time.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time.
  21. * - for astronomical applications: add a new function to get
  22. * non ambiguous timestamps even around leap seconds. This needs
  23. * a new timestamp format and a good name.
  24. *
  25. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  26. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  27. *
  28. * This program is free software; you can redistribute it and/or
  29. * modify it under the terms of the GNU General Public License
  30. * as published by the Free Software Foundation; either version
  31. * 2 of the License, or (at your option) any later version.
  32. */
  33. #include <linux/errno.h>
  34. #include <linux/export.h>
  35. #include <linux/sched.h>
  36. #include <linux/kernel.h>
  37. #include <linux/param.h>
  38. #include <linux/string.h>
  39. #include <linux/mm.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/timex.h>
  42. #include <linux/kernel_stat.h>
  43. #include <linux/time.h>
  44. #include <linux/init.h>
  45. #include <linux/profile.h>
  46. #include <linux/cpu.h>
  47. #include <linux/security.h>
  48. #include <linux/percpu.h>
  49. #include <linux/rtc.h>
  50. #include <linux/jiffies.h>
  51. #include <linux/posix-timers.h>
  52. #include <linux/irq.h>
  53. #include <linux/delay.h>
  54. #include <linux/irq_work.h>
  55. #include <asm/trace.h>
  56. #include <asm/io.h>
  57. #include <asm/processor.h>
  58. #include <asm/nvram.h>
  59. #include <asm/cache.h>
  60. #include <asm/machdep.h>
  61. #include <asm/uaccess.h>
  62. #include <asm/time.h>
  63. #include <asm/prom.h>
  64. #include <asm/irq.h>
  65. #include <asm/div64.h>
  66. #include <asm/smp.h>
  67. #include <asm/vdso_datapage.h>
  68. #include <asm/firmware.h>
  69. #include <asm/cputime.h>
  70. /* powerpc clocksource/clockevent code */
  71. #include <linux/clockchips.h>
  72. #include <linux/clocksource.h>
  73. static cycle_t rtc_read(struct clocksource *);
  74. static struct clocksource clocksource_rtc = {
  75. .name = "rtc",
  76. .rating = 400,
  77. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  78. .mask = CLOCKSOURCE_MASK(64),
  79. .read = rtc_read,
  80. };
  81. static cycle_t timebase_read(struct clocksource *);
  82. static struct clocksource clocksource_timebase = {
  83. .name = "timebase",
  84. .rating = 400,
  85. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  86. .mask = CLOCKSOURCE_MASK(64),
  87. .read = timebase_read,
  88. };
  89. #define DECREMENTER_MAX 0x7fffffff
  90. static int decrementer_set_next_event(unsigned long evt,
  91. struct clock_event_device *dev);
  92. static void decrementer_set_mode(enum clock_event_mode mode,
  93. struct clock_event_device *dev);
  94. struct clock_event_device decrementer_clockevent = {
  95. .name = "decrementer",
  96. .rating = 200,
  97. .irq = 0,
  98. .set_next_event = decrementer_set_next_event,
  99. .set_mode = decrementer_set_mode,
  100. .features = CLOCK_EVT_FEAT_ONESHOT,
  101. };
  102. EXPORT_SYMBOL(decrementer_clockevent);
  103. DEFINE_PER_CPU(u64, decrementers_next_tb);
  104. static DEFINE_PER_CPU(struct clock_event_device, decrementers);
  105. #define XSEC_PER_SEC (1024*1024)
  106. #ifdef CONFIG_PPC64
  107. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  108. #else
  109. /* compute ((xsec << 12) * max) >> 32 */
  110. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  111. #endif
  112. unsigned long tb_ticks_per_jiffy;
  113. unsigned long tb_ticks_per_usec = 100; /* sane default */
  114. EXPORT_SYMBOL(tb_ticks_per_usec);
  115. unsigned long tb_ticks_per_sec;
  116. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  117. DEFINE_SPINLOCK(rtc_lock);
  118. EXPORT_SYMBOL_GPL(rtc_lock);
  119. static u64 tb_to_ns_scale __read_mostly;
  120. static unsigned tb_to_ns_shift __read_mostly;
  121. static u64 boot_tb __read_mostly;
  122. extern struct timezone sys_tz;
  123. static long timezone_offset;
  124. unsigned long ppc_proc_freq;
  125. EXPORT_SYMBOL_GPL(ppc_proc_freq);
  126. unsigned long ppc_tb_freq;
  127. EXPORT_SYMBOL_GPL(ppc_tb_freq);
  128. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  129. /*
  130. * Factors for converting from cputime_t (timebase ticks) to
  131. * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
  132. * These are all stored as 0.64 fixed-point binary fractions.
