i3000_edac.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505
  1. /*
  2. * Intel 3000/3010 Memory Controller kernel module
  3. * Copyright (C) 2007 Akamai Technologies, Inc.
  4. * Shamelessly copied from:
  5. * Intel D82875P Memory Controller kernel module
  6. * (C) 2003 Linux Networx (http://lnxi.com)
  7. *
  8. * This file may be distributed under the terms of the
  9. * GNU General Public License.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/init.h>
  13. #include <linux/pci.h>
  14. #include <linux/pci_ids.h>
  15. #include <linux/slab.h>
  16. #include "edac_core.h"
  17. #define I3000_REVISION "1.1"
  18. #define EDAC_MOD_STR "i3000_edac"
  19. #define I3000_RANKS 8
  20. #define I3000_RANKS_PER_CHANNEL 4
  21. #define I3000_CHANNELS 2
  22. /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
  23. #define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */
  24. #define I3000_MCHBAR_MASK 0xffffc000
  25. #define I3000_MMR_WINDOW_SIZE 16384
  26. #define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b)
  27. *
  28. * 7:1 reserved
  29. * 0 bit 32 of address
  30. */
  31. #define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b)
  32. *
  33. * 31:7 address
  34. * 6:1 reserved
  35. * 0 Error channel 0/1
  36. */
  37. #define I3000_DEAP_GRAIN (1 << 7)
  38. #define I3000_DEAP_PFN(edeap, deap) ((((edeap) & 1) << (32 - PAGE_SHIFT)) | \
  39. ((deap) >> PAGE_SHIFT))
  40. #define I3000_DEAP_OFFSET(deap) ((deap) & ~(I3000_DEAP_GRAIN-1) & ~PAGE_MASK)
  41. #define I3000_DEAP_CHANNEL(deap) ((deap) & 1)
  42. #define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b)
  43. *
  44. * 7:0 DRAM ECC Syndrome
  45. */
  46. #define I3000_ERRSTS 0xc8 /* Error Status Register (16b)
  47. *
  48. * 15:12 reserved
  49. * 11 MCH Thermal Sensor Event for SMI/SCI/SERR
  50. * 10 reserved
  51. * 9 LOCK to non-DRAM Memory Flag (LCKF)
  52. * 8 Received Refresh Timeout Flag (RRTOF)
  53. * 7:2 reserved
  54. * 1 Multiple-bit DRAM ECC Error Flag (DMERR)
  55. * 0 Single-bit DRAM ECC Error Flag (DSERR)
  56. */
  57. #define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */
  58. #define I3000_ERRSTS_UE 0x0002
  59. #define I3000_ERRSTS_CE 0x0001
  60. #define I3000_ERRCMD 0xca /* Error Command (16b)
  61. *
  62. * 15:12 reserved
  63. * 11 SERR on MCH Thermal Sensor Event (TSESERR)
  64. * 10 reserved
  65. * 9 SERR on LOCK to non-DRAM Memory (LCKERR)
  66. * 8 SERR on DRAM Refresh Timeout (DRTOERR)
  67. * 7:2 reserved
  68. * 1 SERR Multiple-Bit DRAM ECC Error (DMERR)
  69. * 0 SERR on Single-Bit ECC Error (DSERR)
  70. */
  71. /* Intel MMIO register space - device 0 function 0 - MMR space */
  72. #define I3000_DRB_SHIFT 25 /* 32MiB grain */
  73. #define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4)
  74. *
  75. * 7:0 Channel 0 DRAM Rank Boundary Address
  76. */
  77. #define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4)
  78. *
  79. * 7:0 Channel 1 DRAM Rank Boundary Address
  80. */
  81. #define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2)
  82. *
  83. * 7 reserved
  84. * 6:4 DRAM odd Rank Attribute
  85. * 3 reserved
  86. * 2:0 DRAM even Rank Attribute
  87. *
  88. * Each attribute defines the page
  89. * size of the corresponding rank:
  90. * 000: unpopulated
  91. * 001: reserved
  92. * 010: 4 KB
  93. * 011: 8 KB
  94. * 100: 16 KB
  95. * Others: reserved
  96. */
  97. #define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */
  98. #define ODD_RANK_ATTRIB(dra) (((dra) & 0x70) >> 4)
  99. #define EVEN_RANK_ATTRIB(dra) ((dra) & 0x07)
  100. #define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b)
  101. *
  102. * 31:30 reserved
  103. * 29 Initialization Complete (IC)
  104. * 28:11 reserved
  105. * 10:8 Refresh Mode Select (RMS)
