qlge_main.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. NETIF_MSG_TX_QUEUED |
  58. NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
  72. /* required last entry */
  73. {0,}
  74. };
  75. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  76. /* This hardware semaphore causes exclusive access to
  77. * resources shared between the NIC driver, MPI firmware,
  78. * FCOE firmware and the FC driver.
  79. */
  80. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  81. {
  82. u32 sem_bits = 0;
  83. switch (sem_mask) {
  84. case SEM_XGMAC0_MASK:
  85. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  86. break;
  87. case SEM_XGMAC1_MASK:
  88. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  89. break;
  90. case SEM_ICB_MASK:
  91. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  92. break;
  93. case SEM_MAC_ADDR_MASK:
  94. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  95. break;
  96. case SEM_FLASH_MASK:
  97. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  98. break;
  99. case SEM_PROBE_MASK:
  100. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  101. break;
  102. case SEM_RT_IDX_MASK:
  103. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  104. break;
  105. case SEM_PROC_REG_MASK:
  106. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  107. break;
  108. default:
  109. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  110. return -EINVAL;
  111. }
  112. ql_write32(qdev, SEM, sem_bits | sem_mask);
  113. return !(ql_read32(qdev, SEM) & sem_bits);
  114. }
  115. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  116. {
  117. unsigned int wait_count = 30;
  118. do {
  119. if (!ql_sem_trylock(qdev, sem_mask))
  120. return 0;
  121. udelay(100);
  122. } while (--wait_count);
  123. return -ETIMEDOUT;
  124. }
  125. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  126. {
  127. ql_write32(qdev, SEM, sem_mask);
  128. ql_read32(qdev, SEM); /* flush */
  129. }
  130. /* This function waits for a specific bit to come ready
  131. * in a given register. It is used mostly by the initialize
  132. * process, but is also used in kernel thread API such as
  133. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  134. */
  135. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  136. {
  137. u32 temp;
  138. int count = UDELAY_COUNT;
  139. while (count) {
  140. temp = ql_read32(qdev, reg);
  141. /* check for errors */
  142. if (temp & err_bit) {
  143. QPRINTK(qdev, PROBE, ALERT,
  144. "register 0x%.08x access error, value = 0x%.08x!.\n",
  145. reg, temp);
  146. return -EIO;
  147. } else if (temp & bit)
  148. return 0;
  149. udelay(UDELAY_DELAY);
  150. count--;
  151. }
  152. QPRINTK(qdev, PROBE, ALERT,
  153. "Timed out waiting for reg %x to come ready.\n", reg);
  154. return -ETIMEDOUT;
  155. }
  156. /* The CFG register is used to download TX and RX control blocks
  157. * to the chip. This function waits for an operation to complete.
  158. */
  159. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  160. {
  161. int count = UDELAY_COUNT;
  162. u32 temp;
  163. while (count) {
  164. temp = ql_read32(qdev, CFG);
  165. if (temp & CFG_LE)
  166. return -EIO;
  167. if (!(temp & bit))
  168. return 0;
  169. udelay(UDELAY_DELAY);
  170. count--;
  171. }
  172. return -ETIMEDOUT;
  173. }
  174. /* Used to issue init control blocks to hw. Maps control block,
  175. * sets address, triggers download, waits for completion.
  176. */
  177. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  178. u16 q_id)
  179. {
  180. u64 map;
  181. int status = 0;
  182. int direction;
  183. u32 mask;
  184. u32 value;
  185. direction =
  186. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  187. PCI_DMA_FROMDEVICE;
  188. map = pci_map_single(qdev->pdev, ptr, size, direction);
  189. if (pci_dma_mapping_error(qdev->pdev, map)) {
  190. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  191. return -ENOMEM;
  192. }
  193. status = ql_wait_cfg(qdev, bit);
  194. if (status) {
  195. QPRINTK(qdev, IFUP, ERR,
  196. "Timed out waiting for CFG to come ready.\n");
  197. goto exit;
  198. }
  199. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  200. if (status)
  201. goto exit;
  202. ql_write32(qdev, ICB_L, (u32) map);
  203. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  204. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  205. mask = CFG_Q_MASK | (bit << 16);
  206. value = bit | (q_id << CFG_Q_SHIFT);
  207. ql_write32(qdev, CFG, (mask | value));
  208. /*
  209. * Wait for the bit to clear after signaling hw.
  210. */
  211. status = ql_wait_cfg(qdev, bit);
  212. exit:
  213. pci_unmap_single(qdev->pdev, map, size, direction);
  214. return status;
  215. }
  216. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  217. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  218. u32 *value)
  219. {
  220. u32 offset = 0;
  221. int status;
  222. switch (type) {
  223. case MAC_ADDR_TYPE_MULTI_MAC:
  224. case MAC_ADDR_TYPE_CAM_MAC:
  225. {
  226. status =
  227. ql_wait_reg_rdy(qdev,
  228. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  229. if (status)
  230. goto exit;
  231. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  232. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  233. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  234. status =
  235. ql_wait_reg_rdy(qdev,
  236. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  237. if (status)
  238. goto exit;
  239. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  240. status =
  241. ql_wait_reg_rdy(qdev,
  242. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  243. if (status)
  244. goto exit;
  245. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  246. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  247. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  248. status =
  249. ql_wait_reg_rdy(qdev,
  250. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  251. if (status)
  252. goto exit;
  253. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  254. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  255. status =
  256. ql_wait_reg_rdy(qdev,
  257. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  258. if (status)
  259. goto exit;
  260. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  261. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  262. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  263. status =
  264. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  265. MAC_ADDR_MR, 0);
  266. if (status)
  267. goto exit;
  268. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  269. }
  270. break;
  271. }
  272. case MAC_ADDR_TYPE_VLAN:
  273. case MAC_ADDR_TYPE_MULTI_FLTR:
  274. default:
  275. QPRINTK(qdev, IFUP, CRIT,
  276. "Address type %d not yet supported.\n", type);
  277. status = -EPERM;
  278. }
  279. exit:
  280. return status;
  281. }
  282. /* Set up a MAC, multicast or VLAN address for the
  283. * inbound frame matching.
  284. */
  285. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  286. u16 index)
  287. {
  288. u32 offset = 0;
  289. int status = 0;
  290. switch (type) {
  291. case MAC_ADDR_TYPE_MULTI_MAC:
  292. case MAC_ADDR_TYPE_CAM_MAC:
  293. {
  294. u32 cam_output;
  295. u32 upper = (addr[0] << 8) | addr[1];
  296. u32 lower =
  297. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  298. (addr[5]);
  299. QPRINTK(qdev, IFUP, INFO,
  300. "Adding %s address %pM"
  301. " at index %d in the CAM.\n",
  302. ((type ==
  303. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  304. "UNICAST"), addr, index);
  305. status =
  306. ql_wait_reg_rdy(qdev,
  307. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  308. if (status)
  309. goto exit;
  310. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  311. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  312. type); /* type */
  313. ql_write32(qdev, MAC_ADDR_DATA, lower);
  314. status =
  315. ql_wait_reg_rdy(qdev,
  316. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  317. if (status)
  318. goto exit;
  319. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  320. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  321. type); /* type */
  322. ql_write32(qdev, MAC_ADDR_DATA, upper);
  323. status =
  324. ql_wait_reg_rdy(qdev,
  325. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  326. if (status)
  327. goto exit;
  328. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  329. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  330. type); /* type */
  331. /* This field should also include the queue id
  332. and possibly the function id. Right now we hardcode
  333. the route field to NIC core.
  334. */
  335. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  336. cam_output = (CAM_OUT_ROUTE_NIC |
  337. (qdev->
  338. func << CAM_OUT_FUNC_SHIFT) |
  339. (qdev->
  340. rss_ring_first_cq_id <<
  341. CAM_OUT_CQ_ID_SHIFT));
  342. if (qdev->vlgrp)
  343. cam_output |= CAM_OUT_RV;
  344. /* route to NIC core */
  345. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  346. }
  347. break;
  348. }
  349. case MAC_ADDR_TYPE_VLAN:
  350. {
  351. u32 enable_bit = *((u32 *) &addr[0]);
  352. /* For VLAN, the addr actually holds a bit that
  353. * either enables or disables the vlan id we are
  354. * addressing. It's either MAC_ADDR_E on or off.
  355. * That's bit-27 we're talking about.
  356. */
  357. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  358. (enable_bit ? "Adding" : "Removing"),
  359. index, (enable_bit ? "to" : "from"));
  360. status =
  361. ql_wait_reg_rdy(qdev,
  362. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  363. if (status)
  364. goto exit;
  365. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  366. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  367. type | /* type */
  368. enable_bit); /* enable/disable */
  369. break;
  370. }
  371. case MAC_ADDR_TYPE_MULTI_FLTR:
  372. default:
  373. QPRINTK(qdev, IFUP, CRIT,
  374. "Address type %d not yet supported.\n", type);
  375. status = -EPERM;
  376. }
  377. exit:
  378. return status;
  379. }
  380. /* Get a specific frame routing value from the CAM.
  381. * Used for debug and reg dump.
  382. */
  383. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  384. {
  385. int status = 0;
  386. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  387. if (status)
  388. goto exit;
  389. ql_write32(qdev, RT_IDX,
  390. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  391. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  392. if (status)
  393. goto exit;
  394. *value = ql_read32(qdev, RT_DATA);
  395. exit:
  396. return status;
  397. }
  398. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  399. * to route different frame types to various inbound queues. We send broadcast/
  400. * multicast/error frames to the default queue for slow handling,
  401. * and CAM hit/RSS frames to the fast handling queues.
  402. */
  403. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  404. int enable)
  405. {
  406. int status = -EINVAL; /* Return error if no mask match. */
  407. u32 value = 0;
  408. QPRINTK(qdev, IFUP, DEBUG,
  409. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  410. (enable ? "Adding" : "Removing"),
  411. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  412. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  413. ((index ==
  414. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  415. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  416. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  417. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  418. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  419. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  420. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  421. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  422. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  423. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  424. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  425. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  426. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  427. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  428. (enable ? "to" : "from"));
  429. switch (mask) {
  430. case RT_IDX_CAM_HIT:
  431. {
  432. value = RT_IDX_DST_CAM_Q | /* dest */
  433. RT_IDX_TYPE_NICQ | /* type */
  434. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  435. break;
  436. }
  437. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  438. {
  439. value = RT_IDX_DST_DFLT_Q | /* dest */
  440. RT_IDX_TYPE_NICQ | /* type */
  441. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  442. break;
  443. }
  444. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  445. {
  446. value = RT_IDX_DST_DFLT_Q | /* dest */
  447. RT_IDX_TYPE_NICQ | /* type */
  448. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  449. break;
  450. }
  451. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  452. {
  453. value = RT_IDX_DST_DFLT_Q | /* dest */
  454. RT_IDX_TYPE_NICQ | /* type */
  455. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  456. break;
  457. }
  458. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  459. {
  460. value = RT_IDX_DST_CAM_Q | /* dest */
  461. RT_IDX_TYPE_NICQ | /* type */
  462. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  463. break;
  464. }
  465. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  466. {
  467. value = RT_IDX_DST_CAM_Q | /* dest */
  468. RT_IDX_TYPE_NICQ | /* type */
  469. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  470. break;
  471. }
  472. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  473. {
  474. value = RT_IDX_DST_RSS | /* dest */
  475. RT_IDX_TYPE_NICQ | /* type */
  476. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  477. break;
  478. }
  479. case 0: /* Clear the E-bit on an entry. */
  480. {
  481. value = RT_IDX_DST_DFLT_Q | /* dest */
  482. RT_IDX_TYPE_NICQ | /* type */
  483. (index << RT_IDX_IDX_SHIFT);/* index */
  484. break;
  485. }
  486. default:
  487. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  488. mask);
  489. status = -EPERM;
  490. goto exit;
  491. }
  492. if (value) {
  493. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  494. if (status)
  495. goto exit;
  496. value |= (enable ? RT_IDX_E : 0);
  497. ql_write32(qdev, RT_IDX, value);
  498. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  499. }
  500. exit:
  501. return status;
  502. }
  503. static void ql_enable_interrupts(struct ql_adapter *qdev)
  504. {
  505. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  506. }
  507. static void ql_disable_interrupts(struct ql_adapter *qdev)
  508. {
  509. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  510. }
  511. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  512. * Otherwise, we may have multiple outstanding workers and don't want to
  513. * enable until the last one finishes. In this case, the irq_cnt gets
  514. * incremented everytime we queue a worker and decremented everytime
  515. * a worker finishes. Once it hits zero we enable the interrupt.
  516. */
  517. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  518. {
  519. u32 var = 0;
  520. unsigned long hw_flags = 0;
  521. struct intr_context *ctx = qdev->intr_context + intr;
  522. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  523. /* Always enable if we're MSIX multi interrupts and
  524. * it's not the default (zeroeth) interrupt.
  525. */
  526. ql_write32(qdev, INTR_EN,
  527. ctx->intr_en_mask);
  528. var = ql_read32(qdev, STS);
  529. return var;
  530. }
  531. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  532. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  533. ql_write32(qdev, INTR_EN,
  534. ctx->intr_en_mask);
  535. var = ql_read32(qdev, STS);
  536. }
  537. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  538. return var;
  539. }
  540. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  541. {
  542. u32 var = 0;
  543. unsigned long hw_flags;
  544. struct intr_context *ctx;
  545. /* HW disables for us if we're MSIX multi interrupts and
  546. * it's not the default (zeroeth) interrupt.
  547. */
  548. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  549. return 0;
  550. ctx = qdev->intr_context + intr;
  551. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  552. if (!atomic_read(&ctx->irq_cnt)) {
  553. ql_write32(qdev, INTR_EN,
  554. ctx->intr_dis_mask);
  555. var = ql_read32(qdev, STS);
  556. }
  557. atomic_inc(&ctx->irq_cnt);
  558. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  559. return var;
  560. }
  561. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  562. {
  563. int i;
  564. for (i = 0; i < qdev->intr_count; i++) {
  565. /* The enable call does a atomic_dec_and_test
  566. * and enables only if the result is zero.
  567. * So we precharge it here.
  568. */
  569. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  570. i == 0))
  571. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  572. ql_enable_completion_interrupt(qdev, i);
  573. }
  574. }
  575. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  576. {
  577. int status = 0;
  578. /* wait for reg to come ready */
  579. status = ql_wait_reg_rdy(qdev,
  580. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  581. if (status)
  582. goto exit;
  583. /* set up for reg read */
  584. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  585. /* wait for reg to come ready */
  586. status = ql_wait_reg_rdy(qdev,
  587. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  588. if (status)
  589. goto exit;
  590. /* This data is stored on flash as an array of
  591. * __le32. Since ql_read32() returns cpu endian
  592. * we need to swap it back.