  133. */
  134. u64 __cputime_jiffies_factor;
  135. EXPORT_SYMBOL(__cputime_jiffies_factor);
  136. u64 __cputime_usec_factor;
  137. EXPORT_SYMBOL(__cputime_usec_factor);
  138. u64 __cputime_sec_factor;
  139. EXPORT_SYMBOL(__cputime_sec_factor);
  140. u64 __cputime_clockt_factor;
  141. EXPORT_SYMBOL(__cputime_clockt_factor);
  142. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  143. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  144. cputime_t cputime_one_jiffy;
  145. void (*dtl_consumer)(struct dtl_entry *, u64);
  146. static void calc_cputime_factors(void)
  147. {
  148. struct div_result res;
  149. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  150. __cputime_jiffies_factor = res.result_low;
  151. div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
  152. __cputime_usec_factor = res.result_low;
  153. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  154. __cputime_sec_factor = res.result_low;
  155. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  156. __cputime_clockt_factor = res.result_low;
  157. }
  158. /*
  159. * Read the SPURR on systems that have it, otherwise the PURR,
  160. * or if that doesn't exist return the timebase value passed in.
  161. */
  162. static u64 read_spurr(u64 tb)
  163. {
  164. if (cpu_has_feature(CPU_FTR_SPURR))
  165. return mfspr(SPRN_SPURR);
  166. if (cpu_has_feature(CPU_FTR_PURR))
  167. return mfspr(SPRN_PURR);
  168. return tb;
  169. }
  170. #ifdef CONFIG_PPC_SPLPAR
  171. /*
  172. * Scan the dispatch trace log and count up the stolen time.
  173. * Should be called with interrupts disabled.
  174. */
  175. static u64 scan_dispatch_log(u64 stop_tb)
  176. {
  177. u64 i = local_paca->dtl_ridx;
  178. struct dtl_entry *dtl = local_paca->dtl_curr;
  179. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  180. struct lppaca *vpa = local_paca->lppaca_ptr;
  181. u64 tb_delta;
  182. u64 stolen = 0;
  183. u64 dtb;
  184. if (!dtl)
  185. return 0;
  186. if (i == vpa->dtl_idx)
  187. return 0;
  188. while (i < vpa->dtl_idx) {
  189. if (dtl_consumer)
  190. dtl_consumer(dtl, i);
  191. dtb = dtl->timebase;
  192. tb_delta = dtl->enqueue_to_dispatch_time +
  193. dtl->ready_to_enqueue_time;
  194. barrier();
  195. if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
  196. /* buffer has overflowed */
  197. i = vpa->dtl_idx - N_DISPATCH_LOG;
  198. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  199. continue;
  200. }
  201. if (dtb > stop_tb)
  202. break;
  203. stolen += tb_delta;
  204. ++i;
  205. ++dtl;
  206. if (dtl == dtl_end)
  207. dtl = local_paca->dispatch_log;
  208. }
  209. local_paca->dtl_ridx = i;
  210. local_paca->dtl_curr = dtl;
  211. return stolen;
  212. }
  213. /*
  214. * Accumulate stolen time by scanning the dispatch trace log.
  215. * Called on entry from user mode.