  106. * 7 reserved
  107. * 6:4 Mode Select (SMS)
  108. * 3:2 reserved
  109. * 1:0 DRAM Type (DT)
  110. */
  111. #define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b)
  112. *
  113. * 31 Enhanced Addressing Enable (ENHADE)
  114. * 30:0 reserved
  115. */
  116. enum i3000p_chips {
  117. I3000 = 0,
  118. };
  119. struct i3000_dev_info {
  120. const char *ctl_name;
  121. };
  122. struct i3000_error_info {
  123. u16 errsts;
  124. u8 derrsyn;
  125. u8 edeap;
  126. u32 deap;
  127. u16 errsts2;
  128. };
  129. static const struct i3000_dev_info i3000_devs[] = {
  130. [I3000] = {
  131. .ctl_name = "i3000"},
  132. };
  133. static struct pci_dev *mci_pdev = NULL;
  134. static int i3000_registered = 1;
  135. static struct edac_pci_ctl_info *i3000_pci;
  136. static void i3000_get_error_info(struct mem_ctl_info *mci,
  137. struct i3000_error_info *info)
  138. {
  139. struct pci_dev *pdev;
  140. pdev = to_pci_dev(mci->dev);
  141. /*
  142. * This is a mess because there is no atomic way to read all the
  143. * registers at once and the registers can transition from CE being
  144. * overwritten by UE.
  145. */
  146. pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
  147. if (!(info->errsts & I3000_ERRSTS_BITS))
  148. return;
  149. pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
  150. pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
  151. pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
  152. pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
  153. /*
  154. * If the error is the same for both reads then the first set
  155. * of reads is valid. If there is a change then there is a CE
  156. * with no info and the second set of reads is valid and
  157. * should be UE info.
  158. */
  159. if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
  160. pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
  161. pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
  162. pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
  163. }
  164. /* Clear any error bits.
  165. * (Yes, we really clear bits by writing 1 to them.)
  166. */
  167. pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
  168. I3000_ERRSTS_BITS);
  169. }
  170. static int i3000_process_error_info(struct mem_ctl_info *mci,
  171. struct i3000_error_info *info,
  172. int handle_errors)
  173. {
  174. int row, multi_chan;
  175. int pfn, offset, channel;
  176. multi_chan = mci->csrows[0].nr_channels - 1;
  177. if (!(info->errsts & I3000_ERRSTS_BITS))
  178. return 0;
  179. if (!handle_errors)
  180. return 1;
  181. if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
  182. edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
  183. info->errsts = info->errsts2;
  184. }
  185. pfn = I3000_DEAP_PFN(info->edeap, info->deap);
  186. offset = I3000_DEAP_OFFSET(info->deap);
  187. channel = I3000_DEAP_CHANNEL(info->deap);
  188. row = edac_mc_find_csrow_by_page(mci, pfn);
  189. if (info->errsts & I3000_ERRSTS_UE)
  190. edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
  191. else
  192. edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
  193. multi_chan ? channel : 0, "i3000 CE");
  194. return 1;
  195. }
  196. static void i3000_check(struct mem_ctl_info *mci)
  197. {
  198. struct i3000_error_info info;
  199. debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
  200. i3000_get_error_info(mci, &info);
  201. i3000_process_error_info(mci, &info, 1);
  202. }
  203. static int i3000_is_interleaved(const unsigned char *c0dra,
  204. const unsigned char *c1dra,
  205. const unsigned char *c0drb,
  206. const unsigned char *c1drb)
  207. {
  208. int i;
  209. /* If the channels aren't populated identically then
  210. * we're not interleaved.
