mmu.c 86 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "mmu.h"
  21. #include "x86.h"
  22. #include "kvm_cache_regs.h"
  23. #include <linux/kvm_host.h>
  24. #include <linux/types.h>
  25. #include <linux/string.h>
  26. #include <linux/mm.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/swap.h>
  30. #include <linux/hugetlb.h>
  31. #include <linux/compiler.h>
  32. #include <linux/srcu.h>
  33. #include <linux/slab.h>
  34. #include <linux/uaccess.h>
  35. #include <asm/page.h>
  36. #include <asm/cmpxchg.h>
  37. #include <asm/io.h>
  38. #include <asm/vmx.h>
  39. /*
  40. * When setting this variable to true it enables Two-Dimensional-Paging
  41. * where the hardware walks 2 page tables:
  42. * 1. the guest-virtual to guest-physical
  43. * 2. while doing 1. it walks guest-physical to host-physical
  44. * If the hardware supports that we don't need to do shadow paging.
  45. */
  46. bool tdp_enabled = false;
  47. #undef MMU_DEBUG
  48. #undef AUDIT
  49. #ifdef AUDIT
  50. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  51. #else
  52. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  53. #endif
  54. #ifdef MMU_DEBUG
  55. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  56. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  57. #else
  58. #define pgprintk(x...) do { } while (0)
  59. #define rmap_printk(x...) do { } while (0)
  60. #endif
  61. #if defined(MMU_DEBUG) || defined(AUDIT)
  62. static int dbg = 0;
  63. module_param(dbg, bool, 0644);
  64. #endif
  65. static int oos_shadow = 1;
  66. module_param(oos_shadow, bool, 0644);
  67. #ifndef MMU_DEBUG
  68. #define ASSERT(x) do { } while (0)
  69. #else
  70. #define ASSERT(x) \
  71. if (!(x)) { \
  72. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  73. __FILE__, __LINE__, #x); \
  74. }
  75. #endif
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define PT64_LEVEL_BITS 9
  79. #define PT64_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  81. #define PT64_LEVEL_MASK(level) \
  82. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LEVEL_MASK(level) \
  89. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  90. #define PT32_LVL_OFFSET_MASK(level) \
  91. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  92. * PT32_LEVEL_BITS))) - 1))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT64_LVL_ADDR_MASK(level) \
  99. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT64_LEVEL_BITS))) - 1))
  101. #define PT64_LVL_OFFSET_MASK(level) \
  102. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  103. * PT64_LEVEL_BITS))) - 1))
  104. #define PT32_BASE_ADDR_MASK PAGE_MASK
  105. #define PT32_DIR_BASE_ADDR_MASK \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  107. #define PT32_LVL_ADDR_MASK(level) \
  108. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT32_LEVEL_BITS))) - 1))
  110. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  111. | PT64_NX_MASK)
  112. #define RMAP_EXT 4
  113. #define ACC_EXEC_MASK 1
  114. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  115. #define ACC_USER_MASK PT_USER_MASK
  116. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  117. #include <trace/events/kvm.h>
  118. #define CREATE_TRACE_POINTS
  119. #include "mmutrace.h"
  120. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  121. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  122. struct kvm_rmap_desc {
  123. u64 *sptes[RMAP_EXT];
  124. struct kvm_rmap_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. int level;
  130. u64 *sptep;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
  138. static struct kmem_cache *pte_chain_cache;
  139. static struct kmem_cache *rmap_desc_cache;
  140. static struct kmem_cache *mmu_page_header_cache;
  141. static struct percpu_counter kvm_total_used_mmu_pages;
  142. static u64 __read_mostly shadow_trap_nonpresent_pte;
  143. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  144. static u64 __read_mostly shadow_base_present_pte;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static inline u64 rsvd_bits(int s, int e)
  151. {
  152. return ((1ULL << (e - s + 1)) - 1) << s;
  153. }
  154. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  155. {
  156. shadow_trap_nonpresent_pte = trap_pte;
  157. shadow_notrap_nonpresent_pte = notrap_pte;
  158. }
  159. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  160. void kvm_mmu_set_base_ptes(u64 base_pte)
  161. {
  162. shadow_base_present_pte = base_pte;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  165. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  166. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  167. {
  168. shadow_user_mask = user_mask;
  169. shadow_accessed_mask = accessed_mask;
  170. shadow_dirty_mask = dirty_mask;
  171. shadow_nx_mask = nx_mask;
  172. shadow_x_mask = x_mask;
  173. }
  174. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  175. static bool is_write_protection(struct kvm_vcpu *vcpu)
  176. {
  177. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  178. }
  179. static int is_cpuid_PSE36(void)
  180. {
  181. return 1;
  182. }
  183. static int is_nx(struct kvm_vcpu *vcpu)
  184. {
  185. return vcpu->arch.efer & EFER_NX;
  186. }
  187. static int is_shadow_present_pte(u64 pte)
  188. {
  189. return pte != shadow_trap_nonpresent_pte
  190. && pte != shadow_notrap_nonpresent_pte;
  191. }
  192. static int is_large_pte(u64 pte)
  193. {
  194. return pte & PT_PAGE_SIZE_MASK;
  195. }
  196. static int is_writable_pte(unsigned long pte)
  197. {
  198. return pte & PT_WRITABLE_MASK;
  199. }
  200. static int is_dirty_gpte(unsigned long pte)
  201. {
  202. return pte & PT_DIRTY_MASK;
  203. }
  204. static int is_rmap_spte(u64 pte)
  205. {
  206. return is_shadow_present_pte(pte);
  207. }
  208. static int is_last_spte(u64 pte, int level)
  209. {
  210. if (level == PT_PAGE_TABLE_LEVEL)
  211. return 1;
  212. if (is_large_pte(pte))
  213. return 1;
  214. return 0;
  215. }
  216. static pfn_t spte_to_pfn(u64 pte)
  217. {
  218. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  219. }
  220. static gfn_t pse36_gfn_delta(u32 gpte)
  221. {
  222. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  223. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  224. }
  225. static void __set_spte(u64 *sptep, u64 spte)
  226. {
  227. set_64bit(sptep, spte);
  228. }
  229. static u64 __xchg_spte(u64 *sptep, u64 new_spte)
  230. {
  231. #ifdef CONFIG_X86_64
  232. return xchg(sptep, new_spte);
  233. #else
  234. u64 old_spte;
  235. do {
  236. old_spte = *sptep;
  237. } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
  238. return old_spte;
  239. #endif
  240. }
  241. static bool spte_has_volatile_bits(u64 spte)
  242. {
  243. if (!shadow_accessed_mask)
  244. return false;
  245. if (!is_shadow_present_pte(spte))
  246. return false;
  247. if ((spte & shadow_accessed_mask) &&
  248. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  249. return false;
  250. return true;
  251. }
  252. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  253. {
  254. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  255. }
  256. static void update_spte(u64 *sptep, u64 new_spte)
  257. {
  258. u64 mask, old_spte = *sptep;
  259. WARN_ON(!is_rmap_spte(new_spte));
  260. new_spte |= old_spte & shadow_dirty_mask;
  261. mask = shadow_accessed_mask;
