time.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474
  1. /*
  2. * linux/arch/ia64/kernel/time.c
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * Stephane Eranian <eranian@hpl.hp.com>
  6. * David Mosberger <davidm@hpl.hp.com>
  7. * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
  8. * Copyright (C) 1999-2000 VA Linux Systems
  9. * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/init.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/profile.h>
  16. #include <linux/sched.h>
  17. #include <linux/time.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/efi.h>
  20. #include <linux/timex.h>
  21. #include <linux/clocksource.h>
  22. #include <asm/machvec.h>
  23. #include <asm/delay.h>
  24. #include <asm/hw_irq.h>
  25. #include <asm/paravirt.h>
  26. #include <asm/ptrace.h>
  27. #include <asm/sal.h>
  28. #include <asm/sections.h>
  29. #include <asm/system.h>
  30. #include "fsyscall_gtod_data.h"
  31. static cycle_t itc_get_cycles(void);
  32. struct fsyscall_gtod_data_t fsyscall_gtod_data = {
  33. .lock = SEQLOCK_UNLOCKED,
  34. };
  35. struct itc_jitter_data_t itc_jitter_data;
  36. volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
  37. #ifdef CONFIG_IA64_DEBUG_IRQ
  38. unsigned long last_cli_ip;
  39. EXPORT_SYMBOL(last_cli_ip);
  40. #endif
  41. #ifdef CONFIG_PARAVIRT
  42. static void
  43. paravirt_clocksource_resume(void)
  44. {
  45. if (pv_time_ops.clocksource_resume)
  46. pv_time_ops.clocksource_resume();
  47. }
  48. #endif
  49. static struct clocksource clocksource_itc = {
  50. .name = "itc",
  51. .rating = 350,
  52. .read = itc_get_cycles,
  53. .mask = CLOCKSOURCE_MASK(64),
  54. .mult = 0, /*to be calculated*/
  55. .shift = 16,
  56. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  57. #ifdef CONFIG_PARAVIRT
  58. .resume = paravirt_clocksource_resume,
  59. #endif
  60. };
  61. static struct clocksource *itc_clocksource;
  62. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  63. #include <linux/kernel_stat.h>
  64. extern cputime_t cycle_to_cputime(u64 cyc);
  65. /*
  66. * Called from the context switch with interrupts disabled, to charge all
  67. * accumulated times to the current process, and to prepare accounting on
  68. * the next process.
  69. */
  70. void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
  71. {
  72. struct thread_info *pi = task_thread_info(prev);
  73. struct thread_info *ni = task_thread_info(next);
  74. cputime_t delta_stime, delta_utime;
  75. __u64 now;
  76. now = ia64_get_itc();
  77. delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
  78. account_system_time(prev, 0, delta_stime, delta_stime);
  79. if (pi->ac_utime) {
  80. delta_utime = cycle_to_cputime(pi->ac_utime);
  81. account_user_time(prev, delta_utime, delta_utime);
  82. }
  83. pi->ac_stamp = ni->ac_stamp = now;
  84. ni->ac_stime = ni->ac_utime = 0;
  85. }
  86. /*
  87. * Account time for a transition between system, hard irq or soft irq state.
  88. * Note that this function is called with interrupts enabled.
  89. */
  90. void account_system_vtime(struct task_struct *tsk)
  91. {
  92. struct thread_info *ti = task_thread_info(tsk);
  93. unsigned long flags;
  94. cputime_t delta_stime;
  95. __u64 now;
  96. local_irq_save(flags);
  97. now = ia64_get_itc();
  98. delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
  99. account_system_time(tsk, 0, delta_stime, delta_stime);
  100. ti->ac_stime = 0;
  101. ti->ac_stamp = now;
  102. local_irq_restore(flags);
  103. }
  104. EXPORT_SYMBOL_GPL(account_system_vtime);
  105. /*
  106. * Called from the timer interrupt handler to charge accumulated user time
  107. * to the current process. Must be called with interrupts disabled.
  108. */
  109. void account_process_tick(struct task_struct *p, int user_tick)
  110. {
  111. struct thread_info *ti = task_thread_info(p);
  112. cputime_t delta_utime;
  113. if (ti->ac_utime) {
  114. delta_utime = cycle_to_cputime(ti->ac_utime);
  115. account_user_time(p, delta_utime, delta_utime);
  116. ti->ac_utime = 0;
  117. }
  118. }
  119. #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
  120. static irqreturn_t
  121. timer_interrupt (int irq, void *dev_id)
  122. {
  123. unsigned long new_itm;
  124. if (unlikely(cpu_is_offline(smp_processor_id()))) {
  125. return IRQ_HANDLED;
  126. }
  127. platform_timer_interrupt(irq, dev_id);
  128. new_itm = local_cpu_data->itm_next;
  129. if (!time_after(ia64_get_itc(), new_itm))
  130. printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
  131. ia64_get_itc(), new_itm);
  132. profile_tick(CPU_PROFILING);
  133. if (paravirt_do_steal_accounting(&new_itm))
  134. goto skip_process_time_accounting;
  135. while (1) {
  136. update_process_times(user_mode(get_irq_regs()));
  137. new_itm += local_cpu_data->itm_delta;
  138. if (smp_processor_id() == time_keeper_id) {
  139. /*
  140. * Here we are in the timer irq handler. We have irqs locally
  141. * disabled, but we don't know if the timer_bh is running on
  142. * another CPU. We need to avoid to SMP race by acquiring the
  143. * xtime_lock.