  216. */
  217. void accumulate_stolen_time(void)
  218. {
  219. u64 sst, ust;
  220. u8 save_soft_enabled = local_paca->soft_enabled;
  221. /* We are called early in the exception entry, before
  222. * soft/hard_enabled are sync'ed to the expected state
  223. * for the exception. We are hard disabled but the PACA
  224. * needs to reflect that so various debug stuff doesn't
  225. * complain
  226. */
  227. local_paca->soft_enabled = 0;
  228. sst = scan_dispatch_log(local_paca->starttime_user);
  229. ust = scan_dispatch_log(local_paca->starttime);
  230. local_paca->system_time -= sst;
  231. local_paca->user_time -= ust;
  232. local_paca->stolen_time += ust + sst;
  233. local_paca->soft_enabled = save_soft_enabled;
  234. }
  235. static inline u64 calculate_stolen_time(u64 stop_tb)
  236. {
  237. u64 stolen = 0;
  238. if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
  239. stolen = scan_dispatch_log(stop_tb);
  240. get_paca()->system_time -= stolen;
  241. }
  242. stolen += get_paca()->stolen_time;
  243. get_paca()->stolen_time = 0;
  244. return stolen;
  245. }
  246. #else /* CONFIG_PPC_SPLPAR */
  247. static inline u64 calculate_stolen_time(u64 stop_tb)
  248. {
  249. return 0;
  250. }
  251. #endif /* CONFIG_PPC_SPLPAR */
  252. /*
  253. * Account time for a transition between system, hard irq
  254. * or soft irq state.
  255. */
  256. void account_system_vtime(struct task_struct *tsk)
  257. {
  258. u64 now, nowscaled, delta, deltascaled;
  259. unsigned long flags;
  260. u64 stolen, udelta, sys_scaled, user_scaled;
  261. local_irq_save(flags);
  262. now = mftb();
  263. nowscaled = read_spurr(now);
  264. get_paca()->system_time += now - get_paca()->starttime;
  265. get_paca()->starttime = now;
  266. deltascaled = nowscaled - get_paca()->startspurr;
  267. get_paca()->startspurr = nowscaled;
  268. stolen = calculate_stolen_time(now);
  269. delta = get_paca()->system_time;
  270. get_paca()->system_time = 0;
  271. udelta = get_paca()->user_time - get_paca()->utime_sspurr;
  272. get_paca()->utime_sspurr = get_paca()->user_time;
  273. /*
  274. * Because we don't read the SPURR on every kernel entry/exit,
  275. * deltascaled includes both user and system SPURR ticks.
  276. * Apportion these ticks to system SPURR ticks and user
  277. * SPURR ticks in the same ratio as the system time (delta)
  278. * and user time (udelta) values obtained from the timebase
  279. * over the same interval. The system ticks get accounted here;
  280. * the user ticks get saved up in paca->user_time_scaled to be
  281. * used by account_process_tick.
  282. */
  283. sys_scaled = delta;
  284. user_scaled = udelta;
  285. if (deltascaled != delta + udelta) {
  286. if (udelta) {
  287. sys_scaled = deltascaled * delta / (delta + udelta);
  288. user_scaled = deltascaled - sys_scaled;
  289. } else {
  290. sys_scaled = deltascaled;
  291. }
  292. }
  293. get_paca()->user_time_scaled += user_scaled;
  294. if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
  295. account_system_time(tsk, 0, delta, sys_scaled);
  296. if (stolen)
  297. account_steal_time(stolen);
  298. } else {
  299. account_idle_time(delta + stolen);
  300. }
  301. local_irq_restore(flags);
  302. }
  303. EXPORT_SYMBOL_GPL(account_system_vtime);
  304. /*
  305. * Transfer the user and system times accumulated in the paca
  306. * by the exception entry and exit code to the generic process
  307. * user and system time records.
  308. * Must be called with interrupts disabled.
  309. * Assumes that account_system_vtime() has been called recently
  310. * (i.e. since the last entry from usermode) so that
  311. * get_paca()->user_time_scaled is up to date.
