via timer->base are
  496. * locked, and the base itself is locked too.
  497. *
  498. * So __run_timers/migrate_timers can safely modify all timers which could
  499. * be found on ->tvX lists.
  500. *
  501. * When the timer's base is locked, and the timer removed from list, it is
  502. * possible to set timer->base = NULL and drop the lock: the timer remains
  503. * locked.
  504. */
  505. static struct tvec_base *lock_timer_base(struct timer_list *timer,
  506. unsigned long *flags)
  507. __acquires(timer->base->lock)
  508. {
  509. struct tvec_base *base;
  510. for (;;) {
  511. struct tvec_base *prelock_base = timer->base;
  512. base = tbase_get_base(prelock_base);
  513. if (likely(base != NULL)) {
  514. spin_lock_irqsave(&base->lock, *flags);
  515. if (likely(prelock_base == timer->base))
  516. return base;
  517. /* The timer has migrated to another CPU */
  518. spin_unlock_irqrestore(&base->lock, *flags);
  519. }
  520. cpu_relax();
  521. }
  522. }
  523. int __mod_timer(struct timer_list *timer, unsigned long expires)
  524. {
  525. struct tvec_base *base, *new_base;
  526. unsigned long flags;
  527. int ret = 0;
  528. timer_stats_timer_set_start_info(timer);
  529. BUG_ON(!timer->function);
  530. base = lock_timer_base(timer, &flags);
  531. if (timer_pending(timer)) {
  532. detach_timer(timer, 0);
  533. ret = 1;
  534. }
  535. debug_timer_activate(timer);
  536. new_base = __get_cpu_var(tvec_bases);
  537. if (base != new_base) {
  538. /*
  539. * We are trying to schedule the timer on the local CPU.
  540. * However we can't change timer's base while it is running,
  541. * otherwise del_timer_sync() can't detect that the timer's
  542. * handler yet has not finished. This also guarantees that
  543. * the timer is serialized wrt itself.
  544. */
  545. if (likely(base->running_timer != timer)) {
  546. /* See the comment in lock_timer_base() */
  547. timer_set_base(timer, NULL);
  548. spin_unlock(&base->lock);
  549. base = new_base;
  550. spin_lock(&base->lock);
  551. timer_set_base(timer, base);
  552. }
  553. }
  554. timer->expires = expires;
  555. internal_add_timer(base, timer);
  556. spin_unlock_irqrestore(&base->lock, flags);
  557. return ret;
  558. }
  559. EXPORT_SYMBOL(__mod_timer);
  560. /**
  561. * add_timer_on - start a timer on a particular CPU
  562. * @timer: the timer to be added
  563. * @cpu: the CPU to start it on
  564. *
  565. * This is not very scalable on SMP. Double adds are not possible.
  566. */
  567. void add_timer_on(struct timer_list *timer, int cpu)
  568. {
  569. struct tvec_base *base = per_cpu(tvec_bases, cpu);
  570. unsigned long flags;
  571. timer_stats_timer_set_start_info(timer);
  572. BUG_ON(timer_pending(timer) || !timer->function);
  573. spin_lock_irqsave(&base->lock, flags);
  574. timer_set_base(timer, base);
  575. debug_timer_activate(timer);
  576. internal_add_timer(base, timer);
  577. /*
  578. * Check whether the other CPU is idle and needs to be
  579. * triggered to reevaluate the timer wheel when nohz is
  580. * active. We are protected against the other CPU fiddling
  581. * with the timer by holding the timer base lock. This also
  582. * makes sure that a CPU on the way to idle can not evaluate
  583. * the timer wheel.
  584. */
  585. wake_up_idle_cpu(cpu);
  586. spin_unlock_irqrestore(&base->lock, flags);
  587. }
  588. /**
  589. * mod_timer - modify a timer's timeout
  590. * @timer: the timer to be modified
  591. * @expires: new timeout in jiffies
  592. *
  593. * mod_timer() is a more efficient way to update the expire field of an
  594. * active timer (if the timer is inactive it will be activated)
  595. *
  596. * mod_timer(timer, expires) is equivalent to:
  597. *
  598. * del_timer(timer); timer->expires = expires; add_timer(timer);
  599. *
  600. * Note that if there are multiple unserialized concurrent users of the
  601. * same timer, then mod_timer() is the only safe way to modify the timeout,
  602. * since add_timer() cannot modify an already running timer.