  211. */
  212. for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
  213. if (ODD_RANK_ATTRIB(c0dra[i]) != ODD_RANK_ATTRIB(c1dra[i]) ||
  214. EVEN_RANK_ATTRIB(c0dra[i]) != EVEN_RANK_ATTRIB(c1dra[i]))
  215. return 0;
  216. /* If the rank boundaries for the two channels are different
  217. * then we're not interleaved.
  218. */
  219. for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
  220. if (c0drb[i] != c1drb[i])
  221. return 0;
  222. return 1;
  223. }
  224. static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
  225. {
  226. int rc;
  227. int i;
  228. struct mem_ctl_info *mci = NULL;
  229. unsigned long last_cumul_size;
  230. int interleaved, nr_channels;
  231. unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
  232. unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
  233. unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
  234. unsigned long mchbar;
  235. void *window;
  236. debugf0("MC: %s()\n", __func__);
  237. pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
  238. mchbar &= I3000_MCHBAR_MASK;
  239. window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
  240. if (!window) {
  241. printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
  242. mchbar);
  243. return -ENODEV;
  244. }
  245. c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
  246. c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
  247. c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
  248. c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */
  249. for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
  250. c0drb[i] = readb(window + I3000_C0DRB + i);
  251. c1drb[i] = readb(window + I3000_C1DRB + i);
  252. }
  253. iounmap(window);
  254. /* Figure out how many channels we have.
  255. *
  256. * If we have what the datasheet calls "asymmetric channels"
  257. * (essentially the same as what was called "virtual single
  258. * channel mode" in the i82875) then it's a single channel as
  259. * far as EDAC is concerned.
  260. */
  261. interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
  262. nr_channels = interleaved ? 2 : 1;
  263. mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels);
  264. if (!mci)
  265. return -ENOMEM;
  266. debugf3("MC: %s(): init mci\n", __func__);
  267. mci->dev = &pdev->dev;
  268. mci->mtype_cap = MEM_FLAG_DDR2;
  269. mci->edac_ctl_cap = EDAC_FLAG_SECDED;
  270. mci->edac_cap = EDAC_FLAG_SECDED;
  271. mci->mod_name = EDAC_MOD_STR;
  272. mci->mod_ver = I3000_REVISION;
  273. mci->ctl_name = i3000_devs[dev_idx].ctl_name;
  274. mci->dev_name = pci_name(pdev);
  275. mci->edac_check = i3000_check;
  276. mci->ctl_page_to_phys = NULL;
  277. /*
  278. * The dram rank boundary (DRB) reg values are boundary addresses
  279. * for each DRAM rank with a granularity of 32MB. DRB regs are
  280. * cumulative; the last one will contain the total memory
  281. * contained in all ranks.
  282. *
  283. * If we're in interleaved mode then we're only walking through
  284. * the ranks of controller 0, so we double all the values we see.
  285. */
  286. for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
  287. u8 value;
  288. u32 cumul_size;
  289. struct csrow_info *csrow = &mci->csrows[i];
  290. value = drb[i];
  291. cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
  292. if (interleaved)
  293. cumul_size <<= 1;
  294. debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
  295. __func__, i, cumul_size);
  296. if (cumul_size == last_cumul_size) {
  297. csrow->mtype = MEM_EMPTY;
  298. continue;
  299. }
  300. csrow->first_page = last_cumul_size;
  301. csrow->last_page = cumul_size - 1;
  302. csrow->nr_pages = cumul_size - last_cumul_size;
  303. last_cumul_size = cumul_size;
  304. csrow->grain = I3000_DEAP_GRAIN;
  305. csrow->mtype = MEM_DDR2;
  306. csrow->dtype = DEV_UNKNOWN;
  307. csrow->edac_mode = EDAC_UNKNOWN;
  308. }
  309. /* Clear any error bits.