  312. */
  313. void account_process_tick(struct task_struct *tsk, int user_tick)
  314. {
  315. cputime_t utime, utimescaled;
  316. utime = get_paca()->user_time;
  317. utimescaled = get_paca()->user_time_scaled;
  318. get_paca()->user_time = 0;
  319. get_paca()->user_time_scaled = 0;
  320. get_paca()->utime_sspurr = 0;
  321. account_user_time(tsk, utime, utimescaled);
  322. }
  323. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  324. #define calc_cputime_factors()
  325. #endif
  326. void __delay(unsigned long loops)
  327. {
  328. unsigned long start;
  329. int diff;
  330. if (__USE_RTC()) {
  331. start = get_rtcl();
  332. do {
  333. /* the RTCL register wraps at 1000000000 */
  334. diff = get_rtcl() - start;
  335. if (diff < 0)
  336. diff += 1000000000;
  337. } while (diff < loops);
  338. } else {
  339. start = get_tbl();
  340. while (get_tbl() - start < loops)
  341. HMT_low();
  342. HMT_medium();
  343. }
  344. }
  345. EXPORT_SYMBOL(__delay);
  346. void udelay(unsigned long usecs)
  347. {
  348. __delay(tb_ticks_per_usec * usecs);
  349. }
  350. EXPORT_SYMBOL(udelay);
  351. #ifdef CONFIG_SMP
  352. unsigned long profile_pc(struct pt_regs *regs)
  353. {
  354. unsigned long pc = instruction_pointer(regs);
  355. if (in_lock_functions(pc))
  356. return regs->link;
  357. return pc;
  358. }
  359. EXPORT_SYMBOL(profile_pc);
  360. #endif
  361. #ifdef CONFIG_IRQ_WORK
  362. /*
  363. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  364. */
  365. #ifdef CONFIG_PPC64
  366. static inline unsigned long test_irq_work_pending(void)
  367. {
  368. unsigned long x;
  369. asm volatile("lbz %0,%1(13)"
  370. : "=r" (x)
  371. : "i" (offsetof(struct paca_struct, irq_work_pending)));
  372. return x;
  373. }
  374. static inline void set_irq_work_pending_flag(void)
  375. {
  376. asm volatile("stb %0,%1(13)" : :
  377. "r" (1),
  378. "i" (offsetof(struct paca_struct, irq_work_pending)));
  379. }
  380. static inline void clear_irq_work_pending(void)
  381. {
  382. asm volatile("stb %0,%1(13)" : :
  383. "r" (0),
  384. "i" (offsetof(struct paca_struct, irq_work_pending)));
  385. }
  386. #else /* 32-bit */
  387. DEFINE_PER_CPU(u8, irq_work_pending);
  388. #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
  389. #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
  390. #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
  391. #endif /* 32 vs 64 bit */
  392. void arch_irq_work_raise(void)
  393. {
  394. preempt_disable();
  395. set_irq_work_pending_flag();
  396. set_dec(1);
  397. preempt_enable();
  398. }
  399. #else /* CONFIG_IRQ_WORK */
  400. #define test_irq_work_pending() 0
  401. #define clear_irq_work_pending()
  402. #endif /* CONFIG_IRQ_WORK */
  403. /*
  404. * timer_interrupt - gets called when the decrementer overflows,
  405. * with interrupts disabled.
  406. */
  407. void timer_interrupt(struct pt_regs * regs)
  408. {
  409. struct pt_regs *old_regs;
  410. u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
  411. struct clock_event_device *evt = &__get_cpu_var(decrementers);
  412. u64 now;
  413. /* Ensure a positive value is written to the decrementer, or else
  414. * some CPUs will continue to take decrementer exceptions.