  603. *
  604. * The function returns whether it has modified a pending timer or not.
  605. * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
  606. * active timer returns 1.)
  607. */
  608. int mod_timer(struct timer_list *timer, unsigned long expires)
  609. {
  610. BUG_ON(!timer->function);
  611. timer_stats_timer_set_start_info(timer);
  612. /*
  613. * This is a common optimization triggered by the
  614. * networking code - if the timer is re-modified
  615. * to be the same thing then just return:
  616. */
  617. if (timer->expires == expires && timer_pending(timer))
  618. return 1;
  619. return __mod_timer(timer, expires);
  620. }
  621. EXPORT_SYMBOL(mod_timer);
  622. /**
  623. * del_timer - deactive a timer.
  624. * @timer: the timer to be deactivated
  625. *
  626. * del_timer() deactivates a timer - this works on both active and inactive
  627. * timers.
  628. *
  629. * The function returns whether it has deactivated a pending timer or not.
  630. * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
  631. * active timer returns 1.)
  632. */
  633. int del_timer(struct timer_list *timer)
  634. {
  635. struct tvec_base *base;
  636. unsigned long flags;
  637. int ret = 0;
  638. timer_stats_timer_clear_start_info(timer);
  639. if (timer_pending(timer)) {
  640. base = lock_timer_base(timer, &flags);
  641. if (timer_pending(timer)) {
  642. detach_timer(timer, 1);
  643. ret = 1;
  644. }
  645. spin_unlock_irqrestore(&base->lock, flags);
  646. }
  647. return ret;
  648. }
  649. EXPORT_SYMBOL(del_timer);
  650. #ifdef CONFIG_SMP
  651. /**
  652. * try_to_del_timer_sync - Try to deactivate a timer
  653. * @timer: timer do del
  654. *
  655. * This function tries to deactivate a timer. Upon successful (ret >= 0)
  656. * exit the timer is not queued and the handler is not running on any CPU.
  657. *
  658. * It must not be called from interrupt contexts.
  659. */
  660. int try_to_del_timer_sync(struct timer_list *timer)
  661. {
  662. struct tvec_base *base;
  663. unsigned long flags;
  664. int ret = -1;
  665. base = lock_timer_base(timer, &flags);
  666. if (base->running_timer == timer)
  667. goto out;
  668. ret = 0;
  669. if (timer_pending(timer)) {
  670. detach_timer(timer, 1);
  671. ret = 1;
  672. }
  673. out:
  674. spin_unlock_irqrestore(&base->lock, flags);
  675. return ret;
  676. }
  677. EXPORT_SYMBOL(try_to_del_timer_sync);
  678. /**
  679. * del_timer_sync - deactivate a timer and wait for the handler to finish.
  680. * @timer: the timer to be deactivated
  681. *
  682. * This function only differs from del_timer() on SMP: besides deactivating
  683. * the timer it also makes sure the handler has finished executing on other
  684. * CPUs.
  685. *
  686. * Synchronization rules: Callers must prevent restarting of the timer,
  687. * otherwise this function is meaningless. It must not be called from
  688. * interrupt contexts. The caller must not hold locks which would prevent
  689. * completion of the timer's handler. The timer's handler must not call
  690. * add_timer_on(). Upon exit the timer is not queued and the handler is
  691. * not running on any CPU.
  692. *
  693. * The function returns whether it has deactivated a pending timer or not.
  694. */
  695. int del_timer_sync(struct timer_list *timer)
  696. {
  697. for (;;) {
  698. int ret = try_to_del_timer_sync(timer);
  699. if (ret >= 0)
  700. return ret;
  701. cpu_relax();
  702. }
  703. }
  704. EXPORT_SYMBOL(del_timer_sync);
  705. #endif
  706. static int cascade(struct tvec_base *base, struct tvec *tv, int index)
  707. {
  708. /* cascade all the timers from tv up one level */
  709. struct timer_list *timer, *tmp;
  710. struct list_head tv_list;
  711. list_replace_init(tv->vec + index, &tv_list);
  712. /*
  713. * We are removing _all_ timers from the list, so we
  714. * don't have to detach them individually.
  715. */
  716. list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
  717. BUG_ON(tbase_get_base(timer->base) != base);
  718. internal_add_timer(base, timer);
  719. }
  720. return index;
  721. }
  722. #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
  723. /**
  724. * __run_timers - run all expired timers (if any) on this CPU.
