disk-io.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h> // for block_sync_page
  25. #include <linux/workqueue.h>
  26. #include "crc32c.h"
  27. #include "ctree.h"
  28. #include "disk-io.h"
  29. #include "transaction.h"
  30. #include "btrfs_inode.h"
  31. #include "volumes.h"
  32. #include "print-tree.h"
  33. #include "async-thread.h"
  34. #if 0
  35. static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
  36. {
  37. if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
  38. printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
  39. (unsigned long long)extent_buffer_blocknr(buf),
  40. (unsigned long long)btrfs_header_blocknr(buf));
  41. return 1;
  42. }
  43. return 0;
  44. }
  45. #endif
  46. static struct extent_io_ops btree_extent_io_ops;
  47. static void end_workqueue_fn(struct btrfs_work *work);
  48. struct end_io_wq {
  49. struct bio *bio;
  50. bio_end_io_t *end_io;
  51. void *private;
  52. struct btrfs_fs_info *info;
  53. int error;
  54. int metadata;
  55. struct list_head list;
  56. struct btrfs_work work;
  57. };
  58. struct async_submit_bio {
  59. struct inode *inode;
  60. struct bio *bio;
  61. struct list_head list;
  62. extent_submit_bio_hook_t *submit_bio_hook;
  63. int rw;
  64. int mirror_num;
  65. struct btrfs_work work;
  66. };
  67. struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
  68. size_t page_offset, u64 start, u64 len,
  69. int create)
  70. {
  71. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  72. struct extent_map *em;
  73. int ret;
  74. spin_lock(&em_tree->lock);
  75. em = lookup_extent_mapping(em_tree, start, len);
  76. if (em) {
  77. em->bdev =
  78. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  79. spin_unlock(&em_tree->lock);
  80. goto out;
  81. }
  82. spin_unlock(&em_tree->lock);
  83. em = alloc_extent_map(GFP_NOFS);
  84. if (!em) {
  85. em = ERR_PTR(-ENOMEM);
  86. goto out;
  87. }
  88. em->start = 0;
  89. em->len = (u64)-1;
  90. em->block_start = 0;
  91. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  92. spin_lock(&em_tree->lock);
  93. ret = add_extent_mapping(em_tree, em);
  94. if (ret == -EEXIST) {
  95. u64 failed_start = em->start;
  96. u64 failed_len = em->len;
  97. printk("failed to insert %Lu %Lu -> %Lu into tree\n",
  98. em->start, em->len, em->block_start);
  99. free_extent_map(em);
  100. em = lookup_extent_mapping(em_tree, start, len);
  101. if (em) {
  102. printk("after failing, found %Lu %Lu %Lu\n",
  103. em->start, em->len, em->block_start);
  104. ret = 0;
  105. } else {
  106. em = lookup_extent_mapping(em_tree, failed_start,
  107. failed_len);
  108. if (em) {
  109. printk("double failure lookup gives us "
  110. "%Lu %Lu -> %Lu\n", em->start,
  111. em->len, em->block_start);
  112. free_extent_map(em);
  113. }
  114. ret = -EIO;
  115. }
  116. } else if (ret) {
  117. free_extent_map(em);
  118. em = NULL;
  119. }
  120. spin_unlock(&em_tree->lock);
  121. if (ret)
  122. em = ERR_PTR(ret);
  123. out:
  124. return em;
  125. }
  126. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  127. {
  128. return btrfs_crc32c(seed, data, len);
  129. }
  130. void btrfs_csum_final(u32 crc, char *result)
  131. {
  132. *(__le32 *)result = ~cpu_to_le32(crc);
  133. }
  134. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  135. int verify)
  136. {
  137. char result[BTRFS_CRC32_SIZE];
  138. unsigned long len;
  139. unsigned long cur_len;
  140. unsigned long offset = BTRFS_CSUM_SIZE;
  141. char *map_token = NULL;
  142. char *kaddr;
  143. unsigned long map_start;
  144. unsigned long map_len;
  145. int err;
  146. u32 crc = ~(u32)0;
  147. len = buf->len - offset;
  148. while(len > 0) {
  149. err = map_private_extent_buffer(buf, offset, 32,
  150. &map_token, &kaddr,
  151. &map_start, &map_len, KM_USER0);
  152. if (err) {
  153. printk("failed to map extent buffer! %lu\n",
  154. offset);
  155. return 1;
  156. }
  157. cur_len = min(len, map_len - (offset - map_start));
  158. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  159. crc, cur_len);
  160. len -= cur_len;
  161. offset += cur_len;
  162. unmap_extent_buffer(buf, map_token, KM_USER0);
  163. }
  164. btrfs_csum_final(crc, result);
  165. if (verify) {
  166. int from_this_trans = 0;
  167. if (root->fs_info->running_transaction &&
  168. btrfs_header_generation(buf) ==
  169. root->fs_info->running_transaction->transid)
  170. from_this_trans = 1;
  171. /* FIXME, this is not good */
  172. if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
  173. u32 val;
  174. u32 found = 0;
  175. memcpy(&found, result, BTRFS_CRC32_SIZE);
  176. read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
  177. printk("btrfs: %s checksum verify failed on %llu "
  178. "wanted %X found %X from_this_trans %d "
  179. "level %d\n",
  180. root->fs_info->sb->s_id,
  181. buf->start, val, found, from_this_trans,
  182. btrfs_header_level(buf));
  183. return 1;
  184. }
  185. } else {
  186. write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
  187. }
  188. return 0;
  189. }
  190. static int verify_parent_transid(struct extent_io_tree *io_tree,
  191. struct extent_buffer *eb, u64 parent_transid)
  192. {
  193. int ret;
  194. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  195. return 0;
  196. lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
  197. if (extent_buffer_uptodate(io_tree, eb) &&
  198. btrfs_header_generation(eb) == parent_transid) {
  199. ret = 0;
  200. goto out;
  201. }
  202. printk("parent transid verify failed on %llu wanted %llu found %llu\n",
  203. (unsigned long long)eb->start,
  204. (unsigned long long)parent_transid,
  205. (unsigned long long)btrfs_header_generation(eb));
  206. ret = 1;
  207. out:
  208. clear_extent_buffer_uptodate(io_tree, eb);
  209. unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
  210. GFP_NOFS);
  211. return ret;
  212. }
  213. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  214. struct extent_buffer *eb,
  215. u64 start, u64 parent_transid)
  216. {
  217. struct extent_io_tree *io_tree;
  218. int ret;
  219. int num_copies = 0;
  220. int mirror_num = 0;
  221. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  222. while (1) {
  223. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  224. btree_get_extent, mirror_num);
  225. if (!ret &&
  226. !verify_parent_transid(io_tree, eb, parent_transid))
  227. return ret;
  228. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  229. eb->start, eb->len);
  230. if (num_copies == 1)
  231. return ret;
  232. mirror_num++;
  233. if (mirror_num > num_copies)
  234. return ret;
