super.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. /*
  2. * linux/fs/hfs/super.c
  3. *
  4. * Copyright (C) 1995-1997 Paul H. Hargrove
  5. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  6. * This file may be distributed under the terms of the GNU General Public License.
  7. *
  8. * This file contains hfs_read_super(), some of the super_ops and
  9. * init_hfs_fs() and exit_hfs_fs(). The remaining super_ops are in
  10. * inode.c since they deal with inodes.
  11. *
  12. * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
  13. */
  14. #include <linux/module.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/mount.h>
  17. #include <linux/init.h>
  18. #include <linux/nls.h>
  19. #include <linux/parser.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/slab.h>
  22. #include <linux/vfs.h>
  23. #include "hfs_fs.h"
  24. #include "btree.h"
  25. static struct kmem_cache *hfs_inode_cachep;
  26. MODULE_LICENSE("GPL");
  27. /*
  28. * hfs_write_super()
  29. *
  30. * Description:
  31. * This function is called by the VFS only. When the filesystem
  32. * is mounted r/w it updates the MDB on disk.
  33. * Input Variable(s):
  34. * struct super_block *sb: Pointer to the hfs superblock
  35. * Output Variable(s):
  36. * NONE
  37. * Returns:
  38. * void
  39. * Preconditions:
  40. * 'sb' points to a "valid" (struct super_block).
  41. * Postconditions:
  42. * The MDB is marked 'unsuccessfully unmounted' by clearing bit 8 of drAtrb
  43. * (hfs_put_super() must set this flag!). Some MDB fields are updated
  44. * and the MDB buffer is written to disk by calling hfs_mdb_commit().
  45. */
  46. static void hfs_write_super(struct super_block *sb)
  47. {
  48. sb->s_dirt = 0;
  49. /* sync everything to the buffers */
  50. hfs_mdb_commit(sb);
  51. }
  52. static int hfs_sync_fs(struct super_block *sb, int wait)
  53. {
  54. hfs_mdb_commit(sb);
  55. sb->s_dirt = 0;
  56. return 0;
  57. }
  58. /*
  59. * hfs_put_super()
  60. *
  61. * This is the put_super() entry in the super_operations structure for
  62. * HFS filesystems. The purpose is to release the resources
  63. * associated with the superblock sb.
  64. */
  65. static void hfs_put_super(struct super_block *sb)
  66. {
  67. hfs_mdb_close(sb);
  68. /* release the MDB's resources */
  69. hfs_mdb_put(sb);
  70. }
  71. /*
  72. * hfs_statfs()
  73. *
  74. * This is the statfs() entry in the super_operations structure for
  75. * HFS filesystems. The purpose is to return various data about the
  76. * filesystem.
  77. *
  78. * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks.
  79. */
  80. static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  81. {
  82. struct super_block *sb = dentry->d_sb;
  83. u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
  84. buf->f_type = HFS_SUPER_MAGIC;
  85. buf->f_bsize = sb->s_blocksize;
  86. buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div;
  87. buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div;
  88. buf->f_bavail = buf->f_bfree;
  89. buf->f_files = HFS_SB(sb)->fs_ablocks;
  90. buf->f_ffree = HFS_SB(sb)->free_ablocks;
  91. buf->f_fsid.val[0] = (u32)id;
  92. buf->f_fsid.val[1] = (u32)(id >> 32);
  93. buf->f_namelen = HFS_NAMELEN;
  94. return 0;
  95. }
  96. static int hfs_remount(struct super_block *sb, int *flags, char *data)
  97. {
  98. *flags |= MS_NODIRATIME;
  99. if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
  100. return 0;
  101. if (!(*flags & MS_RDONLY)) {
  102. if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) {
  103. printk(KERN_WARNING "hfs: filesystem was not cleanly unmounted, "
