builtin-sched.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928
  1. #include "builtin.h"
  2. #include "perf.h"
  3. #include "util/util.h"
  4. #include "util/cache.h"
  5. #include "util/evsel.h"
  6. #include "util/symbol.h"
  7. #include "util/thread.h"
  8. #include "util/header.h"
  9. #include "util/session.h"
  10. #include "util/tool.h"
  11. #include "util/parse-options.h"
  12. #include "util/trace-event.h"
  13. #include "util/debug.h"
  14. #include <sys/prctl.h>
  15. #include <semaphore.h>
  16. #include <pthread.h>
  17. #include <math.h>
  18. static char const *input_name = "perf.data";
  19. static char default_sort_order[] = "avg, max, switch, runtime";
  20. static const char *sort_order = default_sort_order;
  21. static int profile_cpu = -1;
  22. #define PR_SET_NAME 15 /* Set process name */
  23. #define MAX_CPUS 4096
  24. static u64 run_measurement_overhead;
  25. static u64 sleep_measurement_overhead;
  26. #define COMM_LEN 20
  27. #define SYM_LEN 129
  28. #define MAX_PID 65536
  29. static unsigned long nr_tasks;
  30. struct sched_atom;
  31. struct task_desc {
  32. unsigned long nr;
  33. unsigned long pid;
  34. char comm[COMM_LEN];
  35. unsigned long nr_events;
  36. unsigned long curr_event;
  37. struct sched_atom **atoms;
  38. pthread_t thread;
  39. sem_t sleep_sem;
  40. sem_t ready_for_work;
  41. sem_t work_done_sem;
  42. u64 cpu_usage;
  43. };
  44. enum sched_event_type {
  45. SCHED_EVENT_RUN,
  46. SCHED_EVENT_SLEEP,
  47. SCHED_EVENT_WAKEUP,
  48. SCHED_EVENT_MIGRATION,
  49. };
  50. struct sched_atom {
  51. enum sched_event_type type;
  52. int specific_wait;
  53. u64 timestamp;
  54. u64 duration;
  55. unsigned long nr;
  56. sem_t *wait_sem;
  57. struct task_desc *wakee;
  58. };
  59. static struct task_desc *pid_to_task[MAX_PID];
  60. static struct task_desc **tasks;
  61. static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
  62. static u64 start_time;
  63. static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
  64. static unsigned long nr_run_events;
  65. static unsigned long nr_sleep_events;
  66. static unsigned long nr_wakeup_events;
  67. static unsigned long nr_sleep_corrections;
  68. static unsigned long nr_run_events_optimized;
  69. static unsigned long targetless_wakeups;
  70. static unsigned long multitarget_wakeups;
  71. static u64 cpu_usage;
  72. static u64 runavg_cpu_usage;
  73. static u64 parent_cpu_usage;
  74. static u64 runavg_parent_cpu_usage;
  75. static unsigned long nr_runs;
  76. static u64 sum_runtime;
  77. static u64 sum_fluct;
  78. static u64 run_avg;
  79. static unsigned int replay_repeat = 10;
  80. static unsigned long nr_timestamps;
  81. static unsigned long nr_unordered_timestamps;
  82. static unsigned long nr_state_machine_bugs;
  83. static unsigned long nr_context_switch_bugs;
  84. static unsigned long nr_events;
  85. static unsigned long nr_lost_chunks;
  86. static unsigned long nr_lost_events;
  87. #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
  88. enum thread_state {
  89. THREAD_SLEEPING = 0,
  90. THREAD_WAIT_CPU,
  91. THREAD_SCHED_IN,
  92. THREAD_IGNORE
  93. };
  94. struct work_atom {
  95. struct list_head list;
  96. enum thread_state state;
  97. u64 sched_out_time;
  98. u64 wake_up_time;
  99. u64 sched_in_time;
  100. u64 runtime;
  101. };
  102. struct work_atoms {
  103. struct list_head work_list;
  104. struct thread *thread;
  105. struct rb_node node;
  106. u64 max_lat;
  107. u64 max_lat_at;
  108. u64 total_lat;
  109. u64 nb_atoms;
  110. u64 total_runtime;
  111. };
  112. typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
  113. static struct rb_root atom_root, sorted_atom_root;
  114. static u64 all_runtime;
  115. static u64 all_count;
  116. static u64 get_nsecs(void)
  117. {
  118. struct timespec ts;
  119. clock_gettime(CLOCK_MONOTONIC, &ts);
  120. return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
  121. }
  122. static void burn_nsecs(u64 nsecs)
  123. {
  124. u64 T0 = get_nsecs(), T1;
  125. do {
  126. T1 = get_nsecs();
  127. } while (T1 + run_measurement_overhead < T0 + nsecs);
  128. }
  129. static void sleep_nsecs(u64 nsecs)
  130. {
  131. struct timespec ts;
  132. ts.tv_nsec = nsecs % 999999999;
  133. ts.tv_sec = nsecs / 999999999;
  134. nanosleep(&ts, NULL);
  135. }
  136. static void calibrate_run_measurement_overhead(void)
  137. {
  138. u64 T0, T1, delta, min_delta = 1000000000ULL;
  139. int i;
  140. for (i = 0; i < 10; i++) {
  141. T0 = get_nsecs();
  142. burn_nsecs(0);
  143. T1 = get_nsecs();
  144. delta = T1-T0;
  145. min_delta = min(min_delta, delta);
  146. }
  147. run_measurement_overhead = min_delta;
  148. printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
  149. }
  150. static void calibrate_sleep_measurement_overhead(void)
  151. {
  152. u64 T0, T1, delta, min_delta = 1000000000ULL;
  153. int i;
  154. for (i = 0; i < 10; i++) {
  155. T0 = get_nsecs();
  156. sleep_nsecs(10000);
  157. T1 = get_nsecs();
  158. delta = T1-T0;
  159. min_delta = min(min_delta, delta);
  160. }
  161. min_delta -= 10000;
  162. sleep_measurement_overhead = min_delta;
  163. printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
  164. }
  165. static struct sched_atom *
  166. get_new_event(struct task_desc *task, u64 timestamp)
  167. {
  168. struct sched_atom *event = zalloc(sizeof(*event));
  169. unsigned long idx = task->nr_events;
  170. size_t size;
  171. event->timestamp = timestamp;
  172. event->nr = idx;
  173. task->nr_events++;
  174. size = sizeof(struct sched_atom *) * task->nr_events;
  175. task->atoms = realloc(task->atoms, size);
  176. BUG_ON(!task->atoms);
  177. task->atoms[idx] = event;
  178. return event;
  179. }
  180. static struct sched_atom *last_event(struct task_desc *task)
  181. {
  182. if (!task->nr_events)
  183. return NULL;
  184. return task->atoms[task->nr_events - 1];
  185. }
  186. static void
  187. add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
  188. {
  189. struct sched_atom *event, *curr_event = last_event(task);
  190. /*
  191. * optimize an existing RUN event by merging this one
  192. * to it:
  193. */
  194. if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
  195. nr_run_events_optimized++;
  196. curr_event->duration += duration;
  197. return;
  198. }
  199. event = get_new_event(task, timestamp);