  593. */
  594. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  595. exit:
  596. return status;
  597. }
  598. static int ql_get_flash_params(struct ql_adapter *qdev)
  599. {
  600. int i;
  601. int status;
  602. __le32 *p = (__le32 *)&qdev->flash;
  603. u32 offset = 0;
  604. /* Second function's parameters follow the first
  605. * function's.
  606. */
  607. if (qdev->func)
  608. offset = sizeof(qdev->flash) / sizeof(u32);
  609. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  610. return -ETIMEDOUT;
  611. for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
  612. status = ql_read_flash_word(qdev, i+offset, p);
  613. if (status) {
  614. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  615. goto exit;
  616. }
  617. }
  618. exit:
  619. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  620. return status;
  621. }
  622. /* xgmac register are located behind the xgmac_addr and xgmac_data
  623. * register pair. Each read/write requires us to wait for the ready
  624. * bit before reading/writing the data.
  625. */
  626. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  627. {
  628. int status;
  629. /* wait for reg to come ready */
  630. status = ql_wait_reg_rdy(qdev,
  631. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  632. if (status)
  633. return status;
  634. /* write the data to the data reg */
  635. ql_write32(qdev, XGMAC_DATA, data);
  636. /* trigger the write */
  637. ql_write32(qdev, XGMAC_ADDR, reg);
  638. return status;
  639. }
  640. /* xgmac register are located behind the xgmac_addr and xgmac_data
  641. * register pair. Each read/write requires us to wait for the ready
  642. * bit before reading/writing the data.
  643. */
  644. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  645. {
  646. int status = 0;
  647. /* wait for reg to come ready */
  648. status = ql_wait_reg_rdy(qdev,
  649. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  650. if (status)
  651. goto exit;
  652. /* set up for reg read */
  653. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  654. /* wait for reg to come ready */
  655. status = ql_wait_reg_rdy(qdev,
  656. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  657. if (status)
  658. goto exit;
  659. /* get the data */
  660. *data = ql_read32(qdev, XGMAC_DATA);
  661. exit:
  662. return status;
  663. }
  664. /* This is used for reading the 64-bit statistics regs. */
  665. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  666. {
  667. int status = 0;
  668. u32 hi = 0;
  669. u32 lo = 0;
  670. status = ql_read_xgmac_reg(qdev, reg, &lo);
  671. if (status)
  672. goto exit;
  673. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  674. if (status)
  675. goto exit;
  676. *data = (u64) lo | ((u64) hi << 32);
  677. exit:
  678. return status;
  679. }
  680. /* Take the MAC Core out of reset.
  681. * Enable statistics counting.
  682. * Take the transmitter/receiver out of reset.
  683. * This functionality may be done in the MPI firmware at a
  684. * later date.
  685. */
  686. static int ql_port_initialize(struct ql_adapter *qdev)
  687. {
  688. int status = 0;
  689. u32 data;
  690. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  691. /* Another function has the semaphore, so
  692. * wait for the port init bit to come ready.
  693. */
  694. QPRINTK(qdev, LINK, INFO,
  695. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  696. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  697. if (status) {
  698. QPRINTK(qdev, LINK, CRIT,
  699. "Port initialize timed out.\n");
  700. }
  701. return status;
  702. }
  703. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  704. /* Set the core reset. */
  705. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  706. if (status)
  707. goto end;
  708. data |= GLOBAL_CFG_RESET;
  709. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  710. if (status)
  711. goto end;
  712. /* Clear the core reset and turn on jumbo for receiver. */
  713. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  714. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  715. data |= GLOBAL_CFG_TX_STAT_EN;
  716. data |= GLOBAL_CFG_RX_STAT_EN;
  717. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  718. if (status)
  719. goto end;
  720. /* Enable transmitter, and clear it's reset. */
  721. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  722. if (status)
  723. goto end;
  724. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  725. data |= TX_CFG_EN; /* Enable the transmitter. */
  726. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  727. if (status)
  728. goto end;
  729. /* Enable receiver and clear it's reset. */
  730. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  731. if (status)
  732. goto end;
  733. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  734. data |= RX_CFG_EN; /* Enable the receiver. */
  735. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  736. if (status)
  737. goto end;
  738. /* Turn on jumbo. */
  739. status =
  740. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  741. if (status)
  742. goto end;
  743. status =
  744. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  745. if (status)
  746. goto end;
  747. /* Signal to the world that the port is enabled. */
  748. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  749. end:
  750. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  751. return status;
  752. }
  753. /* Get the next large buffer. */
  754. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  755. {
  756. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  757. rx_ring->lbq_curr_idx++;
  758. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  759. rx_ring->lbq_curr_idx = 0;
  760. rx_ring->lbq_free_cnt++;
  761. return lbq_desc;
  762. }
  763. /* Get the next small buffer. */
  764. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  765. {
  766. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  767. rx_ring->sbq_curr_idx++;
  768. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  769. rx_ring->sbq_curr_idx = 0;
  770. rx_ring->sbq_free_cnt++;
  771. return sbq_desc;
  772. }
  773. /* Update an rx ring index. */
  774. static void ql_update_cq(struct rx_ring *rx_ring)
  775. {
  776. rx_ring->cnsmr_idx++;
  777. rx_ring->curr_entry++;
  778. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  779. rx_ring->cnsmr_idx = 0;
  780. rx_ring->curr_entry = rx_ring->cq_base;
  781. }
  782. }
  783. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  784. {
  785. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  786. }
  787. /* Process (refill) a large buffer queue. */
  788. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  789. {
  790. u32 clean_idx = rx_ring->lbq_clean_idx;
  791. u32 start_idx = clean_idx;
  792. struct bq_desc *lbq_desc;
  793. u64 map;
  794. int i;
  795. while (rx_ring->lbq_free_cnt > 16) {
  796. for (i = 0; i < 16; i++) {
  797. QPRINTK(qdev, RX_STATUS, DEBUG,
  798. "lbq: try cleaning clean_idx = %d.\n",
  799. clean_idx);
  800. lbq_desc = &rx_ring->lbq[clean_idx];
  801. if (lbq_desc->p.lbq_page == NULL) {
  802. QPRINTK(qdev, RX_STATUS, DEBUG,
  803. "lbq: getting new page for index %d.\n",
  804. lbq_desc->index);
  805. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  806. if (lbq_desc->p.lbq_page == NULL) {
  807. rx_ring->lbq_clean_idx = clean_idx;
  808. QPRINTK(qdev, RX_STATUS, ERR,
  809. "Couldn't get a page.\n");
  810. return;
  811. }
  812. map = pci_map_page(qdev->pdev,
  813. lbq_desc->p.lbq_page,
  814. 0, PAGE_SIZE,
  815. PCI_DMA_FROMDEVICE);
  816. if (pci_dma_mapping_error(qdev->pdev, map)) {
  817. rx_ring->lbq_clean_idx = clean_idx;
  818. put_page(lbq_desc->p.lbq_page);
  819. lbq_desc->p.lbq_page = NULL;
  820. QPRINTK(qdev, RX_STATUS, ERR,
  821. "PCI mapping failed.\n");
  822. return;
  823. }
  824. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  825. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  826. *lbq_desc->addr = cpu_to_le64(map);
  827. }
  828. clean_idx++;
  829. if (clean_idx == rx_ring->lbq_len)
  830. clean_idx = 0;
  831. }
  832. rx_ring->lbq_clean_idx = clean_idx;
  833. rx_ring->lbq_prod_idx += 16;
  834. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  835. rx_ring->lbq_prod_idx = 0;
  836. rx_ring->lbq_free_cnt -= 16;
  837. }
  838. if (start_idx != clean_idx) {
  839. QPRINTK(qdev, RX_STATUS, DEBUG,
  840. "lbq: updating prod idx = %d.\n",
  841. rx_ring->lbq_prod_idx);
  842. ql_write_db_reg(rx_ring->lbq_prod_idx,
  843. rx_ring->lbq_prod_idx_db_reg);
  844. }
  845. }
  846. /* Process (refill) a small buffer queue. */
  847. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  848. {
  849. u32 clean_idx = rx_ring->sbq_clean_idx;
  850. u32 start_idx = clean_idx;
  851. struct bq_desc *sbq_desc;
  852. u64 map;
  853. int i;
  854. while (rx_ring->sbq_free_cnt > 16) {
  855. for (i = 0; i < 16; i++) {
  856. sbq_desc = &rx_ring->sbq[clean_idx];
  857. QPRINTK(qdev, RX_STATUS, DEBUG,
  858. "sbq: try cleaning clean_idx = %d.\n",
  859. clean_idx);
  860. if (sbq_desc->p.skb == NULL) {
  861. QPRINTK(qdev, RX_STATUS, DEBUG,
  862. "sbq: getting new skb for index %d.\n",
  863. sbq_desc->index);
  864. sbq_desc->p.skb =
  865. netdev_alloc_skb(qdev->ndev,
  866. rx_ring->sbq_buf_size);
  867. if (sbq_desc->p.skb == NULL) {
  868. QPRINTK(qdev, PROBE, ERR,
  869. "Couldn't get an skb.\n");
  870. rx_ring->sbq_clean_idx = clean_idx;
  871. return;
  872. }
  873. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  874. map = pci_map_single(qdev->pdev,
  875. sbq_desc->p.skb->data,
  876. rx_ring->sbq_buf_size /
  877. 2, PCI_DMA_FROMDEVICE);
  878. if (pci_dma_mapping_error(qdev->pdev, map)) {
  879. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  880. rx_ring->sbq_clean_idx = clean_idx;
  881. dev_kfree_skb_any(sbq_desc->p.skb);
  882. sbq_desc->p.skb = NULL;
  883. return;
  884. }
  885. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  886. pci_unmap_len_set(sbq_desc, maplen,
  887. rx_ring->sbq_buf_size / 2);
  888. *sbq_desc->addr = cpu_to_le64(map);
  889. }
  890. clean_idx++;
  891. if (clean_idx == rx_ring->sbq_len)
  892. clean_idx = 0;
  893. }
  894. rx_ring->sbq_clean_idx = clean_idx;
  895. rx_ring->sbq_prod_idx += 16;
  896. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  897. rx_ring->sbq_prod_idx = 0;
  898. rx_ring->sbq_free_cnt -= 16;
  899. }
  900. if (start_idx != clean_idx) {
  901. QPRINTK(qdev, RX_STATUS, DEBUG,
  902. "sbq: updating prod idx = %d.\n",
  903. rx_ring->sbq_prod_idx);
  904. ql_write_db_reg(rx_ring->sbq_prod_idx,
  905. rx_ring->sbq_prod_idx_db_reg);
  906. }
  907. }
  908. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  909. struct rx_ring *rx_ring)
  910. {
  911. ql_update_sbq(qdev, rx_ring);
  912. ql_update_lbq(qdev, rx_ring);
  913. }
  914. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  915. * fails at some stage, or from the interrupt when a tx completes.
  916. */
  917. static void ql_unmap_send(struct ql_adapter *qdev,
  918. struct tx_ring_desc *tx_ring_desc, int mapped)
  919. {
  920. int i;
  921. for (i = 0; i < mapped; i++) {
  922. if (i == 0 || (i == 7 && mapped > 7)) {
  923. /*
  924. * Unmap the skb->data area, or the
  925. * external sglist (AKA the Outbound
  926. * Address List (OAL)).
  927. * If its the zeroeth element, then it's
  928. * the skb->data area. If it's the 7th
  929. * element and there is more than 6 frags,
  930. * then its an OAL.
  931. */
  932. if (i == 7) {
  933. QPRINTK(qdev, TX_DONE, DEBUG,
  934. "unmapping OAL area.\n");
  935. }
  936. pci_unmap_single(qdev->pdev,
  937. pci_unmap_addr(&tx_ring_desc->map[i],
  938. mapaddr),
  939. pci_unmap_len(&tx_ring_desc->map[i],
  940. maplen),
  941. PCI_DMA_TODEVICE);
  942. } else {
  943. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  944. i);
  945. pci_unmap_page(qdev->pdev,
  946. pci_unmap_addr(&tx_ring_desc->map[i],
  947. mapaddr),
  948. pci_unmap_len(&tx_ring_desc->map[i],
  949. maplen), PCI_DMA_TODEVICE);
  950. }
  951. }
  952. }
  953. /* Map the buffers for this transmit. This will return
  954. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  955. */
  956. static int ql_map_send(struct ql_adapter *qdev,
  957. struct ob_mac_iocb_req *mac_iocb_ptr,
  958. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  959. {
  960. int len = skb_headlen(skb);
  961. dma_addr_t map;
  962. int frag_idx, err, map_idx = 0;
  963. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  964. int frag_cnt = skb_shinfo(skb)->nr_frags;
  965. if (frag_cnt) {
  966. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  967. }
  968. /*
  969. * Map the skb buffer first.
  970. */
  971. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  972. err = pci_dma_mapping_error(qdev->pdev, map);
  973. if (err) {
  974. QPRINTK(qdev, TX_QUEUED, ERR,
  975. "PCI mapping failed with error: %d\n", err);
  976. return NETDEV_TX_BUSY;
  977. }
  978. tbd->len = cpu_to_le32(len);
  979. tbd->addr = cpu_to_le64(map);
  980. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  981. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  982. map_idx++;
  983. /*
  984. * This loop fills the remainder of the 8 address descriptors
  985. * in the IOCB. If there are more than 7 fragments, then the
  986. * eighth address desc will point to an external list (OAL).
  987. * When this happens, the remainder of the frags will be stored
  988. * in this list.
  989. */
  990. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  991. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  992. tbd++;
  993. if (frag_idx == 6 && frag_cnt > 7) {
  994. /* Let's tack on an sglist.
  995. * Our control block will now
  996. * look like this:
  997. * iocb->seg[0] = skb->data
  998. * iocb->seg[1] = frag[0]
  999. * iocb->seg[2] = frag[1]
  1000. * iocb->seg[3] = frag[2]
  1001. * iocb->seg[4] = frag[3]
  1002. * iocb->seg[5] = frag[4]
  1003. * iocb->seg[6] = frag[5]
  1004. * iocb->seg[7] = ptr to OAL (external sglist)
  1005. * oal->seg[0] = frag[6]
  1006. * oal->seg[1] = frag[7]
  1007. * oal->seg[2] = frag[8]
  1008. * oal->seg[3] = frag[9]
  1009. * oal->seg[4] = frag[10]
  1010. * etc...