  104. "running fsck.hfs is recommended. leaving read-only.\n");
  105. sb->s_flags |= MS_RDONLY;
  106. *flags |= MS_RDONLY;
  107. } else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) {
  108. printk(KERN_WARNING "hfs: filesystem is marked locked, leaving read-only.\n");
  109. sb->s_flags |= MS_RDONLY;
  110. *flags |= MS_RDONLY;
  111. }
  112. }
  113. return 0;
  114. }
  115. static int hfs_show_options(struct seq_file *seq, struct dentry *root)
  116. {
  117. struct hfs_sb_info *sbi = HFS_SB(root->d_sb);
  118. if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f))
  119. seq_printf(seq, ",creator=%.4s", (char *)&sbi->s_creator);
  120. if (sbi->s_type != cpu_to_be32(0x3f3f3f3f))
  121. seq_printf(seq, ",type=%.4s", (char *)&sbi->s_type);
  122. seq_printf(seq, ",uid=%u,gid=%u", sbi->s_uid, sbi->s_gid);
  123. if (sbi->s_file_umask != 0133)
  124. seq_printf(seq, ",file_umask=%o", sbi->s_file_umask);
  125. if (sbi->s_dir_umask != 0022)
  126. seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask);
  127. if (sbi->part >= 0)
  128. seq_printf(seq, ",part=%u", sbi->part);
  129. if (sbi->session >= 0)
  130. seq_printf(seq, ",session=%u", sbi->session);
  131. if (sbi->nls_disk)
  132. seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset);
  133. if (sbi->nls_io)
  134. seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset);
  135. if (sbi->s_quiet)
  136. seq_printf(seq, ",quiet");
  137. return 0;
  138. }
  139. static struct inode *hfs_alloc_inode(struct super_block *sb)
  140. {
  141. struct hfs_inode_info *i;
  142. i = kmem_cache_alloc(hfs_inode_cachep, GFP_KERNEL);
  143. return i ? &i->vfs_inode : NULL;
  144. }
  145. static void hfs_i_callback(struct rcu_head *head)
  146. {
  147. struct inode *inode = container_of(head, struct inode, i_rcu);
  148. kmem_cache_free(hfs_inode_cachep, HFS_I(inode));
  149. }
  150. static void hfs_destroy_inode(struct inode *inode)
  151. {
  152. call_rcu(&inode->i_rcu, hfs_i_callback);
  153. }
  154. static const struct super_operations hfs_super_operations = {
  155. .alloc_inode = hfs_alloc_inode,
  156. .destroy_inode = hfs_destroy_inode,
  157. .write_inode = hfs_write_inode,
  158. .evict_inode = hfs_evict_inode,
  159. .put_super = hfs_put_super,
  160. .write_super = hfs_write_super,
  161. .sync_fs = hfs_sync_fs,
  162. .statfs = hfs_statfs,
  163. .remount_fs = hfs_remount,
  164. .show_options = hfs_show_options,
  165. };
  166. enum {
  167. opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask,
  168. opt_part, opt_session, opt_type, opt_creator, opt_quiet,
  169. opt_codepage, opt_iocharset,
  170. opt_err
  171. };
  172. static const match_table_t tokens = {
  173. { opt_uid, "uid=%u" },
  174. { opt_gid, "gid=%u" },
  175. { opt_umask, "umask=%o" },
  176. { opt_file_umask, "file_umask=%o" },
  177. { opt_dir_umask, "dir_umask=%o" },
  178. { opt_part, "part=%u" },
  179. { opt_session, "session=%u" },
  180. { opt_type, "type=%s" },
  181. { opt_creator, "creator=%s" },
  182. { opt_quiet, "quiet" },
  183. { opt_codepage, "codepage=%s" },
  184. { opt_iocharset, "iocharset=%s" },
  185. { opt_err, NULL }
  186. };
  187. static inline int match_fourchar(substring_t *arg, u32 *result)
  188. {
  189. if (arg->to - arg->from != 4)
  190. return -EINVAL;
  191. memcpy(result, arg->from, 4);
  192. return 0;
  193. }
  194. /*
  195. * parse_options()
  196. *
  197. * adapted from linux/fs/msdos/inode.c written 1992,93 by Werner Almesberger
  198. * This function is called by hfs_read_super() to parse the mount options.