  725. * @base: the timer vector to be processed.
  726. *
  727. * This function cascades all vectors and executes all expired timer
  728. * vectors.
  729. */
  730. static inline void __run_timers(struct tvec_base *base)
  731. {
  732. struct timer_list *timer;
  733. spin_lock_irq(&base->lock);
  734. while (time_after_eq(jiffies, base->timer_jiffies)) {
  735. struct list_head work_list;
  736. struct list_head *head = &work_list;
  737. int index = base->timer_jiffies & TVR_MASK;
  738. /*
  739. * Cascade timers:
  740. */
  741. if (!index &&
  742. (!cascade(base, &base->tv2, INDEX(0))) &&
  743. (!cascade(base, &base->tv3, INDEX(1))) &&
  744. !cascade(base, &base->tv4, INDEX(2)))
  745. cascade(base, &base->tv5, INDEX(3));
  746. ++base->timer_jiffies;
  747. list_replace_init(base->tv1.vec + index, &work_list);
  748. while (!list_empty(head)) {
  749. void (*fn)(unsigned long);
  750. unsigned long data;
  751. timer = list_first_entry(head, struct timer_list,entry);
  752. fn = timer->function;
  753. data = timer->data;
  754. timer_stats_account_timer(timer);
  755. set_running_timer(base, timer);
  756. detach_timer(timer, 1);
  757. spin_unlock_irq(&base->lock);
  758. {
  759. int preempt_count = preempt_count();
  760. fn(data);
  761. if (preempt_count != preempt_count()) {
  762. printk(KERN_ERR "huh, entered %p "
  763. "with preempt_count %08x, exited"
  764. " with %08x?\n",
  765. fn, preempt_count,
  766. preempt_count());
  767. BUG();
  768. }
  769. }
  770. spin_lock_irq(&base->lock);
  771. }
  772. }
  773. set_running_timer(base, NULL);
  774. spin_unlock_irq(&base->lock);
  775. }
  776. #ifdef CONFIG_NO_HZ
  777. /*
  778. * Find out when the next timer event is due to happen. This
  779. * is used on S/390 to stop all activity when a cpus is idle.
  780. * This functions needs to be called disabled.
  781. */
  782. static unsigned long __next_timer_interrupt(struct tvec_base *base)
  783. {
  784. unsigned long timer_jiffies = base->timer_jiffies;
  785. unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
  786. int index, slot, array, found = 0;
  787. struct timer_list *nte;
  788. struct tvec *varray[4];
  789. /* Look for timer events in tv1. */
  790. index = slot = timer_jiffies & TVR_MASK;
  791. do {
  792. list_for_each_entry(nte, base->tv1.vec + slot, entry) {
  793. if (tbase_get_deferrable(nte->base))
  794. continue;
  795. found = 1;
  796. expires = nte->expires;
  797. /* Look at the cascade bucket(s)? */
  798. if (!index || slot < index)
  799. goto cascade;
  800. return expires;
  801. }
  802. slot = (slot + 1) & TVR_MASK;
  803. } while (slot != index);
  804. cascade:
  805. /* Calculate the next cascade event */
  806. if (index)
  807. timer_jiffies += TVR_SIZE - index;
  808. timer_jiffies >>= TVR_BITS;
  809. /* Check tv2-tv5. */
  810. varray[0] = &base->tv2;
  811. varray[1] = &base->tv3;
  812. varray[2] = &base->tv4;
  813. varray[3] = &base->tv5;
  814. for (array = 0; array < 4; array++) {
  815. struct tvec *varp = varray[array];
  816. index = slot = timer_jiffies & TVN_MASK;
  817. do {
  818. list_for_each_entry(nte, varp->vec + slot, entry) {
  819. found = 1;
  820. if (time_before(nte->expires, expires))
  821. expires = nte->expires;
  822. }
  823. /*
  824. * Do we still search for the first timer or are
  825. * we looking up the cascade buckets ?