  1011. */
  1012. /* Tack on the OAL in the eighth segment of IOCB. */
  1013. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1014. sizeof(struct oal),
  1015. PCI_DMA_TODEVICE);
  1016. err = pci_dma_mapping_error(qdev->pdev, map);
  1017. if (err) {
  1018. QPRINTK(qdev, TX_QUEUED, ERR,
  1019. "PCI mapping outbound address list with error: %d\n",
  1020. err);
  1021. goto map_error;
  1022. }
  1023. tbd->addr = cpu_to_le64(map);
  1024. /*
  1025. * The length is the number of fragments
  1026. * that remain to be mapped times the length
  1027. * of our sglist (OAL).
  1028. */
  1029. tbd->len =
  1030. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1031. (frag_cnt - frag_idx)) | TX_DESC_C);
  1032. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1033. map);
  1034. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1035. sizeof(struct oal));
  1036. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1037. map_idx++;
  1038. }
  1039. map =
  1040. pci_map_page(qdev->pdev, frag->page,
  1041. frag->page_offset, frag->size,
  1042. PCI_DMA_TODEVICE);
  1043. err = pci_dma_mapping_error(qdev->pdev, map);
  1044. if (err) {
  1045. QPRINTK(qdev, TX_QUEUED, ERR,
  1046. "PCI mapping frags failed with error: %d.\n",
  1047. err);
  1048. goto map_error;
  1049. }
  1050. tbd->addr = cpu_to_le64(map);
  1051. tbd->len = cpu_to_le32(frag->size);
  1052. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1053. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1054. frag->size);
  1055. }
  1056. /* Save the number of segments we've mapped. */
  1057. tx_ring_desc->map_cnt = map_idx;
  1058. /* Terminate the last segment. */
  1059. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1060. return NETDEV_TX_OK;
  1061. map_error:
  1062. /*
  1063. * If the first frag mapping failed, then i will be zero.
  1064. * This causes the unmap of the skb->data area. Otherwise
  1065. * we pass in the number of frags that mapped successfully
  1066. * so they can be umapped.
  1067. */
  1068. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1069. return NETDEV_TX_BUSY;
  1070. }
  1071. static void ql_realign_skb(struct sk_buff *skb, int len)
  1072. {
  1073. void *temp_addr = skb->data;
  1074. /* Undo the skb_reserve(skb,32) we did before
  1075. * giving to hardware, and realign data on
  1076. * a 2-byte boundary.
  1077. */
  1078. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1079. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1080. skb_copy_to_linear_data(skb, temp_addr,
  1081. (unsigned int)len);
  1082. }
  1083. /*
  1084. * This function builds an skb for the given inbound
  1085. * completion. It will be rewritten for readability in the near
  1086. * future, but for not it works well.
  1087. */
  1088. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1089. struct rx_ring *rx_ring,
  1090. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1091. {
  1092. struct bq_desc *lbq_desc;
  1093. struct bq_desc *sbq_desc;
  1094. struct sk_buff *skb = NULL;
  1095. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1096. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1097. /*
  1098. * Handle the header buffer if present.
  1099. */
  1100. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1101. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1102. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1103. /*
  1104. * Headers fit nicely into a small buffer.
  1105. */
  1106. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1107. pci_unmap_single(qdev->pdev,
  1108. pci_unmap_addr(sbq_desc, mapaddr),
  1109. pci_unmap_len(sbq_desc, maplen),
  1110. PCI_DMA_FROMDEVICE);
  1111. skb = sbq_desc->p.skb;
  1112. ql_realign_skb(skb, hdr_len);
  1113. skb_put(skb, hdr_len);
  1114. sbq_desc->p.skb = NULL;
  1115. }
  1116. /*
  1117. * Handle the data buffer(s).
  1118. */
  1119. if (unlikely(!length)) { /* Is there data too? */
  1120. QPRINTK(qdev, RX_STATUS, DEBUG,
  1121. "No Data buffer in this packet.\n");
  1122. return skb;
  1123. }
  1124. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1125. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1126. QPRINTK(qdev, RX_STATUS, DEBUG,
  1127. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1128. /*
  1129. * Data is less than small buffer size so it's
  1130. * stuffed in a small buffer.
  1131. * For this case we append the data
  1132. * from the "data" small buffer to the "header" small
  1133. * buffer.
  1134. */
  1135. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1136. pci_dma_sync_single_for_cpu(qdev->pdev,
  1137. pci_unmap_addr
  1138. (sbq_desc, mapaddr),
  1139. pci_unmap_len
  1140. (sbq_desc, maplen),
  1141. PCI_DMA_FROMDEVICE);
  1142. memcpy(skb_put(skb, length),
  1143. sbq_desc->p.skb->data, length);
  1144. pci_dma_sync_single_for_device(qdev->pdev,
  1145. pci_unmap_addr
  1146. (sbq_desc,
  1147. mapaddr),
  1148. pci_unmap_len
  1149. (sbq_desc,
  1150. maplen),
  1151. PCI_DMA_FROMDEVICE);
  1152. } else {
  1153. QPRINTK(qdev, RX_STATUS, DEBUG,
  1154. "%d bytes in a single small buffer.\n", length);
  1155. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1156. skb = sbq_desc->p.skb;
  1157. ql_realign_skb(skb, length);
  1158. skb_put(skb, length);
  1159. pci_unmap_single(qdev->pdev,
  1160. pci_unmap_addr(sbq_desc,
  1161. mapaddr),
  1162. pci_unmap_len(sbq_desc,
  1163. maplen),
  1164. PCI_DMA_FROMDEVICE);
  1165. sbq_desc->p.skb = NULL;
  1166. }
  1167. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1168. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1169. QPRINTK(qdev, RX_STATUS, DEBUG,
  1170. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1171. /*
  1172. * The data is in a single large buffer. We
  1173. * chain it to the header buffer's skb and let
  1174. * it rip.
  1175. */
  1176. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1177. pci_unmap_page(qdev->pdev,
  1178. pci_unmap_addr(lbq_desc,
  1179. mapaddr),
  1180. pci_unmap_len(lbq_desc, maplen),
  1181. PCI_DMA_FROMDEVICE);
  1182. QPRINTK(qdev, RX_STATUS, DEBUG,
  1183. "Chaining page to skb.\n");
  1184. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1185. 0, length);
  1186. skb->len += length;
  1187. skb->data_len += length;
  1188. skb->truesize += length;
  1189. lbq_desc->p.lbq_page = NULL;
  1190. } else {
  1191. /*
  1192. * The headers and data are in a single large buffer. We
  1193. * copy it to a new skb and let it go. This can happen with
  1194. * jumbo mtu on a non-TCP/UDP frame.
  1195. */
  1196. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1197. skb = netdev_alloc_skb(qdev->ndev, length);
  1198. if (skb == NULL) {
  1199. QPRINTK(qdev, PROBE, DEBUG,
  1200. "No skb available, drop the packet.\n");
  1201. return NULL;
  1202. }
  1203. pci_unmap_page(qdev->pdev,
  1204. pci_unmap_addr(lbq_desc,
  1205. mapaddr),
  1206. pci_unmap_len(lbq_desc, maplen),
  1207. PCI_DMA_FROMDEVICE);
  1208. skb_reserve(skb, NET_IP_ALIGN);
  1209. QPRINTK(qdev, RX_STATUS, DEBUG,
  1210. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1211. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1212. 0, length);
  1213. skb->len += length;
  1214. skb->data_len += length;
  1215. skb->truesize += length;
  1216. length -= length;
  1217. lbq_desc->p.lbq_page = NULL;
  1218. __pskb_pull_tail(skb,
  1219. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1220. VLAN_ETH_HLEN : ETH_HLEN);
  1221. }
  1222. } else {
  1223. /*
  1224. * The data is in a chain of large buffers
  1225. * pointed to by a small buffer. We loop
  1226. * thru and chain them to the our small header
  1227. * buffer's skb.
  1228. * frags: There are 18 max frags and our small
  1229. * buffer will hold 32 of them. The thing is,
  1230. * we'll use 3 max for our 9000 byte jumbo
  1231. * frames. If the MTU goes up we could
  1232. * eventually be in trouble.
  1233. */
  1234. int size, offset, i = 0;
  1235. __le64 *bq, bq_array[8];
  1236. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1237. pci_unmap_single(qdev->pdev,
  1238. pci_unmap_addr(sbq_desc, mapaddr),
  1239. pci_unmap_len(sbq_desc, maplen),
  1240. PCI_DMA_FROMDEVICE);
  1241. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1242. /*
  1243. * This is an non TCP/UDP IP frame, so
  1244. * the headers aren't split into a small
  1245. * buffer. We have to use the small buffer
  1246. * that contains our sg list as our skb to
  1247. * send upstairs. Copy the sg list here to
  1248. * a local buffer and use it to find the
  1249. * pages to chain.
  1250. */
  1251. QPRINTK(qdev, RX_STATUS, DEBUG,
  1252. "%d bytes of headers & data in chain of large.\n", length);
  1253. skb = sbq_desc->p.skb;
  1254. bq = &bq_array[0];
  1255. memcpy(bq, skb->data, sizeof(bq_array));
  1256. sbq_desc->p.skb = NULL;
  1257. skb_reserve(skb, NET_IP_ALIGN);
  1258. } else {
  1259. QPRINTK(qdev, RX_STATUS, DEBUG,
  1260. "Headers in small, %d bytes of data in chain of large.\n", length);
  1261. bq = (__le64 *)sbq_desc->p.skb->data;
  1262. }
  1263. while (length > 0) {
  1264. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1265. pci_unmap_page(qdev->pdev,
  1266. pci_unmap_addr(lbq_desc,
  1267. mapaddr),
  1268. pci_unmap_len(lbq_desc,
  1269. maplen),
  1270. PCI_DMA_FROMDEVICE);
  1271. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1272. offset = 0;
  1273. QPRINTK(qdev, RX_STATUS, DEBUG,
  1274. "Adding page %d to skb for %d bytes.\n",
  1275. i, size);
  1276. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1277. offset, size);
  1278. skb->len += size;
  1279. skb->data_len += size;
  1280. skb->truesize += size;
  1281. length -= size;
  1282. lbq_desc->p.lbq_page = NULL;
  1283. bq++;
  1284. i++;
  1285. }
  1286. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1287. VLAN_ETH_HLEN : ETH_HLEN);
  1288. }
  1289. return skb;
  1290. }
  1291. /* Process an inbound completion from an rx ring. */
  1292. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1293. struct rx_ring *rx_ring,
  1294. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1295. {
  1296. struct net_device *ndev = qdev->ndev;
  1297. struct sk_buff *skb = NULL;
  1298. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1299. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1300. if (unlikely(!skb)) {
  1301. QPRINTK(qdev, RX_STATUS, DEBUG,
  1302. "No skb available, drop packet.\n");
  1303. return;
  1304. }
  1305. prefetch(skb->data);
  1306. skb->dev = ndev;
  1307. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1308. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1309. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1310. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1311. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1312. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1313. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1314. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1315. }
  1316. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1317. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1318. }
  1319. if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
  1320. QPRINTK(qdev, RX_STATUS, ERR,
  1321. "Bad checksum for this %s packet.\n",
  1322. ((ib_mac_rsp->
  1323. flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
  1324. skb->ip_summed = CHECKSUM_NONE;
  1325. } else if (qdev->rx_csum &&
  1326. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
  1327. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1328. !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
  1329. QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
  1330. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1331. }
  1332. qdev->stats.rx_packets++;
  1333. qdev->stats.rx_bytes += skb->len;
  1334. skb->protocol = eth_type_trans(skb, ndev);
  1335. skb_record_rx_queue(skb, rx_ring - &qdev->rx_ring[0]);
  1336. if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
  1337. QPRINTK(qdev, RX_STATUS, DEBUG,
  1338. "Passing a VLAN packet upstream.\n");
  1339. vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
  1340. le16_to_cpu(ib_mac_rsp->vlan_id));
  1341. } else {
  1342. QPRINTK(qdev, RX_STATUS, DEBUG,
  1343. "Passing a normal packet upstream.\n");
  1344. netif_receive_skb(skb);
  1345. }
  1346. }
  1347. /* Process an outbound completion from an rx ring. */
  1348. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1349. struct ob_mac_iocb_rsp *mac_rsp)
  1350. {
  1351. struct tx_ring *tx_ring;
  1352. struct tx_ring_desc *tx_ring_desc;
  1353. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1354. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1355. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1356. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1357. qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
  1358. qdev->stats.tx_packets++;
  1359. dev_kfree_skb(tx_ring_desc->skb);
  1360. tx_ring_desc->skb = NULL;
  1361. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1362. OB_MAC_IOCB_RSP_S |
  1363. OB_MAC_IOCB_RSP_L |
  1364. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1365. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1366. QPRINTK(qdev, TX_DONE, WARNING,
  1367. "Total descriptor length did not match transfer length.\n");
  1368. }
  1369. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1370. QPRINTK(qdev, TX_DONE, WARNING,
  1371. "Frame too short to be legal, not sent.\n");
  1372. }
  1373. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1374. QPRINTK(qdev, TX_DONE, WARNING,
  1375. "Frame too long, but sent anyway.\n");
  1376. }
  1377. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1378. QPRINTK(qdev, TX_DONE, WARNING,
  1379. "PCI backplane error. Frame not sent.\n");
  1380. }
  1381. }
  1382. atomic_inc(&tx_ring->tx_count);
  1383. }
  1384. /* Fire up a handler to reset the MPI processor. */
  1385. void ql_queue_fw_error(struct ql_adapter *qdev)
  1386. {
  1387. netif_stop_queue(qdev->ndev);
  1388. netif_carrier_off(qdev->ndev);
  1389. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1390. }
  1391. void ql_queue_asic_error(struct ql_adapter *qdev)
  1392. {
  1393. netif_stop_queue(qdev->ndev);
  1394. netif_carrier_off(qdev->ndev);
  1395. ql_disable_interrupts(qdev);
  1396. /* Clear adapter up bit to signal the recovery
  1397. * process that it shouldn't kill the reset worker
  1398. * thread
  1399. */
  1400. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1401. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1402. }
  1403. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1404. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1405. {
  1406. switch (ib_ae_rsp->event) {
  1407. case MGMT_ERR_EVENT:
  1408. QPRINTK(qdev, RX_ERR, ERR,
  1409. "Management Processor Fatal Error.\n");
  1410. ql_queue_fw_error(qdev);
  1411. return;
  1412. case CAM_LOOKUP_ERR_EVENT:
  1413. QPRINTK(qdev, LINK, ERR,
  1414. "Multiple CAM hits lookup occurred.\n");
  1415. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1416. ql_queue_asic_error(qdev);
  1417. return;
  1418. case SOFT_ECC_ERROR_EVENT:
  1419. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1420. ql_queue_asic_error(qdev);
  1421. break;
  1422. case PCI_ERR_ANON_BUF_RD:
  1423. QPRINTK(qdev, RX_ERR, ERR,
  1424. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1425. ib_ae_rsp->q_id);
  1426. ql_queue_asic_error(qdev);
  1427. break;
  1428. default:
  1429. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1430. ib_ae_rsp->event);
  1431. ql_queue_asic_error(qdev);
  1432. break;
  1433. }
  1434. }
  1435. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1436. {
  1437. struct ql_adapter *qdev = rx_ring->qdev;
  1438. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1439. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1440. int count = 0;
  1441. /* While there are entries in the completion queue. */
  1442. while (prod != rx_ring->cnsmr_idx) {
  1443. QPRINTK(qdev, RX_STATUS, DEBUG,
  1444. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1445. prod, rx_ring->cnsmr_idx);
  1446. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1447. rmb();
  1448. switch (net_rsp->opcode) {
  1449. case OPCODE_OB_MAC_TSO_IOCB:
  1450. case OPCODE_OB_MAC_IOCB:
  1451. ql_process_mac_tx_intr(qdev, net_rsp);
  1452. break;
  1453. default:
  1454. QPRINTK(qdev, RX_STATUS, DEBUG,
  1455. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1456. net_rsp->opcode);
  1457. }
  1458. count++;
  1459. ql_update_cq(rx_ring);
  1460. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1461. }
  1462. ql_write_cq_idx(rx_ring);
  1463. if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
  1464. struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1465. if (atomic_read(&tx_ring->queue_stopped) &&
  1466. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1467. /*
  1468. * The queue got stopped because the tx_ring was full.