  262. if (is_writable_pte(old_spte))
  263. mask |= shadow_dirty_mask;
  264. if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
  265. __set_spte(sptep, new_spte);
  266. else
  267. old_spte = __xchg_spte(sptep, new_spte);
  268. if (!shadow_accessed_mask)
  269. return;
  270. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  271. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  272. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  273. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  274. }
  275. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  276. struct kmem_cache *base_cache, int min)
  277. {
  278. void *obj;
  279. if (cache->nobjs >= min)
  280. return 0;
  281. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  282. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  283. if (!obj)
  284. return -ENOMEM;
  285. cache->objects[cache->nobjs++] = obj;
  286. }
  287. return 0;
  288. }
  289. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  290. struct kmem_cache *cache)
  291. {
  292. while (mc->nobjs)
  293. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  294. }
  295. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  296. int min)
  297. {
  298. struct page *page;
  299. if (cache->nobjs >= min)
  300. return 0;
  301. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  302. page = alloc_page(GFP_KERNEL);
  303. if (!page)
  304. return -ENOMEM;
  305. cache->objects[cache->nobjs++] = page_address(page);
  306. }
  307. return 0;
  308. }
  309. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  310. {
  311. while (mc->nobjs)
  312. free_page((unsigned long)mc->objects[--mc->nobjs]);
  313. }
  314. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  315. {
  316. int r;
  317. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  318. pte_chain_cache, 4);
  319. if (r)
  320. goto out;
  321. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  322. rmap_desc_cache, 4);
  323. if (r)
  324. goto out;
  325. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  326. if (r)
  327. goto out;
  328. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  329. mmu_page_header_cache, 4);
  330. out:
  331. return r;
  332. }
  333. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  334. {
  335. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  336. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  337. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  338. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  339. mmu_page_header_cache);
  340. }
  341. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  342. size_t size)
  343. {
  344. void *p;
  345. BUG_ON(!mc->nobjs);
  346. p = mc->objects[--mc->nobjs];
  347. return p;
  348. }
  349. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  350. {
  351. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  352. sizeof(struct kvm_pte_chain));
  353. }
  354. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  355. {
  356. kmem_cache_free(pte_chain_cache, pc);
  357. }
  358. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  359. {
  360. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  361. sizeof(struct kvm_rmap_desc));
  362. }
  363. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  364. {
  365. kmem_cache_free(rmap_desc_cache, rd);
  366. }
  367. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  368. {
  369. if (!sp->role.direct)
  370. return sp->gfns[index];
  371. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  372. }
  373. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  374. {
  375. if (sp->role.direct)
  376. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  377. else
  378. sp->gfns[index] = gfn;
  379. }
  380. /*
  381. * Return the pointer to the largepage write count for a given
  382. * gfn, handling slots that are not large page aligned.
  383. */
  384. static int *slot_largepage_idx(gfn_t gfn,
  385. struct kvm_memory_slot *slot,
  386. int level)
  387. {
  388. unsigned long idx;
  389. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  390. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  391. return &slot->lpage_info[level - 2][idx].write_count;
  392. }
  393. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  394. {
  395. struct kvm_memory_slot *slot;
  396. int *write_count;
  397. int i;
  398. slot = gfn_to_memslot(kvm, gfn);
  399. for (i = PT_DIRECTORY_LEVEL;
  400. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  401. write_count = slot_largepage_idx(gfn, slot, i);
  402. *write_count += 1;
  403. }
  404. }
  405. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  406. {
  407. struct kvm_memory_slot *slot;
  408. int *write_count;
  409. int i;
  410. slot = gfn_to_memslot(kvm, gfn);
  411. for (i = PT_DIRECTORY_LEVEL;
  412. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  413. write_count = slot_largepage_idx(gfn, slot, i);
  414. *write_count -= 1;
  415. WARN_ON(*write_count < 0);
  416. }
  417. }
  418. static int has_wrprotected_page(struct kvm *kvm,
  419. gfn_t gfn,
  420. int level)
  421. {
  422. struct kvm_memory_slot *slot;
  423. int *largepage_idx;
  424. slot = gfn_to_memslot(kvm, gfn);
  425. if (slot) {
  426. largepage_idx = slot_largepage_idx(gfn, slot, level);
  427. return *largepage_idx;
  428. }
  429. return 1;
  430. }
  431. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  432. {
  433. unsigned long page_size;
  434. int i, ret = 0;
  435. page_size = kvm_host_page_size(kvm, gfn);
  436. for (i = PT_PAGE_TABLE_LEVEL;
  437. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  438. if (page_size >= KVM_HPAGE_SIZE(i))
  439. ret = i;
  440. else
  441. break;
  442. }
  443. return ret;
  444. }
  445. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  446. {
  447. struct kvm_memory_slot *slot;
  448. int host_level, level, max_level;
  449. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  450. if (slot && slot->dirty_bitmap)
  451. return PT_PAGE_TABLE_LEVEL;
  452. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  453. if (host_level == PT_PAGE_TABLE_LEVEL)
  454. return host_level;
  455. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  456. kvm_x86_ops->get_lpage_level() : host_level;
  457. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  458. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  459. break;
  460. return level - 1;
  461. }
  462. /*
  463. * Take gfn and return the reverse mapping to it.
  464. */
  465. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  466. {
  467. struct kvm_memory_slot *slot;
  468. unsigned long idx;
  469. slot = gfn_to_memslot(kvm, gfn);
  470. if (likely(level == PT_PAGE_TABLE_LEVEL))
  471. return &slot->rmap[gfn - slot->base_gfn];
  472. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  473. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  474. return &slot->lpage_info[level - 2][idx].rmap_pde;
  475. }
  476. /*
  477. * Reverse mapping data structures:
  478. *
  479. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  480. * that points to page_address(page).
  481. *
  482. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  483. * containing more mappings.
  484. *
  485. * Returns the number of rmap entries before the spte was added or zero if
  486. * the spte was not added.