  415. */
  416. set_dec(DECREMENTER_MAX);
  417. /* Some implementations of hotplug will get timer interrupts while
  418. * offline, just ignore these
  419. */
  420. if (!cpu_online(smp_processor_id()))
  421. return;
  422. /* Conditionally hard-enable interrupts now that the DEC has been
  423. * bumped to its maximum value
  424. */
  425. may_hard_irq_enable();
  426. trace_timer_interrupt_entry(regs);
  427. __get_cpu_var(irq_stat).timer_irqs++;
  428. #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
  429. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  430. do_IRQ(regs);
  431. #endif
  432. old_regs = set_irq_regs(regs);
  433. irq_enter();
  434. if (test_irq_work_pending()) {
  435. clear_irq_work_pending();
  436. irq_work_run();
  437. }
  438. now = get_tb_or_rtc();
  439. if (now >= *next_tb) {
  440. *next_tb = ~(u64)0;
  441. if (evt->event_handler)
  442. evt->event_handler(evt);
  443. } else {
  444. now = *next_tb - now;
  445. if (now <= DECREMENTER_MAX)
  446. set_dec((int)now);
  447. }
  448. #ifdef CONFIG_PPC64
  449. /* collect purr register values often, for accurate calculations */
  450. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  451. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  452. cu->current_tb = mfspr(SPRN_PURR);
  453. }
  454. #endif
  455. irq_exit();
  456. set_irq_regs(old_regs);
  457. trace_timer_interrupt_exit(regs);
  458. }
  459. /*
  460. * Hypervisor decrementer interrupts shouldn't occur but are sometimes
  461. * left pending on exit from a KVM guest. We don't need to do anything
  462. * to clear them, as they are edge-triggered.
  463. */
  464. void hdec_interrupt(struct pt_regs *regs)
  465. {
  466. }
  467. #ifdef CONFIG_SUSPEND
  468. static void generic_suspend_disable_irqs(void)
  469. {
  470. /* Disable the decrementer, so that it doesn't interfere
  471. * with suspending.
  472. */
  473. set_dec(DECREMENTER_MAX);
  474. local_irq_disable();
  475. set_dec(DECREMENTER_MAX);
  476. }
  477. static void generic_suspend_enable_irqs(void)
  478. {
  479. local_irq_enable();
  480. }
  481. /* Overrides the weak version in kernel/power/main.c */
  482. void arch_suspend_disable_irqs(void)
  483. {
  484. if (ppc_md.suspend_disable_irqs)
  485. ppc_md.suspend_disable_irqs();
  486. generic_suspend_disable_irqs();
  487. }
  488. /* Overrides the weak version in kernel/power/main.c */
  489. void arch_suspend_enable_irqs(void)
  490. {
  491. generic_suspend_enable_irqs();
  492. if (ppc_md.suspend_enable_irqs)
  493. ppc_md.suspend_enable_irqs();
  494. }
  495. #endif
  496. /*
  497. * Scheduler clock - returns current time in nanosec units.
  498. *
  499. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  500. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  501. * are 64-bit unsigned numbers.