  235. }
  236. return -EIO;
  237. }
  238. int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  239. {
  240. struct extent_io_tree *tree;
  241. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  242. u64 found_start;
  243. int found_level;
  244. unsigned long len;
  245. struct extent_buffer *eb;
  246. int ret;
  247. tree = &BTRFS_I(page->mapping->host)->io_tree;
  248. if (page->private == EXTENT_PAGE_PRIVATE)
  249. goto out;
  250. if (!page->private)
  251. goto out;
  252. len = page->private >> 2;
  253. if (len == 0) {
  254. WARN_ON(1);
  255. }
  256. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  257. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  258. btrfs_header_generation(eb));
  259. BUG_ON(ret);
  260. btrfs_clear_buffer_defrag(eb);
  261. found_start = btrfs_header_bytenr(eb);
  262. if (found_start != start) {
  263. printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
  264. start, found_start, len);
  265. WARN_ON(1);
  266. goto err;
  267. }
  268. if (eb->first_page != page) {
  269. printk("bad first page %lu %lu\n", eb->first_page->index,
  270. page->index);
  271. WARN_ON(1);
  272. goto err;
  273. }
  274. if (!PageUptodate(page)) {
  275. printk("csum not up to date page %lu\n", page->index);
  276. WARN_ON(1);
  277. goto err;
  278. }
  279. found_level = btrfs_header_level(eb);
  280. spin_lock(&root->fs_info->hash_lock);
  281. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  282. spin_unlock(&root->fs_info->hash_lock);
  283. csum_tree_block(root, eb, 0);
  284. err:
  285. free_extent_buffer(eb);
  286. out:
  287. return 0;
  288. }
  289. static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
  290. {
  291. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  292. csum_dirty_buffer(root, page);
  293. return 0;
  294. }
  295. int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  296. struct extent_state *state)
  297. {
  298. struct extent_io_tree *tree;
  299. u64 found_start;
  300. int found_level;
  301. unsigned long len;
  302. struct extent_buffer *eb;
  303. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  304. int ret = 0;
  305. tree = &BTRFS_I(page->mapping->host)->io_tree;
  306. if (page->private == EXTENT_PAGE_PRIVATE)
  307. goto out;
  308. if (!page->private)
  309. goto out;
  310. len = page->private >> 2;
  311. if (len == 0) {
  312. WARN_ON(1);
  313. }
  314. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  315. btrfs_clear_buffer_defrag(eb);
  316. found_start = btrfs_header_bytenr(eb);
  317. if (found_start != start) {
  318. ret = -EIO;
  319. goto err;
  320. }
  321. if (eb->first_page != page) {
  322. printk("bad first page %lu %lu\n", eb->first_page->index,
  323. page->index);
  324. WARN_ON(1);
  325. ret = -EIO;
  326. goto err;
  327. }
  328. if (memcmp_extent_buffer(eb, root->fs_info->fsid,
  329. (unsigned long)btrfs_header_fsid(eb),
  330. BTRFS_FSID_SIZE)) {
  331. printk("bad fsid on block %Lu\n", eb->start);
  332. ret = -EIO;
  333. goto err;
  334. }
  335. found_level = btrfs_header_level(eb);
  336. ret = csum_tree_block(root, eb, 1);
  337. if (ret)
  338. ret = -EIO;
  339. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  340. end = eb->start + end - 1;
  341. release_extent_buffer_tail_pages(eb);
  342. err:
  343. free_extent_buffer(eb);
  344. out:
  345. return ret;
  346. }
  347. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
  348. static void end_workqueue_bio(struct bio *bio, int err)
  349. #else
  350. static int end_workqueue_bio(struct bio *bio,
  351. unsigned int bytes_done, int err)
  352. #endif
  353. {
  354. struct end_io_wq *end_io_wq = bio->bi_private;
  355. struct btrfs_fs_info *fs_info;
  356. #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
  357. if (bio->bi_size)
  358. return 1;
  359. #endif
  360. fs_info = end_io_wq->info;
  361. end_io_wq->error = err;
  362. end_io_wq->work.func = end_workqueue_fn;
  363. end_io_wq->work.flags = 0;
  364. btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
  365. #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
  366. return 0;
  367. #endif
  368. }
  369. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  370. int metadata)
  371. {
  372. struct end_io_wq *end_io_wq;
  373. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  374. if (!end_io_wq)
  375. return -ENOMEM;
  376. end_io_wq->private = bio->bi_private;
  377. end_io_wq->end_io = bio->bi_end_io;
  378. end_io_wq->info = info;
  379. end_io_wq->error = 0;
  380. end_io_wq->bio = bio;
  381. end_io_wq->metadata = metadata;
  382. bio->bi_private = end_io_wq;
  383. bio->bi_end_io = end_workqueue_bio;
  384. return 0;
  385. }
  386. static void run_one_async_submit(struct btrfs_work *work)
  387. {
  388. struct btrfs_fs_info *fs_info;
  389. struct async_submit_bio *async;
  390. async = container_of(work, struct async_submit_bio, work);
  391. fs_info = BTRFS_I(async->inode)->root->fs_info;
  392. atomic_dec(&fs_info->nr_async_submits);
  393. async->submit_bio_hook(async->inode, async->rw, async->bio,
  394. async->mirror_num);
  395. kfree(async);
  396. }
  397. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  398. int rw, struct bio *bio, int mirror_num,
  399. extent_submit_bio_hook_t *submit_bio_hook)
  400. {
  401. struct async_submit_bio *async;
  402. async = kmalloc(sizeof(*async), GFP_NOFS);
  403. if (!async)
  404. return -ENOMEM;
  405. async->inode = inode;
  406. async->rw = rw;
  407. async->bio = bio;
  408. async->mirror_num = mirror_num;
  409. async->submit_bio_hook = submit_bio_hook;
  410. async->work.func = run_one_async_submit;
  411. async->work.flags = 0;
  412. atomic_inc(&fs_info->nr_async_submits);
  413. btrfs_queue_worker(&fs_info->workers, &async->work);
  414. return 0;
  415. }
  416. static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  417. int mirror_num)
  418. {
  419. struct btrfs_root *root = BTRFS_I(inode)->root;
  420. u64 offset;
  421. int ret;
  422. offset = bio->bi_sector << 9;
  423. /*
  424. * when we're called for a write, we're already in the async
  425. * submission context. Just jump ingo btrfs_map_bio
  426. */
  427. if (rw & (1 << BIO_RW)) {
  428. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  429. mirror_num, 0);
  430. }
  431. /*
  432. * called for a read, do the setup so that checksum validation
  433. * can happen in the async kernel threads
  434. */
  435. ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
  436. BUG_ON(ret);
  437. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  438. }
  439. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  440. int mirror_num)