  144. */
  145. write_seqlock(&xtime_lock);
  146. do_timer(1);
  147. local_cpu_data->itm_next = new_itm;
  148. write_sequnlock(&xtime_lock);
  149. } else
  150. local_cpu_data->itm_next = new_itm;
  151. if (time_after(new_itm, ia64_get_itc()))
  152. break;
  153. /*
  154. * Allow IPIs to interrupt the timer loop.
  155. */
  156. local_irq_enable();
  157. local_irq_disable();
  158. }
  159. skip_process_time_accounting:
  160. do {
  161. /*
  162. * If we're too close to the next clock tick for
  163. * comfort, we increase the safety margin by
  164. * intentionally dropping the next tick(s). We do NOT
  165. * update itm.next because that would force us to call
  166. * do_timer() which in turn would let our clock run
  167. * too fast (with the potentially devastating effect
  168. * of losing monotony of time).
  169. */
  170. while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
  171. new_itm += local_cpu_data->itm_delta;
  172. ia64_set_itm(new_itm);
  173. /* double check, in case we got hit by a (slow) PMI: */
  174. } while (time_after_eq(ia64_get_itc(), new_itm));
  175. return IRQ_HANDLED;
  176. }
  177. /*
  178. * Encapsulate access to the itm structure for SMP.
  179. */
  180. void
  181. ia64_cpu_local_tick (void)
  182. {
  183. int cpu = smp_processor_id();
  184. unsigned long shift = 0, delta;
  185. /* arrange for the cycle counter to generate a timer interrupt: */
  186. ia64_set_itv(IA64_TIMER_VECTOR);
  187. delta = local_cpu_data->itm_delta;
  188. /*
  189. * Stagger the timer tick for each CPU so they don't occur all at (almost) the
  190. * same time:
  191. */
  192. if (cpu) {
  193. unsigned long hi = 1UL << ia64_fls(cpu);
  194. shift = (2*(cpu - hi) + 1) * delta/hi/2;
  195. }
  196. local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
  197. ia64_set_itm(local_cpu_data->itm_next);
  198. }
  199. static int nojitter;
  200. static int __init nojitter_setup(char *str)
  201. {
  202. nojitter = 1;
  203. printk("Jitter checking for ITC timers disabled\n");
  204. return 1;
  205. }
  206. __setup("nojitter", nojitter_setup);
  207. void __devinit
  208. ia64_init_itm (void)
  209. {
  210. unsigned long platform_base_freq, itc_freq;
  211. struct pal_freq_ratio itc_ratio, proc_ratio;
  212. long status, platform_base_drift, itc_drift;
  213. /*
  214. * According to SAL v2.6, we need to use a SAL call to determine the platform base
  215. * frequency and then a PAL call to determine the frequency ratio between the ITC
  216. * and the base frequency.
  217. */
  218. status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
  219. &platform_base_freq, &platform_base_drift);
  220. if (status != 0) {
  221. printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
  222. } else {
  223. status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
  224. if (status != 0)
  225. printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
  226. }
  227. if (status != 0) {
  228. /* invent "random" values */
  229. printk(KERN_ERR
  230. "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
  231. platform_base_freq = 100000000;
  232. platform_base_drift = -1; /* no drift info */
  233. itc_ratio.num = 3;
  234. itc_ratio.den = 1;
  235. }
  236. if (platform_base_freq < 40000000) {
  237. printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
  238. platform_base_freq);
  239. platform_base_freq = 75000000;
  240. platform_base_drift = -1;
  241. }
  242. if (!proc_ratio.den)
  243. proc_ratio.den = 1; /* avoid division by zero */
  244. if (!itc_ratio.den)
  245. itc_ratio.den = 1; /* avoid division by zero */
  246. itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
  247. local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
  248. printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
  249. "ITC freq=%lu.%03luMHz", smp_processor_id(),
  250. platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
  251. itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
  252. if (platform_base_drift != -1) {
  253. itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
  254. printk("+/-%ldppm\n", itc_drift);
  255. } else {
  256. itc_drift = -1;
  257. printk("\n");
  258. }
  259. local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
  260. local_cpu_data->itc_freq = itc_freq;
  261. local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
  262. local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
  263. + itc_freq/2)/itc_freq;
  264. if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
  265. #ifdef CONFIG_SMP
  266. /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
  267. * Jitter compensation requires a cmpxchg which may limit
  268. * the scalability of the syscalls for retrieving time.