  502. */
  503. unsigned long long sched_clock(void)
  504. {
  505. if (__USE_RTC())
  506. return get_rtc();
  507. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  508. }
  509. static int __init get_freq(char *name, int cells, unsigned long *val)
  510. {
  511. struct device_node *cpu;
  512. const unsigned int *fp;
  513. int found = 0;
  514. /* The cpu node should have timebase and clock frequency properties */
  515. cpu = of_find_node_by_type(NULL, "cpu");
  516. if (cpu) {
  517. fp = of_get_property(cpu, name, NULL);
  518. if (fp) {
  519. found = 1;
  520. *val = of_read_ulong(fp, cells);
  521. }
  522. of_node_put(cpu);
  523. }
  524. return found;
  525. }
  526. /* should become __cpuinit when secondary_cpu_time_init also is */
  527. void start_cpu_decrementer(void)
  528. {
  529. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  530. /* Clear any pending timer interrupts */
  531. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  532. /* Enable decrementer interrupt */
  533. mtspr(SPRN_TCR, TCR_DIE);
  534. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  535. }
  536. void __init generic_calibrate_decr(void)
  537. {
  538. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  539. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  540. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  541. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  542. "(not found)\n");
  543. }
  544. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  545. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  546. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  547. printk(KERN_ERR "WARNING: Estimating processor frequency "
  548. "(not found)\n");
  549. }
  550. }
  551. int update_persistent_clock(struct timespec now)
  552. {
  553. struct rtc_time tm;
  554. if (!ppc_md.set_rtc_time)
  555. return 0;
  556. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  557. tm.tm_year -= 1900;
  558. tm.tm_mon -= 1;
  559. return ppc_md.set_rtc_time(&tm);
  560. }
  561. static void __read_persistent_clock(struct timespec *ts)
  562. {
  563. struct rtc_time tm;
  564. static int first = 1;
  565. ts->tv_nsec = 0;
  566. /* XXX this is a litle fragile but will work okay in the short term */
  567. if (first) {
  568. first = 0;
  569. if (ppc_md.time_init)
  570. timezone_offset = ppc_md.time_init();
  571. /* get_boot_time() isn't guaranteed to be safe to call late */
  572. if (ppc_md.get_boot_time) {
  573. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  574. return;
  575. }
  576. }
  577. if (!ppc_md.get_rtc_time) {
  578. ts->tv_sec = 0;
  579. return;
  580. }
  581. ppc_md.get_rtc_time(&tm);
  582. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  583. tm.tm_hour, tm.tm_min, tm.tm_sec);
  584. }
  585. void read_persistent_clock(struct timespec *ts)
  586. {
  587. __read_persistent_clock(ts);
  588. /* Sanitize it in case real time clock is set below EPOCH */
  589. if (ts->tv_sec < 0) {
  590. ts->tv_sec = 0;
  591. ts->tv_nsec = 0;
  592. }
  593. }
  594. /* clocksource code */
  595. static cycle_t rtc_read(struct clocksource *cs)
  596. {
  597. return (cycle_t)get_rtc();
  598. }
  599. static cycle_t timebase_read(struct clocksource *cs)
  600. {
  601. return (cycle_t)get_tb();
  602. }
  603. void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
  604. struct clocksource *clock, u32 mult)
  605. {
  606. u64 new_tb_to_xs, new_stamp_xsec;
  607. u32 frac_sec;
  608. if (clock != &clocksource_timebase)
  609. return;
  610. /* Make userspace gettimeofday spin until we're done. */
  611. ++vdso_data->tb_update_count;
  612. smp_mb();
  613. /* 19342813113834067 ~= 2^(20+64) / 1e9 */
  614. new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
  615. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  616. do_div(new_stamp_xsec, 1000000000);
  617. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  618. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  619. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  620. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  621. /*
  622. * tb_update_count is used to allow the userspace gettimeofday code
  623. * to assure itself that it sees a consistent view of the tb_to_xs and
  624. * stamp_xsec variables. It reads the tb_update_count, then reads
  625. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  626. * the two values of tb_update_count match and are even then the
  627. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  628. * loops back and reads them again until this criteria is met.
  629. * We expect the caller to have done the first increment of
  630. * vdso_data->tb_update_count already.