  441. {
  442. /*
  443. * kthread helpers are used to submit writes so that checksumming
  444. * can happen in parallel across all CPUs
  445. */
  446. if (!(rw & (1 << BIO_RW))) {
  447. return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
  448. }
  449. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  450. inode, rw, bio, mirror_num,
  451. __btree_submit_bio_hook);
  452. }
  453. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  454. {
  455. struct extent_io_tree *tree;
  456. tree = &BTRFS_I(page->mapping->host)->io_tree;
  457. return extent_write_full_page(tree, page, btree_get_extent, wbc);
  458. }
  459. static int btree_writepages(struct address_space *mapping,
  460. struct writeback_control *wbc)
  461. {
  462. struct extent_io_tree *tree;
  463. tree = &BTRFS_I(mapping->host)->io_tree;
  464. if (wbc->sync_mode == WB_SYNC_NONE) {
  465. u64 num_dirty;
  466. u64 start = 0;
  467. unsigned long thresh = 96 * 1024 * 1024;
  468. if (wbc->for_kupdate)
  469. return 0;
  470. if (current_is_pdflush()) {
  471. thresh = 96 * 1024 * 1024;
  472. } else {
  473. thresh = 8 * 1024 * 1024;
  474. }
  475. num_dirty = count_range_bits(tree, &start, (u64)-1,
  476. thresh, EXTENT_DIRTY);
  477. if (num_dirty < thresh) {
  478. return 0;
  479. }
  480. }
  481. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  482. }
  483. int btree_readpage(struct file *file, struct page *page)
  484. {
  485. struct extent_io_tree *tree;
  486. tree = &BTRFS_I(page->mapping->host)->io_tree;
  487. return extent_read_full_page(tree, page, btree_get_extent);
  488. }
  489. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  490. {
  491. struct extent_io_tree *tree;
  492. struct extent_map_tree *map;
  493. int ret;
  494. if (page_count(page) > 3) {
  495. /* once for page->private, once for the caller, once
  496. * once for the page cache
  497. */
  498. return 0;
  499. }
  500. tree = &BTRFS_I(page->mapping->host)->io_tree;
  501. map = &BTRFS_I(page->mapping->host)->extent_tree;
  502. ret = try_release_extent_state(map, tree, page, gfp_flags);
  503. if (ret == 1) {
  504. invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
  505. ClearPagePrivate(page);
  506. set_page_private(page, 0);
  507. page_cache_release(page);
  508. }
  509. return ret;
  510. }
  511. static void btree_invalidatepage(struct page *page, unsigned long offset)
  512. {
  513. struct extent_io_tree *tree;
  514. tree = &BTRFS_I(page->mapping->host)->io_tree;
  515. extent_invalidatepage(tree, page, offset);
  516. btree_releasepage(page, GFP_NOFS);
  517. if (PagePrivate(page)) {
  518. invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
  519. ClearPagePrivate(page);
  520. set_page_private(page, 0);
  521. page_cache_release(page);
  522. }
  523. }
  524. #if 0
  525. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  526. {
  527. struct buffer_head *bh;
  528. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  529. struct buffer_head *head;
  530. if (!page_has_buffers(page)) {
  531. create_empty_buffers(page, root->fs_info->sb->s_blocksize,
  532. (1 << BH_Dirty)|(1 << BH_Uptodate));
  533. }
  534. head = page_buffers(page);
  535. bh = head;
  536. do {
  537. if (buffer_dirty(bh))
  538. csum_tree_block(root, bh, 0);
  539. bh = bh->b_this_page;
  540. } while (bh != head);
  541. return block_write_full_page(page, btree_get_block, wbc);
  542. }
  543. #endif
  544. static struct address_space_operations btree_aops = {
  545. .readpage = btree_readpage,
  546. .writepage = btree_writepage,
  547. .writepages = btree_writepages,
  548. .releasepage = btree_releasepage,
  549. .invalidatepage = btree_invalidatepage,
  550. .sync_page = block_sync_page,
  551. };
  552. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  553. u64 parent_transid)
  554. {
  555. struct extent_buffer *buf = NULL;
  556. struct inode *btree_inode = root->fs_info->btree_inode;
  557. int ret = 0;
  558. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  559. if (!buf)
  560. return 0;
  561. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  562. buf, 0, 0, btree_get_extent, 0);
  563. free_extent_buffer(buf);
  564. return ret;
  565. }
  566. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  567. u64 bytenr, u32 blocksize)
  568. {
  569. struct inode *btree_inode = root->fs_info->btree_inode;
  570. struct extent_buffer *eb;
  571. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  572. bytenr, blocksize, GFP_NOFS);
  573. return eb;
  574. }
  575. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  576. u64 bytenr, u32 blocksize)
  577. {
  578. struct inode *btree_inode = root->fs_info->btree_inode;
  579. struct extent_buffer *eb;
  580. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  581. bytenr, blocksize, NULL, GFP_NOFS);
  582. return eb;
  583. }
  584. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  585. u32 blocksize, u64 parent_transid)
  586. {
  587. struct extent_buffer *buf = NULL;
  588. struct inode *btree_inode = root->fs_info->btree_inode;
  589. struct extent_io_tree *io_tree;
  590. int ret;
  591. io_tree = &BTRFS_I(btree_inode)->io_tree;
  592. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  593. if (!buf)
  594. return NULL;
  595. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  596. if (ret == 0) {
  597. buf->flags |= EXTENT_UPTODATE;
  598. }
  599. return buf;
  600. }
  601. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  602. struct extent_buffer *buf)
  603. {
  604. struct inode *btree_inode = root->fs_info->btree_inode;
  605. if (btrfs_header_generation(buf) ==
  606. root->fs_info->running_transaction->transid)
  607. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  608. buf);
  609. return 0;
  610. }
  611. int wait_on_tree_block_writeback(struct btrfs_root *root,
  612. struct extent_buffer *buf)
  613. {
  614. struct inode *btree_inode = root->fs_info->btree_inode;
  615. wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
  616. buf);
  617. return 0;
  618. }
  619. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  620. u32 stripesize, struct btrfs_root *root,
  621. struct btrfs_fs_info *fs_info,
  622. u64 objectid)
  623. {
  624. root->node = NULL;
  625. root->inode = NULL;
  626. root->commit_root = NULL;
  627. root->sectorsize = sectorsize;
  628. root->nodesize = nodesize;
  629. root->leafsize = leafsize;
  630. root->stripesize = stripesize;
  631. root->ref_cows = 0;
  632. root->track_dirty = 0;
  633. root->fs_info = fs_info;
  634. root->objectid = objectid;
  635. root->last_trans = 0;
  636. root->highest_inode = 0;