  487. *
  488. */
  489. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  490. {
  491. struct kvm_mmu_page *sp;
  492. struct kvm_rmap_desc *desc;
  493. unsigned long *rmapp;
  494. int i, count = 0;
  495. if (!is_rmap_spte(*spte))
  496. return count;
  497. sp = page_header(__pa(spte));
  498. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  499. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  500. if (!*rmapp) {
  501. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  502. *rmapp = (unsigned long)spte;
  503. } else if (!(*rmapp & 1)) {
  504. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  505. desc = mmu_alloc_rmap_desc(vcpu);
  506. desc->sptes[0] = (u64 *)*rmapp;
  507. desc->sptes[1] = spte;
  508. *rmapp = (unsigned long)desc | 1;
  509. } else {
  510. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  511. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  512. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  513. desc = desc->more;
  514. count += RMAP_EXT;
  515. }
  516. if (desc->sptes[RMAP_EXT-1]) {
  517. desc->more = mmu_alloc_rmap_desc(vcpu);
  518. desc = desc->more;
  519. }
  520. for (i = 0; desc->sptes[i]; ++i)
  521. ;
  522. desc->sptes[i] = spte;
  523. }
  524. return count;
  525. }
  526. static void rmap_desc_remove_entry(unsigned long *rmapp,
  527. struct kvm_rmap_desc *desc,
  528. int i,
  529. struct kvm_rmap_desc *prev_desc)
  530. {
  531. int j;
  532. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  533. ;
  534. desc->sptes[i] = desc->sptes[j];
  535. desc->sptes[j] = NULL;
  536. if (j != 0)
  537. return;
  538. if (!prev_desc && !desc->more)
  539. *rmapp = (unsigned long)desc->sptes[0];
  540. else
  541. if (prev_desc)
  542. prev_desc->more = desc->more;
  543. else
  544. *rmapp = (unsigned long)desc->more | 1;
  545. mmu_free_rmap_desc(desc);
  546. }
  547. static void rmap_remove(struct kvm *kvm, u64 *spte)
  548. {
  549. struct kvm_rmap_desc *desc;
  550. struct kvm_rmap_desc *prev_desc;
  551. struct kvm_mmu_page *sp;
  552. gfn_t gfn;
  553. unsigned long *rmapp;
  554. int i;
  555. sp = page_header(__pa(spte));
  556. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  557. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  558. if (!*rmapp) {
  559. printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
  560. BUG();
  561. } else if (!(*rmapp & 1)) {
  562. rmap_printk("rmap_remove: %p 1->0\n", spte);
  563. if ((u64 *)*rmapp != spte) {
  564. printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
  565. BUG();
  566. }
  567. *rmapp = 0;
  568. } else {
  569. rmap_printk("rmap_remove: %p many->many\n", spte);
  570. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  571. prev_desc = NULL;
  572. while (desc) {
  573. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  574. if (desc->sptes[i] == spte) {
  575. rmap_desc_remove_entry(rmapp,
  576. desc, i,
  577. prev_desc);
  578. return;
  579. }
  580. prev_desc = desc;
  581. desc = desc->more;
  582. }
  583. pr_err("rmap_remove: %p many->many\n", spte);
  584. BUG();
  585. }
  586. }
  587. static void set_spte_track_bits(u64 *sptep, u64 new_spte)
  588. {
  589. pfn_t pfn;
  590. u64 old_spte = *sptep;
  591. if (!spte_has_volatile_bits(old_spte))
  592. __set_spte(sptep, new_spte);
  593. else
  594. old_spte = __xchg_spte(sptep, new_spte);
  595. if (!is_rmap_spte(old_spte))
  596. return;
  597. pfn = spte_to_pfn(old_spte);
  598. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  599. kvm_set_pfn_accessed(pfn);
  600. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  601. kvm_set_pfn_dirty(pfn);
  602. }
  603. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  604. {
  605. set_spte_track_bits(sptep, new_spte);
  606. rmap_remove(kvm, sptep);
  607. }
  608. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  609. {
  610. struct kvm_rmap_desc *desc;
  611. u64 *prev_spte;
  612. int i;
  613. if (!*rmapp)
  614. return NULL;
  615. else if (!(*rmapp & 1)) {
  616. if (!spte)
  617. return (u64 *)*rmapp;
  618. return NULL;
  619. }
  620. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  621. prev_spte = NULL;
  622. while (desc) {
  623. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  624. if (prev_spte == spte)
  625. return desc->sptes[i];
  626. prev_spte = desc->sptes[i];
  627. }
  628. desc = desc->more;
  629. }
  630. return NULL;
  631. }
  632. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  633. {
  634. unsigned long *rmapp;
  635. u64 *spte;
  636. int i, write_protected = 0;
  637. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  638. spte = rmap_next(kvm, rmapp, NULL);
  639. while (spte) {
  640. BUG_ON(!spte);
  641. BUG_ON(!(*spte & PT_PRESENT_MASK));
  642. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  643. if (is_writable_pte(*spte)) {
  644. update_spte(spte, *spte & ~PT_WRITABLE_MASK);
  645. write_protected = 1;
  646. }
  647. spte = rmap_next(kvm, rmapp, spte);
  648. }
  649. /* check for huge page mappings */
  650. for (i = PT_DIRECTORY_LEVEL;
  651. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  652. rmapp = gfn_to_rmap(kvm, gfn, i);
  653. spte = rmap_next(kvm, rmapp, NULL);
  654. while (spte) {
  655. BUG_ON(!spte);
  656. BUG_ON(!(*spte & PT_PRESENT_MASK));
  657. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  658. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  659. if (is_writable_pte(*spte)) {
  660. drop_spte(kvm, spte,
  661. shadow_trap_nonpresent_pte);
  662. --kvm->stat.lpages;
  663. spte = NULL;
  664. write_protected = 1;
  665. }
  666. spte = rmap_next(kvm, rmapp, spte);
  667. }
  668. }
  669. return write_protected;
  670. }
  671. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  672. unsigned long data)
  673. {
  674. u64 *spte;
  675. int need_tlb_flush = 0;
  676. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  677. BUG_ON(!(*spte & PT_PRESENT_MASK));
  678. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  679. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  680. need_tlb_flush = 1;
  681. }
  682. return need_tlb_flush;
  683. }
  684. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  685. unsigned long data)
  686. {
  687. int need_flush = 0;
  688. u64 *spte, new_spte;
  689. pte_t *ptep = (pte_t *)data;
  690. pfn_t new_pfn;
  691. WARN_ON(pte_huge(*ptep));
  692. new_pfn = pte_pfn(*ptep);
  693. spte = rmap_next(kvm, rmapp, NULL);
  694. while (spte) {
  695. BUG_ON(!is_shadow_present_pte(*spte));
  696. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  697. need_flush = 1;
  698. if (pte_write(*ptep)) {
  699. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  700. spte = rmap_next(kvm, rmapp, NULL);
  701. } else {
  702. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  703. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  704. new_spte &= ~PT_WRITABLE_MASK;
  705. new_spte &= ~SPTE_HOST_WRITEABLE;
  706. new_spte &= ~shadow_accessed_mask;
  707. set_spte_track_bits(spte, new_spte);
  708. spte = rmap_next(kvm, rmapp, spte);
  709. }
  710. }
  711. if (need_flush)
  712. kvm_flush_remote_tlbs(kvm);
  713. return 0;
  714. }
  715. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  716. unsigned long data,
  717. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  718. unsigned long data))
  719. {
  720. int i, j;
  721. int ret;
  722. int retval = 0;
  723. struct kvm_memslots *slots;
  724. slots = kvm_memslots(kvm);
  725. for (i = 0; i < slots->nmemslots; i++) {
  726. struct kvm_memory_slot *memslot = &slots->memslots[i];
  727. unsigned long start = memslot->userspace_addr;
  728. unsigned long end;
  729. end = start + (memslot->npages << PAGE_SHIFT);
  730. if (hva >= start && hva < end) {
  731. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  732. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  733. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  734. unsigned long idx;
  735. int sh;
  736. sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j);
  737. idx = ((memslot->base_gfn+gfn_offset) >> sh) -
  738. (memslot->base_gfn >> sh);
  739. ret |= handler(kvm,
  740. &memslot->lpage_info[j][idx].rmap_pde,
  741. data);
  742. }
  743. trace_kvm_age_page(hva, memslot, ret);
  744. retval |= ret;
  745. }
  746. }
  747. return retval;
  748. }
  749. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  750. {
  751. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  752. }
  753. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  754. {
  755. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  756. }
  757. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  758. unsigned long data)
  759. {
  760. u64 *spte;
  761. int young = 0;
  762. /*
  763. * Emulate the accessed bit for EPT, by checking if this page has
  764. * an EPT mapping, and clearing it if it does. On the next access,
  765. * a new EPT mapping will be established.