  631. */
  632. vdso_data->tb_orig_stamp = clock->cycle_last;
  633. vdso_data->stamp_xsec = new_stamp_xsec;
  634. vdso_data->tb_to_xs = new_tb_to_xs;
  635. vdso_data->wtom_clock_sec = wtm->tv_sec;
  636. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  637. vdso_data->stamp_xtime = *wall_time;
  638. vdso_data->stamp_sec_fraction = frac_sec;
  639. smp_wmb();
  640. ++(vdso_data->tb_update_count);
  641. }
  642. void update_vsyscall_tz(void)
  643. {
  644. /* Make userspace gettimeofday spin until we're done. */
  645. ++vdso_data->tb_update_count;
  646. smp_mb();
  647. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  648. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  649. smp_mb();
  650. ++vdso_data->tb_update_count;
  651. }
  652. static void __init clocksource_init(void)
  653. {
  654. struct clocksource *clock;
  655. if (__USE_RTC())
  656. clock = &clocksource_rtc;
  657. else
  658. clock = &clocksource_timebase;
  659. if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
  660. printk(KERN_ERR "clocksource: %s is already registered\n",
  661. clock->name);
  662. return;
  663. }
  664. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  665. clock->name, clock->mult, clock->shift);
  666. }
  667. static int decrementer_set_next_event(unsigned long evt,
  668. struct clock_event_device *dev)
  669. {
  670. __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
  671. set_dec(evt);
  672. return 0;
  673. }
  674. static void decrementer_set_mode(enum clock_event_mode mode,
  675. struct clock_event_device *dev)
  676. {
  677. if (mode != CLOCK_EVT_MODE_ONESHOT)
  678. decrementer_set_next_event(DECREMENTER_MAX, dev);
  679. }
  680. static void register_decrementer_clockevent(int cpu)
  681. {
  682. struct clock_event_device *dec = &per_cpu(decrementers, cpu);
  683. *dec = decrementer_clockevent;
  684. dec->cpumask = cpumask_of(cpu);
  685. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  686. dec->name, dec->mult, dec->shift, cpu);
  687. clockevents_register_device(dec);
  688. }
  689. static void __init init_decrementer_clockevent(void)
  690. {
  691. int cpu = smp_processor_id();
  692. clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
  693. decrementer_clockevent.max_delta_ns =
  694. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  695. decrementer_clockevent.min_delta_ns =
  696. clockevent_delta2ns(2, &decrementer_clockevent);
  697. register_decrementer_clockevent(cpu);
  698. }
  699. void secondary_cpu_time_init(void)
  700. {
  701. /* Start the decrementer on CPUs that have manual control
  702. * such as BookE
  703. */
  704. start_cpu_decrementer();
  705. /* FIME: Should make unrelatred change to move snapshot_timebase
  706. * call here ! */
  707. register_decrementer_clockevent(smp_processor_id());
  708. }
  709. /* This function is only called on the boot processor */
  710. void __init time_init(void)
  711. {
  712. struct div_result res;
  713. u64 scale;
  714. unsigned shift;
  715. if (__USE_RTC()) {
  716. /* 601 processor: dec counts down by 128 every 128ns */
  717. ppc_tb_freq = 1000000000;
  718. } else {
  719. /* Normal PowerPC with timebase register */
  720. ppc_md.calibrate_decr();
  721. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  722. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  723. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  724. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  725. }
  726. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  727. tb_ticks_per_sec = ppc_tb_freq;
  728. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  729. calc_cputime_factors();
  730. setup_cputime_one_jiffy();
  731. /*
  732. * Compute scale factor for sched_clock.
  733. * The calibrate_decr() function has set tb_ticks_per_sec,
  734. * which is the timebase frequency.
  735. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  736. * the 128-bit result as a 64.64 fixed-point number.
  737. * We then shift that number right until it is less than 1.0,
  738. * giving us the scale factor and shift count to use in
  739. * sched_clock().