  637. root->last_inode_alloc = 0;
  638. root->name = NULL;
  639. root->in_sysfs = 0;
  640. INIT_LIST_HEAD(&root->dirty_list);
  641. memset(&root->root_key, 0, sizeof(root->root_key));
  642. memset(&root->root_item, 0, sizeof(root->root_item));
  643. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  644. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  645. init_completion(&root->kobj_unregister);
  646. root->defrag_running = 0;
  647. root->defrag_level = 0;
  648. root->root_key.objectid = objectid;
  649. return 0;
  650. }
  651. static int find_and_setup_root(struct btrfs_root *tree_root,
  652. struct btrfs_fs_info *fs_info,
  653. u64 objectid,
  654. struct btrfs_root *root)
  655. {
  656. int ret;
  657. u32 blocksize;
  658. __setup_root(tree_root->nodesize, tree_root->leafsize,
  659. tree_root->sectorsize, tree_root->stripesize,
  660. root, fs_info, objectid);
  661. ret = btrfs_find_last_root(tree_root, objectid,
  662. &root->root_item, &root->root_key);
  663. BUG_ON(ret);
  664. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  665. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  666. blocksize, 0);
  667. BUG_ON(!root->node);
  668. return 0;
  669. }
  670. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
  671. struct btrfs_key *location)
  672. {
  673. struct btrfs_root *root;
  674. struct btrfs_root *tree_root = fs_info->tree_root;
  675. struct btrfs_path *path;
  676. struct extent_buffer *l;
  677. u64 highest_inode;
  678. u32 blocksize;
  679. int ret = 0;
  680. root = kzalloc(sizeof(*root), GFP_NOFS);
  681. if (!root)
  682. return ERR_PTR(-ENOMEM);
  683. if (location->offset == (u64)-1) {
  684. ret = find_and_setup_root(tree_root, fs_info,
  685. location->objectid, root);
  686. if (ret) {
  687. kfree(root);
  688. return ERR_PTR(ret);
  689. }
  690. goto insert;
  691. }
  692. __setup_root(tree_root->nodesize, tree_root->leafsize,
  693. tree_root->sectorsize, tree_root->stripesize,
  694. root, fs_info, location->objectid);
  695. path = btrfs_alloc_path();
  696. BUG_ON(!path);
  697. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  698. if (ret != 0) {
  699. if (ret > 0)
  700. ret = -ENOENT;
  701. goto out;
  702. }
  703. l = path->nodes[0];
  704. read_extent_buffer(l, &root->root_item,
  705. btrfs_item_ptr_offset(l, path->slots[0]),
  706. sizeof(root->root_item));
  707. memcpy(&root->root_key, location, sizeof(*location));
  708. ret = 0;
  709. out:
  710. btrfs_release_path(root, path);
  711. btrfs_free_path(path);
  712. if (ret) {
  713. kfree(root);
  714. return ERR_PTR(ret);
  715. }
  716. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  717. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  718. blocksize, 0);
  719. BUG_ON(!root->node);
  720. insert:
  721. root->ref_cows = 1;
  722. ret = btrfs_find_highest_inode(root, &highest_inode);
  723. if (ret == 0) {
  724. root->highest_inode = highest_inode;
  725. root->last_inode_alloc = highest_inode;
  726. }
  727. return root;
  728. }
  729. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  730. u64 root_objectid)
  731. {
  732. struct btrfs_root *root;
  733. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  734. return fs_info->tree_root;
  735. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  736. return fs_info->extent_root;
  737. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  738. (unsigned long)root_objectid);
  739. return root;
  740. }
  741. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  742. struct btrfs_key *location)
  743. {
  744. struct btrfs_root *root;
  745. int ret;
  746. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  747. return fs_info->tree_root;
  748. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  749. return fs_info->extent_root;
  750. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  751. return fs_info->chunk_root;
  752. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  753. return fs_info->dev_root;
  754. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  755. (unsigned long)location->objectid);
  756. if (root)
  757. return root;
  758. root = btrfs_read_fs_root_no_radix(fs_info, location);
  759. if (IS_ERR(root))
  760. return root;
  761. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  762. (unsigned long)root->root_key.objectid,
  763. root);
  764. if (ret) {
  765. free_extent_buffer(root->node);
  766. kfree(root);
  767. return ERR_PTR(ret);
  768. }
  769. ret = btrfs_find_dead_roots(fs_info->tree_root,
  770. root->root_key.objectid, root);
  771. BUG_ON(ret);
  772. return root;
  773. }
  774. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  775. struct btrfs_key *location,
  776. const char *name, int namelen)
  777. {
  778. struct btrfs_root *root;
  779. int ret;
  780. root = btrfs_read_fs_root_no_name(fs_info, location);
  781. if (!root)
  782. return NULL;
  783. if (root->in_sysfs)
  784. return root;
  785. ret = btrfs_set_root_name(root, name, namelen);
  786. if (ret) {
  787. free_extent_buffer(root->node);
  788. kfree(root);
  789. return ERR_PTR(ret);
  790. }
  791. ret = btrfs_sysfs_add_root(root);
  792. if (ret) {
  793. free_extent_buffer(root->node);
  794. kfree(root->name);
  795. kfree(root);
  796. return ERR_PTR(ret);
  797. }
  798. root->in_sysfs = 1;
  799. return root;
  800. }
  801. #if 0
  802. static int add_hasher(struct btrfs_fs_info *info, char *type) {
  803. struct btrfs_hasher *hasher;
  804. hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
  805. if (!hasher)
  806. return -ENOMEM;
  807. hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
  808. if (!hasher->hash_tfm) {
  809. kfree(hasher);
  810. return -EINVAL;
  811. }
  812. spin_lock(&info->hash_lock);
  813. list_add(&hasher->list, &info->hashers);
  814. spin_unlock(&info->hash_lock);
  815. return 0;
  816. }
  817. #endif
  818. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  819. {
  820. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  821. int ret = 0;
  822. int limit = 256 * info->fs_devices->open_devices;
  823. struct list_head *cur;
  824. struct btrfs_device *device;
  825. struct backing_dev_info *bdi;
  826. if ((bdi_bits & (1 << BDI_write_congested)) &&
  827. atomic_read(&info->nr_async_submits) > limit) {
  828. return 1;
  829. }
  830. list_for_each(cur, &info->fs_devices->devices) {
  831. device = list_entry(cur, struct btrfs_device, dev_list);
  832. if (!device->bdev)
  833. continue;
  834. bdi = blk_get_backing_dev_info(device->bdev);
  835. if (bdi && bdi_congested(bdi, bdi_bits)) {
  836. ret = 1;
  837. break;
  838. }
  839. }