  1469. * Wake it up, because it's now at least 25% empty.
  1470. */
  1471. netif_wake_queue(qdev->ndev);
  1472. }
  1473. return count;
  1474. }
  1475. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1476. {
  1477. struct ql_adapter *qdev = rx_ring->qdev;
  1478. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1479. struct ql_net_rsp_iocb *net_rsp;
  1480. int count = 0;
  1481. /* While there are entries in the completion queue. */
  1482. while (prod != rx_ring->cnsmr_idx) {
  1483. QPRINTK(qdev, RX_STATUS, DEBUG,
  1484. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1485. prod, rx_ring->cnsmr_idx);
  1486. net_rsp = rx_ring->curr_entry;
  1487. rmb();
  1488. switch (net_rsp->opcode) {
  1489. case OPCODE_IB_MAC_IOCB:
  1490. ql_process_mac_rx_intr(qdev, rx_ring,
  1491. (struct ib_mac_iocb_rsp *)
  1492. net_rsp);
  1493. break;
  1494. case OPCODE_IB_AE_IOCB:
  1495. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1496. net_rsp);
  1497. break;
  1498. default:
  1499. {
  1500. QPRINTK(qdev, RX_STATUS, DEBUG,
  1501. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1502. net_rsp->opcode);
  1503. }
  1504. }
  1505. count++;
  1506. ql_update_cq(rx_ring);
  1507. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1508. if (count == budget)
  1509. break;
  1510. }
  1511. ql_update_buffer_queues(qdev, rx_ring);
  1512. ql_write_cq_idx(rx_ring);
  1513. return count;
  1514. }
  1515. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1516. {
  1517. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1518. struct ql_adapter *qdev = rx_ring->qdev;
  1519. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1520. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1521. rx_ring->cq_id);
  1522. if (work_done < budget) {
  1523. __napi_complete(napi);
  1524. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1525. }
  1526. return work_done;
  1527. }
  1528. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1529. {
  1530. struct ql_adapter *qdev = netdev_priv(ndev);
  1531. qdev->vlgrp = grp;
  1532. if (grp) {
  1533. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1534. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1535. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1536. } else {
  1537. QPRINTK(qdev, IFUP, DEBUG,
  1538. "Turning off VLAN in NIC_RCV_CFG.\n");
  1539. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1540. }
  1541. }
  1542. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1543. {
  1544. struct ql_adapter *qdev = netdev_priv(ndev);
  1545. u32 enable_bit = MAC_ADDR_E;
  1546. int status;
  1547. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1548. if (status)
  1549. return;
  1550. spin_lock(&qdev->hw_lock);
  1551. if (ql_set_mac_addr_reg
  1552. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1553. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1554. }
  1555. spin_unlock(&qdev->hw_lock);
  1556. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1557. }
  1558. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1559. {
  1560. struct ql_adapter *qdev = netdev_priv(ndev);
  1561. u32 enable_bit = 0;
  1562. int status;
  1563. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1564. if (status)
  1565. return;
  1566. spin_lock(&qdev->hw_lock);
  1567. if (ql_set_mac_addr_reg
  1568. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1569. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1570. }
  1571. spin_unlock(&qdev->hw_lock);
  1572. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1573. }
  1574. /* Worker thread to process a given rx_ring that is dedicated
  1575. * to outbound completions.
  1576. */
  1577. static void ql_tx_clean(struct work_struct *work)
  1578. {
  1579. struct rx_ring *rx_ring =
  1580. container_of(work, struct rx_ring, rx_work.work);
  1581. ql_clean_outbound_rx_ring(rx_ring);
  1582. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1583. }
  1584. /* Worker thread to process a given rx_ring that is dedicated
  1585. * to inbound completions.
  1586. */
  1587. static void ql_rx_clean(struct work_struct *work)
  1588. {
  1589. struct rx_ring *rx_ring =
  1590. container_of(work, struct rx_ring, rx_work.work);
  1591. ql_clean_inbound_rx_ring(rx_ring, 64);
  1592. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1593. }
  1594. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1595. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1596. {
  1597. struct rx_ring *rx_ring = dev_id;
  1598. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1599. &rx_ring->rx_work, 0);
  1600. return IRQ_HANDLED;
  1601. }
  1602. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1603. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1604. {
  1605. struct rx_ring *rx_ring = dev_id;
  1606. napi_schedule(&rx_ring->napi);
  1607. return IRQ_HANDLED;
  1608. }
  1609. /* This handles a fatal error, MPI activity, and the default
  1610. * rx_ring in an MSI-X multiple vector environment.
  1611. * In MSI/Legacy environment it also process the rest of
  1612. * the rx_rings.
  1613. */
  1614. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1615. {
  1616. struct rx_ring *rx_ring = dev_id;
  1617. struct ql_adapter *qdev = rx_ring->qdev;
  1618. struct intr_context *intr_context = &qdev->intr_context[0];
  1619. u32 var;
  1620. int i;
  1621. int work_done = 0;
  1622. spin_lock(&qdev->hw_lock);
  1623. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1624. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1625. spin_unlock(&qdev->hw_lock);
  1626. return IRQ_NONE;
  1627. }
  1628. spin_unlock(&qdev->hw_lock);
  1629. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1630. /*
  1631. * Check for fatal error.
  1632. */
  1633. if (var & STS_FE) {
  1634. ql_queue_asic_error(qdev);
  1635. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1636. var = ql_read32(qdev, ERR_STS);
  1637. QPRINTK(qdev, INTR, ERR,
  1638. "Resetting chip. Error Status Register = 0x%x\n", var);
  1639. return IRQ_HANDLED;
  1640. }
  1641. /*
  1642. * Check MPI processor activity.
  1643. */
  1644. if (var & STS_PI) {
  1645. /*
  1646. * We've got an async event or mailbox completion.
  1647. * Handle it and clear the source of the interrupt.
  1648. */
  1649. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1650. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1651. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1652. &qdev->mpi_work, 0);
  1653. work_done++;
  1654. }
  1655. /*
  1656. * Check the default queue and wake handler if active.
  1657. */
  1658. rx_ring = &qdev->rx_ring[0];
  1659. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1660. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1661. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1662. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1663. &rx_ring->rx_work, 0);
  1664. work_done++;
  1665. }
  1666. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1667. /*
  1668. * Start the DPC for each active queue.
  1669. */
  1670. for (i = 1; i < qdev->rx_ring_count; i++) {
  1671. rx_ring = &qdev->rx_ring[i];
  1672. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1673. rx_ring->cnsmr_idx) {
  1674. QPRINTK(qdev, INTR, INFO,
  1675. "Waking handler for rx_ring[%d].\n", i);
  1676. ql_disable_completion_interrupt(qdev,
  1677. intr_context->
  1678. intr);
  1679. if (i < qdev->rss_ring_first_cq_id)
  1680. queue_delayed_work_on(rx_ring->cpu,
  1681. qdev->q_workqueue,
  1682. &rx_ring->rx_work,
  1683. 0);
  1684. else
  1685. napi_schedule(&rx_ring->napi);
  1686. work_done++;
  1687. }
  1688. }
  1689. }
  1690. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1691. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1692. }
  1693. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1694. {
  1695. if (skb_is_gso(skb)) {
  1696. int err;
  1697. if (skb_header_cloned(skb)) {
  1698. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1699. if (err)
  1700. return err;
  1701. }
  1702. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1703. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1704. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1705. mac_iocb_ptr->total_hdrs_len =
  1706. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1707. mac_iocb_ptr->net_trans_offset =
  1708. cpu_to_le16(skb_network_offset(skb) |
  1709. skb_transport_offset(skb)
  1710. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1711. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1712. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1713. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1714. struct iphdr *iph = ip_hdr(skb);
  1715. iph->check = 0;
  1716. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1717. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1718. iph->daddr, 0,
  1719. IPPROTO_TCP,
  1720. 0);
  1721. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1722. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1723. tcp_hdr(skb)->check =
  1724. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1725. &ipv6_hdr(skb)->daddr,
  1726. 0, IPPROTO_TCP, 0);
  1727. }
  1728. return 1;
  1729. }
  1730. return 0;
  1731. }
  1732. static void ql_hw_csum_setup(struct sk_buff *skb,
  1733. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1734. {
  1735. int len;
  1736. struct iphdr *iph = ip_hdr(skb);
  1737. __sum16 *check;
  1738. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1739. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1740. mac_iocb_ptr->net_trans_offset =
  1741. cpu_to_le16(skb_network_offset(skb) |
  1742. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1743. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1744. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1745. if (likely(iph->protocol == IPPROTO_TCP)) {
  1746. check = &(tcp_hdr(skb)->check);
  1747. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1748. mac_iocb_ptr->total_hdrs_len =
  1749. cpu_to_le16(skb_transport_offset(skb) +
  1750. (tcp_hdr(skb)->doff << 2));
  1751. } else {
  1752. check = &(udp_hdr(skb)->check);
  1753. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1754. mac_iocb_ptr->total_hdrs_len =
  1755. cpu_to_le16(skb_transport_offset(skb) +
  1756. sizeof(struct udphdr));
  1757. }
  1758. *check = ~csum_tcpudp_magic(iph->saddr,
  1759. iph->daddr, len, iph->protocol, 0);
  1760. }
  1761. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1762. {
  1763. struct tx_ring_desc *tx_ring_desc;
  1764. struct ob_mac_iocb_req *mac_iocb_ptr;
  1765. struct ql_adapter *qdev = netdev_priv(ndev);
  1766. int tso;
  1767. struct tx_ring *tx_ring;
  1768. u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
  1769. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1770. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1771. QPRINTK(qdev, TX_QUEUED, INFO,
  1772. "%s: shutting down tx queue %d du to lack of resources.\n",
  1773. __func__, tx_ring_idx);
  1774. netif_stop_queue(ndev);
  1775. atomic_inc(&tx_ring->queue_stopped);
  1776. return NETDEV_TX_BUSY;
  1777. }
  1778. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1779. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1780. memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
  1781. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1782. mac_iocb_ptr->tid = tx_ring_desc->index;
  1783. /* We use the upper 32-bits to store the tx queue for this IO.
  1784. * When we get the completion we can use it to establish the context.