  766. * This has some overhead, but not as much as the cost of swapping
  767. * out actively used pages or breaking up actively used hugepages.
  768. */
  769. if (!shadow_accessed_mask)
  770. return kvm_unmap_rmapp(kvm, rmapp, data);
  771. spte = rmap_next(kvm, rmapp, NULL);
  772. while (spte) {
  773. int _young;
  774. u64 _spte = *spte;
  775. BUG_ON(!(_spte & PT_PRESENT_MASK));
  776. _young = _spte & PT_ACCESSED_MASK;
  777. if (_young) {
  778. young = 1;
  779. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  780. }
  781. spte = rmap_next(kvm, rmapp, spte);
  782. }
  783. return young;
  784. }
  785. #define RMAP_RECYCLE_THRESHOLD 1000
  786. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  787. {
  788. unsigned long *rmapp;
  789. struct kvm_mmu_page *sp;
  790. sp = page_header(__pa(spte));
  791. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  792. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  793. kvm_flush_remote_tlbs(vcpu->kvm);
  794. }
  795. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  796. {
  797. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  798. }
  799. #ifdef MMU_DEBUG
  800. static int is_empty_shadow_page(u64 *spt)
  801. {
  802. u64 *pos;
  803. u64 *end;
  804. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  805. if (is_shadow_present_pte(*pos)) {
  806. printk(KERN_ERR "%s: %p %llx\n", __func__,
  807. pos, *pos);
  808. return 0;
  809. }
  810. return 1;
  811. }
  812. #endif
  813. /*
  814. * This value is the sum of all of the kvm instances's
  815. * kvm->arch.n_used_mmu_pages values. We need a global,
  816. * aggregate version in order to make the slab shrinker
  817. * faster
  818. */
  819. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  820. {
  821. kvm->arch.n_used_mmu_pages += nr;
  822. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  823. }
  824. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  825. {
  826. ASSERT(is_empty_shadow_page(sp->spt));
  827. hlist_del(&sp->hash_link);
  828. list_del(&sp->link);
  829. __free_page(virt_to_page(sp->spt));
  830. if (!sp->role.direct)
  831. __free_page(virt_to_page(sp->gfns));
  832. kmem_cache_free(mmu_page_header_cache, sp);
  833. kvm_mod_used_mmu_pages(kvm, -1);
  834. }
  835. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  836. {
  837. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  838. }
  839. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  840. u64 *parent_pte, int direct)
  841. {
  842. struct kvm_mmu_page *sp;
  843. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  844. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  845. if (!direct)
  846. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  847. PAGE_SIZE);
  848. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  849. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  850. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  851. sp->multimapped = 0;
  852. sp->parent_pte = parent_pte;
  853. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  854. return sp;
  855. }
  856. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  857. struct kvm_mmu_page *sp, u64 *parent_pte)
  858. {
  859. struct kvm_pte_chain *pte_chain;
  860. struct hlist_node *node;
  861. int i;
  862. if (!parent_pte)
  863. return;
  864. if (!sp->multimapped) {
  865. u64 *old = sp->parent_pte;
  866. if (!old) {
  867. sp->parent_pte = parent_pte;
  868. return;
  869. }
  870. sp->multimapped = 1;
  871. pte_chain = mmu_alloc_pte_chain(vcpu);
  872. INIT_HLIST_HEAD(&sp->parent_ptes);
  873. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  874. pte_chain->parent_ptes[0] = old;
  875. }
  876. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  877. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  878. continue;
  879. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  880. if (!pte_chain->parent_ptes[i]) {
  881. pte_chain->parent_ptes[i] = parent_pte;
  882. return;
  883. }
  884. }
  885. pte_chain = mmu_alloc_pte_chain(vcpu);
  886. BUG_ON(!pte_chain);
  887. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  888. pte_chain->parent_ptes[0] = parent_pte;
  889. }
  890. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  891. u64 *parent_pte)
  892. {
  893. struct kvm_pte_chain *pte_chain;
  894. struct hlist_node *node;
  895. int i;
  896. if (!sp->multimapped) {
  897. BUG_ON(sp->parent_pte != parent_pte);
  898. sp->parent_pte = NULL;
  899. return;
  900. }
  901. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  902. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  903. if (!pte_chain->parent_ptes[i])
  904. break;
  905. if (pte_chain->parent_ptes[i] != parent_pte)
  906. continue;
  907. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  908. && pte_chain->parent_ptes[i + 1]) {
  909. pte_chain->parent_ptes[i]
  910. = pte_chain->parent_ptes[i + 1];
  911. ++i;
  912. }
  913. pte_chain->parent_ptes[i] = NULL;
  914. if (i == 0) {
  915. hlist_del(&pte_chain->link);
  916. mmu_free_pte_chain(pte_chain);
  917. if (hlist_empty(&sp->parent_ptes)) {
  918. sp->multimapped = 0;
  919. sp->parent_pte = NULL;
  920. }
  921. }
  922. return;
  923. }
  924. BUG();
  925. }
  926. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  927. {
  928. struct kvm_pte_chain *pte_chain;
  929. struct hlist_node *node;
  930. struct kvm_mmu_page *parent_sp;
  931. int i;
  932. if (!sp->multimapped && sp->parent_pte) {
  933. parent_sp = page_header(__pa(sp->parent_pte));
  934. fn(parent_sp, sp->parent_pte);
  935. return;
  936. }
  937. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  938. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  939. u64 *spte = pte_chain->parent_ptes[i];
  940. if (!spte)
  941. break;
  942. parent_sp = page_header(__pa(spte));
  943. fn(parent_sp, spte);
  944. }
  945. }
  946. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
  947. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  948. {
  949. mmu_parent_walk(sp, mark_unsync);
  950. }
  951. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
  952. {
  953. unsigned int index;
  954. index = spte - sp->spt;
  955. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  956. return;
  957. if (sp->unsync_children++)
  958. return;
  959. kvm_mmu_mark_parents_unsync(sp);
  960. }
  961. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  962. struct kvm_mmu_page *sp)
  963. {
  964. int i;
  965. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  966. sp->spt[i] = shadow_trap_nonpresent_pte;
  967. }
  968. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  969. struct kvm_mmu_page *sp, bool clear_unsync)
  970. {
  971. return 1;
  972. }
  973. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  974. {
  975. }
  976. #define KVM_PAGE_ARRAY_NR 16
  977. struct kvm_mmu_pages {
  978. struct mmu_page_and_offset {
  979. struct kvm_mmu_page *sp;
  980. unsigned int idx;
  981. } page[KVM_PAGE_ARRAY_NR];
  982. unsigned int nr;
  983. };
  984. #define for_each_unsync_children(bitmap, idx) \
  985. for (idx = find_first_bit(bitmap, 512); \
  986. idx < 512; \
  987. idx = find_next_bit(bitmap, 512, idx+1))
  988. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  989. int idx)
  990. {
  991. int i;
  992. if (sp->unsync)
  993. for (i=0; i < pvec->nr; i++)
  994. if (pvec->page[i].sp == sp)
  995. return 0;