  199. */
  200. static int parse_options(char *options, struct hfs_sb_info *hsb)
  201. {
  202. char *p;
  203. substring_t args[MAX_OPT_ARGS];
  204. int tmp, token;
  205. /* initialize the sb with defaults */
  206. hsb->s_uid = current_uid();
  207. hsb->s_gid = current_gid();
  208. hsb->s_file_umask = 0133;
  209. hsb->s_dir_umask = 0022;
  210. hsb->s_type = hsb->s_creator = cpu_to_be32(0x3f3f3f3f); /* == '????' */
  211. hsb->s_quiet = 0;
  212. hsb->part = -1;
  213. hsb->session = -1;
  214. if (!options)
  215. return 1;
  216. while ((p = strsep(&options, ",")) != NULL) {
  217. if (!*p)
  218. continue;
  219. token = match_token(p, tokens, args);
  220. switch (token) {
  221. case opt_uid:
  222. if (match_int(&args[0], &tmp)) {
  223. printk(KERN_ERR "hfs: uid requires an argument\n");
  224. return 0;
  225. }
  226. hsb->s_uid = (uid_t)tmp;
  227. break;
  228. case opt_gid:
  229. if (match_int(&args[0], &tmp)) {
  230. printk(KERN_ERR "hfs: gid requires an argument\n");
  231. return 0;
  232. }
  233. hsb->s_gid = (gid_t)tmp;
  234. break;
  235. case opt_umask:
  236. if (match_octal(&args[0], &tmp)) {
  237. printk(KERN_ERR "hfs: umask requires a value\n");
  238. return 0;
  239. }
  240. hsb->s_file_umask = (umode_t)tmp;
  241. hsb->s_dir_umask = (umode_t)tmp;
  242. break;
  243. case opt_file_umask:
  244. if (match_octal(&args[0], &tmp)) {
  245. printk(KERN_ERR "hfs: file_umask requires a value\n");
  246. return 0;
  247. }
  248. hsb->s_file_umask = (umode_t)tmp;
  249. break;
  250. case opt_dir_umask:
  251. if (match_octal(&args[0], &tmp)) {
  252. printk(KERN_ERR "hfs: dir_umask requires a value\n");
  253. return 0;
  254. }
  255. hsb->s_dir_umask = (umode_t)tmp;
  256. break;
  257. case opt_part:
  258. if (match_int(&args[0], &hsb->part)) {
  259. printk(KERN_ERR "hfs: part requires an argument\n");
  260. return 0;
  261. }
  262. break;
  263. case opt_session:
  264. if (match_int(&args[0], &hsb->session)) {
  265. printk(KERN_ERR "hfs: session requires an argument\n");
  266. return 0;
  267. }
  268. break;
  269. case opt_type:
  270. if (match_fourchar(&args[0], &hsb->s_type)) {
  271. printk(KERN_ERR "hfs: type requires a 4 character value\n");
  272. return 0;
  273. }
  274. break;
  275. case opt_creator:
  276. if (match_fourchar(&args[0], &hsb->s_creator)) {
  277. printk(KERN_ERR "hfs: creator requires a 4 character value\n");
  278. return 0;
  279. }
  280. break;
  281. case opt_quiet:
  282. hsb->s_quiet = 1;
  283. break;
  284. case opt_codepage:
  285. if (hsb->nls_disk) {
  286. printk(KERN_ERR "hfs: unable to change codepage\n");
  287. return 0;
  288. }
  289. p = match_strdup(&args[0]);
  290. if (p)
  291. hsb->nls_disk = load_nls(p);
  292. if (!hsb->nls_disk) {
  293. printk(KERN_ERR "hfs: unable to load codepage \"%s\"\n", p);
  294. kfree(p);
  295. return 0;
  296. }
  297. kfree(p);
  298. break;
  299. case opt_iocharset:
  300. if (hsb->nls_io) {
  301. printk(KERN_ERR "hfs: unable to change iocharset\n");
  302. return 0;
  303. }
  304. p = match_strdup(&args[0]);
  305. if (p)
  306. hsb->nls_io = load_nls(p);
  307. if (!hsb->nls_io) {
  308. printk(KERN_ERR "hfs: unable to load iocharset \"%s\"\n", p);
  309. kfree(p);
  310. return 0;
  311. }
  312. kfree(p);
  313. break;
  314. default:
  315. return 0;
  316. }
  317. }
  318. if (hsb->nls_disk && !hsb->nls_io) {
  319. hsb->nls_io = load_nls_default();
  320. if (!hsb->nls_io) {
  321. printk(KERN_ERR "hfs: unable to load default iocharset\n");
  322. return 0;
  323. }
  324. }
  325. hsb->s_dir_umask &= 0777;
  326. hsb->s_file_umask &= 0577;
  327. return 1;
  328. }
  329. /*
  330. * hfs_read_super()
  331. *
  332. * This is the function that is responsible for mounting an HFS
  333. * filesystem. It performs all the tasks necessary to get enough data
  334. * from the disk to read the root inode. This includes parsing the
  335. * mount options, dealing with Macintosh partitions, reading the
  336. * superblock and the allocation bitmap blocks, calling
  337. * hfs_btree_init() to get the necessary data about the extents and
  338. * catalog B-trees and, finally, reading the root inode into memory.