  200. event->type = SCHED_EVENT_RUN;
  201. event->duration = duration;
  202. nr_run_events++;
  203. }
  204. static void
  205. add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
  206. struct task_desc *wakee)
  207. {
  208. struct sched_atom *event, *wakee_event;
  209. event = get_new_event(task, timestamp);
  210. event->type = SCHED_EVENT_WAKEUP;
  211. event->wakee = wakee;
  212. wakee_event = last_event(wakee);
  213. if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
  214. targetless_wakeups++;
  215. return;
  216. }
  217. if (wakee_event->wait_sem) {
  218. multitarget_wakeups++;
  219. return;
  220. }
  221. wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
  222. sem_init(wakee_event->wait_sem, 0, 0);
  223. wakee_event->specific_wait = 1;
  224. event->wait_sem = wakee_event->wait_sem;
  225. nr_wakeup_events++;
  226. }
  227. static void
  228. add_sched_event_sleep(struct task_desc *task, u64 timestamp,
  229. u64 task_state __used)
  230. {
  231. struct sched_atom *event = get_new_event(task, timestamp);
  232. event->type = SCHED_EVENT_SLEEP;
  233. nr_sleep_events++;
  234. }
  235. static struct task_desc *register_pid(unsigned long pid, const char *comm)
  236. {
  237. struct task_desc *task;
  238. BUG_ON(pid >= MAX_PID);
  239. task = pid_to_task[pid];
  240. if (task)
  241. return task;
  242. task = zalloc(sizeof(*task));
  243. task->pid = pid;
  244. task->nr = nr_tasks;
  245. strcpy(task->comm, comm);
  246. /*
  247. * every task starts in sleeping state - this gets ignored
  248. * if there's no wakeup pointing to this sleep state:
  249. */
  250. add_sched_event_sleep(task, 0, 0);
  251. pid_to_task[pid] = task;
  252. nr_tasks++;
  253. tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
  254. BUG_ON(!tasks);
  255. tasks[task->nr] = task;
  256. if (verbose)
  257. printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
  258. return task;
  259. }
  260. static void print_task_traces(void)
  261. {
  262. struct task_desc *task;
  263. unsigned long i;
  264. for (i = 0; i < nr_tasks; i++) {
  265. task = tasks[i];
  266. printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
  267. task->nr, task->comm, task->pid, task->nr_events);
  268. }
  269. }
  270. static void add_cross_task_wakeups(void)
  271. {
  272. struct task_desc *task1, *task2;
  273. unsigned long i, j;
  274. for (i = 0; i < nr_tasks; i++) {
  275. task1 = tasks[i];
  276. j = i + 1;
  277. if (j == nr_tasks)
  278. j = 0;
  279. task2 = tasks[j];
  280. add_sched_event_wakeup(task1, 0, task2);
  281. }
  282. }
  283. static void
  284. process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
  285. {
  286. int ret = 0;
  287. switch (atom->type) {
  288. case SCHED_EVENT_RUN:
  289. burn_nsecs(atom->duration);
  290. break;
  291. case SCHED_EVENT_SLEEP:
  292. if (atom->wait_sem)
  293. ret = sem_wait(atom->wait_sem);
  294. BUG_ON(ret);
  295. break;
  296. case SCHED_EVENT_WAKEUP:
  297. if (atom->wait_sem)
  298. ret = sem_post(atom->wait_sem);
  299. BUG_ON(ret);
  300. break;
  301. case SCHED_EVENT_MIGRATION:
  302. break;
  303. default:
  304. BUG_ON(1);
  305. }
  306. }
  307. static u64 get_cpu_usage_nsec_parent(void)
  308. {
  309. struct rusage ru;
  310. u64 sum;
  311. int err;
  312. err = getrusage(RUSAGE_SELF, &ru);
  313. BUG_ON(err);
  314. sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
  315. sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
  316. return sum;
  317. }
  318. static int self_open_counters(void)
  319. {
  320. struct perf_event_attr attr;
  321. int fd;
  322. memset(&attr, 0, sizeof(attr));
  323. attr.type = PERF_TYPE_SOFTWARE;
  324. attr.config = PERF_COUNT_SW_TASK_CLOCK;
  325. fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
  326. if (fd < 0)
  327. die("Error: sys_perf_event_open() syscall returned"
  328. "with %d (%s)\n", fd, strerror(errno));
  329. return fd;
  330. }
  331. static u64 get_cpu_usage_nsec_self(int fd)
  332. {
  333. u64 runtime;
  334. int ret;
  335. ret = read(fd, &runtime, sizeof(runtime));
  336. BUG_ON(ret != sizeof(runtime));
  337. return runtime;
  338. }
  339. static void *thread_func(void *ctx)
  340. {
  341. struct task_desc *this_task = ctx;
  342. u64 cpu_usage_0, cpu_usage_1;
  343. unsigned long i, ret;
  344. char comm2[22];
  345. int fd;
  346. sprintf(comm2, ":%s", this_task->comm);
  347. prctl(PR_SET_NAME, comm2);
  348. fd = self_open_counters();
  349. again:
  350. ret = sem_post(&this_task->ready_for_work);
  351. BUG_ON(ret);
  352. ret = pthread_mutex_lock(&start_work_mutex);
  353. BUG_ON(ret);
  354. ret = pthread_mutex_unlock(&start_work_mutex);
  355. BUG_ON(ret);
  356. cpu_usage_0 = get_cpu_usage_nsec_self(fd);
  357. for (i = 0; i < this_task->nr_events; i++) {
  358. this_task->curr_event = i;
  359. process_sched_event(this_task, this_task->atoms[i]);
  360. }
  361. cpu_usage_1 = get_cpu_usage_nsec_self(fd);
  362. this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
  363. ret = sem_post(&this_task->work_done_sem);
  364. BUG_ON(ret);
  365. ret = pthread_mutex_lock(&work_done_wait_mutex);
  366. BUG_ON(ret);
  367. ret = pthread_mutex_unlock(&work_done_wait_mutex);
  368. BUG_ON(ret);
  369. goto again;
  370. }
  371. static void create_tasks(void)
  372. {
  373. struct task_desc *task;
  374. pthread_attr_t attr;
  375. unsigned long i;
  376. int err;
  377. err = pthread_attr_init(&attr);
  378. BUG_ON(err);
  379. err = pthread_attr_setstacksize(&attr,
  380. (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
  381. BUG_ON(err);
  382. err = pthread_mutex_lock(&start_work_mutex);
  383. BUG_ON(err);
  384. err = pthread_mutex_lock(&work_done_wait_mutex);
  385. BUG_ON(err);
  386. for (i = 0; i < nr_tasks; i++) {
  387. task = tasks[i];
  388. sem_init(&task->sleep_sem, 0, 0);
  389. sem_init(&task->ready_for_work, 0, 0);
  390. sem_init(&task->work_done_sem, 0, 0);
  391. task->curr_event = 0;
  392. err = pthread_create(&task->thread, &attr, thread_func, task);
  393. BUG_ON(err);
  394. }
  395. }
  396. static void wait_for_tasks(void)
  397. {
  398. u64 cpu_usage_0, cpu_usage_1;
  399. struct task_desc *task;
  400. unsigned long i, ret;
  401. start_time = get_nsecs();
  402. cpu_usage = 0;
  403. pthread_mutex_unlock(&work_done_wait_mutex);
  404. for (i = 0; i < nr_tasks; i++) {
  405. task = tasks[i];