  996. pvec->page[pvec->nr].sp = sp;
  997. pvec->page[pvec->nr].idx = idx;
  998. pvec->nr++;
  999. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1000. }
  1001. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1002. struct kvm_mmu_pages *pvec)
  1003. {
  1004. int i, ret, nr_unsync_leaf = 0;
  1005. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  1006. struct kvm_mmu_page *child;
  1007. u64 ent = sp->spt[i];
  1008. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1009. goto clear_child_bitmap;
  1010. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1011. if (child->unsync_children) {
  1012. if (mmu_pages_add(pvec, child, i))
  1013. return -ENOSPC;
  1014. ret = __mmu_unsync_walk(child, pvec);
  1015. if (!ret)
  1016. goto clear_child_bitmap;
  1017. else if (ret > 0)
  1018. nr_unsync_leaf += ret;
  1019. else
  1020. return ret;
  1021. } else if (child->unsync) {
  1022. nr_unsync_leaf++;
  1023. if (mmu_pages_add(pvec, child, i))
  1024. return -ENOSPC;
  1025. } else
  1026. goto clear_child_bitmap;
  1027. continue;
  1028. clear_child_bitmap:
  1029. __clear_bit(i, sp->unsync_child_bitmap);
  1030. sp->unsync_children--;
  1031. WARN_ON((int)sp->unsync_children < 0);
  1032. }
  1033. return nr_unsync_leaf;
  1034. }
  1035. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1036. struct kvm_mmu_pages *pvec)
  1037. {
  1038. if (!sp->unsync_children)
  1039. return 0;
  1040. mmu_pages_add(pvec, sp, 0);
  1041. return __mmu_unsync_walk(sp, pvec);
  1042. }
  1043. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1044. {
  1045. WARN_ON(!sp->unsync);
  1046. trace_kvm_mmu_sync_page(sp);
  1047. sp->unsync = 0;
  1048. --kvm->stat.mmu_unsync;
  1049. }
  1050. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1051. struct list_head *invalid_list);
  1052. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1053. struct list_head *invalid_list);
  1054. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1055. hlist_for_each_entry(sp, pos, \
  1056. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1057. if ((sp)->gfn != (gfn)) {} else
  1058. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1059. hlist_for_each_entry(sp, pos, \
  1060. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1061. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1062. (sp)->role.invalid) {} else
  1063. /* @sp->gfn should be write-protected at the call site */
  1064. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1065. struct list_head *invalid_list, bool clear_unsync)
  1066. {
  1067. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1068. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1069. return 1;
  1070. }
  1071. if (clear_unsync)
  1072. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1073. if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
  1074. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1075. return 1;
  1076. }
  1077. kvm_mmu_flush_tlb(vcpu);
  1078. return 0;
  1079. }
  1080. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1081. struct kvm_mmu_page *sp)
  1082. {
  1083. LIST_HEAD(invalid_list);
  1084. int ret;
  1085. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1086. if (ret)
  1087. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1088. return ret;
  1089. }
  1090. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1091. struct list_head *invalid_list)
  1092. {
  1093. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1094. }
  1095. /* @gfn should be write-protected at the call site */
  1096. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1097. {
  1098. struct kvm_mmu_page *s;
  1099. struct hlist_node *node;
  1100. LIST_HEAD(invalid_list);
  1101. bool flush = false;
  1102. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1103. if (!s->unsync)
  1104. continue;
  1105. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1106. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1107. (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
  1108. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1109. continue;
  1110. }
  1111. kvm_unlink_unsync_page(vcpu->kvm, s);
  1112. flush = true;
  1113. }
  1114. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1115. if (flush)
  1116. kvm_mmu_flush_tlb(vcpu);
  1117. }
  1118. struct mmu_page_path {
  1119. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1120. unsigned int idx[PT64_ROOT_LEVEL-1];
  1121. };
  1122. #define for_each_sp(pvec, sp, parents, i) \
  1123. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1124. sp = pvec.page[i].sp; \
  1125. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1126. i = mmu_pages_next(&pvec, &parents, i))
  1127. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1128. struct mmu_page_path *parents,
  1129. int i)
  1130. {
  1131. int n;
  1132. for (n = i+1; n < pvec->nr; n++) {
  1133. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1134. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1135. parents->idx[0] = pvec->page[n].idx;
  1136. return n;
  1137. }
  1138. parents->parent[sp->role.level-2] = sp;
  1139. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1140. }
  1141. return n;
  1142. }
  1143. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1144. {
  1145. struct kvm_mmu_page *sp;
  1146. unsigned int level = 0;
  1147. do {
  1148. unsigned int idx = parents->idx[level];
  1149. sp = parents->parent[level];
  1150. if (!sp)
  1151. return;
  1152. --sp->unsync_children;
  1153. WARN_ON((int)sp->unsync_children < 0);
  1154. __clear_bit(idx, sp->unsync_child_bitmap);
  1155. level++;
  1156. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1157. }
  1158. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1159. struct mmu_page_path *parents,
  1160. struct kvm_mmu_pages *pvec)
  1161. {
  1162. parents->parent[parent->role.level-1] = NULL;
  1163. pvec->nr = 0;
  1164. }
  1165. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1166. struct kvm_mmu_page *parent)
  1167. {
  1168. int i;
  1169. struct kvm_mmu_page *sp;
  1170. struct mmu_page_path parents;
  1171. struct kvm_mmu_pages pages;
  1172. LIST_HEAD(invalid_list);
  1173. kvm_mmu_pages_init(parent, &parents, &pages);
  1174. while (mmu_unsync_walk(parent, &pages)) {
  1175. int protected = 0;
  1176. for_each_sp(pages, sp, parents, i)
  1177. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1178. if (protected)
  1179. kvm_flush_remote_tlbs(vcpu->kvm);
  1180. for_each_sp(pages, sp, parents, i) {
  1181. kvm_sync_page(vcpu, sp, &invalid_list);
  1182. mmu_pages_clear_parents(&parents);
  1183. }
  1184. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1185. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1186. kvm_mmu_pages_init(parent, &parents, &pages);
  1187. }
  1188. }
  1189. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1190. gfn_t gfn,
  1191. gva_t gaddr,
  1192. unsigned level,
  1193. int direct,
  1194. unsigned access,
  1195. u64 *parent_pte)
  1196. {
  1197. union kvm_mmu_page_role role;
  1198. unsigned quadrant;
  1199. struct kvm_mmu_page *sp;
  1200. struct hlist_node *node;
  1201. bool need_sync = false;
  1202. role = vcpu->arch.mmu.base_role;
  1203. role.level = level;
  1204. role.direct = direct;
  1205. if (role.direct)
  1206. role.cr4_pae = 0;
  1207. role.access = access;