  840. return ret;
  841. }
  842. /*
  843. * this unplugs every device on the box, and it is only used when page
  844. * is null
  845. */
  846. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  847. {
  848. struct list_head *cur;
  849. struct btrfs_device *device;
  850. struct btrfs_fs_info *info;
  851. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  852. list_for_each(cur, &info->fs_devices->devices) {
  853. device = list_entry(cur, struct btrfs_device, dev_list);
  854. bdi = blk_get_backing_dev_info(device->bdev);
  855. if (bdi->unplug_io_fn) {
  856. bdi->unplug_io_fn(bdi, page);
  857. }
  858. }
  859. }
  860. void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  861. {
  862. struct inode *inode;
  863. struct extent_map_tree *em_tree;
  864. struct extent_map *em;
  865. struct address_space *mapping;
  866. u64 offset;
  867. /* the generic O_DIRECT read code does this */
  868. if (!page) {
  869. __unplug_io_fn(bdi, page);
  870. return;
  871. }
  872. /*
  873. * page->mapping may change at any time. Get a consistent copy
  874. * and use that for everything below
  875. */
  876. smp_mb();
  877. mapping = page->mapping;
  878. if (!mapping)
  879. return;
  880. inode = mapping->host;
  881. offset = page_offset(page);
  882. em_tree = &BTRFS_I(inode)->extent_tree;
  883. spin_lock(&em_tree->lock);
  884. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  885. spin_unlock(&em_tree->lock);
  886. if (!em)
  887. return;
  888. offset = offset - em->start;
  889. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  890. em->block_start + offset, page);
  891. free_extent_map(em);
  892. }
  893. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  894. {
  895. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
  896. bdi_init(bdi);
  897. #endif
  898. bdi->ra_pages = default_backing_dev_info.ra_pages;
  899. bdi->state = 0;
  900. bdi->capabilities = default_backing_dev_info.capabilities;
  901. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  902. bdi->unplug_io_data = info;
  903. bdi->congested_fn = btrfs_congested_fn;
  904. bdi->congested_data = info;
  905. return 0;
  906. }
  907. static int bio_ready_for_csum(struct bio *bio)
  908. {
  909. u64 length = 0;
  910. u64 buf_len = 0;
  911. u64 start = 0;
  912. struct page *page;
  913. struct extent_io_tree *io_tree = NULL;
  914. struct btrfs_fs_info *info = NULL;
  915. struct bio_vec *bvec;
  916. int i;
  917. int ret;
  918. bio_for_each_segment(bvec, bio, i) {
  919. page = bvec->bv_page;
  920. if (page->private == EXTENT_PAGE_PRIVATE) {
  921. length += bvec->bv_len;
  922. continue;
  923. }
  924. if (!page->private) {
  925. length += bvec->bv_len;
  926. continue;
  927. }
  928. length = bvec->bv_len;
  929. buf_len = page->private >> 2;
  930. start = page_offset(page) + bvec->bv_offset;
  931. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  932. info = BTRFS_I(page->mapping->host)->root->fs_info;
  933. }
  934. /* are we fully contained in this bio? */
  935. if (buf_len <= length)
  936. return 1;
  937. ret = extent_range_uptodate(io_tree, start + length,
  938. start + buf_len - 1);
  939. if (ret == 1)
  940. return ret;
  941. return ret;
  942. }
  943. /*
  944. * called by the kthread helper functions to finally call the bio end_io
  945. * functions. This is where read checksum verification actually happens
  946. */
  947. static void end_workqueue_fn(struct btrfs_work *work)
  948. {
  949. struct bio *bio;
  950. struct end_io_wq *end_io_wq;
  951. struct btrfs_fs_info *fs_info;
  952. int error;
  953. end_io_wq = container_of(work, struct end_io_wq, work);
  954. bio = end_io_wq->bio;
  955. fs_info = end_io_wq->info;
  956. /* metadata bios are special because the whole tree block must
  957. * be checksummed at once. This makes sure the entire block is in
  958. * ram and up to date before trying to verify things. For
  959. * blocksize <= pagesize, it is basically a noop
  960. */
  961. if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
  962. btrfs_queue_worker(&fs_info->endio_workers,
  963. &end_io_wq->work);
  964. return;
  965. }
  966. error = end_io_wq->error;
  967. bio->bi_private = end_io_wq->private;
  968. bio->bi_end_io = end_io_wq->end_io;
  969. kfree(end_io_wq);
  970. #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
  971. bio_endio(bio, bio->bi_size, error);
  972. #else
  973. bio_endio(bio, error);
  974. #endif
  975. }
  976. struct btrfs_root *open_ctree(struct super_block *sb,
  977. struct btrfs_fs_devices *fs_devices,
  978. char *options)
  979. {
  980. u32 sectorsize;
  981. u32 nodesize;
  982. u32 leafsize;
  983. u32 blocksize;
  984. u32 stripesize;
  985. struct buffer_head *bh;
  986. struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
  987. GFP_NOFS);
  988. struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
  989. GFP_NOFS);
  990. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  991. GFP_NOFS);
  992. struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
  993. GFP_NOFS);
  994. struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
  995. GFP_NOFS);
  996. int ret;
  997. int err = -EINVAL;
  998. struct btrfs_super_block *disk_super;
  999. if (!extent_root || !tree_root || !fs_info) {
  1000. err = -ENOMEM;
  1001. goto fail;
  1002. }
  1003. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  1004. INIT_LIST_HEAD(&fs_info->trans_list);
  1005. INIT_LIST_HEAD(&fs_info->dead_roots);
  1006. INIT_LIST_HEAD(&fs_info->hashers);
  1007. spin_lock_init(&fs_info->hash_lock);
  1008. spin_lock_init(&fs_info->delalloc_lock);
  1009. spin_lock_init(&fs_info->new_trans_lock);
  1010. init_completion(&fs_info->kobj_unregister);
  1011. fs_info->tree_root = tree_root;
  1012. fs_info->extent_root = extent_root;
  1013. fs_info->chunk_root = chunk_root;
  1014. fs_info->dev_root = dev_root;
  1015. fs_info->fs_devices = fs_devices;
  1016. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1017. INIT_LIST_HEAD(&fs_info->space_info);
  1018. btrfs_mapping_init(&fs_info->mapping_tree);
  1019. atomic_set(&fs_info->nr_async_submits, 0);
  1020. fs_info->sb = sb;
  1021. fs_info->max_extent = (u64)-1;
  1022. fs_info->max_inline = 8192 * 1024;
  1023. setup_bdi(fs_info, &fs_info->bdi);
  1024. fs_info->btree_inode = new_inode(sb);
  1025. fs_info->btree_inode->i_ino = 1;
  1026. fs_info->btree_inode->i_nlink = 1;
  1027. fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
  1028. sb->s_blocksize = 4096;
  1029. sb->s_blocksize_bits = blksize_bits(4096);
  1030. /*
  1031. * we set the i_size on the btree inode to the max possible int.