  406. ret = sem_wait(&task->ready_for_work);
  407. BUG_ON(ret);
  408. sem_init(&task->ready_for_work, 0, 0);
  409. }
  410. ret = pthread_mutex_lock(&work_done_wait_mutex);
  411. BUG_ON(ret);
  412. cpu_usage_0 = get_cpu_usage_nsec_parent();
  413. pthread_mutex_unlock(&start_work_mutex);
  414. for (i = 0; i < nr_tasks; i++) {
  415. task = tasks[i];
  416. ret = sem_wait(&task->work_done_sem);
  417. BUG_ON(ret);
  418. sem_init(&task->work_done_sem, 0, 0);
  419. cpu_usage += task->cpu_usage;
  420. task->cpu_usage = 0;
  421. }
  422. cpu_usage_1 = get_cpu_usage_nsec_parent();
  423. if (!runavg_cpu_usage)
  424. runavg_cpu_usage = cpu_usage;
  425. runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
  426. parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
  427. if (!runavg_parent_cpu_usage)
  428. runavg_parent_cpu_usage = parent_cpu_usage;
  429. runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
  430. parent_cpu_usage)/10;
  431. ret = pthread_mutex_lock(&start_work_mutex);
  432. BUG_ON(ret);
  433. for (i = 0; i < nr_tasks; i++) {
  434. task = tasks[i];
  435. sem_init(&task->sleep_sem, 0, 0);
  436. task->curr_event = 0;
  437. }
  438. }
  439. static void run_one_test(void)
  440. {
  441. u64 T0, T1, delta, avg_delta, fluct;
  442. T0 = get_nsecs();
  443. wait_for_tasks();
  444. T1 = get_nsecs();
  445. delta = T1 - T0;
  446. sum_runtime += delta;
  447. nr_runs++;
  448. avg_delta = sum_runtime / nr_runs;
  449. if (delta < avg_delta)
  450. fluct = avg_delta - delta;
  451. else
  452. fluct = delta - avg_delta;
  453. sum_fluct += fluct;
  454. if (!run_avg)
  455. run_avg = delta;
  456. run_avg = (run_avg*9 + delta)/10;
  457. printf("#%-3ld: %0.3f, ",
  458. nr_runs, (double)delta/1000000.0);
  459. printf("ravg: %0.2f, ",
  460. (double)run_avg/1e6);
  461. printf("cpu: %0.2f / %0.2f",
  462. (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
  463. #if 0
  464. /*
  465. * rusage statistics done by the parent, these are less
  466. * accurate than the sum_exec_runtime based statistics:
  467. */
  468. printf(" [%0.2f / %0.2f]",
  469. (double)parent_cpu_usage/1e6,
  470. (double)runavg_parent_cpu_usage/1e6);
  471. #endif
  472. printf("\n");
  473. if (nr_sleep_corrections)
  474. printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
  475. nr_sleep_corrections = 0;
  476. }
  477. static void test_calibrations(void)
  478. {
  479. u64 T0, T1;
  480. T0 = get_nsecs();
  481. burn_nsecs(1e6);
  482. T1 = get_nsecs();
  483. printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
  484. T0 = get_nsecs();
  485. sleep_nsecs(1e6);
  486. T1 = get_nsecs();
  487. printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
  488. }
  489. #define FILL_FIELD(ptr, field, event, data) \
  490. ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
  491. #define FILL_ARRAY(ptr, array, event, data) \
  492. do { \
  493. void *__array = raw_field_ptr(event, #array, data); \
  494. memcpy(ptr.array, __array, sizeof(ptr.array)); \
  495. } while(0)
  496. #define FILL_COMMON_FIELDS(ptr, event, data) \
  497. do { \
  498. FILL_FIELD(ptr, common_type, event, data); \
  499. FILL_FIELD(ptr, common_flags, event, data); \
  500. FILL_FIELD(ptr, common_preempt_count, event, data); \
  501. FILL_FIELD(ptr, common_pid, event, data); \
  502. FILL_FIELD(ptr, common_tgid, event, data); \
  503. } while (0)
  504. struct trace_switch_event {
  505. u32 size;
  506. u16 common_type;
  507. u8 common_flags;
  508. u8 common_preempt_count;
  509. u32 common_pid;
  510. u32 common_tgid;
  511. char prev_comm[16];
  512. u32 prev_pid;
  513. u32 prev_prio;
  514. u64 prev_state;
  515. char next_comm[16];
  516. u32 next_pid;
  517. u32 next_prio;
  518. };
  519. struct trace_runtime_event {
  520. u32 size;
  521. u16 common_type;
  522. u8 common_flags;
  523. u8 common_preempt_count;
  524. u32 common_pid;
  525. u32 common_tgid;
  526. char comm[16];
  527. u32 pid;
  528. u64 runtime;
  529. u64 vruntime;
  530. };
  531. struct trace_wakeup_event {
  532. u32 size;
  533. u16 common_type;
  534. u8 common_flags;
  535. u8 common_preempt_count;
  536. u32 common_pid;
  537. u32 common_tgid;
  538. char comm[16];
  539. u32 pid;
  540. u32 prio;
  541. u32 success;
  542. u32 cpu;
  543. };
  544. struct trace_fork_event {
  545. u32 size;
  546. u16 common_type;
  547. u8 common_flags;
  548. u8 common_preempt_count;
  549. u32 common_pid;
  550. u32 common_tgid;
  551. char parent_comm[16];
  552. u32 parent_pid;
  553. char child_comm[16];
  554. u32 child_pid;
  555. };
  556. struct trace_migrate_task_event {
  557. u32 size;
  558. u16 common_type;
  559. u8 common_flags;
  560. u8 common_preempt_count;
  561. u32 common_pid;
  562. u32 common_tgid;
  563. char comm[16];
  564. u32 pid;
  565. u32 prio;
  566. u32 cpu;
  567. };
  568. struct trace_sched_handler {
  569. void (*switch_event)(struct trace_switch_event *,
  570. struct machine *,
  571. struct event *,
  572. int cpu,
  573. u64 timestamp,
  574. struct thread *thread);
  575. void (*runtime_event)(struct trace_runtime_event *,
  576. struct machine *,
  577. struct event *,
  578. int cpu,
  579. u64 timestamp,
  580. struct thread *thread);
  581. void (*wakeup_event)(struct trace_wakeup_event *,
  582. struct machine *,
  583. struct event *,
  584. int cpu,
  585. u64 timestamp,
  586. struct thread *thread);
  587. void (*fork_event)(struct trace_fork_event *,
  588. struct event *,
  589. int cpu,
  590. u64 timestamp,
  591. struct thread *thread);
  592. void (*migrate_task_event)(struct trace_migrate_task_event *,
  593. struct machine *machine,
  594. struct event *,
  595. int cpu,
  596. u64 timestamp,
  597. struct thread *thread);
  598. };
  599. static void
  600. replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
  601. struct machine *machine __used,
  602. struct event *event,
  603. int cpu __used,
  604. u64 timestamp __used,
  605. struct thread *thread __used)
  606. {
  607. struct task_desc *waker, *wakee;
  608. if (verbose) {
  609. printf("sched_wakeup event %p\n", event);
  610. printf(" ... pid %d woke up %s/%d\n",
  611. wakeup_event->common_pid,
  612. wakeup_event->comm,
  613. wakeup_event->pid);
  614. }
  615. waker = register_pid(wakeup_event->common_pid, "<unknown>");
  616. wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
  617. add_sched_event_wakeup(waker, timestamp, wakee);