  1785. */
  1786. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1787. tx_ring_desc->skb = skb;
  1788. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1789. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1790. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1791. vlan_tx_tag_get(skb));
  1792. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1793. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1794. }
  1795. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1796. if (tso < 0) {
  1797. dev_kfree_skb_any(skb);
  1798. return NETDEV_TX_OK;
  1799. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1800. ql_hw_csum_setup(skb,
  1801. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1802. }
  1803. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  1804. NETDEV_TX_OK) {
  1805. QPRINTK(qdev, TX_QUEUED, ERR,
  1806. "Could not map the segments.\n");
  1807. return NETDEV_TX_BUSY;
  1808. }
  1809. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1810. tx_ring->prod_idx++;
  1811. if (tx_ring->prod_idx == tx_ring->wq_len)
  1812. tx_ring->prod_idx = 0;
  1813. wmb();
  1814. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1815. ndev->trans_start = jiffies;
  1816. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1817. tx_ring->prod_idx, skb->len);
  1818. atomic_dec(&tx_ring->tx_count);
  1819. return NETDEV_TX_OK;
  1820. }
  1821. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1822. {
  1823. if (qdev->rx_ring_shadow_reg_area) {
  1824. pci_free_consistent(qdev->pdev,
  1825. PAGE_SIZE,
  1826. qdev->rx_ring_shadow_reg_area,
  1827. qdev->rx_ring_shadow_reg_dma);
  1828. qdev->rx_ring_shadow_reg_area = NULL;
  1829. }
  1830. if (qdev->tx_ring_shadow_reg_area) {
  1831. pci_free_consistent(qdev->pdev,
  1832. PAGE_SIZE,
  1833. qdev->tx_ring_shadow_reg_area,
  1834. qdev->tx_ring_shadow_reg_dma);
  1835. qdev->tx_ring_shadow_reg_area = NULL;
  1836. }
  1837. }
  1838. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  1839. {
  1840. qdev->rx_ring_shadow_reg_area =
  1841. pci_alloc_consistent(qdev->pdev,
  1842. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  1843. if (qdev->rx_ring_shadow_reg_area == NULL) {
  1844. QPRINTK(qdev, IFUP, ERR,
  1845. "Allocation of RX shadow space failed.\n");
  1846. return -ENOMEM;
  1847. }
  1848. qdev->tx_ring_shadow_reg_area =
  1849. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  1850. &qdev->tx_ring_shadow_reg_dma);
  1851. if (qdev->tx_ring_shadow_reg_area == NULL) {
  1852. QPRINTK(qdev, IFUP, ERR,
  1853. "Allocation of TX shadow space failed.\n");
  1854. goto err_wqp_sh_area;
  1855. }
  1856. return 0;
  1857. err_wqp_sh_area:
  1858. pci_free_consistent(qdev->pdev,
  1859. PAGE_SIZE,
  1860. qdev->rx_ring_shadow_reg_area,
  1861. qdev->rx_ring_shadow_reg_dma);
  1862. return -ENOMEM;
  1863. }
  1864. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  1865. {
  1866. struct tx_ring_desc *tx_ring_desc;
  1867. int i;
  1868. struct ob_mac_iocb_req *mac_iocb_ptr;
  1869. mac_iocb_ptr = tx_ring->wq_base;
  1870. tx_ring_desc = tx_ring->q;
  1871. for (i = 0; i < tx_ring->wq_len; i++) {
  1872. tx_ring_desc->index = i;
  1873. tx_ring_desc->skb = NULL;
  1874. tx_ring_desc->queue_entry = mac_iocb_ptr;
  1875. mac_iocb_ptr++;
  1876. tx_ring_desc++;
  1877. }
  1878. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  1879. atomic_set(&tx_ring->queue_stopped, 0);
  1880. }
  1881. static void ql_free_tx_resources(struct ql_adapter *qdev,
  1882. struct tx_ring *tx_ring)
  1883. {
  1884. if (tx_ring->wq_base) {
  1885. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1886. tx_ring->wq_base, tx_ring->wq_base_dma);
  1887. tx_ring->wq_base = NULL;
  1888. }
  1889. kfree(tx_ring->q);
  1890. tx_ring->q = NULL;
  1891. }
  1892. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  1893. struct tx_ring *tx_ring)
  1894. {
  1895. tx_ring->wq_base =
  1896. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  1897. &tx_ring->wq_base_dma);
  1898. if ((tx_ring->wq_base == NULL)
  1899. || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
  1900. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  1901. return -ENOMEM;
  1902. }
  1903. tx_ring->q =
  1904. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  1905. if (tx_ring->q == NULL)
  1906. goto err;
  1907. return 0;
  1908. err:
  1909. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1910. tx_ring->wq_base, tx_ring->wq_base_dma);
  1911. return -ENOMEM;
  1912. }
  1913. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1914. {
  1915. int i;
  1916. struct bq_desc *lbq_desc;
  1917. for (i = 0; i < rx_ring->lbq_len; i++) {
  1918. lbq_desc = &rx_ring->lbq[i];
  1919. if (lbq_desc->p.lbq_page) {
  1920. pci_unmap_page(qdev->pdev,
  1921. pci_unmap_addr(lbq_desc, mapaddr),
  1922. pci_unmap_len(lbq_desc, maplen),
  1923. PCI_DMA_FROMDEVICE);
  1924. put_page(lbq_desc->p.lbq_page);
  1925. lbq_desc->p.lbq_page = NULL;
  1926. }
  1927. }
  1928. }
  1929. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1930. {
  1931. int i;
  1932. struct bq_desc *sbq_desc;
  1933. for (i = 0; i < rx_ring->sbq_len; i++) {
  1934. sbq_desc = &rx_ring->sbq[i];
  1935. if (sbq_desc == NULL) {
  1936. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  1937. return;
  1938. }
  1939. if (sbq_desc->p.skb) {
  1940. pci_unmap_single(qdev->pdev,
  1941. pci_unmap_addr(sbq_desc, mapaddr),
  1942. pci_unmap_len(sbq_desc, maplen),
  1943. PCI_DMA_FROMDEVICE);
  1944. dev_kfree_skb(sbq_desc->p.skb);
  1945. sbq_desc->p.skb = NULL;
  1946. }
  1947. }
  1948. }
  1949. /* Free all large and small rx buffers associated
  1950. * with the completion queues for this device.
  1951. */
  1952. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  1953. {
  1954. int i;
  1955. struct rx_ring *rx_ring;
  1956. for (i = 0; i < qdev->rx_ring_count; i++) {
  1957. rx_ring = &qdev->rx_ring[i];
  1958. if (rx_ring->lbq)
  1959. ql_free_lbq_buffers(qdev, rx_ring);
  1960. if (rx_ring->sbq)
  1961. ql_free_sbq_buffers(qdev, rx_ring);
  1962. }
  1963. }
  1964. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  1965. {
  1966. struct rx_ring *rx_ring;
  1967. int i;
  1968. for (i = 0; i < qdev->rx_ring_count; i++) {
  1969. rx_ring = &qdev->rx_ring[i];
  1970. if (rx_ring->type != TX_Q)
  1971. ql_update_buffer_queues(qdev, rx_ring);
  1972. }
  1973. }
  1974. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  1975. struct rx_ring *rx_ring)
  1976. {
  1977. int i;
  1978. struct bq_desc *lbq_desc;
  1979. __le64 *bq = rx_ring->lbq_base;
  1980. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  1981. for (i = 0; i < rx_ring->lbq_len; i++) {
  1982. lbq_desc = &rx_ring->lbq[i];
  1983. memset(lbq_desc, 0, sizeof(*lbq_desc));
  1984. lbq_desc->index = i;
  1985. lbq_desc->addr = bq;
  1986. bq++;
  1987. }
  1988. }
  1989. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  1990. struct rx_ring *rx_ring)
  1991. {
  1992. int i;
  1993. struct bq_desc *sbq_desc;
  1994. __le64 *bq = rx_ring->sbq_base;
  1995. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  1996. for (i = 0; i < rx_ring->sbq_len; i++) {
  1997. sbq_desc = &rx_ring->sbq[i];
  1998. memset(sbq_desc, 0, sizeof(*sbq_desc));
  1999. sbq_desc->index = i;
  2000. sbq_desc->addr = bq;
  2001. bq++;
  2002. }
  2003. }
  2004. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2005. struct rx_ring *rx_ring)
  2006. {
  2007. /* Free the small buffer queue. */
  2008. if (rx_ring->sbq_base) {
  2009. pci_free_consistent(qdev->pdev,
  2010. rx_ring->sbq_size,
  2011. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2012. rx_ring->sbq_base = NULL;
  2013. }
  2014. /* Free the small buffer queue control blocks. */
  2015. kfree(rx_ring->sbq);
  2016. rx_ring->sbq = NULL;
  2017. /* Free the large buffer queue. */
  2018. if (rx_ring->lbq_base) {
  2019. pci_free_consistent(qdev->pdev,
  2020. rx_ring->lbq_size,
  2021. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2022. rx_ring->lbq_base = NULL;
  2023. }
  2024. /* Free the large buffer queue control blocks. */
  2025. kfree(rx_ring->lbq);
  2026. rx_ring->lbq = NULL;
  2027. /* Free the rx queue. */
  2028. if (rx_ring->cq_base) {
  2029. pci_free_consistent(qdev->pdev,
  2030. rx_ring->cq_size,
  2031. rx_ring->cq_base, rx_ring->cq_base_dma);
  2032. rx_ring->cq_base = NULL;
  2033. }
  2034. }
  2035. /* Allocate queues and buffers for this completions queue based
  2036. * on the values in the parameter structure. */
  2037. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2038. struct rx_ring *rx_ring)
  2039. {
  2040. /*
  2041. * Allocate the completion queue for this rx_ring.
  2042. */
  2043. rx_ring->cq_base =
  2044. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2045. &rx_ring->cq_base_dma);
  2046. if (rx_ring->cq_base == NULL) {
  2047. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2048. return -ENOMEM;
  2049. }
  2050. if (rx_ring->sbq_len) {
  2051. /*
  2052. * Allocate small buffer queue.
  2053. */
  2054. rx_ring->sbq_base =
  2055. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2056. &rx_ring->sbq_base_dma);
  2057. if (rx_ring->sbq_base == NULL) {
  2058. QPRINTK(qdev, IFUP, ERR,
  2059. "Small buffer queue allocation failed.\n");
  2060. goto err_mem;
  2061. }
  2062. /*
  2063. * Allocate small buffer queue control blocks.
  2064. */
  2065. rx_ring->sbq =
  2066. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2067. GFP_KERNEL);
  2068. if (rx_ring->sbq == NULL) {
  2069. QPRINTK(qdev, IFUP, ERR,
  2070. "Small buffer queue control block allocation failed.\n");
  2071. goto err_mem;
  2072. }
  2073. ql_init_sbq_ring(qdev, rx_ring);
  2074. }
  2075. if (rx_ring->lbq_len) {
  2076. /*
  2077. * Allocate large buffer queue.
  2078. */
  2079. rx_ring->lbq_base =
  2080. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2081. &rx_ring->lbq_base_dma);
  2082. if (rx_ring->lbq_base == NULL) {
  2083. QPRINTK(qdev, IFUP, ERR,
  2084. "Large buffer queue allocation failed.\n");
  2085. goto err_mem;
  2086. }
  2087. /*
  2088. * Allocate large buffer queue control blocks.
  2089. */
  2090. rx_ring->lbq =
  2091. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2092. GFP_KERNEL);
  2093. if (rx_ring->lbq == NULL) {
  2094. QPRINTK(qdev, IFUP, ERR,
  2095. "Large buffer queue control block allocation failed.\n");
  2096. goto err_mem;
  2097. }
  2098. ql_init_lbq_ring(qdev, rx_ring);
  2099. }
  2100. return 0;
  2101. err_mem:
  2102. ql_free_rx_resources(qdev, rx_ring);
  2103. return -ENOMEM;
  2104. }
  2105. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2106. {
  2107. struct tx_ring *tx_ring;
  2108. struct tx_ring_desc *tx_ring_desc;
  2109. int i, j;
  2110. /*
  2111. * Loop through all queues and free
  2112. * any resources.
  2113. */
  2114. for (j = 0; j < qdev->tx_ring_count; j++) {
  2115. tx_ring = &qdev->tx_ring[j];
  2116. for (i = 0; i < tx_ring->wq_len; i++) {
  2117. tx_ring_desc = &tx_ring->q[i];
  2118. if (tx_ring_desc && tx_ring_desc->skb) {
  2119. QPRINTK(qdev, IFDOWN, ERR,
  2120. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2121. tx_ring_desc->skb, j,
  2122. tx_ring_desc->index);
  2123. ql_unmap_send(qdev, tx_ring_desc,
  2124. tx_ring_desc->map_cnt);
  2125. dev_kfree_skb(tx_ring_desc->skb);
  2126. tx_ring_desc->skb = NULL;
  2127. }
  2128. }
  2129. }
  2130. }
  2131. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2132. {
  2133. int i;
  2134. for (i = 0; i < qdev->tx_ring_count; i++)
  2135. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2136. for (i = 0; i < qdev->rx_ring_count; i++)
  2137. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2138. ql_free_shadow_space(qdev);
  2139. }
  2140. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2141. {
  2142. int i;
  2143. /* Allocate space for our shadow registers and such. */
  2144. if (ql_alloc_shadow_space(qdev))
  2145. return -ENOMEM;
  2146. for (i = 0; i < qdev->rx_ring_count; i++) {
  2147. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2148. QPRINTK(qdev, IFUP, ERR,
  2149. "RX resource allocation failed.\n");
  2150. goto err_mem;
  2151. }
  2152. }
  2153. /* Allocate tx queue resources */
  2154. for (i = 0; i < qdev->tx_ring_count; i++) {
  2155. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2156. QPRINTK(qdev, IFUP, ERR,
  2157. "TX resource allocation failed.\n");
  2158. goto err_mem;
  2159. }
  2160. }
  2161. return 0;
  2162. err_mem:
  2163. ql_free_mem_resources(qdev);
  2164. return -ENOMEM;
  2165. }
  2166. /* Set up the rx ring control block and pass it to the chip.
  2167. * The control block is defined as
  2168. * "Completion Queue Initialization Control Block", or cqicb.
  2169. */
  2170. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2171. {
  2172. struct cqicb *cqicb = &rx_ring->cqicb;
  2173. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2174. (rx_ring->cq_id * sizeof(u64) * 4);
  2175. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2176. (rx_ring->cq_id * sizeof(u64) * 4);
  2177. void __iomem *doorbell_area =
  2178. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2179. int err = 0;
  2180. u16 bq_len;
  2181. /* Set up the shadow registers for this ring. */
  2182. rx_ring->prod_idx_sh_reg = shadow_reg;
  2183. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2184. shadow_reg += sizeof(u64);
  2185. shadow_reg_dma += sizeof(u64);
  2186. rx_ring->lbq_base_indirect = shadow_reg;
  2187. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2188. shadow_reg += sizeof(u64);
  2189. shadow_reg_dma += sizeof(u64);
  2190. rx_ring->sbq_base_indirect = shadow_reg;
  2191. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2192. /* PCI doorbell mem area + 0x00 for consumer index register */
  2193. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2194. rx_ring->cnsmr_idx = 0;
  2195. rx_ring->curr_entry = rx_ring->cq_base;
  2196. /* PCI doorbell mem area + 0x04 for valid register */
  2197. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2198. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2199. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2200. /* PCI doorbell mem area + 0x1c */
  2201. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2202. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2203. cqicb->msix_vect = rx_ring->irq;
  2204. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2205. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2206. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2207. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2208. /*
  2209. * Set up the control block load flags.
  2210. */
  2211. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2212. FLAGS_LV | /* Load MSI-X vector */
  2213. FLAGS_LI; /* Load irq delay values */
  2214. if (rx_ring->lbq_len) {
  2215. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2216. *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
  2217. cqicb->lbq_addr =
  2218. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2219. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2220. (u16) rx_ring->lbq_buf_size;
  2221. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2222. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2223. (u16) rx_ring->lbq_len;
  2224. cqicb->lbq_len = cpu_to_le16(bq_len);
  2225. rx_ring->lbq_prod_idx = 0;
  2226. rx_ring->lbq_curr_idx = 0;
  2227. rx_ring->lbq_clean_idx = 0;
  2228. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2229. }
  2230. if (rx_ring->sbq_len) {
  2231. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2232. *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
  2233. cqicb->sbq_addr =
  2234. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2235. cqicb->sbq_buf_size =
  2236. cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
  2237. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2238. (u16) rx_ring->sbq_len;
  2239. cqicb->sbq_len = cpu_to_le16(bq_len);
  2240. rx_ring->sbq_prod_idx = 0;
  2241. rx_ring->sbq_curr_idx = 0;
  2242. rx_ring->sbq_clean_idx = 0;
  2243. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2244. }
  2245. switch (rx_ring->type) {
  2246. case TX_Q:
  2247. /* If there's only one interrupt, then we use
  2248. * worker threads to process the outbound
  2249. * completion handling rx_rings. We do this so
  2250. * they can be run on multiple CPUs. There is
  2251. * room to play with this more where we would only
  2252. * run in a worker if there are more than x number
  2253. * of outbound completions on the queue and more
  2254. * than one queue active. Some threshold that
  2255. * would indicate a benefit in spite of the cost
  2256. * of a context switch.