  1208. if (!tdp_enabled && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1209. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1210. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1211. role.quadrant = quadrant;
  1212. }
  1213. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1214. if (!need_sync && sp->unsync)
  1215. need_sync = true;
  1216. if (sp->role.word != role.word)
  1217. continue;
  1218. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1219. break;
  1220. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1221. if (sp->unsync_children) {
  1222. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1223. kvm_mmu_mark_parents_unsync(sp);
  1224. } else if (sp->unsync)
  1225. kvm_mmu_mark_parents_unsync(sp);
  1226. trace_kvm_mmu_get_page(sp, false);
  1227. return sp;
  1228. }
  1229. ++vcpu->kvm->stat.mmu_cache_miss;
  1230. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1231. if (!sp)
  1232. return sp;
  1233. sp->gfn = gfn;
  1234. sp->role = role;
  1235. hlist_add_head(&sp->hash_link,
  1236. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1237. if (!direct) {
  1238. if (rmap_write_protect(vcpu->kvm, gfn))
  1239. kvm_flush_remote_tlbs(vcpu->kvm);
  1240. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1241. kvm_sync_pages(vcpu, gfn);
  1242. account_shadowed(vcpu->kvm, gfn);
  1243. }
  1244. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1245. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1246. else
  1247. nonpaging_prefetch_page(vcpu, sp);
  1248. trace_kvm_mmu_get_page(sp, true);
  1249. return sp;
  1250. }
  1251. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1252. struct kvm_vcpu *vcpu, u64 addr)
  1253. {
  1254. iterator->addr = addr;
  1255. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1256. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1257. if (iterator->level == PT32E_ROOT_LEVEL) {
  1258. iterator->shadow_addr
  1259. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1260. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1261. --iterator->level;
  1262. if (!iterator->shadow_addr)
  1263. iterator->level = 0;
  1264. }
  1265. }
  1266. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1267. {
  1268. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1269. return false;
  1270. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1271. if (is_large_pte(*iterator->sptep))
  1272. return false;
  1273. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1274. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1275. return true;
  1276. }
  1277. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1278. {
  1279. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1280. --iterator->level;
  1281. }
  1282. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1283. {
  1284. u64 spte;
  1285. spte = __pa(sp->spt)
  1286. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1287. | PT_WRITABLE_MASK | PT_USER_MASK;
  1288. __set_spte(sptep, spte);
  1289. }
  1290. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1291. {
  1292. if (is_large_pte(*sptep)) {
  1293. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1294. kvm_flush_remote_tlbs(vcpu->kvm);
  1295. }
  1296. }
  1297. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1298. unsigned direct_access)
  1299. {
  1300. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1301. struct kvm_mmu_page *child;
  1302. /*
  1303. * For the direct sp, if the guest pte's dirty bit
  1304. * changed form clean to dirty, it will corrupt the
  1305. * sp's access: allow writable in the read-only sp,
  1306. * so we should update the spte at this point to get
  1307. * a new sp with the correct access.
  1308. */
  1309. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1310. if (child->role.access == direct_access)
  1311. return;
  1312. mmu_page_remove_parent_pte(child, sptep);
  1313. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1314. kvm_flush_remote_tlbs(vcpu->kvm);
  1315. }
  1316. }
  1317. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1318. struct kvm_mmu_page *sp)
  1319. {
  1320. unsigned i;
  1321. u64 *pt;
  1322. u64 ent;
  1323. pt = sp->spt;
  1324. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1325. ent = pt[i];
  1326. if (is_shadow_present_pte(ent)) {
  1327. if (!is_last_spte(ent, sp->role.level)) {
  1328. ent &= PT64_BASE_ADDR_MASK;
  1329. mmu_page_remove_parent_pte(page_header(ent),
  1330. &pt[i]);
  1331. } else {
  1332. if (is_large_pte(ent))
  1333. --kvm->stat.lpages;
  1334. drop_spte(kvm, &pt[i],
  1335. shadow_trap_nonpresent_pte);
  1336. }
  1337. }
  1338. pt[i] = shadow_trap_nonpresent_pte;
  1339. }
  1340. }
  1341. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1342. {
  1343. mmu_page_remove_parent_pte(sp, parent_pte);
  1344. }
  1345. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1346. {
  1347. int i;
  1348. struct kvm_vcpu *vcpu;
  1349. kvm_for_each_vcpu(i, vcpu, kvm)
  1350. vcpu->arch.last_pte_updated = NULL;
  1351. }
  1352. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1353. {
  1354. u64 *parent_pte;
  1355. while (sp->multimapped || sp->parent_pte) {
  1356. if (!sp->multimapped)
  1357. parent_pte = sp->parent_pte;
  1358. else {
  1359. struct kvm_pte_chain *chain;
  1360. chain = container_of(sp->parent_ptes.first,
  1361. struct kvm_pte_chain, link);
  1362. parent_pte = chain->parent_ptes[0];
  1363. }
  1364. BUG_ON(!parent_pte);
  1365. kvm_mmu_put_page(sp, parent_pte);
  1366. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1367. }
  1368. }
  1369. static int mmu_zap_unsync_children(struct kvm *kvm,
  1370. struct kvm_mmu_page *parent,
  1371. struct list_head *invalid_list)
  1372. {
  1373. int i, zapped = 0;
  1374. struct mmu_page_path parents;
  1375. struct kvm_mmu_pages pages;
  1376. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1377. return 0;
  1378. kvm_mmu_pages_init(parent, &parents, &pages);
  1379. while (mmu_unsync_walk(parent, &pages)) {
  1380. struct kvm_mmu_page *sp;
  1381. for_each_sp(pages, sp, parents, i) {
  1382. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1383. mmu_pages_clear_parents(&parents);
  1384. zapped++;
  1385. }
  1386. kvm_mmu_pages_init(parent, &parents, &pages);
  1387. }
  1388. return zapped;
  1389. }
  1390. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1391. struct list_head *invalid_list)
  1392. {
  1393. int ret;
  1394. trace_kvm_mmu_prepare_zap_page(sp);
  1395. ++kvm->stat.mmu_shadow_zapped;
  1396. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1397. kvm_mmu_page_unlink_children(kvm, sp);
  1398. kvm_mmu_unlink_parents(kvm, sp);
  1399. if (!sp->role.invalid && !sp->role.direct)
  1400. unaccount_shadowed(kvm, sp->gfn);
  1401. if (sp->unsync)
  1402. kvm_unlink_unsync_page(kvm, sp);
  1403. if (!sp->root_count) {
  1404. /* Count self */
  1405. ret++;
  1406. list_move(&sp->link, invalid_list);
  1407. } else {
  1408. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1409. kvm_reload_remote_mmus(kvm);
  1410. }
  1411. sp->role.invalid = 1;
  1412. kvm_mmu_reset_last_pte_updated(kvm);
  1413. return ret;
  1414. }
  1415. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1416. struct list_head *invalid_list)
  1417. {
  1418. struct kvm_mmu_page *sp;
  1419. if (list_empty(invalid_list))
  1420. return;
  1421. kvm_flush_remote_tlbs(kvm);
  1422. do {
  1423. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1424. WARN_ON(!sp->role.invalid || sp->root_count);