  618. }
  619. static u64 cpu_last_switched[MAX_CPUS];
  620. static void
  621. replay_switch_event(struct trace_switch_event *switch_event,
  622. struct machine *machine __used,
  623. struct event *event,
  624. int cpu,
  625. u64 timestamp,
  626. struct thread *thread __used)
  627. {
  628. struct task_desc *prev, __used *next;
  629. u64 timestamp0;
  630. s64 delta;
  631. if (verbose)
  632. printf("sched_switch event %p\n", event);
  633. if (cpu >= MAX_CPUS || cpu < 0)
  634. return;
  635. timestamp0 = cpu_last_switched[cpu];
  636. if (timestamp0)
  637. delta = timestamp - timestamp0;
  638. else
  639. delta = 0;
  640. if (delta < 0)
  641. die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
  642. if (verbose) {
  643. printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
  644. switch_event->prev_comm, switch_event->prev_pid,
  645. switch_event->next_comm, switch_event->next_pid,
  646. delta);
  647. }
  648. prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
  649. next = register_pid(switch_event->next_pid, switch_event->next_comm);
  650. cpu_last_switched[cpu] = timestamp;
  651. add_sched_event_run(prev, timestamp, delta);
  652. add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
  653. }
  654. static void
  655. replay_fork_event(struct trace_fork_event *fork_event,
  656. struct event *event,
  657. int cpu __used,
  658. u64 timestamp __used,
  659. struct thread *thread __used)
  660. {
  661. if (verbose) {
  662. printf("sched_fork event %p\n", event);
  663. printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
  664. printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
  665. }
  666. register_pid(fork_event->parent_pid, fork_event->parent_comm);
  667. register_pid(fork_event->child_pid, fork_event->child_comm);
  668. }
  669. static struct trace_sched_handler replay_ops = {
  670. .wakeup_event = replay_wakeup_event,
  671. .switch_event = replay_switch_event,
  672. .fork_event = replay_fork_event,
  673. };
  674. struct sort_dimension {
  675. const char *name;
  676. sort_fn_t cmp;
  677. struct list_head list;
  678. };
  679. static LIST_HEAD(cmp_pid);
  680. static int
  681. thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
  682. {
  683. struct sort_dimension *sort;
  684. int ret = 0;
  685. BUG_ON(list_empty(list));
  686. list_for_each_entry(sort, list, list) {
  687. ret = sort->cmp(l, r);
  688. if (ret)
  689. return ret;
  690. }
  691. return ret;
  692. }
  693. static struct work_atoms *
  694. thread_atoms_search(struct rb_root *root, struct thread *thread,
  695. struct list_head *sort_list)
  696. {
  697. struct rb_node *node = root->rb_node;
  698. struct work_atoms key = { .thread = thread };
  699. while (node) {
  700. struct work_atoms *atoms;
  701. int cmp;
  702. atoms = container_of(node, struct work_atoms, node);
  703. cmp = thread_lat_cmp(sort_list, &key, atoms);
  704. if (cmp > 0)
  705. node = node->rb_left;
  706. else if (cmp < 0)
  707. node = node->rb_right;
  708. else {
  709. BUG_ON(thread != atoms->thread);
  710. return atoms;
  711. }
  712. }
  713. return NULL;
  714. }
  715. static void
  716. __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
  717. struct list_head *sort_list)
  718. {
  719. struct rb_node **new = &(root->rb_node), *parent = NULL;
  720. while (*new) {
  721. struct work_atoms *this;
  722. int cmp;
  723. this = container_of(*new, struct work_atoms, node);
  724. parent = *new;
  725. cmp = thread_lat_cmp(sort_list, data, this);
  726. if (cmp > 0)
  727. new = &((*new)->rb_left);
  728. else
  729. new = &((*new)->rb_right);
  730. }
  731. rb_link_node(&data->node, parent, new);
  732. rb_insert_color(&data->node, root);
  733. }
  734. static void thread_atoms_insert(struct thread *thread)
  735. {
  736. struct work_atoms *atoms = zalloc(sizeof(*atoms));
  737. if (!atoms)
  738. die("No memory");
  739. atoms->thread = thread;
  740. INIT_LIST_HEAD(&atoms->work_list);
  741. __thread_latency_insert(&atom_root, atoms, &cmp_pid);
  742. }
  743. static void
  744. latency_fork_event(struct trace_fork_event *fork_event __used,
  745. struct event *event __used,
  746. int cpu __used,
  747. u64 timestamp __used,
  748. struct thread *thread __used)
  749. {
  750. /* should insert the newcomer */
  751. }
  752. __used
  753. static char sched_out_state(struct trace_switch_event *switch_event)
  754. {
  755. const char *str = TASK_STATE_TO_CHAR_STR;
  756. return str[switch_event->prev_state];
  757. }
  758. static void
  759. add_sched_out_event(struct work_atoms *atoms,
  760. char run_state,
  761. u64 timestamp)
  762. {
  763. struct work_atom *atom = zalloc(sizeof(*atom));
  764. if (!atom)
  765. die("Non memory");
  766. atom->sched_out_time = timestamp;
  767. if (run_state == 'R') {
  768. atom->state = THREAD_WAIT_CPU;
  769. atom->wake_up_time = atom->sched_out_time;
  770. }
  771. list_add_tail(&atom->list, &atoms->work_list);
  772. }
  773. static void
  774. add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
  775. {
  776. struct work_atom *atom;
  777. BUG_ON(list_empty(&atoms->work_list));
  778. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  779. atom->runtime += delta;
  780. atoms->total_runtime += delta;
  781. }
  782. static void
  783. add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
  784. {
  785. struct work_atom *atom;
  786. u64 delta;
  787. if (list_empty(&atoms->work_list))
  788. return;
  789. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  790. if (atom->state != THREAD_WAIT_CPU)
  791. return;
  792. if (timestamp < atom->wake_up_time) {
  793. atom->state = THREAD_IGNORE;
  794. return;
  795. }
  796. atom->state = THREAD_SCHED_IN;
  797. atom->sched_in_time = timestamp;
  798. delta = atom->sched_in_time - atom->wake_up_time;
  799. atoms->total_lat += delta;
  800. if (delta > atoms->max_lat) {
  801. atoms->max_lat = delta;
  802. atoms->max_lat_at = timestamp;
  803. }
  804. atoms->nb_atoms++;
  805. }
  806. static void
  807. latency_switch_event(struct trace_switch_event *switch_event,
  808. struct machine *machine,
  809. struct event *event __used,
  810. int cpu,
  811. u64 timestamp,
  812. struct thread *thread __used)
  813. {
  814. struct work_atoms *out_events, *in_events;
  815. struct thread *sched_out, *sched_in;
  816. u64 timestamp0;