  1032. * the real end of the address space is determined by all of
  1033. * the devices in the system
  1034. */
  1035. fs_info->btree_inode->i_size = OFFSET_MAX;
  1036. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1037. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1038. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1039. fs_info->btree_inode->i_mapping,
  1040. GFP_NOFS);
  1041. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1042. GFP_NOFS);
  1043. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1044. extent_io_tree_init(&fs_info->free_space_cache,
  1045. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1046. extent_io_tree_init(&fs_info->block_group_cache,
  1047. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1048. extent_io_tree_init(&fs_info->pinned_extents,
  1049. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1050. extent_io_tree_init(&fs_info->pending_del,
  1051. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1052. extent_io_tree_init(&fs_info->extent_ins,
  1053. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1054. fs_info->do_barriers = 1;
  1055. #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
  1056. INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
  1057. #else
  1058. INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
  1059. #endif
  1060. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1061. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1062. sizeof(struct btrfs_key));
  1063. insert_inode_hash(fs_info->btree_inode);
  1064. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1065. mutex_init(&fs_info->trans_mutex);
  1066. mutex_init(&fs_info->fs_mutex);
  1067. #if 0
  1068. ret = add_hasher(fs_info, "crc32c");
  1069. if (ret) {
  1070. printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
  1071. err = -ENOMEM;
  1072. goto fail_iput;
  1073. }
  1074. #endif
  1075. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1076. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1077. bh = __bread(fs_devices->latest_bdev,
  1078. BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
  1079. if (!bh)
  1080. goto fail_iput;
  1081. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1082. brelse(bh);
  1083. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1084. disk_super = &fs_info->super_copy;
  1085. if (!btrfs_super_root(disk_super))
  1086. goto fail_sb_buffer;
  1087. err = btrfs_parse_options(tree_root, options);
  1088. if (err)
  1089. goto fail_sb_buffer;
  1090. /*
  1091. * we need to start all the end_io workers up front because the
  1092. * queue work function gets called at interrupt time, and so it
  1093. * cannot dynamically grow.
  1094. */
  1095. btrfs_init_workers(&fs_info->workers, fs_info->thread_pool_size);
  1096. btrfs_init_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
  1097. btrfs_start_workers(&fs_info->workers, 1);
  1098. btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
  1099. err = -EINVAL;
  1100. if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) {
  1101. printk("Btrfs: wanted %llu devices, but found %llu\n",
  1102. (unsigned long long)btrfs_super_num_devices(disk_super),
  1103. (unsigned long long)fs_devices->open_devices);
  1104. if (btrfs_test_opt(tree_root, DEGRADED))
  1105. printk("continuing in degraded mode\n");
  1106. else {
  1107. goto fail_sb_buffer;
  1108. }
  1109. }
  1110. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1111. nodesize = btrfs_super_nodesize(disk_super);
  1112. leafsize = btrfs_super_leafsize(disk_super);
  1113. sectorsize = btrfs_super_sectorsize(disk_super);
  1114. stripesize = btrfs_super_stripesize(disk_super);
  1115. tree_root->nodesize = nodesize;
  1116. tree_root->leafsize = leafsize;
  1117. tree_root->sectorsize = sectorsize;
  1118. tree_root->stripesize = stripesize;
  1119. sb->s_blocksize = sectorsize;
  1120. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1121. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1122. sizeof(disk_super->magic))) {
  1123. printk("btrfs: valid FS not found on %s\n", sb->s_id);
  1124. goto fail_sb_buffer;
  1125. }
  1126. mutex_lock(&fs_info->fs_mutex);
  1127. ret = btrfs_read_sys_array(tree_root);
  1128. if (ret) {
  1129. printk("btrfs: failed to read the system array on %s\n",
  1130. sb->s_id);
  1131. goto fail_sys_array;
  1132. }
  1133. blocksize = btrfs_level_size(tree_root,
  1134. btrfs_super_chunk_root_level(disk_super));
  1135. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1136. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1137. chunk_root->node = read_tree_block(chunk_root,
  1138. btrfs_super_chunk_root(disk_super),
  1139. blocksize, 0);
  1140. BUG_ON(!chunk_root->node);
  1141. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1142. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1143. BTRFS_UUID_SIZE);
  1144. ret = btrfs_read_chunk_tree(chunk_root);
  1145. BUG_ON(ret);
  1146. btrfs_close_extra_devices(fs_devices);
  1147. blocksize = btrfs_level_size(tree_root,
  1148. btrfs_super_root_level(disk_super));
  1149. tree_root->node = read_tree_block(tree_root,
  1150. btrfs_super_root(disk_super),
  1151. blocksize, 0);
  1152. if (!tree_root->node)
  1153. goto fail_sb_buffer;
  1154. ret = find_and_setup_root(tree_root, fs_info,
  1155. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1156. if (ret)
  1157. goto fail_tree_root;
  1158. extent_root->track_dirty = 1;
  1159. ret = find_and_setup_root(tree_root, fs_info,
  1160. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1161. dev_root->track_dirty = 1;
  1162. if (ret)
  1163. goto fail_extent_root;
  1164. btrfs_read_block_groups(extent_root);
  1165. fs_info->generation = btrfs_super_generation(disk_super) + 1;
  1166. fs_info->data_alloc_profile = (u64)-1;
  1167. fs_info->metadata_alloc_profile = (u64)-1;
  1168. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1169. mutex_unlock(&fs_info->fs_mutex);
  1170. return tree_root;
  1171. fail_extent_root:
  1172. free_extent_buffer(extent_root->node);
  1173. fail_tree_root:
  1174. free_extent_buffer(tree_root->node);
  1175. fail_sys_array:
  1176. mutex_unlock(&fs_info->fs_mutex);
  1177. fail_sb_buffer:
  1178. extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
  1179. btrfs_stop_workers(&fs_info->workers);
  1180. btrfs_stop_workers(&fs_info->endio_workers);
  1181. fail_iput:
  1182. iput(fs_info->btree_inode);
  1183. fail:
  1184. btrfs_close_devices(fs_info->fs_devices);
  1185. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1186. kfree(extent_root);