  826. */
  827. if (found) {
  828. /* Look at the cascade bucket(s)? */
  829. if (!index || slot < index)
  830. break;
  831. return expires;
  832. }
  833. slot = (slot + 1) & TVN_MASK;
  834. } while (slot != index);
  835. if (index)
  836. timer_jiffies += TVN_SIZE - index;
  837. timer_jiffies >>= TVN_BITS;
  838. }
  839. return expires;
  840. }
  841. /*
  842. * Check, if the next hrtimer event is before the next timer wheel
  843. * event:
  844. */
  845. static unsigned long cmp_next_hrtimer_event(unsigned long now,
  846. unsigned long expires)
  847. {
  848. ktime_t hr_delta = hrtimer_get_next_event();
  849. struct timespec tsdelta;
  850. unsigned long delta;
  851. if (hr_delta.tv64 == KTIME_MAX)
  852. return expires;
  853. /*
  854. * Expired timer available, let it expire in the next tick
  855. */
  856. if (hr_delta.tv64 <= 0)
  857. return now + 1;
  858. tsdelta = ktime_to_timespec(hr_delta);
  859. delta = timespec_to_jiffies(&tsdelta);
  860. /*
  861. * Limit the delta to the max value, which is checked in
  862. * tick_nohz_stop_sched_tick():
  863. */
  864. if (delta > NEXT_TIMER_MAX_DELTA)
  865. delta = NEXT_TIMER_MAX_DELTA;
  866. /*
  867. * Take rounding errors in to account and make sure, that it
  868. * expires in the next tick. Otherwise we go into an endless
  869. * ping pong due to tick_nohz_stop_sched_tick() retriggering
  870. * the timer softirq
  871. */
  872. if (delta < 1)
  873. delta = 1;
  874. now += delta;
  875. if (time_before(now, expires))
  876. return now;
  877. return expires;
  878. }
  879. /**
  880. * get_next_timer_interrupt - return the jiffy of the next pending timer
  881. * @now: current time (in jiffies)
  882. */
  883. unsigned long get_next_timer_interrupt(unsigned long now)
  884. {
  885. struct tvec_base *base = __get_cpu_var(tvec_bases);
  886. unsigned long expires;
  887. spin_lock(&base->lock);
  888. expires = __next_timer_interrupt(base);
  889. spin_unlock(&base->lock);
  890. if (time_before_eq(expires, now))
  891. return now;
  892. return cmp_next_hrtimer_event(now, expires);
  893. }
  894. #endif
  895. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  896. void account_process_tick(struct task_struct *p, int user_tick)
  897. {
  898. cputime_t one_jiffy = jiffies_to_cputime(1);
  899. if (user_tick)
  900. account_user_time(p, one_jiffy, cputime_to_scaled(one_jiffy));
  901. else
  902. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  903. cputime_to_scaled(one_jiffy));
  904. }
  905. #endif
  906. /*
  907. * Called from the timer interrupt handler to charge one tick to the current
  908. * process. user_tick is 1 if the tick is user time, 0 for system.
  909. */
  910. void update_process_times(int user_tick)
  911. {
  912. struct task_struct *p = current;
  913. int cpu = smp_processor_id();
  914. /* Note: this timer irq context must be accounted for as well. */
  915. account_process_tick(p, user_tick);
  916. run_local_timers();
  917. if (rcu_pending(cpu))
  918. rcu_check_callbacks(cpu, user_tick);
  919. printk_tick();
  920. scheduler_tick();
  921. run_posix_cpu_timers(p);
  922. }
  923. /*
  924. * Nr of active tasks - counted in fixed-point numbers
  925. */
  926. static unsigned long count_active_tasks(void)
  927. {
  928. return nr_active() * FIXED_1;
  929. }
  930. /*
  931. * Hmm.. Changed this, as the GNU make sources (load.c) seems to
  932. * imply that avenrun[] is the standard name for this kind of thing.
  933. * Nothing else seems to be standardized: the fractional size etc
  934. * all seem to differ on different machines.
  935. *
  936. * Requires xtime_lock to access.
  937. */
  938. unsigned long avenrun[3];
  939. EXPORT_SYMBOL(avenrun);
  940. /*
  941. * calc_load - given tick count, update the avenrun load estimates.
  942. * This is called while holding a write_lock on xtime_lock.