  817. s64 delta;
  818. BUG_ON(cpu >= MAX_CPUS || cpu < 0);
  819. timestamp0 = cpu_last_switched[cpu];
  820. cpu_last_switched[cpu] = timestamp;
  821. if (timestamp0)
  822. delta = timestamp - timestamp0;
  823. else
  824. delta = 0;
  825. if (delta < 0)
  826. die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
  827. sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
  828. sched_in = machine__findnew_thread(machine, switch_event->next_pid);
  829. out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
  830. if (!out_events) {
  831. thread_atoms_insert(sched_out);
  832. out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
  833. if (!out_events)
  834. die("out-event: Internal tree error");
  835. }
  836. add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
  837. in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
  838. if (!in_events) {
  839. thread_atoms_insert(sched_in);
  840. in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
  841. if (!in_events)
  842. die("in-event: Internal tree error");
  843. /*
  844. * Take came in we have not heard about yet,
  845. * add in an initial atom in runnable state:
  846. */
  847. add_sched_out_event(in_events, 'R', timestamp);
  848. }
  849. add_sched_in_event(in_events, timestamp);
  850. }
  851. static void
  852. latency_runtime_event(struct trace_runtime_event *runtime_event,
  853. struct machine *machine,
  854. struct event *event __used,
  855. int cpu,
  856. u64 timestamp,
  857. struct thread *this_thread __used)
  858. {
  859. struct thread *thread = machine__findnew_thread(machine, runtime_event->pid);
  860. struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
  861. BUG_ON(cpu >= MAX_CPUS || cpu < 0);
  862. if (!atoms) {
  863. thread_atoms_insert(thread);
  864. atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
  865. if (!atoms)
  866. die("in-event: Internal tree error");
  867. add_sched_out_event(atoms, 'R', timestamp);
  868. }
  869. add_runtime_event(atoms, runtime_event->runtime, timestamp);
  870. }
  871. static void
  872. latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
  873. struct machine *machine,
  874. struct event *__event __used,
  875. int cpu __used,
  876. u64 timestamp,
  877. struct thread *thread __used)
  878. {
  879. struct work_atoms *atoms;
  880. struct work_atom *atom;
  881. struct thread *wakee;
  882. /* Note for later, it may be interesting to observe the failing cases */
  883. if (!wakeup_event->success)
  884. return;
  885. wakee = machine__findnew_thread(machine, wakeup_event->pid);
  886. atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
  887. if (!atoms) {
  888. thread_atoms_insert(wakee);
  889. atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
  890. if (!atoms)
  891. die("wakeup-event: Internal tree error");
  892. add_sched_out_event(atoms, 'S', timestamp);
  893. }
  894. BUG_ON(list_empty(&atoms->work_list));
  895. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  896. /*
  897. * You WILL be missing events if you've recorded only
  898. * one CPU, or are only looking at only one, so don't
  899. * make useless noise.
  900. */
  901. if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
  902. nr_state_machine_bugs++;
  903. nr_timestamps++;
  904. if (atom->sched_out_time > timestamp) {
  905. nr_unordered_timestamps++;
  906. return;
  907. }
  908. atom->state = THREAD_WAIT_CPU;
  909. atom->wake_up_time = timestamp;
  910. }
  911. static void
  912. latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
  913. struct machine *machine,
  914. struct event *__event __used,
  915. int cpu __used,
  916. u64 timestamp,
  917. struct thread *thread __used)
  918. {
  919. struct work_atoms *atoms;
  920. struct work_atom *atom;
  921. struct thread *migrant;
  922. /*
  923. * Only need to worry about migration when profiling one CPU.
  924. */
  925. if (profile_cpu == -1)
  926. return;
  927. migrant = machine__findnew_thread(machine, migrate_task_event->pid);
  928. atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
  929. if (!atoms) {
  930. thread_atoms_insert(migrant);
  931. register_pid(migrant->pid, migrant->comm);
  932. atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
  933. if (!atoms)
  934. die("migration-event: Internal tree error");
  935. add_sched_out_event(atoms, 'R', timestamp);
  936. }
  937. BUG_ON(list_empty(&atoms->work_list));
  938. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  939. atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
  940. nr_timestamps++;
  941. if (atom->sched_out_time > timestamp)
  942. nr_unordered_timestamps++;
  943. }
  944. static struct trace_sched_handler lat_ops = {
  945. .wakeup_event = latency_wakeup_event,
  946. .switch_event = latency_switch_event,
  947. .runtime_event = latency_runtime_event,
  948. .fork_event = latency_fork_event,
  949. .migrate_task_event = latency_migrate_task_event,
  950. };
  951. static void output_lat_thread(struct work_atoms *work_list)
  952. {
  953. int i;
  954. int ret;
  955. u64 avg;
  956. if (!work_list->nb_atoms)
  957. return;
  958. /*
  959. * Ignore idle threads:
  960. */
  961. if (!strcmp(work_list->thread->comm, "swapper"))
  962. return;
  963. all_runtime += work_list->total_runtime;
  964. all_count += work_list->nb_atoms;
  965. ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
  966. for (i = 0; i < 24 - ret; i++)
  967. printf(" ");
  968. avg = work_list->total_lat / work_list->nb_atoms;
  969. printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
  970. (double)work_list->total_runtime / 1e6,
  971. work_list->nb_atoms, (double)avg / 1e6,
  972. (double)work_list->max_lat / 1e6,
  973. (double)work_list->max_lat_at / 1e9);
  974. }
  975. static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
  976. {
  977. if (l->thread->pid < r->thread->pid)
  978. return -1;
  979. if (l->thread->pid > r->thread->pid)
  980. return 1;
  981. return 0;
  982. }
  983. static struct sort_dimension pid_sort_dimension = {
  984. .name = "pid",
  985. .cmp = pid_cmp,
  986. };
  987. static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
  988. {
  989. u64 avgl, avgr;
  990. if (!l->nb_atoms)
  991. return -1;
  992. if (!r->nb_atoms)
  993. return 1;
  994. avgl = l->total_lat / l->nb_atoms;
  995. avgr = r->total_lat / r->nb_atoms;
  996. if (avgl < avgr)
  997. return -1;