  2257. * If there's more than one interrupt, then the
  2258. * outbound completions are processed in the ISR.
  2259. */
  2260. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2261. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2262. else {
  2263. /* With all debug warnings on we see a WARN_ON message
  2264. * when we free the skb in the interrupt context.
  2265. */
  2266. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2267. }
  2268. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2269. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2270. break;
  2271. case DEFAULT_Q:
  2272. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2273. cqicb->irq_delay = 0;
  2274. cqicb->pkt_delay = 0;
  2275. break;
  2276. case RX_Q:
  2277. /* Inbound completion handling rx_rings run in
  2278. * separate NAPI contexts.
  2279. */
  2280. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2281. 64);
  2282. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2283. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2284. break;
  2285. default:
  2286. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2287. rx_ring->type);
  2288. }
  2289. QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
  2290. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2291. CFG_LCQ, rx_ring->cq_id);
  2292. if (err) {
  2293. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2294. return err;
  2295. }
  2296. return err;
  2297. }
  2298. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2299. {
  2300. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2301. void __iomem *doorbell_area =
  2302. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2303. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2304. (tx_ring->wq_id * sizeof(u64));
  2305. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2306. (tx_ring->wq_id * sizeof(u64));
  2307. int err = 0;
  2308. /*
  2309. * Assign doorbell registers for this tx_ring.
  2310. */
  2311. /* TX PCI doorbell mem area for tx producer index */
  2312. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2313. tx_ring->prod_idx = 0;
  2314. /* TX PCI doorbell mem area + 0x04 */
  2315. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2316. /*
  2317. * Assign shadow registers for this tx_ring.
  2318. */
  2319. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2320. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2321. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2322. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2323. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2324. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2325. wqicb->rid = 0;
  2326. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2327. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2328. ql_init_tx_ring(qdev, tx_ring);
  2329. err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
  2330. (u16) tx_ring->wq_id);
  2331. if (err) {
  2332. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2333. return err;
  2334. }
  2335. QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
  2336. return err;
  2337. }
  2338. static void ql_disable_msix(struct ql_adapter *qdev)
  2339. {
  2340. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2341. pci_disable_msix(qdev->pdev);
  2342. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2343. kfree(qdev->msi_x_entry);
  2344. qdev->msi_x_entry = NULL;
  2345. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2346. pci_disable_msi(qdev->pdev);
  2347. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2348. }
  2349. }
  2350. static void ql_enable_msix(struct ql_adapter *qdev)
  2351. {
  2352. int i;
  2353. qdev->intr_count = 1;
  2354. /* Get the MSIX vectors. */
  2355. if (irq_type == MSIX_IRQ) {
  2356. /* Try to alloc space for the msix struct,
  2357. * if it fails then go to MSI/legacy.
  2358. */
  2359. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2360. sizeof(struct msix_entry),
  2361. GFP_KERNEL);
  2362. if (!qdev->msi_x_entry) {
  2363. irq_type = MSI_IRQ;
  2364. goto msi;
  2365. }
  2366. for (i = 0; i < qdev->rx_ring_count; i++)
  2367. qdev->msi_x_entry[i].entry = i;
  2368. if (!pci_enable_msix
  2369. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2370. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2371. qdev->intr_count = qdev->rx_ring_count;
  2372. QPRINTK(qdev, IFUP, INFO,
  2373. "MSI-X Enabled, got %d vectors.\n",
  2374. qdev->intr_count);
  2375. return;
  2376. } else {
  2377. kfree(qdev->msi_x_entry);
  2378. qdev->msi_x_entry = NULL;
  2379. QPRINTK(qdev, IFUP, WARNING,
  2380. "MSI-X Enable failed, trying MSI.\n");
  2381. irq_type = MSI_IRQ;
  2382. }
  2383. }
  2384. msi:
  2385. if (irq_type == MSI_IRQ) {
  2386. if (!pci_enable_msi(qdev->pdev)) {
  2387. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2388. QPRINTK(qdev, IFUP, INFO,
  2389. "Running with MSI interrupts.\n");
  2390. return;
  2391. }
  2392. }
  2393. irq_type = LEG_IRQ;
  2394. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2395. }
  2396. /*
  2397. * Here we build the intr_context structures based on
  2398. * our rx_ring count and intr vector count.
  2399. * The intr_context structure is used to hook each vector
  2400. * to possibly different handlers.
  2401. */
  2402. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2403. {
  2404. int i = 0;
  2405. struct intr_context *intr_context = &qdev->intr_context[0];
  2406. ql_enable_msix(qdev);
  2407. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2408. /* Each rx_ring has it's
  2409. * own intr_context since we have separate
  2410. * vectors for each queue.
  2411. * This only true when MSI-X is enabled.
  2412. */
  2413. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2414. qdev->rx_ring[i].irq = i;
  2415. intr_context->intr = i;
  2416. intr_context->qdev = qdev;
  2417. /*
  2418. * We set up each vectors enable/disable/read bits so
  2419. * there's no bit/mask calculations in the critical path.
  2420. */
  2421. intr_context->intr_en_mask =
  2422. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2423. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2424. | i;
  2425. intr_context->intr_dis_mask =
  2426. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2427. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2428. INTR_EN_IHD | i;
  2429. intr_context->intr_read_mask =
  2430. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2431. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2432. i;
  2433. if (i == 0) {
  2434. /*
  2435. * Default queue handles bcast/mcast plus
  2436. * async events. Needs buffers.
  2437. */
  2438. intr_context->handler = qlge_isr;
  2439. sprintf(intr_context->name, "%s-default-queue",
  2440. qdev->ndev->name);
  2441. } else if (i < qdev->rss_ring_first_cq_id) {
  2442. /*
  2443. * Outbound queue is for outbound completions only.
  2444. */
  2445. intr_context->handler = qlge_msix_tx_isr;
  2446. sprintf(intr_context->name, "%s-tx-%d",
  2447. qdev->ndev->name, i);
  2448. } else {
  2449. /*
  2450. * Inbound queues handle unicast frames only.
  2451. */
  2452. intr_context->handler = qlge_msix_rx_isr;
  2453. sprintf(intr_context->name, "%s-rx-%d",
  2454. qdev->ndev->name, i);
  2455. }
  2456. }
  2457. } else {
  2458. /*
  2459. * All rx_rings use the same intr_context since
  2460. * there is only one vector.
  2461. */
  2462. intr_context->intr = 0;
  2463. intr_context->qdev = qdev;
  2464. /*
  2465. * We set up each vectors enable/disable/read bits so
  2466. * there's no bit/mask calculations in the critical path.
  2467. */
  2468. intr_context->intr_en_mask =
  2469. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2470. intr_context->intr_dis_mask =
  2471. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2472. INTR_EN_TYPE_DISABLE;
  2473. intr_context->intr_read_mask =
  2474. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2475. /*
  2476. * Single interrupt means one handler for all rings.
  2477. */
  2478. intr_context->handler = qlge_isr;
  2479. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2480. for (i = 0; i < qdev->rx_ring_count; i++)
  2481. qdev->rx_ring[i].irq = 0;
  2482. }
  2483. }
  2484. static void ql_free_irq(struct ql_adapter *qdev)
  2485. {
  2486. int i;
  2487. struct intr_context *intr_context = &qdev->intr_context[0];
  2488. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2489. if (intr_context->hooked) {
  2490. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2491. free_irq(qdev->msi_x_entry[i].vector,
  2492. &qdev->rx_ring[i]);
  2493. QPRINTK(qdev, IFDOWN, ERR,
  2494. "freeing msix interrupt %d.\n", i);
  2495. } else {
  2496. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2497. QPRINTK(qdev, IFDOWN, ERR,
  2498. "freeing msi interrupt %d.\n", i);
  2499. }
  2500. }
  2501. }
  2502. ql_disable_msix(qdev);
  2503. }
  2504. static int ql_request_irq(struct ql_adapter *qdev)
  2505. {
  2506. int i;
  2507. int status = 0;
  2508. struct pci_dev *pdev = qdev->pdev;
  2509. struct intr_context *intr_context = &qdev->intr_context[0];
  2510. ql_resolve_queues_to_irqs(qdev);
  2511. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2512. atomic_set(&intr_context->irq_cnt, 0);
  2513. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2514. status = request_irq(qdev->msi_x_entry[i].vector,
  2515. intr_context->handler,
  2516. 0,
  2517. intr_context->name,
  2518. &qdev->rx_ring[i]);
  2519. if (status) {
  2520. QPRINTK(qdev, IFUP, ERR,
  2521. "Failed request for MSIX interrupt %d.\n",
  2522. i);
  2523. goto err_irq;
  2524. } else {
  2525. QPRINTK(qdev, IFUP, INFO,
  2526. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2527. i,
  2528. qdev->rx_ring[i].type ==
  2529. DEFAULT_Q ? "DEFAULT_Q" : "",
  2530. qdev->rx_ring[i].type ==
  2531. TX_Q ? "TX_Q" : "",
  2532. qdev->rx_ring[i].type ==
  2533. RX_Q ? "RX_Q" : "", intr_context->name);
  2534. }
  2535. } else {
  2536. QPRINTK(qdev, IFUP, DEBUG,
  2537. "trying msi or legacy interrupts.\n");
  2538. QPRINTK(qdev, IFUP, DEBUG,
  2539. "%s: irq = %d.\n", __func__, pdev->irq);
  2540. QPRINTK(qdev, IFUP, DEBUG,
  2541. "%s: context->name = %s.\n", __func__,
  2542. intr_context->name);
  2543. QPRINTK(qdev, IFUP, DEBUG,
  2544. "%s: dev_id = 0x%p.\n", __func__,
  2545. &qdev->rx_ring[0]);
  2546. status =
  2547. request_irq(pdev->irq, qlge_isr,
  2548. test_bit(QL_MSI_ENABLED,
  2549. &qdev->
  2550. flags) ? 0 : IRQF_SHARED,
  2551. intr_context->name, &qdev->rx_ring[0]);
  2552. if (status)
  2553. goto err_irq;
  2554. QPRINTK(qdev, IFUP, ERR,
  2555. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2556. i,
  2557. qdev->rx_ring[0].type ==
  2558. DEFAULT_Q ? "DEFAULT_Q" : "",
  2559. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2560. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2561. intr_context->name);
  2562. }
  2563. intr_context->hooked = 1;
  2564. }
  2565. return status;
  2566. err_irq:
  2567. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2568. ql_free_irq(qdev);
  2569. return status;
  2570. }
  2571. static int ql_start_rss(struct ql_adapter *qdev)
  2572. {
  2573. struct ricb *ricb = &qdev->ricb;
  2574. int status = 0;
  2575. int i;
  2576. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2577. memset((void *)ricb, 0, sizeof(ricb));
  2578. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2579. ricb->flags =
  2580. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2581. RSS_RT6);
  2582. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2583. /*
  2584. * Fill out the Indirection Table.
  2585. */
  2586. for (i = 0; i < 256; i++)
  2587. hash_id[i] = i & (qdev->rss_ring_count - 1);
  2588. /*
  2589. * Random values for the IPv6 and IPv4 Hash Keys.
  2590. */
  2591. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2592. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2593. QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
  2594. status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
  2595. if (status) {
  2596. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2597. return status;
  2598. }
  2599. QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
  2600. return status;
  2601. }
  2602. /* Initialize the frame-to-queue routing. */
  2603. static int ql_route_initialize(struct ql_adapter *qdev)
  2604. {
  2605. int status = 0;
  2606. int i;
  2607. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2608. if (status)
  2609. return status;
  2610. /* Clear all the entries in the routing table. */
  2611. for (i = 0; i < 16; i++) {
  2612. status = ql_set_routing_reg(qdev, i, 0, 0);
  2613. if (status) {
  2614. QPRINTK(qdev, IFUP, ERR,
  2615. "Failed to init routing register for CAM packets.\n");
  2616. goto exit;
  2617. }
  2618. }
  2619. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2620. if (status) {
  2621. QPRINTK(qdev, IFUP, ERR,
  2622. "Failed to init routing register for error packets.\n");
  2623. goto exit;
  2624. }
  2625. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2626. if (status) {
  2627. QPRINTK(qdev, IFUP, ERR,
  2628. "Failed to init routing register for broadcast packets.\n");
  2629. goto exit;
  2630. }
  2631. /* If we have more than one inbound queue, then turn on RSS in the
  2632. * routing block.
  2633. */
  2634. if (qdev->rss_ring_count > 1) {
  2635. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2636. RT_IDX_RSS_MATCH, 1);
  2637. if (status) {
  2638. QPRINTK(qdev, IFUP, ERR,
  2639. "Failed to init routing register for MATCH RSS packets.\n");
  2640. goto exit;
  2641. }
  2642. }
  2643. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2644. RT_IDX_CAM_HIT, 1);
  2645. if (status)
  2646. QPRINTK(qdev, IFUP, ERR,
  2647. "Failed to init routing register for CAM packets.\n");
  2648. exit:
  2649. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2650. return status;
  2651. }
  2652. static int ql_cam_route_initialize(struct ql_adapter *qdev)
  2653. {
  2654. int status;
  2655. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2656. if (status)
  2657. return status;
  2658. status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
  2659. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  2660. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2661. if (status) {
  2662. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2663. return status;
  2664. }
  2665. status = ql_route_initialize(qdev);
  2666. if (status)
  2667. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2668. return status;
  2669. }
  2670. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2671. {
  2672. u32 value, mask;
  2673. int i;
  2674. int status = 0;
  2675. /*
  2676. * Set up the System register to halt on errors.
  2677. */
  2678. value = SYS_EFE | SYS_FAE;
  2679. mask = value << 16;
  2680. ql_write32(qdev, SYS, mask | value);
  2681. /* Set the default queue. */
  2682. value = NIC_RCV_CFG_DFQ;
  2683. mask = NIC_RCV_CFG_DFQ_MASK;
  2684. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2685. /* Set the MPI interrupt to enabled. */
  2686. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2687. /* Enable the function, set pagesize, enable error checking. */
  2688. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2689. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2690. /* Set/clear header splitting. */
  2691. mask = FSC_VM_PAGESIZE_MASK |
  2692. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2693. ql_write32(qdev, FSC, mask | value);
  2694. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2695. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2696. /* Start up the rx queues. */
  2697. for (i = 0; i < qdev->rx_ring_count; i++) {
  2698. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2699. if (status) {
  2700. QPRINTK(qdev, IFUP, ERR,
  2701. "Failed to start rx ring[%d].\n", i);
  2702. return status;
  2703. }
  2704. }
  2705. /* If there is more than one inbound completion queue
  2706. * then download a RICB to configure RSS.