  943. */
  944. static inline void calc_load(unsigned long ticks)
  945. {
  946. unsigned long active_tasks; /* fixed-point */
  947. static int count = LOAD_FREQ;
  948. count -= ticks;
  949. if (unlikely(count < 0)) {
  950. active_tasks = count_active_tasks();
  951. do {
  952. CALC_LOAD(avenrun[0], EXP_1, active_tasks);
  953. CALC_LOAD(avenrun[1], EXP_5, active_tasks);
  954. CALC_LOAD(avenrun[2], EXP_15, active_tasks);
  955. count += LOAD_FREQ;
  956. } while (count < 0);
  957. }
  958. }
  959. /*
  960. * This function runs timers and the timer-tq in bottom half context.
  961. */
  962. static void run_timer_softirq(struct softirq_action *h)
  963. {
  964. struct tvec_base *base = __get_cpu_var(tvec_bases);
  965. hrtimer_run_pending();
  966. if (time_after_eq(jiffies, base->timer_jiffies))
  967. __run_timers(base);
  968. }
  969. /*
  970. * Called by the local, per-CPU timer interrupt on SMP.
  971. */
  972. void run_local_timers(void)
  973. {
  974. hrtimer_run_queues();
  975. raise_softirq(TIMER_SOFTIRQ);
  976. softlockup_tick();
  977. }
  978. /*
  979. * Called by the timer interrupt. xtime_lock must already be taken
  980. * by the timer IRQ!
  981. */
  982. static inline void update_times(unsigned long ticks)
  983. {
  984. update_wall_time();
  985. calc_load(ticks);
  986. }
  987. /*
  988. * The 64-bit jiffies value is not atomic - you MUST NOT read it
  989. * without sampling the sequence number in xtime_lock.
  990. * jiffies is defined in the linker script...
  991. */
  992. void do_timer(unsigned long ticks)
  993. {
  994. jiffies_64 += ticks;
  995. update_times(ticks);
  996. }
  997. #ifdef __ARCH_WANT_SYS_ALARM
  998. /*
  999. * For backwards compatibility? This can be done in libc so Alpha
  1000. * and all newer ports shouldn't need it.
  1001. */
  1002. asmlinkage unsigned long sys_alarm(unsigned int seconds)
  1003. {
  1004. return alarm_setitimer(seconds);
  1005. }
  1006. #endif
  1007. #ifndef __alpha__
  1008. /*
  1009. * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
  1010. * should be moved into arch/i386 instead?
  1011. */
  1012. /**
  1013. * sys_getpid - return the thread group id of the current process
  1014. *
  1015. * Note, despite the name, this returns the tgid not the pid. The tgid and
  1016. * the pid are identical unless CLONE_THREAD was specified on clone() in
  1017. * which case the tgid is the same in all threads of the same group.
  1018. *
  1019. * This is SMP safe as current->tgid does not change.
  1020. */
  1021. asmlinkage long sys_getpid(void)
  1022. {
  1023. return task_tgid_vnr(current);
  1024. }
  1025. /*
  1026. * Accessing ->real_parent is not SMP-safe, it could
  1027. * change from under us. However, we can use a stale
  1028. * value of ->real_parent under rcu_read_lock(), see
  1029. * release_task()->call_rcu(delayed_put_task_struct).
  1030. */
  1031. asmlinkage long sys_getppid(void)
  1032. {
  1033. int pid;
  1034. rcu_read_lock();
  1035. pid = task_tgid_vnr(current->real_parent);
  1036. rcu_read_unlock();
  1037. return pid;
  1038. }
  1039. asmlinkage long sys_getuid(void)
  1040. {
  1041. /* Only we change this so SMP safe */
  1042. return current_uid();
  1043. }
  1044. asmlinkage long sys_geteuid(void)
  1045. {
  1046. /* Only we change this so SMP safe */
  1047. return current_euid();
  1048. }
  1049. asmlinkage long sys_getgid(void)
  1050. {
  1051. /* Only we change this so SMP safe */
  1052. return current_gid();
  1053. }
  1054. asmlinkage long sys_getegid(void)
  1055. {
  1056. /* Only we change this so SMP safe */
  1057. return current_egid();
  1058. }
  1059. #endif
  1060. static void process_timeout(unsigned long __data)
  1061. {
  1062. wake_up_process((struct task_struct *)__data);
  1063. }
  1064. /**
  1065. * schedule_timeout - sleep until timeout
  1066. * @timeout: timeout value in jiffies
  1067. *
  1068. * Make the current task sleep until @timeout jiffies have
  1069. * elapsed. The routine will return immediately unless
  1070. * the current task state has been set (see set_current_state()).