  998. if (avgl > avgr)
  999. return 1;
  1000. return 0;
  1001. }
  1002. static struct sort_dimension avg_sort_dimension = {
  1003. .name = "avg",
  1004. .cmp = avg_cmp,
  1005. };
  1006. static int max_cmp(struct work_atoms *l, struct work_atoms *r)
  1007. {
  1008. if (l->max_lat < r->max_lat)
  1009. return -1;
  1010. if (l->max_lat > r->max_lat)
  1011. return 1;
  1012. return 0;
  1013. }
  1014. static struct sort_dimension max_sort_dimension = {
  1015. .name = "max",
  1016. .cmp = max_cmp,
  1017. };
  1018. static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
  1019. {
  1020. if (l->nb_atoms < r->nb_atoms)
  1021. return -1;
  1022. if (l->nb_atoms > r->nb_atoms)
  1023. return 1;
  1024. return 0;
  1025. }
  1026. static struct sort_dimension switch_sort_dimension = {
  1027. .name = "switch",
  1028. .cmp = switch_cmp,
  1029. };
  1030. static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
  1031. {
  1032. if (l->total_runtime < r->total_runtime)
  1033. return -1;
  1034. if (l->total_runtime > r->total_runtime)
  1035. return 1;
  1036. return 0;
  1037. }
  1038. static struct sort_dimension runtime_sort_dimension = {
  1039. .name = "runtime",
  1040. .cmp = runtime_cmp,
  1041. };
  1042. static struct sort_dimension *available_sorts[] = {
  1043. &pid_sort_dimension,
  1044. &avg_sort_dimension,
  1045. &max_sort_dimension,
  1046. &switch_sort_dimension,
  1047. &runtime_sort_dimension,
  1048. };
  1049. #define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
  1050. static LIST_HEAD(sort_list);
  1051. static int sort_dimension__add(const char *tok, struct list_head *list)
  1052. {
  1053. int i;
  1054. for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
  1055. if (!strcmp(available_sorts[i]->name, tok)) {
  1056. list_add_tail(&available_sorts[i]->list, list);
  1057. return 0;
  1058. }
  1059. }
  1060. return -1;
  1061. }
  1062. static void setup_sorting(void);
  1063. static void sort_lat(void)
  1064. {
  1065. struct rb_node *node;
  1066. for (;;) {
  1067. struct work_atoms *data;
  1068. node = rb_first(&atom_root);
  1069. if (!node)
  1070. break;
  1071. rb_erase(node, &atom_root);
  1072. data = rb_entry(node, struct work_atoms, node);
  1073. __thread_latency_insert(&sorted_atom_root, data, &sort_list);
  1074. }
  1075. }
  1076. static struct trace_sched_handler *trace_handler;
  1077. static void
  1078. process_sched_wakeup_event(void *data, struct machine *machine,
  1079. struct event *event,
  1080. int cpu __used,
  1081. u64 timestamp __used,
  1082. struct thread *thread __used)
  1083. {
  1084. struct trace_wakeup_event wakeup_event;
  1085. FILL_COMMON_FIELDS(wakeup_event, event, data);
  1086. FILL_ARRAY(wakeup_event, comm, event, data);
  1087. FILL_FIELD(wakeup_event, pid, event, data);
  1088. FILL_FIELD(wakeup_event, prio, event, data);
  1089. FILL_FIELD(wakeup_event, success, event, data);
  1090. FILL_FIELD(wakeup_event, cpu, event, data);
  1091. if (trace_handler->wakeup_event)
  1092. trace_handler->wakeup_event(&wakeup_event, machine, event,
  1093. cpu, timestamp, thread);
  1094. }
  1095. /*
  1096. * Track the current task - that way we can know whether there's any
  1097. * weird events, such as a task being switched away that is not current.
  1098. */
  1099. static int max_cpu;
  1100. static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
  1101. static struct thread *curr_thread[MAX_CPUS];
  1102. static char next_shortname1 = 'A';
  1103. static char next_shortname2 = '0';
  1104. static void
  1105. map_switch_event(struct trace_switch_event *switch_event,
  1106. struct machine *machine,
  1107. struct event *event __used,
  1108. int this_cpu,
  1109. u64 timestamp,
  1110. struct thread *thread __used)
  1111. {
  1112. struct thread *sched_out __used, *sched_in;
  1113. int new_shortname;
  1114. u64 timestamp0;
  1115. s64 delta;
  1116. int cpu;
  1117. BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
  1118. if (this_cpu > max_cpu)
  1119. max_cpu = this_cpu;
  1120. timestamp0 = cpu_last_switched[this_cpu];
  1121. cpu_last_switched[this_cpu] = timestamp;
  1122. if (timestamp0)
  1123. delta = timestamp - timestamp0;
  1124. else
  1125. delta = 0;
  1126. if (delta < 0)
  1127. die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
  1128. sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
  1129. sched_in = machine__findnew_thread(machine, switch_event->next_pid);
  1130. curr_thread[this_cpu] = sched_in;
  1131. printf(" ");
  1132. new_shortname = 0;
  1133. if (!sched_in->shortname[0]) {
  1134. sched_in->shortname[0] = next_shortname1;
  1135. sched_in->shortname[1] = next_shortname2;
  1136. if (next_shortname1 < 'Z') {
  1137. next_shortname1++;
  1138. } else {
  1139. next_shortname1='A';
  1140. if (next_shortname2 < '9') {
  1141. next_shortname2++;
  1142. } else {
  1143. next_shortname2='0';
  1144. }
  1145. }
  1146. new_shortname = 1;
  1147. }
  1148. for (cpu = 0; cpu <= max_cpu; cpu++) {
  1149. if (cpu != this_cpu)
  1150. printf(" ");
  1151. else
  1152. printf("*");
  1153. if (curr_thread[cpu]) {
  1154. if (curr_thread[cpu]->pid)
  1155. printf("%2s ", curr_thread[cpu]->shortname);
  1156. else
  1157. printf(". ");
  1158. } else
  1159. printf(" ");
  1160. }
  1161. printf(" %12.6f secs ", (double)timestamp/1e9);
  1162. if (new_shortname) {
  1163. printf("%s => %s:%d\n",
  1164. sched_in->shortname, sched_in->comm, sched_in->pid);
  1165. } else {
  1166. printf("\n");
  1167. }
  1168. }
  1169. static void
  1170. process_sched_switch_event(void *data, struct machine *machine,
  1171. struct event *event,
  1172. int this_cpu,
  1173. u64 timestamp __used,
  1174. struct thread *thread __used)
  1175. {
  1176. struct trace_switch_event switch_event;
  1177. FILL_COMMON_FIELDS(switch_event, event, data);
  1178. FILL_ARRAY(switch_event, prev_comm, event, data);
  1179. FILL_FIELD(switch_event, prev_pid, event, data);
  1180. FILL_FIELD(switch_event, prev_prio, event, data);
  1181. FILL_FIELD(switch_event, prev_state, event, data);
  1182. FILL_ARRAY(switch_event, next_comm, event, data);
  1183. FILL_FIELD(switch_event, next_pid, event, data);
  1184. FILL_FIELD(switch_event, next_prio, event, data);
  1185. if (curr_pid[this_cpu] != (u32)-1) {
  1186. /*
  1187. * Are we trying to switch away a PID that is
  1188. * not current?