  1425. kvm_mmu_free_page(kvm, sp);
  1426. } while (!list_empty(invalid_list));
  1427. }
  1428. /*
  1429. * Changing the number of mmu pages allocated to the vm
  1430. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1431. */
  1432. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1433. {
  1434. LIST_HEAD(invalid_list);
  1435. /*
  1436. * If we set the number of mmu pages to be smaller be than the
  1437. * number of actived pages , we must to free some mmu pages before we
  1438. * change the value
  1439. */
  1440. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1441. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1442. !list_empty(&kvm->arch.active_mmu_pages)) {
  1443. struct kvm_mmu_page *page;
  1444. page = container_of(kvm->arch.active_mmu_pages.prev,
  1445. struct kvm_mmu_page, link);
  1446. kvm_mmu_prepare_zap_page(kvm, page,
  1447. &invalid_list);
  1448. }
  1449. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1450. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1451. }
  1452. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1453. }
  1454. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1455. {
  1456. struct kvm_mmu_page *sp;
  1457. struct hlist_node *node;
  1458. LIST_HEAD(invalid_list);
  1459. int r;
  1460. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1461. r = 0;
  1462. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1463. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1464. sp->role.word);
  1465. r = 1;
  1466. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1467. }
  1468. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1469. return r;
  1470. }
  1471. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1472. {
  1473. struct kvm_mmu_page *sp;
  1474. struct hlist_node *node;
  1475. LIST_HEAD(invalid_list);
  1476. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1477. pgprintk("%s: zap %lx %x\n",
  1478. __func__, gfn, sp->role.word);
  1479. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1480. }
  1481. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1482. }
  1483. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1484. {
  1485. int slot = memslot_id(kvm, gfn);
  1486. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1487. __set_bit(slot, sp->slot_bitmap);
  1488. }
  1489. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1490. {
  1491. int i;
  1492. u64 *pt = sp->spt;
  1493. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1494. return;
  1495. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1496. if (pt[i] == shadow_notrap_nonpresent_pte)
  1497. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1498. }
  1499. }
  1500. /*
  1501. * The function is based on mtrr_type_lookup() in
  1502. * arch/x86/kernel/cpu/mtrr/generic.c
  1503. */
  1504. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1505. u64 start, u64 end)
  1506. {
  1507. int i;
  1508. u64 base, mask;
  1509. u8 prev_match, curr_match;
  1510. int num_var_ranges = KVM_NR_VAR_MTRR;
  1511. if (!mtrr_state->enabled)
  1512. return 0xFF;
  1513. /* Make end inclusive end, instead of exclusive */
  1514. end--;
  1515. /* Look in fixed ranges. Just return the type as per start */
  1516. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1517. int idx;
  1518. if (start < 0x80000) {
  1519. idx = 0;
  1520. idx += (start >> 16);
  1521. return mtrr_state->fixed_ranges[idx];
  1522. } else if (start < 0xC0000) {
  1523. idx = 1 * 8;
  1524. idx += ((start - 0x80000) >> 14);
  1525. return mtrr_state->fixed_ranges[idx];
  1526. } else if (start < 0x1000000) {
  1527. idx = 3 * 8;
  1528. idx += ((start - 0xC0000) >> 12);
  1529. return mtrr_state->fixed_ranges[idx];
  1530. }
  1531. }
  1532. /*
  1533. * Look in variable ranges
  1534. * Look of multiple ranges matching this address and pick type
  1535. * as per MTRR precedence
  1536. */
  1537. if (!(mtrr_state->enabled & 2))
  1538. return mtrr_state->def_type;
  1539. prev_match = 0xFF;
  1540. for (i = 0; i < num_var_ranges; ++i) {
  1541. unsigned short start_state, end_state;
  1542. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1543. continue;
  1544. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1545. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1546. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1547. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1548. start_state = ((start & mask) == (base & mask));
  1549. end_state = ((end & mask) == (base & mask));
  1550. if (start_state != end_state)
  1551. return 0xFE;
  1552. if ((start & mask) != (base & mask))
  1553. continue;
  1554. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1555. if (prev_match == 0xFF) {
  1556. prev_match = curr_match;
  1557. continue;
  1558. }
  1559. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1560. curr_match == MTRR_TYPE_UNCACHABLE)
  1561. return MTRR_TYPE_UNCACHABLE;
  1562. if ((prev_match == MTRR_TYPE_WRBACK &&
  1563. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1564. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1565. curr_match == MTRR_TYPE_WRBACK)) {
  1566. prev_match = MTRR_TYPE_WRTHROUGH;
  1567. curr_match = MTRR_TYPE_WRTHROUGH;
  1568. }
  1569. if (prev_match != curr_match)
  1570. return MTRR_TYPE_UNCACHABLE;
  1571. }
  1572. if (prev_match != 0xFF)
  1573. return prev_match;
  1574. return mtrr_state->def_type;
  1575. }
  1576. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1577. {
  1578. u8 mtrr;
  1579. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1580. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1581. if (mtrr == 0xfe || mtrr == 0xff)
  1582. mtrr = MTRR_TYPE_WRBACK;
  1583. return mtrr;
  1584. }
  1585. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1586. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1587. {
  1588. trace_kvm_mmu_unsync_page(sp);
  1589. ++vcpu->kvm->stat.mmu_unsync;
  1590. sp->unsync = 1;
  1591. kvm_mmu_mark_parents_unsync(sp);
  1592. mmu_convert_notrap(sp);
  1593. }
  1594. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1595. {
  1596. struct kvm_mmu_page *s;
  1597. struct hlist_node *node;
  1598. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1599. if (s->unsync)
  1600. continue;
  1601. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1602. __kvm_unsync_page(vcpu, s);
  1603. }
  1604. }
  1605. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1606. bool can_unsync)
  1607. {
  1608. struct kvm_mmu_page *s;
  1609. struct hlist_node *node;
  1610. bool need_unsync = false;
  1611. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1612. if (!can_unsync)
  1613. return 1;
  1614. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1615. return 1;
  1616. if (!need_unsync && !s->unsync) {
  1617. if (!oos_shadow)
  1618. return 1;
  1619. need_unsync = true;
  1620. }
  1621. }
  1622. if (need_unsync)
  1623. kvm_unsync_pages(vcpu, gfn);
  1624. return 0;
  1625. }
  1626. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1627. unsigned pte_access, int user_fault,
  1628. int write_fault, int dirty, int level,
  1629. gfn_t gfn, pfn_t pfn, bool speculative,
  1630. bool can_unsync, bool reset_host_protection)
  1631. {
  1632. u64 spte;
  1633. int ret = 0;
  1634. /*
  1635. * We don't set the accessed bit, since we sometimes want to see
  1636. * whether the guest actually used the pte (in order to detect
  1637. * demand paging).