  1071. *
  1072. * You can set the task state as follows -
  1073. *
  1074. * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
  1075. * pass before the routine returns. The routine will return 0
  1076. *
  1077. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  1078. * delivered to the current task. In this case the remaining time
  1079. * in jiffies will be returned, or 0 if the timer expired in time
  1080. *
  1081. * The current task state is guaranteed to be TASK_RUNNING when this
  1082. * routine returns.
  1083. *
  1084. * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
  1085. * the CPU away without a bound on the timeout. In this case the return
  1086. * value will be %MAX_SCHEDULE_TIMEOUT.
  1087. *
  1088. * In all cases the return value is guaranteed to be non-negative.
  1089. */
  1090. signed long __sched schedule_timeout(signed long timeout)
  1091. {
  1092. struct timer_list timer;
  1093. unsigned long expire;
  1094. switch (timeout)
  1095. {
  1096. case MAX_SCHEDULE_TIMEOUT:
  1097. /*
  1098. * These two special cases are useful to be comfortable
  1099. * in the caller. Nothing more. We could take
  1100. * MAX_SCHEDULE_TIMEOUT from one of the negative value
  1101. * but I' d like to return a valid offset (>=0) to allow
  1102. * the caller to do everything it want with the retval.
  1103. */
  1104. schedule();
  1105. goto out;
  1106. default:
  1107. /*
  1108. * Another bit of PARANOID. Note that the retval will be
  1109. * 0 since no piece of kernel is supposed to do a check
  1110. * for a negative retval of schedule_timeout() (since it
  1111. * should never happens anyway). You just have the printk()
  1112. * that will tell you if something is gone wrong and where.
  1113. */
  1114. if (timeout < 0) {
  1115. printk(KERN_ERR "schedule_timeout: wrong timeout "
  1116. "value %lx\n", timeout);
  1117. dump_stack();
  1118. current->state = TASK_RUNNING;
  1119. goto out;
  1120. }
  1121. }
  1122. expire = timeout + jiffies;
  1123. setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
  1124. __mod_timer(&timer, expire);
  1125. schedule();
  1126. del_singleshot_timer_sync(&timer);
  1127. /* Remove the timer from the object tracker */
  1128. destroy_timer_on_stack(&timer);
  1129. timeout = expire - jiffies;
  1130. out:
  1131. return timeout < 0 ? 0 : timeout;
  1132. }
  1133. EXPORT_SYMBOL(schedule_timeout);
  1134. /*
  1135. * We can use __set_current_state() here because schedule_timeout() calls
  1136. * schedule() unconditionally.
  1137. */
  1138. signed long __sched schedule_timeout_interruptible(signed long timeout)
  1139. {
  1140. __set_current_state(TASK_INTERRUPTIBLE);
  1141. return schedule_timeout(timeout);
  1142. }
  1143. EXPORT_SYMBOL(schedule_timeout_interruptible);
  1144. signed long __sched schedule_timeout_killable(signed long timeout)
  1145. {
  1146. __set_current_state(TASK_KILLABLE);
  1147. return schedule_timeout(timeout);
  1148. }
  1149. EXPORT_SYMBOL(schedule_timeout_killable);
  1150. signed long __sched schedule_timeout_uninterruptible(signed long timeout)
  1151. {
  1152. __set_current_state(TASK_UNINTERRUPTIBLE);
  1153. return schedule_timeout(timeout);
  1154. }
  1155. EXPORT_SYMBOL(schedule_timeout_uninterruptible);
  1156. /* Thread ID - the internal kernel "pid" */
  1157. asmlinkage long sys_gettid(void)
  1158. {
  1159. return task_pid_vnr(current);
  1160. }
  1161. /**
  1162. * do_sysinfo - fill in sysinfo struct
  1163. * @info: pointer to buffer to fill
  1164. */
  1165. int do_sysinfo(struct sysinfo *info)
  1166. {
  1167. unsigned long mem_total, sav_total;
  1168. unsigned int mem_unit, bitcount;
  1169. unsigned long seq;
  1170. memset(info, 0, sizeof(struct sysinfo));
  1171. do {
  1172. struct timespec tp;
  1173. seq = read_seqbegin(&xtime_lock);
  1174. /*
  1175. * This is annoying. The below is the same thing
  1176. * posix_get_clock_monotonic() does, but it wants to
  1177. * take the lock which we want to cover the loads stuff
  1178. * too.