  339. */
  340. static int hfs_fill_super(struct super_block *sb, void *data, int silent)
  341. {
  342. struct hfs_sb_info *sbi;
  343. struct hfs_find_data fd;
  344. hfs_cat_rec rec;
  345. struct inode *root_inode;
  346. int res;
  347. sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL);
  348. if (!sbi)
  349. return -ENOMEM;
  350. sb->s_fs_info = sbi;
  351. res = -EINVAL;
  352. if (!parse_options((char *)data, sbi)) {
  353. printk(KERN_ERR "hfs: unable to parse mount options.\n");
  354. goto bail;
  355. }
  356. sb->s_op = &hfs_super_operations;
  357. sb->s_flags |= MS_NODIRATIME;
  358. mutex_init(&sbi->bitmap_lock);
  359. res = hfs_mdb_get(sb);
  360. if (res) {
  361. if (!silent)
  362. printk(KERN_WARNING "hfs: can't find a HFS filesystem on dev %s.\n",
  363. hfs_mdb_name(sb));
  364. res = -EINVAL;
  365. goto bail;
  366. }
  367. /* try to get the root inode */
  368. hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
  369. res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd);
  370. if (!res) {
  371. if (fd.entrylength > sizeof(rec) || fd.entrylength < 0) {
  372. res = -EIO;
  373. goto bail;
  374. }
  375. hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength);
  376. }
  377. if (res) {
  378. hfs_find_exit(&fd);
  379. goto bail_no_root;
  380. }
  381. res = -EINVAL;
  382. root_inode = hfs_iget(sb, &fd.search_key->cat, &rec);
  383. hfs_find_exit(&fd);
  384. if (!root_inode)
  385. goto bail_no_root;
  386. sb->s_d_op = &hfs_dentry_operations;
  387. res = -ENOMEM;
  388. sb->s_root = d_make_root(root_inode);
  389. if (!sb->s_root)
  390. goto bail_no_root;
  391. /* everything's okay */
  392. return 0;
  393. bail_no_root:
  394. printk(KERN_ERR "hfs: get root inode failed.\n");
  395. bail:
  396. hfs_mdb_put(sb);
  397. return res;
  398. }
  399. static struct dentry *hfs_mount(struct file_system_type *fs_type,
  400. int flags, const char *dev_name, void *data)
  401. {
  402. return mount_bdev(fs_type, flags, dev_name, data, hfs_fill_super);
  403. }
  404. static struct file_system_type hfs_fs_type = {
  405. .owner = THIS_MODULE,
  406. .name = "hfs",
  407. .mount = hfs_mount,
  408. .kill_sb = kill_block_super,
  409. .fs_flags = FS_REQUIRES_DEV,
  410. };
  411. static void hfs_init_once(void *p)
  412. {
  413. struct hfs_inode_info *i = p;
  414. inode_init_once(&i->vfs_inode);
  415. }
  416. static int __init init_hfs_fs(void)
  417. {
  418. int err;
  419. hfs_inode_cachep = kmem_cache_create("hfs_inode_cache",
  420. sizeof(struct hfs_inode_info), 0, SLAB_HWCACHE_ALIGN,
  421. hfs_init_once);
  422. if (!hfs_inode_cachep)
  423. return -ENOMEM;
  424. err = register_filesystem(&hfs_fs_type);
  425. if (err)
  426. kmem_cache_destroy(hfs_inode_cachep);
  427. return err;
  428. }
  429. static void __exit exit_hfs_fs(void)
  430. {
  431. unregister_filesystem(&hfs_fs_type);
  432. kmem_cache_destroy(hfs_inode_cachep);
  433. }
  434. module_init(init_hfs_fs)
  435. module_exit(exit_hfs_fs)