  1187. kfree(tree_root);
  1188. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
  1189. bdi_destroy(&fs_info->bdi);
  1190. #endif
  1191. kfree(fs_info);
  1192. return ERR_PTR(err);
  1193. }
  1194. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1195. {
  1196. char b[BDEVNAME_SIZE];
  1197. if (uptodate) {
  1198. set_buffer_uptodate(bh);
  1199. } else {
  1200. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1201. printk(KERN_WARNING "lost page write due to "
  1202. "I/O error on %s\n",
  1203. bdevname(bh->b_bdev, b));
  1204. }
  1205. /* note, we dont' set_buffer_write_io_error because we have
  1206. * our own ways of dealing with the IO errors
  1207. */
  1208. clear_buffer_uptodate(bh);
  1209. }
  1210. unlock_buffer(bh);
  1211. put_bh(bh);
  1212. }
  1213. int write_all_supers(struct btrfs_root *root)
  1214. {
  1215. struct list_head *cur;
  1216. struct list_head *head = &root->fs_info->fs_devices->devices;
  1217. struct btrfs_device *dev;
  1218. struct btrfs_super_block *sb;
  1219. struct btrfs_dev_item *dev_item;
  1220. struct buffer_head *bh;
  1221. int ret;
  1222. int do_barriers;
  1223. int max_errors;
  1224. int total_errors = 0;
  1225. u32 crc;
  1226. u64 flags;
  1227. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1228. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1229. sb = &root->fs_info->super_for_commit;
  1230. dev_item = &sb->dev_item;
  1231. list_for_each(cur, head) {
  1232. dev = list_entry(cur, struct btrfs_device, dev_list);
  1233. if (!dev->bdev) {
  1234. total_errors++;
  1235. continue;
  1236. }
  1237. if (!dev->in_fs_metadata)
  1238. continue;
  1239. btrfs_set_stack_device_type(dev_item, dev->type);
  1240. btrfs_set_stack_device_id(dev_item, dev->devid);
  1241. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1242. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1243. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1244. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1245. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1246. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1247. flags = btrfs_super_flags(sb);
  1248. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1249. crc = ~(u32)0;
  1250. crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
  1251. BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  1252. btrfs_csum_final(crc, sb->csum);
  1253. bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
  1254. BTRFS_SUPER_INFO_SIZE);
  1255. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1256. dev->pending_io = bh;
  1257. get_bh(bh);
  1258. set_buffer_uptodate(bh);
  1259. lock_buffer(bh);
  1260. bh->b_end_io = btrfs_end_buffer_write_sync;
  1261. if (do_barriers && dev->barriers) {
  1262. ret = submit_bh(WRITE_BARRIER, bh);
  1263. if (ret == -EOPNOTSUPP) {
  1264. printk("btrfs: disabling barriers on dev %s\n",
  1265. dev->name);
  1266. set_buffer_uptodate(bh);
  1267. dev->barriers = 0;
  1268. get_bh(bh);
  1269. lock_buffer(bh);
  1270. ret = submit_bh(WRITE, bh);
  1271. }
  1272. } else {
  1273. ret = submit_bh(WRITE, bh);
  1274. }
  1275. if (ret)
  1276. total_errors++;
  1277. }
  1278. if (total_errors > max_errors) {
  1279. printk("btrfs: %d errors while writing supers\n", total_errors);
  1280. BUG();
  1281. }
  1282. total_errors = 0;
  1283. list_for_each(cur, head) {
  1284. dev = list_entry(cur, struct btrfs_device, dev_list);
  1285. if (!dev->bdev)
  1286. continue;
  1287. if (!dev->in_fs_metadata)
  1288. continue;
  1289. BUG_ON(!dev->pending_io);
  1290. bh = dev->pending_io;
  1291. wait_on_buffer(bh);
  1292. if (!buffer_uptodate(dev->pending_io)) {
  1293. if (do_barriers && dev->barriers) {
  1294. printk("btrfs: disabling barriers on dev %s\n",
  1295. dev->name);
  1296. set_buffer_uptodate(bh);
  1297. get_bh(bh);
  1298. lock_buffer(bh);
  1299. dev->barriers = 0;
  1300. ret = submit_bh(WRITE, bh);
  1301. BUG_ON(ret);
  1302. wait_on_buffer(bh);
  1303. if (!buffer_uptodate(bh))
  1304. total_errors++;
  1305. } else {
  1306. total_errors++;
  1307. }
  1308. }
  1309. dev->pending_io = NULL;
  1310. brelse(bh);
  1311. }
  1312. if (total_errors > max_errors) {
  1313. printk("btrfs: %d errors while writing supers\n", total_errors);
  1314. BUG();
  1315. }
  1316. return 0;
  1317. }
  1318. int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
  1319. *root)
  1320. {
  1321. int ret;
  1322. ret = write_all_supers(root);
  1323. return ret;
  1324. }
  1325. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  1326. {
  1327. radix_tree_delete(&fs_info->fs_roots_radix,
  1328. (unsigned long)root->root_key.objectid);
  1329. if (root->in_sysfs)
  1330. btrfs_sysfs_del_root(root);
  1331. if (root->inode)
  1332. iput(root->inode);
  1333. if (root->node)
  1334. free_extent_buffer(root->node);
  1335. if (root->commit_root)
  1336. free_extent_buffer(root->commit_root);
  1337. if (root->name)
  1338. kfree(root->name);
  1339. kfree(root);
  1340. return 0;
  1341. }
  1342. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  1343. {
  1344. int ret;
  1345. struct btrfs_root *gang[8];
  1346. int i;
  1347. while(1) {
  1348. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1349. (void **)gang, 0,
  1350. ARRAY_SIZE(gang));
  1351. if (!ret)
  1352. break;
  1353. for (i = 0; i < ret; i++)
  1354. btrfs_free_fs_root(fs_info, gang[i]);
  1355. }
  1356. return 0;
  1357. }
  1358. int close_ctree(struct btrfs_root *root)
  1359. {
  1360. int ret;
  1361. struct btrfs_trans_handle *trans;
  1362. struct btrfs_fs_info *fs_info = root->fs_info;
  1363. fs_info->closing = 1;
  1364. btrfs_transaction_flush_work(root);
  1365. mutex_lock(&fs_info->fs_mutex);
  1366. btrfs_defrag_dirty_roots(root->fs_info);
  1367. trans = btrfs_start_transaction(root, 1);
  1368. ret = btrfs_commit_transaction(trans, root);
  1369. /* run commit again to drop the original snapshot */
  1370. trans = btrfs_start_transaction(root, 1);
  1371. btrfs_commit_transaction(trans, root);
  1372. ret = btrfs_write_and_wait_transaction(NULL, root);
  1373. BUG_ON(ret);
  1374. write_ctree_super(NULL, root);
  1375. mutex_unlock(&fs_info->fs_mutex);
  1376. btrfs_transaction_flush_work(root);
  1377. if (fs_info->delalloc_bytes) {
  1378. printk("btrfs: at unmount delalloc count %Lu\n",
  1379. fs_info->delalloc_bytes);
  1380. }
  1381. if (fs_info->extent_root->node)
  1382. free_extent_buffer(fs_info->extent_root->node);
  1383. if (fs_info->tree_root->node)
  1384. free_extent_buffer(fs_info->tree_root->node);