  1179. */
  1180. getnstimeofday(&tp);
  1181. tp.tv_sec += wall_to_monotonic.tv_sec;
  1182. tp.tv_nsec += wall_to_monotonic.tv_nsec;
  1183. monotonic_to_bootbased(&tp);
  1184. if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
  1185. tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
  1186. tp.tv_sec++;
  1187. }
  1188. info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
  1189. info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
  1190. info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
  1191. info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
  1192. info->procs = nr_threads;
  1193. } while (read_seqretry(&xtime_lock, seq));
  1194. si_meminfo(info);
  1195. si_swapinfo(info);
  1196. /*
  1197. * If the sum of all the available memory (i.e. ram + swap)
  1198. * is less than can be stored in a 32 bit unsigned long then
  1199. * we can be binary compatible with 2.2.x kernels. If not,
  1200. * well, in that case 2.2.x was broken anyways...
  1201. *
  1202. * -Erik Andersen <andersee@debian.org>
  1203. */
  1204. mem_total = info->totalram + info->totalswap;
  1205. if (mem_total < info->totalram || mem_total < info->totalswap)
  1206. goto out;
  1207. bitcount = 0;
  1208. mem_unit = info->mem_unit;
  1209. while (mem_unit > 1) {
  1210. bitcount++;
  1211. mem_unit >>= 1;
  1212. sav_total = mem_total;
  1213. mem_total <<= 1;
  1214. if (mem_total < sav_total)
  1215. goto out;
  1216. }
  1217. /*
  1218. * If mem_total did not overflow, multiply all memory values by
  1219. * info->mem_unit and set it to 1. This leaves things compatible
  1220. * with 2.2.x, and also retains compatibility with earlier 2.4.x
  1221. * kernels...
  1222. */
  1223. info->mem_unit = 1;
  1224. info->totalram <<= bitcount;
  1225. info->freeram <<= bitcount;
  1226. info->sharedram <<= bitcount;
  1227. info->bufferram <<= bitcount;
  1228. info->totalswap <<= bitcount;
  1229. info->freeswap <<= bitcount;
  1230. info->totalhigh <<= bitcount;
  1231. info->freehigh <<= bitcount;
  1232. out:
  1233. return 0;
  1234. }
  1235. asmlinkage long sys_sysinfo(struct sysinfo __user *info)
  1236. {
  1237. struct sysinfo val;
  1238. do_sysinfo(&val);
  1239. if (copy_to_user(info, &val, sizeof(struct sysinfo)))
  1240. return -EFAULT;
  1241. return 0;
  1242. }
  1243. static int __cpuinit init_timers_cpu(int cpu)
  1244. {
  1245. int j;
  1246. struct tvec_base *base;
  1247. static char __cpuinitdata tvec_base_done[NR_CPUS];
  1248. if (!tvec_base_done[cpu]) {
  1249. static char boot_done;
  1250. if (boot_done) {
  1251. /*
  1252. * The APs use this path later in boot
  1253. */
  1254. base = kmalloc_node(sizeof(*base),
  1255. GFP_KERNEL | __GFP_ZERO,
  1256. cpu_to_node(cpu));
  1257. if (!base)
  1258. return -ENOMEM;
  1259. /* Make sure that tvec_base is 2 byte aligned */
  1260. if (tbase_get_deferrable(base)) {
  1261. WARN_ON(1);
  1262. kfree(base);
  1263. return -ENOMEM;
  1264. }
  1265. per_cpu(tvec_bases, cpu) = base;
  1266. } else {
  1267. /*
  1268. * This is for the boot CPU - we use compile-time
  1269. * static initialisation because per-cpu memory isn't
  1270. * ready yet and because the memory allocators are not
  1271. * initialised either.