  2707. */
  2708. if (qdev->rss_ring_count > 1) {
  2709. status = ql_start_rss(qdev);
  2710. if (status) {
  2711. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2712. return status;
  2713. }
  2714. }
  2715. /* Start up the tx queues. */
  2716. for (i = 0; i < qdev->tx_ring_count; i++) {
  2717. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2718. if (status) {
  2719. QPRINTK(qdev, IFUP, ERR,
  2720. "Failed to start tx ring[%d].\n", i);
  2721. return status;
  2722. }
  2723. }
  2724. status = ql_port_initialize(qdev);
  2725. if (status) {
  2726. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2727. return status;
  2728. }
  2729. /* Set up the MAC address and frame routing filter. */
  2730. status = ql_cam_route_initialize(qdev);
  2731. if (status) {
  2732. QPRINTK(qdev, IFUP, ERR,
  2733. "Failed to init CAM/Routing tables.\n");
  2734. return status;
  2735. }
  2736. /* Start NAPI for the RSS queues. */
  2737. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2738. QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
  2739. i);
  2740. napi_enable(&qdev->rx_ring[i].napi);
  2741. }
  2742. return status;
  2743. }
  2744. /* Issue soft reset to chip. */
  2745. static int ql_adapter_reset(struct ql_adapter *qdev)
  2746. {
  2747. u32 value;
  2748. int max_wait_time;
  2749. int status = 0;
  2750. int resetCnt = 0;
  2751. #define MAX_RESET_CNT 1
  2752. issueReset:
  2753. resetCnt++;
  2754. QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
  2755. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2756. /* Wait for reset to complete. */
  2757. max_wait_time = 3;
  2758. QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
  2759. max_wait_time);
  2760. do {
  2761. value = ql_read32(qdev, RST_FO);
  2762. if ((value & RST_FO_FR) == 0)
  2763. break;
  2764. ssleep(1);
  2765. } while ((--max_wait_time));
  2766. if (value & RST_FO_FR) {
  2767. QPRINTK(qdev, IFDOWN, ERR,
  2768. "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
  2769. if (resetCnt < MAX_RESET_CNT)
  2770. goto issueReset;
  2771. }
  2772. if (max_wait_time == 0) {
  2773. status = -ETIMEDOUT;
  2774. QPRINTK(qdev, IFDOWN, ERR,
  2775. "ETIMEOUT!!! errored out of resetting the chip!\n");
  2776. }
  2777. return status;
  2778. }
  2779. static void ql_display_dev_info(struct net_device *ndev)
  2780. {
  2781. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2782. QPRINTK(qdev, PROBE, INFO,
  2783. "Function #%d, NIC Roll %d, NIC Rev = %d, "
  2784. "XG Roll = %d, XG Rev = %d.\n",
  2785. qdev->func,
  2786. qdev->chip_rev_id & 0x0000000f,
  2787. qdev->chip_rev_id >> 4 & 0x0000000f,
  2788. qdev->chip_rev_id >> 8 & 0x0000000f,
  2789. qdev->chip_rev_id >> 12 & 0x0000000f);
  2790. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  2791. }
  2792. static int ql_adapter_down(struct ql_adapter *qdev)
  2793. {
  2794. struct net_device *ndev = qdev->ndev;
  2795. int i, status = 0;
  2796. struct rx_ring *rx_ring;
  2797. netif_stop_queue(ndev);
  2798. netif_carrier_off(ndev);
  2799. /* Don't kill the reset worker thread if we
  2800. * are in the process of recovery.
  2801. */
  2802. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  2803. cancel_delayed_work_sync(&qdev->asic_reset_work);
  2804. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  2805. cancel_delayed_work_sync(&qdev->mpi_work);
  2806. /* The default queue at index 0 is always processed in
  2807. * a workqueue.
  2808. */
  2809. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  2810. /* The rest of the rx_rings are processed in
  2811. * a workqueue only if it's a single interrupt
  2812. * environment (MSI/Legacy).
  2813. */
  2814. for (i = 1; i < qdev->rx_ring_count; i++) {
  2815. rx_ring = &qdev->rx_ring[i];
  2816. /* Only the RSS rings use NAPI on multi irq
  2817. * environment. Outbound completion processing
  2818. * is done in interrupt context.
  2819. */
  2820. if (i >= qdev->rss_ring_first_cq_id) {
  2821. napi_disable(&rx_ring->napi);
  2822. } else {
  2823. cancel_delayed_work_sync(&rx_ring->rx_work);
  2824. }
  2825. }
  2826. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2827. ql_disable_interrupts(qdev);
  2828. ql_tx_ring_clean(qdev);
  2829. ql_free_rx_buffers(qdev);
  2830. spin_lock(&qdev->hw_lock);
  2831. status = ql_adapter_reset(qdev);
  2832. if (status)
  2833. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  2834. qdev->func);
  2835. spin_unlock(&qdev->hw_lock);
  2836. return status;
  2837. }
  2838. static int ql_adapter_up(struct ql_adapter *qdev)
  2839. {
  2840. int err = 0;
  2841. spin_lock(&qdev->hw_lock);
  2842. err = ql_adapter_initialize(qdev);
  2843. if (err) {
  2844. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  2845. spin_unlock(&qdev->hw_lock);
  2846. goto err_init;
  2847. }
  2848. spin_unlock(&qdev->hw_lock);
  2849. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2850. ql_alloc_rx_buffers(qdev);
  2851. ql_enable_interrupts(qdev);
  2852. ql_enable_all_completion_interrupts(qdev);
  2853. if ((ql_read32(qdev, STS) & qdev->port_init)) {
  2854. netif_carrier_on(qdev->ndev);
  2855. netif_start_queue(qdev->ndev);
  2856. }
  2857. return 0;
  2858. err_init:
  2859. ql_adapter_reset(qdev);
  2860. return err;
  2861. }
  2862. static int ql_cycle_adapter(struct ql_adapter *qdev)
  2863. {
  2864. int status;
  2865. status = ql_adapter_down(qdev);
  2866. if (status)
  2867. goto error;
  2868. status = ql_adapter_up(qdev);
  2869. if (status)
  2870. goto error;
  2871. return status;
  2872. error:
  2873. QPRINTK(qdev, IFUP, ALERT,
  2874. "Driver up/down cycle failed, closing device\n");
  2875. rtnl_lock();
  2876. dev_close(qdev->ndev);
  2877. rtnl_unlock();
  2878. return status;
  2879. }
  2880. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  2881. {
  2882. ql_free_mem_resources(qdev);
  2883. ql_free_irq(qdev);
  2884. }
  2885. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  2886. {
  2887. int status = 0;
  2888. if (ql_alloc_mem_resources(qdev)) {
  2889. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  2890. return -ENOMEM;
  2891. }
  2892. status = ql_request_irq(qdev);
  2893. if (status)
  2894. goto err_irq;
  2895. return status;
  2896. err_irq:
  2897. ql_free_mem_resources(qdev);
  2898. return status;
  2899. }
  2900. static int qlge_close(struct net_device *ndev)
  2901. {
  2902. struct ql_adapter *qdev = netdev_priv(ndev);
  2903. /*
  2904. * Wait for device to recover from a reset.
  2905. * (Rarely happens, but possible.)
  2906. */
  2907. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  2908. msleep(1);
  2909. ql_adapter_down(qdev);
  2910. ql_release_adapter_resources(qdev);
  2911. return 0;
  2912. }
  2913. static int ql_configure_rings(struct ql_adapter *qdev)
  2914. {
  2915. int i;
  2916. struct rx_ring *rx_ring;
  2917. struct tx_ring *tx_ring;
  2918. int cpu_cnt = num_online_cpus();
  2919. /*
  2920. * For each processor present we allocate one
  2921. * rx_ring for outbound completions, and one
  2922. * rx_ring for inbound completions. Plus there is
  2923. * always the one default queue. For the CPU
  2924. * counts we end up with the following rx_rings:
  2925. * rx_ring count =
  2926. * one default queue +
  2927. * (CPU count * outbound completion rx_ring) +
  2928. * (CPU count * inbound (RSS) completion rx_ring)
  2929. * To keep it simple we limit the total number of
  2930. * queues to < 32, so we truncate CPU to 8.
  2931. * This limitation can be removed when requested.
  2932. */
  2933. if (cpu_cnt > MAX_CPUS)
  2934. cpu_cnt = MAX_CPUS;
  2935. /*
  2936. * rx_ring[0] is always the default queue.
  2937. */
  2938. /* Allocate outbound completion ring for each CPU. */
  2939. qdev->tx_ring_count = cpu_cnt;
  2940. /* Allocate inbound completion (RSS) ring for each CPU. */
  2941. qdev->rss_ring_count = cpu_cnt;
  2942. /* cq_id for the first inbound ring handler. */
  2943. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  2944. /*
  2945. * qdev->rx_ring_count:
  2946. * Total number of rx_rings. This includes the one
  2947. * default queue, a number of outbound completion
  2948. * handler rx_rings, and the number of inbound
  2949. * completion handler rx_rings.
  2950. */
  2951. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  2952. for (i = 0; i < qdev->tx_ring_count; i++) {
  2953. tx_ring = &qdev->tx_ring[i];
  2954. memset((void *)tx_ring, 0, sizeof(tx_ring));
  2955. tx_ring->qdev = qdev;
  2956. tx_ring->wq_id = i;
  2957. tx_ring->wq_len = qdev->tx_ring_size;
  2958. tx_ring->wq_size =
  2959. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  2960. /*
  2961. * The completion queue ID for the tx rings start
  2962. * immediately after the default Q ID, which is zero.
  2963. */
  2964. tx_ring->cq_id = i + 1;
  2965. }
  2966. for (i = 0; i < qdev->rx_ring_count; i++) {
  2967. rx_ring = &qdev->rx_ring[i];
  2968. memset((void *)rx_ring, 0, sizeof(rx_ring));
  2969. rx_ring->qdev = qdev;
  2970. rx_ring->cq_id = i;
  2971. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  2972. if (i == 0) { /* Default queue at index 0. */
  2973. /*
  2974. * Default queue handles bcast/mcast plus
  2975. * async events. Needs buffers.
  2976. */
  2977. rx_ring->cq_len = qdev->rx_ring_size;
  2978. rx_ring->cq_size =
  2979. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  2980. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  2981. rx_ring->lbq_size =
  2982. rx_ring->lbq_len * sizeof(__le64);
  2983. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  2984. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  2985. rx_ring->sbq_size =
  2986. rx_ring->sbq_len * sizeof(__le64);
  2987. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  2988. rx_ring->type = DEFAULT_Q;
  2989. } else if (i < qdev->rss_ring_first_cq_id) {
  2990. /*
  2991. * Outbound queue handles outbound completions only.
  2992. */
  2993. /* outbound cq is same size as tx_ring it services. */
  2994. rx_ring->cq_len = qdev->tx_ring_size;
  2995. rx_ring->cq_size =
  2996. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  2997. rx_ring->lbq_len = 0;
  2998. rx_ring->lbq_size = 0;
  2999. rx_ring->lbq_buf_size = 0;
  3000. rx_ring->sbq_len = 0;
  3001. rx_ring->sbq_size = 0;
  3002. rx_ring->sbq_buf_size = 0;
  3003. rx_ring->type = TX_Q;
  3004. } else { /* Inbound completions (RSS) queues */
  3005. /*
  3006. * Inbound queues handle unicast frames only.
  3007. */
  3008. rx_ring->cq_len = qdev->rx_ring_size;
  3009. rx_ring->cq_size =
  3010. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3011. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3012. rx_ring->lbq_size =
  3013. rx_ring->lbq_len * sizeof(__le64);
  3014. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3015. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3016. rx_ring->sbq_size =
  3017. rx_ring->sbq_len * sizeof(__le64);
  3018. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3019. rx_ring->type = RX_Q;
  3020. }
  3021. }
  3022. return 0;
  3023. }
  3024. static int qlge_open(struct net_device *ndev)
  3025. {
  3026. int err = 0;
  3027. struct ql_adapter *qdev = netdev_priv(ndev);
  3028. err = ql_configure_rings(qdev);
  3029. if (err)
  3030. return err;
  3031. err = ql_get_adapter_resources(qdev);
  3032. if (err)
  3033. goto error_up;
  3034. err = ql_adapter_up(qdev);
  3035. if (err)
  3036. goto error_up;
  3037. return err;
  3038. error_up:
  3039. ql_release_adapter_resources(qdev);
  3040. return err;
  3041. }
  3042. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3043. {
  3044. struct ql_adapter *qdev = netdev_priv(ndev);
  3045. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3046. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3047. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3048. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3049. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3050. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3051. return 0;
  3052. } else
  3053. return -EINVAL;
  3054. ndev->mtu = new_mtu;
  3055. return 0;
  3056. }
  3057. static struct net_device_stats *qlge_get_stats(struct net_device
  3058. *ndev)
  3059. {
  3060. struct ql_adapter *qdev = netdev_priv(ndev);
  3061. return &qdev->stats;
  3062. }
  3063. static void qlge_set_multicast_list(struct net_device *ndev)
  3064. {
  3065. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3066. struct dev_mc_list *mc_ptr;
  3067. int i, status;
  3068. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3069. if (status)
  3070. return;
  3071. spin_lock(&qdev->hw_lock);
  3072. /*
  3073. * Set or clear promiscuous mode if a
  3074. * transition is taking place.
  3075. */
  3076. if (ndev->flags & IFF_PROMISC) {
  3077. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3078. if (ql_set_routing_reg
  3079. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3080. QPRINTK(qdev, HW, ERR,
  3081. "Failed to set promiscous mode.\n");
  3082. } else {
  3083. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3084. }
  3085. }
  3086. } else {
  3087. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3088. if (ql_set_routing_reg
  3089. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3090. QPRINTK(qdev, HW, ERR,
  3091. "Failed to clear promiscous mode.\n");
  3092. } else {
  3093. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3094. }
  3095. }
  3096. }
  3097. /*
  3098. * Set or clear all multicast mode if a
  3099. * transition is taking place.