  310. * (Yes, we really clear bits by writing 1 to them.)
  311. */
  312. pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
  313. I3000_ERRSTS_BITS);
  314. rc = -ENODEV;
  315. if (edac_mc_add_mc(mci, 0)) {
  316. debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
  317. goto fail;
  318. }
  319. /* allocating generic PCI control info */
  320. i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
  321. if (!i3000_pci) {
  322. printk(KERN_WARNING
  323. "%s(): Unable to create PCI control\n",
  324. __func__);
  325. printk(KERN_WARNING
  326. "%s(): PCI error report via EDAC not setup\n",
  327. __func__);
  328. }
  329. /* get this far and it's successful */
  330. debugf3("MC: %s(): success\n", __func__);
  331. return 0;
  332. fail:
  333. if (mci)
  334. edac_mc_free(mci);
  335. return rc;
  336. }
  337. /* returns count (>= 0), or negative on error */
  338. static int __devinit i3000_init_one(struct pci_dev *pdev,
  339. const struct pci_device_id *ent)
  340. {
  341. int rc;
  342. debugf0("MC: %s()\n", __func__);
  343. if (pci_enable_device(pdev) < 0)
  344. return -EIO;
  345. rc = i3000_probe1(pdev, ent->driver_data);
  346. if (mci_pdev == NULL)
  347. mci_pdev = pci_dev_get(pdev);
  348. return rc;
  349. }
  350. static void __devexit i3000_remove_one(struct pci_dev *pdev)
  351. {
  352. struct mem_ctl_info *mci;
  353. debugf0("%s()\n", __func__);
  354. if (i3000_pci)
  355. edac_pci_release_generic_ctl(i3000_pci);
  356. if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
  357. return;
  358. edac_mc_free(mci);
  359. }
  360. static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
  361. {
  362. PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
  363. I3000},
  364. {
  365. 0,
  366. } /* 0 terminated list. */
  367. };
  368. MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
  369. static struct pci_driver i3000_driver = {
  370. .name = EDAC_MOD_STR,
  371. .probe = i3000_init_one,
  372. .remove = __devexit_p(i3000_remove_one),
  373. .id_table = i3000_pci_tbl,
  374. };
  375. static int __init i3000_init(void)
  376. {
  377. int pci_rc;
  378. debugf3("MC: %s()\n", __func__);
  379. pci_rc = pci_register_driver(&i3000_driver);
  380. if (pci_rc < 0)
  381. goto fail0;
  382. if (mci_pdev == NULL) {
  383. i3000_registered = 0;
  384. mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
  385. PCI_DEVICE_ID_INTEL_3000_HB, NULL);
  386. if (!mci_pdev) {
  387. debugf0("i3000 pci_get_device fail\n");
  388. pci_rc = -ENODEV;
  389. goto fail1;
  390. }
  391. pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
  392. if (pci_rc < 0) {
  393. debugf0("i3000 init fail\n");
  394. pci_rc = -ENODEV;
  395. goto fail1;
  396. }
  397. }
  398. return 0;
  399. fail1:
  400. pci_unregister_driver(&i3000_driver);
  401. fail0:
  402. if (mci_pdev)
  403. pci_dev_put(mci_pdev);
  404. return pci_rc;
  405. }
  406. static void __exit i3000_exit(void)
  407. {
  408. debugf3("MC: %s()\n", __func__);
  409. pci_unregister_driver(&i3000_driver);
  410. if (!i3000_registered) {
  411. i3000_remove_one(mci_pdev);
  412. pci_dev_put(mci_pdev);
  413. }
  414. }
  415. module_init(i3000_init);
  416. module_exit(i3000_exit);
  417. MODULE_LICENSE("GPL");
  418. MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
  419. MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");