  1272. */
  1273. boot_done = 1;
  1274. base = &boot_tvec_bases;
  1275. }
  1276. tvec_base_done[cpu] = 1;
  1277. } else {
  1278. base = per_cpu(tvec_bases, cpu);
  1279. }
  1280. spin_lock_init(&base->lock);
  1281. for (j = 0; j < TVN_SIZE; j++) {
  1282. INIT_LIST_HEAD(base->tv5.vec + j);
  1283. INIT_LIST_HEAD(base->tv4.vec + j);
  1284. INIT_LIST_HEAD(base->tv3.vec + j);
  1285. INIT_LIST_HEAD(base->tv2.vec + j);
  1286. }
  1287. for (j = 0; j < TVR_SIZE; j++)
  1288. INIT_LIST_HEAD(base->tv1.vec + j);
  1289. base->timer_jiffies = jiffies;
  1290. return 0;
  1291. }
  1292. #ifdef CONFIG_HOTPLUG_CPU
  1293. static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
  1294. {
  1295. struct timer_list *timer;
  1296. while (!list_empty(head)) {
  1297. timer = list_first_entry(head, struct timer_list, entry);
  1298. detach_timer(timer, 0);
  1299. timer_set_base(timer, new_base);
  1300. internal_add_timer(new_base, timer);
  1301. }
  1302. }
  1303. static void __cpuinit migrate_timers(int cpu)
  1304. {
  1305. struct tvec_base *old_base;
  1306. struct tvec_base *new_base;
  1307. int i;
  1308. BUG_ON(cpu_online(cpu));
  1309. old_base = per_cpu(tvec_bases, cpu);
  1310. new_base = get_cpu_var(tvec_bases);
  1311. /*
  1312. * The caller is globally serialized and nobody else
  1313. * takes two locks at once, deadlock is not possible.
  1314. */
  1315. spin_lock_irq(&new_base->lock);
  1316. spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
  1317. BUG_ON(old_base->running_timer);
  1318. for (i = 0; i < TVR_SIZE; i++)
  1319. migrate_timer_list(new_base, old_base->tv1.vec + i);
  1320. for (i = 0; i < TVN_SIZE; i++) {
  1321. migrate_timer_list(new_base, old_base->tv2.vec + i);
  1322. migrate_timer_list(new_base, old_base->tv3.vec + i);
  1323. migrate_timer_list(new_base, old_base->tv4.vec + i);
  1324. migrate_timer_list(new_base, old_base->tv5.vec + i);
  1325. }
  1326. spin_unlock(&old_base->lock);
  1327. spin_unlock_irq(&new_base->lock);
  1328. put_cpu_var(tvec_bases);
  1329. }
  1330. #endif /* CONFIG_HOTPLUG_CPU */
  1331. static int __cpuinit timer_cpu_notify(struct notifier_block *self,
  1332. unsigned long action, void *hcpu)
  1333. {
  1334. long cpu = (long)hcpu;
  1335. switch(action) {
  1336. case CPU_UP_PREPARE:
  1337. case CPU_UP_PREPARE_FROZEN:
  1338. if (init_timers_cpu(cpu) < 0)
  1339. return NOTIFY_BAD;
  1340. break;
  1341. #ifdef CONFIG_HOTPLUG_CPU
  1342. case CPU_DEAD:
  1343. case CPU_DEAD_FROZEN:
  1344. migrate_timers(cpu);
  1345. break;
  1346. #endif
  1347. default:
  1348. break;
  1349. }
  1350. return NOTIFY_OK;
  1351. }
  1352. static struct notifier_block __cpuinitdata timers_nb = {
  1353. .notifier_call = timer_cpu_notify,
  1354. };
  1355. void __init init_timers(void)
  1356. {
  1357. int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
  1358. (void *)(long)smp_processor_id());
  1359. init_timer_stats();
  1360. BUG_ON(err == NOTIFY_BAD);
  1361. register_cpu_notifier(&timers_nb);
  1362. open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
  1363. }
  1364. /**
  1365. * msleep - sleep safely even with waitqueue interruptions
  1366. * @msecs: Time in milliseconds to sleep for
  1367. */
  1368. void msleep(unsigned int msecs)
  1369. {
  1370. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1371. while (timeout)
  1372. timeout = schedule_timeout_uninterruptible(timeout);
  1373. }
  1374. EXPORT_SYMBOL(msleep);
  1375. /**
  1376. * msleep_interruptible - sleep waiting for signals
  1377. * @msecs: Time in milliseconds to sleep for
  1378. */
  1379. unsigned long msleep_interruptible(unsigned int msecs)
  1380. {
  1381. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1382. while (timeout && !signal_pending(current))
  1383. timeout = schedule_timeout_interruptible(timeout);
  1384. return jiffies_to_msecs(timeout);
  1385. }
  1386. EXPORT_SYMBOL(msleep_interruptible);