  1385. if (root->fs_info->chunk_root->node);
  1386. free_extent_buffer(root->fs_info->chunk_root->node);
  1387. if (root->fs_info->dev_root->node);
  1388. free_extent_buffer(root->fs_info->dev_root->node);
  1389. btrfs_free_block_groups(root->fs_info);
  1390. del_fs_roots(fs_info);
  1391. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1392. extent_io_tree_empty_lru(&fs_info->free_space_cache);
  1393. extent_io_tree_empty_lru(&fs_info->block_group_cache);
  1394. extent_io_tree_empty_lru(&fs_info->pinned_extents);
  1395. extent_io_tree_empty_lru(&fs_info->pending_del);
  1396. extent_io_tree_empty_lru(&fs_info->extent_ins);
  1397. extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
  1398. truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
  1399. btrfs_stop_workers(&fs_info->workers);
  1400. btrfs_stop_workers(&fs_info->endio_workers);
  1401. iput(fs_info->btree_inode);
  1402. #if 0
  1403. while(!list_empty(&fs_info->hashers)) {
  1404. struct btrfs_hasher *hasher;
  1405. hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
  1406. hashers);
  1407. list_del(&hasher->hashers);
  1408. crypto_free_hash(&fs_info->hash_tfm);
  1409. kfree(hasher);
  1410. }
  1411. #endif
  1412. btrfs_close_devices(fs_info->fs_devices);
  1413. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1414. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
  1415. bdi_destroy(&fs_info->bdi);
  1416. #endif
  1417. kfree(fs_info->extent_root);
  1418. kfree(fs_info->tree_root);
  1419. kfree(fs_info->chunk_root);
  1420. kfree(fs_info->dev_root);
  1421. return 0;
  1422. }
  1423. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  1424. {
  1425. int ret;
  1426. struct inode *btree_inode = buf->first_page->mapping->host;
  1427. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
  1428. if (!ret)
  1429. return ret;
  1430. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  1431. parent_transid);
  1432. return !ret;
  1433. }
  1434. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  1435. {
  1436. struct inode *btree_inode = buf->first_page->mapping->host;
  1437. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  1438. buf);
  1439. }
  1440. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  1441. {
  1442. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1443. u64 transid = btrfs_header_generation(buf);
  1444. struct inode *btree_inode = root->fs_info->btree_inode;
  1445. if (transid != root->fs_info->generation) {
  1446. printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
  1447. (unsigned long long)buf->start,
  1448. transid, root->fs_info->generation);
  1449. WARN_ON(1);
  1450. }
  1451. set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
  1452. }
  1453. void btrfs_throttle(struct btrfs_root *root)
  1454. {
  1455. struct backing_dev_info *bdi;
  1456. bdi = &root->fs_info->bdi;
  1457. if (root->fs_info->throttles && bdi_write_congested(bdi)) {
  1458. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
  1459. congestion_wait(WRITE, HZ/20);
  1460. #else
  1461. blk_congestion_wait(WRITE, HZ/20);
  1462. #endif
  1463. }
  1464. }
  1465. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  1466. {
  1467. /*
  1468. * looks as though older kernels can get into trouble with
  1469. * this code, they end up stuck in balance_dirty_pages forever
  1470. */
  1471. struct extent_io_tree *tree;
  1472. u64 num_dirty;
  1473. u64 start = 0;
  1474. unsigned long thresh = 16 * 1024 * 1024;
  1475. tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  1476. if (current_is_pdflush())
  1477. return;
  1478. num_dirty = count_range_bits(tree, &start, (u64)-1,
  1479. thresh, EXTENT_DIRTY);
  1480. if (num_dirty > thresh) {
  1481. balance_dirty_pages_ratelimited_nr(
  1482. root->fs_info->btree_inode->i_mapping, 1);
  1483. }
  1484. return;
  1485. }
  1486. void btrfs_set_buffer_defrag(struct extent_buffer *buf)
  1487. {
  1488. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1489. struct inode *btree_inode = root->fs_info->btree_inode;
  1490. set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
  1491. buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
  1492. }
  1493. void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
  1494. {
  1495. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1496. struct inode *btree_inode = root->fs_info->btree_inode;
  1497. set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
  1498. buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
  1499. GFP_NOFS);
  1500. }
  1501. int btrfs_buffer_defrag(struct extent_buffer *buf)
  1502. {
  1503. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1504. struct inode *btree_inode = root->fs_info->btree_inode;
  1505. return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
  1506. buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
  1507. }
  1508. int btrfs_buffer_defrag_done(struct extent_buffer *buf)
  1509. {
  1510. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1511. struct inode *btree_inode = root->fs_info->btree_inode;
  1512. return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
  1513. buf->start, buf->start + buf->len - 1,
  1514. EXTENT_DEFRAG_DONE, 0);
  1515. }
  1516. int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
  1517. {
  1518. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1519. struct inode *btree_inode = root->fs_info->btree_inode;
  1520. return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
  1521. buf->start, buf->start + buf->len - 1,
  1522. EXTENT_DEFRAG_DONE, GFP_NOFS);
  1523. }
  1524. int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
  1525. {
  1526. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1527. struct inode *btree_inode = root->fs_info->btree_inode;
  1528. return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
  1529. buf->start, buf->start + buf->len - 1,
  1530. EXTENT_DEFRAG, GFP_NOFS);
  1531. }
  1532. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  1533. {
  1534. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1535. int ret;
  1536. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1537. if (ret == 0) {
  1538. buf->flags |= EXTENT_UPTODATE;
  1539. }
  1540. return ret;
  1541. }
  1542. static struct extent_io_ops btree_extent_io_ops = {
  1543. .writepage_io_hook = btree_writepage_io_hook,
  1544. .readpage_end_io_hook = btree_readpage_end_io_hook,
  1545. .submit_bio_hook = btree_submit_bio_hook,
  1546. /* note we're sharing with inode.c for the merge bio hook */
  1547. .merge_bio_hook = btrfs_merge_bio_hook,
  1548. };