  740. */
  741. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  742. scale = res.result_low;
  743. for (shift = 0; res.result_high != 0; ++shift) {
  744. scale = (scale >> 1) | (res.result_high << 63);
  745. res.result_high >>= 1;
  746. }
  747. tb_to_ns_scale = scale;
  748. tb_to_ns_shift = shift;
  749. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  750. boot_tb = get_tb_or_rtc();
  751. /* If platform provided a timezone (pmac), we correct the time */
  752. if (timezone_offset) {
  753. sys_tz.tz_minuteswest = -timezone_offset / 60;
  754. sys_tz.tz_dsttime = 0;
  755. }
  756. vdso_data->tb_update_count = 0;
  757. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  758. /* Start the decrementer on CPUs that have manual control
  759. * such as BookE
  760. */
  761. start_cpu_decrementer();
  762. /* Register the clocksource */
  763. clocksource_init();
  764. init_decrementer_clockevent();
  765. }
  766. #define FEBRUARY 2
  767. #define STARTOFTIME 1970
  768. #define SECDAY 86400L
  769. #define SECYR (SECDAY * 365)
  770. #define leapyear(year) ((year) % 4 == 0 && \
  771. ((year) % 100 != 0 || (year) % 400 == 0))
  772. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  773. #define days_in_month(a) (month_days[(a) - 1])
  774. static int month_days[12] = {
  775. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  776. };
  777. /*
  778. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  779. */
  780. void GregorianDay(struct rtc_time * tm)
  781. {
  782. int leapsToDate;
  783. int lastYear;
  784. int day;
  785. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  786. lastYear = tm->tm_year - 1;
  787. /*
  788. * Number of leap corrections to apply up to end of last year
  789. */
  790. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  791. /*
  792. * This year is a leap year if it is divisible by 4 except when it is
  793. * divisible by 100 unless it is divisible by 400
  794. *
  795. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  796. */
  797. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  798. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  799. tm->tm_mday;
  800. tm->tm_wday = day % 7;
  801. }
  802. void to_tm(int tim, struct rtc_time * tm)
  803. {
  804. register int i;
  805. register long hms, day;
  806. day = tim / SECDAY;
  807. hms = tim % SECDAY;
  808. /* Hours, minutes, seconds are easy */
  809. tm->tm_hour = hms / 3600;
  810. tm->tm_min = (hms % 3600) / 60;
  811. tm->tm_sec = (hms % 3600) % 60;
  812. /* Number of years in days */
  813. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  814. day -= days_in_year(i);
  815. tm->tm_year = i;
  816. /* Number of months in days left */
  817. if (leapyear(tm->tm_year))
  818. days_in_month(FEBRUARY) = 29;
  819. for (i = 1; day >= days_in_month(i); i++)
  820. day -= days_in_month(i);
  821. days_in_month(FEBRUARY) = 28;
  822. tm->tm_mon = i;
  823. /* Days are what is left over (+1) from all that. */
  824. tm->tm_mday = day + 1;
  825. /*
  826. * Determine the day of week
  827. */
  828. GregorianDay(tm);
  829. }
  830. /*
  831. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  832. * result.
  833. */
  834. void div128_by_32(u64 dividend_high, u64 dividend_low,
  835. unsigned divisor, struct div_result *dr)
  836. {
  837. unsigned long a, b, c, d;
  838. unsigned long w, x, y, z;
  839. u64 ra, rb, rc;
  840. a = dividend_high >> 32;
  841. b = dividend_high & 0xffffffff;
  842. c = dividend_low >> 32;
  843. d = dividend_low & 0xffffffff;
  844. w = a / divisor;
  845. ra = ((u64)(a - (w * divisor)) << 32) + b;
  846. rb = ((u64) do_div(ra, divisor) << 32) + c;
  847. x = ra;
  848. rc = ((u64) do_div(rb, divisor) << 32) + d;
  849. y = rb;
  850. do_div(rc, divisor);
  851. z = rc;
  852. dr->result_high = ((u64)w << 32) + x;
  853. dr->result_low = ((u64)y << 32) + z;
  854. }
  855. /* We don't need to calibrate delay, we use the CPU timebase for that */
  856. void calibrate_delay(void)
  857. {
  858. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  859. * as the number of __delay(1) in a jiffy, so make it so
  860. */
  861. loops_per_jiffy = tb_ticks_per_jiffy;
  862. }
  863. static int __init rtc_init(void)
  864. {
  865. struct platform_device *pdev;
  866. if (!ppc_md.get_rtc_time)
  867. return -ENODEV;
  868. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  869. if (IS_ERR(pdev))
  870. return PTR_ERR(pdev);
  871. return 0;
  872. }
  873. module_init(rtc_init);