  1189. */
  1190. if (curr_pid[this_cpu] != switch_event.prev_pid)
  1191. nr_context_switch_bugs++;
  1192. }
  1193. if (trace_handler->switch_event)
  1194. trace_handler->switch_event(&switch_event, machine, event,
  1195. this_cpu, timestamp, thread);
  1196. curr_pid[this_cpu] = switch_event.next_pid;
  1197. }
  1198. static void
  1199. process_sched_runtime_event(void *data, struct machine *machine,
  1200. struct event *event,
  1201. int cpu __used,
  1202. u64 timestamp __used,
  1203. struct thread *thread __used)
  1204. {
  1205. struct trace_runtime_event runtime_event;
  1206. FILL_ARRAY(runtime_event, comm, event, data);
  1207. FILL_FIELD(runtime_event, pid, event, data);
  1208. FILL_FIELD(runtime_event, runtime, event, data);
  1209. FILL_FIELD(runtime_event, vruntime, event, data);
  1210. if (trace_handler->runtime_event)
  1211. trace_handler->runtime_event(&runtime_event, machine, event, cpu, timestamp, thread);
  1212. }
  1213. static void
  1214. process_sched_fork_event(void *data,
  1215. struct event *event,
  1216. int cpu __used,
  1217. u64 timestamp __used,
  1218. struct thread *thread __used)
  1219. {
  1220. struct trace_fork_event fork_event;
  1221. FILL_COMMON_FIELDS(fork_event, event, data);
  1222. FILL_ARRAY(fork_event, parent_comm, event, data);
  1223. FILL_FIELD(fork_event, parent_pid, event, data);
  1224. FILL_ARRAY(fork_event, child_comm, event, data);
  1225. FILL_FIELD(fork_event, child_pid, event, data);
  1226. if (trace_handler->fork_event)
  1227. trace_handler->fork_event(&fork_event, event,
  1228. cpu, timestamp, thread);
  1229. }
  1230. static void
  1231. process_sched_exit_event(struct event *event,
  1232. int cpu __used,
  1233. u64 timestamp __used,
  1234. struct thread *thread __used)
  1235. {
  1236. if (verbose)
  1237. printf("sched_exit event %p\n", event);
  1238. }
  1239. static void
  1240. process_sched_migrate_task_event(void *data, struct machine *machine,
  1241. struct event *event,
  1242. int cpu __used,
  1243. u64 timestamp __used,
  1244. struct thread *thread __used)
  1245. {
  1246. struct trace_migrate_task_event migrate_task_event;
  1247. FILL_COMMON_FIELDS(migrate_task_event, event, data);
  1248. FILL_ARRAY(migrate_task_event, comm, event, data);
  1249. FILL_FIELD(migrate_task_event, pid, event, data);
  1250. FILL_FIELD(migrate_task_event, prio, event, data);
  1251. FILL_FIELD(migrate_task_event, cpu, event, data);
  1252. if (trace_handler->migrate_task_event)
  1253. trace_handler->migrate_task_event(&migrate_task_event, machine,
  1254. event, cpu, timestamp, thread);
  1255. }
  1256. static void process_raw_event(union perf_event *raw_event __used,
  1257. struct machine *machine, void *data, int cpu,
  1258. u64 timestamp, struct thread *thread)
  1259. {
  1260. struct event *event;
  1261. int type;
  1262. type = trace_parse_common_type(data);
  1263. event = trace_find_event(type);
  1264. if (!strcmp(event->name, "sched_switch"))
  1265. process_sched_switch_event(data, machine, event, cpu, timestamp, thread);
  1266. if (!strcmp(event->name, "sched_stat_runtime"))
  1267. process_sched_runtime_event(data, machine, event, cpu, timestamp, thread);
  1268. if (!strcmp(event->name, "sched_wakeup"))
  1269. process_sched_wakeup_event(data, machine, event, cpu, timestamp, thread);
  1270. if (!strcmp(event->name, "sched_wakeup_new"))
  1271. process_sched_wakeup_event(data, machine, event, cpu, timestamp, thread);
  1272. if (!strcmp(event->name, "sched_process_fork"))
  1273. process_sched_fork_event(data, event, cpu, timestamp, thread);
  1274. if (!strcmp(event->name, "sched_process_exit"))
  1275. process_sched_exit_event(event, cpu, timestamp, thread);
  1276. if (!strcmp(event->name, "sched_migrate_task"))
  1277. process_sched_migrate_task_event(data, machine, event, cpu, timestamp, thread);
  1278. }
  1279. static int process_sample_event(struct perf_tool *tool __used,
  1280. union perf_event *event,
  1281. struct perf_sample *sample,
  1282. struct perf_evsel *evsel,
  1283. struct machine *machine)
  1284. {
  1285. struct thread *thread;
  1286. if (!(evsel->attr.sample_type & PERF_SAMPLE_RAW))
  1287. return 0;
  1288. thread = machine__findnew_thread(machine, sample->pid);
  1289. if (thread == NULL) {
  1290. pr_debug("problem processing %d event, skipping it.\n",
  1291. event->header.type);
  1292. return -1;
  1293. }
  1294. dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
  1295. if (profile_cpu != -1 && profile_cpu != (int)sample->cpu)
  1296. return 0;
  1297. process_raw_event(event, machine, sample->raw_data, sample->cpu,
  1298. sample->time, thread);
  1299. return 0;
  1300. }
  1301. static struct perf_tool perf_sched = {
  1302. .sample = process_sample_event,
  1303. .comm = perf_event__process_comm,
  1304. .lost = perf_event__process_lost,
  1305. .fork = perf_event__process_task,
  1306. .ordered_samples = true,
  1307. };
  1308. static void read_events(bool destroy, struct perf_session **psession)
  1309. {
  1310. int err = -EINVAL;
  1311. struct perf_session *session = perf_session__new(input_name, O_RDONLY,
  1312. 0, false, &perf_sched);
  1313. if (session == NULL)
  1314. die("No Memory");
  1315. if (perf_session__has_traces(session, "record -R")) {
  1316. err = perf_session__process_events(session, &perf_sched);
  1317. if (err)
  1318. die("Failed to process events, error %d", err);
  1319. nr_events = session->hists.stats.nr_events[0];
  1320. nr_lost_events = session->hists.stats.total_lost;
  1321. nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
  1322. }
  1323. if (destroy)
  1324. perf_session__delete(session);
  1325. if (psession)
  1326. *psession = session;
  1327. }
  1328. static void print_bad_events(void)
  1329. {
  1330. if (nr_unordered_timestamps && nr_timestamps) {
  1331. printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
  1332. (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
  1333. nr_unordered_timestamps, nr_timestamps);
  1334. }
  1335. if (nr_lost_events && nr_events) {
  1336. printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
  1337. (double)nr_lost_events/(double)nr_events*100.0,
  1338. nr_lost_events, nr_events, nr_lost_chunks);
  1339. }
  1340. if (nr_state_machine_bugs && nr_timestamps) {
  1341. printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
  1342. (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
  1343. nr_state_machine_bugs, nr_timestamps);
  1344. if (nr_lost_events)
  1345. printf(" (due to lost events?)");
  1346. printf("\n");
  1347. }
  1348. if (nr_context_switch_bugs && nr_timestamps) {
  1349. printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
  1350. (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
  1351. nr_context_switch_bugs, nr_timestamps);
  1352. if (nr_lost_events)
  1353. printf(" (due to lost events?)");
  1354. printf("\n");
  1355. }
  1356. }
  1357. static void __cmd_lat(void)
  1358. {