  3100. */
  3101. if ((ndev->flags & IFF_ALLMULTI) ||
  3102. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3103. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3104. if (ql_set_routing_reg
  3105. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3106. QPRINTK(qdev, HW, ERR,
  3107. "Failed to set all-multi mode.\n");
  3108. } else {
  3109. set_bit(QL_ALLMULTI, &qdev->flags);
  3110. }
  3111. }
  3112. } else {
  3113. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3114. if (ql_set_routing_reg
  3115. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3116. QPRINTK(qdev, HW, ERR,
  3117. "Failed to clear all-multi mode.\n");
  3118. } else {
  3119. clear_bit(QL_ALLMULTI, &qdev->flags);
  3120. }
  3121. }
  3122. }
  3123. if (ndev->mc_count) {
  3124. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3125. if (status)
  3126. goto exit;
  3127. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3128. i++, mc_ptr = mc_ptr->next)
  3129. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3130. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3131. QPRINTK(qdev, HW, ERR,
  3132. "Failed to loadmulticast address.\n");
  3133. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3134. goto exit;
  3135. }
  3136. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3137. if (ql_set_routing_reg
  3138. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3139. QPRINTK(qdev, HW, ERR,
  3140. "Failed to set multicast match mode.\n");
  3141. } else {
  3142. set_bit(QL_ALLMULTI, &qdev->flags);
  3143. }
  3144. }
  3145. exit:
  3146. spin_unlock(&qdev->hw_lock);
  3147. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3148. }
  3149. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3150. {
  3151. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3152. struct sockaddr *addr = p;
  3153. int status;
  3154. if (netif_running(ndev))
  3155. return -EBUSY;
  3156. if (!is_valid_ether_addr(addr->sa_data))
  3157. return -EADDRNOTAVAIL;
  3158. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3159. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3160. if (status)
  3161. return status;
  3162. spin_lock(&qdev->hw_lock);
  3163. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3164. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3165. spin_unlock(&qdev->hw_lock);
  3166. if (status)
  3167. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3168. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3169. return status;
  3170. }
  3171. static void qlge_tx_timeout(struct net_device *ndev)
  3172. {
  3173. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3174. ql_queue_asic_error(qdev);
  3175. }
  3176. static void ql_asic_reset_work(struct work_struct *work)
  3177. {
  3178. struct ql_adapter *qdev =
  3179. container_of(work, struct ql_adapter, asic_reset_work.work);
  3180. ql_cycle_adapter(qdev);
  3181. }
  3182. static void ql_get_board_info(struct ql_adapter *qdev)
  3183. {
  3184. qdev->func =
  3185. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3186. if (qdev->func) {
  3187. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3188. qdev->port_link_up = STS_PL1;
  3189. qdev->port_init = STS_PI1;
  3190. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3191. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3192. } else {
  3193. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3194. qdev->port_link_up = STS_PL0;
  3195. qdev->port_init = STS_PI0;
  3196. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3197. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3198. }
  3199. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3200. }
  3201. static void ql_release_all(struct pci_dev *pdev)
  3202. {
  3203. struct net_device *ndev = pci_get_drvdata(pdev);
  3204. struct ql_adapter *qdev = netdev_priv(ndev);
  3205. if (qdev->workqueue) {
  3206. destroy_workqueue(qdev->workqueue);
  3207. qdev->workqueue = NULL;
  3208. }
  3209. if (qdev->q_workqueue) {
  3210. destroy_workqueue(qdev->q_workqueue);
  3211. qdev->q_workqueue = NULL;
  3212. }
  3213. if (qdev->reg_base)
  3214. iounmap(qdev->reg_base);
  3215. if (qdev->doorbell_area)
  3216. iounmap(qdev->doorbell_area);
  3217. pci_release_regions(pdev);
  3218. pci_set_drvdata(pdev, NULL);
  3219. }
  3220. static int __devinit ql_init_device(struct pci_dev *pdev,
  3221. struct net_device *ndev, int cards_found)
  3222. {
  3223. struct ql_adapter *qdev = netdev_priv(ndev);
  3224. int pos, err = 0;
  3225. u16 val16;
  3226. memset((void *)qdev, 0, sizeof(qdev));
  3227. err = pci_enable_device(pdev);
  3228. if (err) {
  3229. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3230. return err;
  3231. }
  3232. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3233. if (pos <= 0) {
  3234. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3235. "aborting.\n");
  3236. goto err_out;
  3237. } else {
  3238. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3239. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3240. val16 |= (PCI_EXP_DEVCTL_CERE |
  3241. PCI_EXP_DEVCTL_NFERE |
  3242. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3243. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3244. }
  3245. err = pci_request_regions(pdev, DRV_NAME);
  3246. if (err) {
  3247. dev_err(&pdev->dev, "PCI region request failed.\n");
  3248. goto err_out;
  3249. }
  3250. pci_set_master(pdev);
  3251. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3252. set_bit(QL_DMA64, &qdev->flags);
  3253. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3254. } else {
  3255. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  3256. if (!err)
  3257. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3258. }
  3259. if (err) {
  3260. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3261. goto err_out;
  3262. }
  3263. pci_set_drvdata(pdev, ndev);
  3264. qdev->reg_base =
  3265. ioremap_nocache(pci_resource_start(pdev, 1),
  3266. pci_resource_len(pdev, 1));
  3267. if (!qdev->reg_base) {
  3268. dev_err(&pdev->dev, "Register mapping failed.\n");
  3269. err = -ENOMEM;
  3270. goto err_out;
  3271. }
  3272. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3273. qdev->doorbell_area =
  3274. ioremap_nocache(pci_resource_start(pdev, 3),
  3275. pci_resource_len(pdev, 3));
  3276. if (!qdev->doorbell_area) {
  3277. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3278. err = -ENOMEM;
  3279. goto err_out;
  3280. }
  3281. ql_get_board_info(qdev);
  3282. qdev->ndev = ndev;
  3283. qdev->pdev = pdev;
  3284. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3285. spin_lock_init(&qdev->hw_lock);
  3286. spin_lock_init(&qdev->stats_lock);
  3287. /* make sure the EEPROM is good */
  3288. err = ql_get_flash_params(qdev);
  3289. if (err) {
  3290. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3291. goto err_out;
  3292. }
  3293. if (!is_valid_ether_addr(qdev->flash.mac_addr))
  3294. goto err_out;
  3295. memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
  3296. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3297. /* Set up the default ring sizes. */
  3298. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3299. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3300. /* Set up the coalescing parameters. */
  3301. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3302. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3303. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3304. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3305. /*
  3306. * Set up the operating parameters.
  3307. */
  3308. qdev->rx_csum = 1;
  3309. qdev->q_workqueue = create_workqueue(ndev->name);
  3310. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3311. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3312. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3313. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3314. if (!cards_found) {
  3315. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3316. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3317. DRV_NAME, DRV_VERSION);
  3318. }
  3319. return 0;
  3320. err_out:
  3321. ql_release_all(pdev);
  3322. pci_disable_device(pdev);
  3323. return err;
  3324. }
  3325. static const struct net_device_ops qlge_netdev_ops = {
  3326. .ndo_open = qlge_open,
  3327. .ndo_stop = qlge_close,
  3328. .ndo_start_xmit = qlge_send,
  3329. .ndo_change_mtu = qlge_change_mtu,
  3330. .ndo_get_stats = qlge_get_stats,
  3331. .ndo_set_multicast_list = qlge_set_multicast_list,
  3332. .ndo_set_mac_address = qlge_set_mac_address,
  3333. .ndo_validate_addr = eth_validate_addr,
  3334. .ndo_tx_timeout = qlge_tx_timeout,
  3335. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3336. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3337. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3338. };
  3339. static int __devinit qlge_probe(struct pci_dev *pdev,
  3340. const struct pci_device_id *pci_entry)
  3341. {
  3342. struct net_device *ndev = NULL;
  3343. struct ql_adapter *qdev = NULL;
  3344. static int cards_found = 0;
  3345. int err = 0;
  3346. ndev = alloc_etherdev(sizeof(struct ql_adapter));
  3347. if (!ndev)
  3348. return -ENOMEM;
  3349. err = ql_init_device(pdev, ndev, cards_found);
  3350. if (err < 0) {
  3351. free_netdev(ndev);
  3352. return err;
  3353. }
  3354. qdev = netdev_priv(ndev);
  3355. SET_NETDEV_DEV(ndev, &pdev->dev);
  3356. ndev->features = (0
  3357. | NETIF_F_IP_CSUM
  3358. | NETIF_F_SG
  3359. | NETIF_F_TSO
  3360. | NETIF_F_TSO6
  3361. | NETIF_F_TSO_ECN
  3362. | NETIF_F_HW_VLAN_TX
  3363. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3364. if (test_bit(QL_DMA64, &qdev->flags))
  3365. ndev->features |= NETIF_F_HIGHDMA;
  3366. /*
  3367. * Set up net_device structure.
  3368. */
  3369. ndev->tx_queue_len = qdev->tx_ring_size;
  3370. ndev->irq = pdev->irq;
  3371. ndev->netdev_ops = &qlge_netdev_ops;
  3372. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3373. ndev->watchdog_timeo = 10 * HZ;
  3374. err = register_netdev(ndev);
  3375. if (err) {
  3376. dev_err(&pdev->dev, "net device registration failed.\n");
  3377. ql_release_all(pdev);
  3378. pci_disable_device(pdev);
  3379. return err;
  3380. }
  3381. netif_carrier_off(ndev);
  3382. netif_stop_queue(ndev);
  3383. ql_display_dev_info(ndev);
  3384. cards_found++;
  3385. return 0;
  3386. }
  3387. static void __devexit qlge_remove(struct pci_dev *pdev)
  3388. {
  3389. struct net_device *ndev = pci_get_drvdata(pdev);
  3390. unregister_netdev(ndev);
  3391. ql_release_all(pdev);
  3392. pci_disable_device(pdev);
  3393. free_netdev(ndev);
  3394. }
  3395. /*
  3396. * This callback is called by the PCI subsystem whenever
  3397. * a PCI bus error is detected.
  3398. */
  3399. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3400. enum pci_channel_state state)
  3401. {
  3402. struct net_device *ndev = pci_get_drvdata(pdev);
  3403. struct ql_adapter *qdev = netdev_priv(ndev);
  3404. if (netif_running(ndev))
  3405. ql_adapter_down(qdev);
  3406. pci_disable_device(pdev);
  3407. /* Request a slot reset. */
  3408. return PCI_ERS_RESULT_NEED_RESET;
  3409. }
  3410. /*
  3411. * This callback is called after the PCI buss has been reset.
  3412. * Basically, this tries to restart the card from scratch.
  3413. * This is a shortened version of the device probe/discovery code,
  3414. * it resembles the first-half of the () routine.
  3415. */
  3416. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3417. {
  3418. struct net_device *ndev = pci_get_drvdata(pdev);
  3419. struct ql_adapter *qdev = netdev_priv(ndev);
  3420. if (pci_enable_device(pdev)) {
  3421. QPRINTK(qdev, IFUP, ERR,
  3422. "Cannot re-enable PCI device after reset.\n");
  3423. return PCI_ERS_RESULT_DISCONNECT;
  3424. }
  3425. pci_set_master(pdev);
  3426. netif_carrier_off(ndev);
  3427. netif_stop_queue(ndev);
  3428. ql_adapter_reset(qdev);
  3429. /* Make sure the EEPROM is good */
  3430. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3431. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3432. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3433. return PCI_ERS_RESULT_DISCONNECT;
  3434. }
  3435. return PCI_ERS_RESULT_RECOVERED;
  3436. }
  3437. static void qlge_io_resume(struct pci_dev *pdev)
  3438. {
  3439. struct net_device *ndev = pci_get_drvdata(pdev);
  3440. struct ql_adapter *qdev = netdev_priv(ndev);
  3441. pci_set_master(pdev);
  3442. if (netif_running(ndev)) {
  3443. if (ql_adapter_up(qdev)) {
  3444. QPRINTK(qdev, IFUP, ERR,
  3445. "Device initialization failed after reset.\n");
  3446. return;
  3447. }
  3448. }
  3449. netif_device_attach(ndev);
  3450. }
  3451. static struct pci_error_handlers qlge_err_handler = {
  3452. .error_detected = qlge_io_error_detected,
  3453. .slot_reset = qlge_io_slot_reset,
  3454. .resume = qlge_io_resume,
  3455. };
  3456. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3457. {
  3458. struct net_device *ndev = pci_get_drvdata(pdev);
  3459. struct ql_adapter *qdev = netdev_priv(ndev);
  3460. int err, i;
  3461. netif_device_detach(ndev);
  3462. if (netif_running(ndev)) {
  3463. err = ql_adapter_down(qdev);
  3464. if (!err)
  3465. return err;
  3466. }
  3467. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
  3468. netif_napi_del(&qdev->rx_ring[i].napi);
  3469. err = pci_save_state(pdev);
  3470. if (err)
  3471. return err;
  3472. pci_disable_device(pdev);
  3473. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3474. return 0;
  3475. }
  3476. #ifdef CONFIG_PM
  3477. static int qlge_resume(struct pci_dev *pdev)
  3478. {
  3479. struct net_device *ndev = pci_get_drvdata(pdev);
  3480. struct ql_adapter *qdev = netdev_priv(ndev);
  3481. int err;
  3482. pci_set_power_state(pdev, PCI_D0);
  3483. pci_restore_state(pdev);
  3484. err = pci_enable_device(pdev);
  3485. if (err) {
  3486. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3487. return err;
  3488. }
  3489. pci_set_master(pdev);
  3490. pci_enable_wake(pdev, PCI_D3hot, 0);
  3491. pci_enable_wake(pdev, PCI_D3cold, 0);
  3492. if (netif_running(ndev)) {
  3493. err = ql_adapter_up(qdev);
  3494. if (err)
  3495. return err;
  3496. }
  3497. netif_device_attach(ndev);
  3498. return 0;
  3499. }
  3500. #endif /* CONFIG_PM */
  3501. static void qlge_shutdown(struct pci_dev *pdev)
  3502. {
  3503. qlge_suspend(pdev, PMSG_SUSPEND);
  3504. }
  3505. static struct pci_driver qlge_driver = {
  3506. .name = DRV_NAME,
  3507. .id_table = qlge_pci_tbl,
  3508. .probe = qlge_probe,
  3509. .remove = __devexit_p(qlge_remove),
  3510. #ifdef CONFIG_PM
  3511. .suspend = qlge_suspend,
  3512. .resume = qlge_resume,
  3513. #endif
  3514. .shutdown = qlge_shutdown,
  3515. .err_handler = &qlge_err_handler
  3516. };
  3517. static int __init qlge_init_module(void)
  3518. {
  3519. return pci_register_driver(&qlge_driver);
  3520. }
  3521. static void __exit qlge_exit(void)
  3522. {
  3523. pci_unregister_driver(&qlge_driver);
  3524. }
  3525. module_init(qlge_init_module);
  3526. module_exit(qlge_exit);