  269. * The ITC synchronization is usually successful to within a few
  270. * ITC ticks but this is not a sure thing. If you need to improve
  271. * timer performance in SMP situations then boot the kernel with the
  272. * "nojitter" option. However, doing so may result in time fluctuating (maybe
  273. * even going backward) if the ITC offsets between the individual CPUs
  274. * are too large.
  275. */
  276. if (!nojitter)
  277. itc_jitter_data.itc_jitter = 1;
  278. #endif
  279. } else
  280. /*
  281. * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
  282. * ITC values may fluctuate significantly between processors.
  283. * Clock should not be used for hrtimers. Mark itc as only
  284. * useful for boot and testing.
  285. *
  286. * Note that jitter compensation is off! There is no point of
  287. * synchronizing ITCs since they may be large differentials
  288. * that change over time.
  289. *
  290. * The only way to fix this would be to repeatedly sync the
  291. * ITCs. Until that time we have to avoid ITC.
  292. */
  293. clocksource_itc.rating = 50;
  294. paravirt_init_missing_ticks_accounting(smp_processor_id());
  295. /* avoid softlock up message when cpu is unplug and plugged again. */
  296. touch_softlockup_watchdog();
  297. /* Setup the CPU local timer tick */
  298. ia64_cpu_local_tick();
  299. if (!itc_clocksource) {
  300. /* Sort out mult/shift values: */
  301. clocksource_itc.mult =
  302. clocksource_hz2mult(local_cpu_data->itc_freq,
  303. clocksource_itc.shift);
  304. clocksource_register(&clocksource_itc);
  305. itc_clocksource = &clocksource_itc;
  306. }
  307. }
  308. static cycle_t itc_get_cycles(void)
  309. {
  310. u64 lcycle, now, ret;
  311. if (!itc_jitter_data.itc_jitter)
  312. return get_cycles();
  313. lcycle = itc_jitter_data.itc_lastcycle;
  314. now = get_cycles();
  315. if (lcycle && time_after(lcycle, now))
  316. return lcycle;
  317. /*
  318. * Keep track of the last timer value returned.
  319. * In an SMP environment, you could lose out in contention of
  320. * cmpxchg. If so, your cmpxchg returns new value which the
  321. * winner of contention updated to. Use the new value instead.
  322. */
  323. ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
  324. if (unlikely(ret != lcycle))
  325. return ret;
  326. return now;
  327. }
  328. static struct irqaction timer_irqaction = {
  329. .handler = timer_interrupt,
  330. .flags = IRQF_DISABLED | IRQF_IRQPOLL,
  331. .name = "timer"
  332. };
  333. void __init
  334. time_init (void)
  335. {
  336. register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
  337. efi_gettimeofday(&xtime);
  338. ia64_init_itm();
  339. /*
  340. * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
  341. * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
  342. */
  343. set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
  344. }
  345. /*
  346. * Generic udelay assumes that if preemption is allowed and the thread
  347. * migrates to another CPU, that the ITC values are synchronized across
  348. * all CPUs.
  349. */
  350. static void
  351. ia64_itc_udelay (unsigned long usecs)
  352. {
  353. unsigned long start = ia64_get_itc();
  354. unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
  355. while (time_before(ia64_get_itc(), end))
  356. cpu_relax();
  357. }
  358. void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
  359. void
  360. udelay (unsigned long usecs)
  361. {
  362. (*ia64_udelay)(usecs);
  363. }
  364. EXPORT_SYMBOL(udelay);
  365. /* IA64 doesn't cache the timezone */
  366. void update_vsyscall_tz(void)
  367. {
  368. }
  369. void update_vsyscall(struct timespec *wall, struct clocksource *c)
  370. {
  371. unsigned long flags;
  372. write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
  373. /* copy fsyscall clock data */
  374. fsyscall_gtod_data.clk_mask = c->mask;
  375. fsyscall_gtod_data.clk_mult = c->mult;
  376. fsyscall_gtod_data.clk_shift = c->shift;
  377. fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
  378. fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
  379. /* copy kernel time structures */
  380. fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
  381. fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
  382. fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
  383. + wall->tv_sec;
  384. fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
  385. + wall->tv_nsec;
  386. /* normalize */
  387. while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
  388. fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
  389. fsyscall_gtod_data.monotonic_time.tv_sec++;
  390. }
  391. write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
  392. }