  1359. struct rb_node *next;
  1360. struct perf_session *session;
  1361. setup_pager();
  1362. read_events(false, &session);
  1363. sort_lat();
  1364. printf("\n ---------------------------------------------------------------------------------------------------------------\n");
  1365. printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
  1366. printf(" ---------------------------------------------------------------------------------------------------------------\n");
  1367. next = rb_first(&sorted_atom_root);
  1368. while (next) {
  1369. struct work_atoms *work_list;
  1370. work_list = rb_entry(next, struct work_atoms, node);
  1371. output_lat_thread(work_list);
  1372. next = rb_next(next);
  1373. }
  1374. printf(" -----------------------------------------------------------------------------------------\n");
  1375. printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
  1376. (double)all_runtime/1e6, all_count);
  1377. printf(" ---------------------------------------------------\n");
  1378. print_bad_events();
  1379. printf("\n");
  1380. perf_session__delete(session);
  1381. }
  1382. static struct trace_sched_handler map_ops = {
  1383. .wakeup_event = NULL,
  1384. .switch_event = map_switch_event,
  1385. .runtime_event = NULL,
  1386. .fork_event = NULL,
  1387. };
  1388. static void __cmd_map(void)
  1389. {
  1390. max_cpu = sysconf(_SC_NPROCESSORS_CONF);
  1391. setup_pager();
  1392. read_events(true, NULL);
  1393. print_bad_events();
  1394. }
  1395. static void __cmd_replay(void)
  1396. {
  1397. unsigned long i;
  1398. calibrate_run_measurement_overhead();
  1399. calibrate_sleep_measurement_overhead();
  1400. test_calibrations();
  1401. read_events(true, NULL);
  1402. printf("nr_run_events: %ld\n", nr_run_events);
  1403. printf("nr_sleep_events: %ld\n", nr_sleep_events);
  1404. printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
  1405. if (targetless_wakeups)
  1406. printf("target-less wakeups: %ld\n", targetless_wakeups);
  1407. if (multitarget_wakeups)
  1408. printf("multi-target wakeups: %ld\n", multitarget_wakeups);
  1409. if (nr_run_events_optimized)
  1410. printf("run atoms optimized: %ld\n",
  1411. nr_run_events_optimized);
  1412. print_task_traces();
  1413. add_cross_task_wakeups();
  1414. create_tasks();
  1415. printf("------------------------------------------------------------\n");
  1416. for (i = 0; i < replay_repeat; i++)
  1417. run_one_test();
  1418. }
  1419. static const char * const sched_usage[] = {
  1420. "perf sched [<options>] {record|latency|map|replay|script}",
  1421. NULL
  1422. };
  1423. static const struct option sched_options[] = {
  1424. OPT_STRING('i', "input", &input_name, "file",
  1425. "input file name"),
  1426. OPT_INCR('v', "verbose", &verbose,
  1427. "be more verbose (show symbol address, etc)"),
  1428. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1429. "dump raw trace in ASCII"),
  1430. OPT_END()
  1431. };
  1432. static const char * const latency_usage[] = {
  1433. "perf sched latency [<options>]",
  1434. NULL
  1435. };
  1436. static const struct option latency_options[] = {
  1437. OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
  1438. "sort by key(s): runtime, switch, avg, max"),
  1439. OPT_INCR('v', "verbose", &verbose,
  1440. "be more verbose (show symbol address, etc)"),
  1441. OPT_INTEGER('C', "CPU", &profile_cpu,
  1442. "CPU to profile on"),
  1443. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1444. "dump raw trace in ASCII"),
  1445. OPT_END()
  1446. };
  1447. static const char * const replay_usage[] = {
  1448. "perf sched replay [<options>]",
  1449. NULL
  1450. };
  1451. static const struct option replay_options[] = {
  1452. OPT_UINTEGER('r', "repeat", &replay_repeat,
  1453. "repeat the workload replay N times (-1: infinite)"),
  1454. OPT_INCR('v', "verbose", &verbose,
  1455. "be more verbose (show symbol address, etc)"),
  1456. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1457. "dump raw trace in ASCII"),
  1458. OPT_END()
  1459. };
  1460. static void setup_sorting(void)
  1461. {
  1462. char *tmp, *tok, *str = strdup(sort_order);
  1463. for (tok = strtok_r(str, ", ", &tmp);
  1464. tok; tok = strtok_r(NULL, ", ", &tmp)) {
  1465. if (sort_dimension__add(tok, &sort_list) < 0) {
  1466. error("Unknown --sort key: `%s'", tok);
  1467. usage_with_options(latency_usage, latency_options);
  1468. }
  1469. }
  1470. free(str);
  1471. sort_dimension__add("pid", &cmp_pid);
  1472. }
  1473. static const char *record_args[] = {
  1474. "record",
  1475. "-a",
  1476. "-R",
  1477. "-f",
  1478. "-m", "1024",
  1479. "-c", "1",
  1480. "-e", "sched:sched_switch",
  1481. "-e", "sched:sched_stat_wait",
  1482. "-e", "sched:sched_stat_sleep",
  1483. "-e", "sched:sched_stat_iowait",
  1484. "-e", "sched:sched_stat_runtime",
  1485. "-e", "sched:sched_process_exit",
  1486. "-e", "sched:sched_process_fork",
  1487. "-e", "sched:sched_wakeup",
  1488. "-e", "sched:sched_migrate_task",
  1489. };
  1490. static int __cmd_record(int argc, const char **argv)
  1491. {
  1492. unsigned int rec_argc, i, j;
  1493. const char **rec_argv;
  1494. rec_argc = ARRAY_SIZE(record_args) + argc - 1;
  1495. rec_argv = calloc(rec_argc + 1, sizeof(char *));
  1496. if (rec_argv == NULL)
  1497. return -ENOMEM;
  1498. for (i = 0; i < ARRAY_SIZE(record_args); i++)
  1499. rec_argv[i] = strdup(record_args[i]);
  1500. for (j = 1; j < (unsigned int)argc; j++, i++)
  1501. rec_argv[i] = argv[j];
  1502. BUG_ON(i != rec_argc);
  1503. return cmd_record(i, rec_argv, NULL);
  1504. }
  1505. int cmd_sched(int argc, const char **argv, const char *prefix __used)
  1506. {
  1507. argc = parse_options(argc, argv, sched_options, sched_usage,
  1508. PARSE_OPT_STOP_AT_NON_OPTION);
  1509. if (!argc)
  1510. usage_with_options(sched_usage, sched_options);
  1511. /*
  1512. * Aliased to 'perf script' for now:
  1513. */
  1514. if (!strcmp(argv[0], "script"))
  1515. return cmd_script(argc, argv, prefix);
  1516. symbol__init();
  1517. if (!strncmp(argv[0], "rec", 3)) {
  1518. return __cmd_record(argc, argv);
  1519. } else if (!strncmp(argv[0], "lat", 3)) {
  1520. trace_handler = &lat_ops;
  1521. if (argc > 1) {
  1522. argc = parse_options(argc, argv, latency_options, latency_usage, 0);
  1523. if (argc)
  1524. usage_with_options(latency_usage, latency_options);
  1525. }
  1526. setup_sorting();
  1527. __cmd_lat();
  1528. } else if (!strcmp(argv[0], "map")) {
  1529. trace_handler = &map_ops;
  1530. setup_sorting();
  1531. __cmd_map();
  1532. } else if (!strncmp(argv[0], "rep", 3)) {
  1533. trace_handler = &replay_ops;
  1534. if (argc) {
  1535. argc = parse_options(argc, argv, replay_options, replay_usage, 0);
  1536. if (argc)
  1537. usage_with_options(replay_usage, replay_options);
  1538. }
  1539. __cmd_replay();
  1540. } else {
  1541. usage_with_options(sched_usage, sched_options);
  1542. }
  1543. return 0;
  1544. }