  1638. */
  1639. spte = shadow_base_present_pte;
  1640. if (!speculative)
  1641. spte |= shadow_accessed_mask;
  1642. if (!dirty)
  1643. pte_access &= ~ACC_WRITE_MASK;
  1644. if (pte_access & ACC_EXEC_MASK)
  1645. spte |= shadow_x_mask;
  1646. else
  1647. spte |= shadow_nx_mask;
  1648. if (pte_access & ACC_USER_MASK)
  1649. spte |= shadow_user_mask;
  1650. if (level > PT_PAGE_TABLE_LEVEL)
  1651. spte |= PT_PAGE_SIZE_MASK;
  1652. if (tdp_enabled)
  1653. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1654. kvm_is_mmio_pfn(pfn));
  1655. if (reset_host_protection)
  1656. spte |= SPTE_HOST_WRITEABLE;
  1657. spte |= (u64)pfn << PAGE_SHIFT;
  1658. if ((pte_access & ACC_WRITE_MASK)
  1659. || (!tdp_enabled && write_fault && !is_write_protection(vcpu)
  1660. && !user_fault)) {
  1661. if (level > PT_PAGE_TABLE_LEVEL &&
  1662. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1663. ret = 1;
  1664. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1665. goto done;
  1666. }
  1667. spte |= PT_WRITABLE_MASK;
  1668. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1669. spte &= ~PT_USER_MASK;
  1670. /*
  1671. * Optimization: for pte sync, if spte was writable the hash
  1672. * lookup is unnecessary (and expensive). Write protection
  1673. * is responsibility of mmu_get_page / kvm_sync_page.
  1674. * Same reasoning can be applied to dirty page accounting.
  1675. */
  1676. if (!can_unsync && is_writable_pte(*sptep))
  1677. goto set_pte;
  1678. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1679. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1680. __func__, gfn);
  1681. ret = 1;
  1682. pte_access &= ~ACC_WRITE_MASK;
  1683. if (is_writable_pte(spte))
  1684. spte &= ~PT_WRITABLE_MASK;
  1685. }
  1686. }
  1687. if (pte_access & ACC_WRITE_MASK)
  1688. mark_page_dirty(vcpu->kvm, gfn);
  1689. set_pte:
  1690. update_spte(sptep, spte);
  1691. done:
  1692. return ret;
  1693. }
  1694. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1695. unsigned pt_access, unsigned pte_access,
  1696. int user_fault, int write_fault, int dirty,
  1697. int *ptwrite, int level, gfn_t gfn,
  1698. pfn_t pfn, bool speculative,
  1699. bool reset_host_protection)
  1700. {
  1701. int was_rmapped = 0;
  1702. int rmap_count;
  1703. pgprintk("%s: spte %llx access %x write_fault %d"
  1704. " user_fault %d gfn %lx\n",
  1705. __func__, *sptep, pt_access,
  1706. write_fault, user_fault, gfn);
  1707. if (is_rmap_spte(*sptep)) {
  1708. /*
  1709. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1710. * the parent of the now unreachable PTE.
  1711. */
  1712. if (level > PT_PAGE_TABLE_LEVEL &&
  1713. !is_large_pte(*sptep)) {
  1714. struct kvm_mmu_page *child;
  1715. u64 pte = *sptep;
  1716. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1717. mmu_page_remove_parent_pte(child, sptep);
  1718. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1719. kvm_flush_remote_tlbs(vcpu->kvm);
  1720. } else if (pfn != spte_to_pfn(*sptep)) {
  1721. pgprintk("hfn old %lx new %lx\n",
  1722. spte_to_pfn(*sptep), pfn);
  1723. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1724. kvm_flush_remote_tlbs(vcpu->kvm);
  1725. } else
  1726. was_rmapped = 1;
  1727. }
  1728. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1729. dirty, level, gfn, pfn, speculative, true,
  1730. reset_host_protection)) {
  1731. if (write_fault)
  1732. *ptwrite = 1;
  1733. kvm_mmu_flush_tlb(vcpu);
  1734. }
  1735. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1736. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1737. is_large_pte(*sptep)? "2MB" : "4kB",
  1738. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1739. *sptep, sptep);
  1740. if (!was_rmapped && is_large_pte(*sptep))
  1741. ++vcpu->kvm->stat.lpages;
  1742. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1743. if (!was_rmapped) {
  1744. rmap_count = rmap_add(vcpu, sptep, gfn);
  1745. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1746. rmap_recycle(vcpu, sptep, gfn);
  1747. }
  1748. kvm_release_pfn_clean(pfn);
  1749. if (speculative) {
  1750. vcpu->arch.last_pte_updated = sptep;
  1751. vcpu->arch.last_pte_gfn = gfn;
  1752. }
  1753. }
  1754. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1755. {
  1756. }
  1757. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1758. int level, gfn_t gfn, pfn_t pfn)
  1759. {
  1760. struct kvm_shadow_walk_iterator iterator;
  1761. struct kvm_mmu_page *sp;
  1762. int pt_write = 0;
  1763. gfn_t pseudo_gfn;
  1764. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1765. if (iterator.level == level) {
  1766. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1767. 0, write, 1, &pt_write,
  1768. level, gfn, pfn, false, true);
  1769. ++vcpu->stat.pf_fixed;
  1770. break;
  1771. }
  1772. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1773. u64 base_addr = iterator.addr;
  1774. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1775. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1776. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1777. iterator.level - 1,
  1778. 1, ACC_ALL, iterator.sptep);
  1779. if (!sp) {
  1780. pgprintk("nonpaging_map: ENOMEM\n");
  1781. kvm_release_pfn_clean(pfn);
  1782. return -ENOMEM;
  1783. }
  1784. __set_spte(iterator.sptep,
  1785. __pa(sp->spt)
  1786. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1787. | shadow_user_mask | shadow_x_mask);
  1788. }
  1789. }
  1790. return pt_write;
  1791. }
  1792. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1793. {
  1794. char buf[1];
  1795. void __user *hva;
  1796. int r;
  1797. /* Touch the page, so send SIGBUS */
  1798. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1799. r = copy_from_user(buf, hva, 1);
  1800. }
  1801. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1802. {
  1803. kvm_release_pfn_clean(pfn);
  1804. if (is_hwpoison_pfn(pfn)) {
  1805. kvm_send_hwpoison_signal(kvm, gfn);
  1806. return 0;
  1807. } else if (is_fault_pfn(pfn))
  1808. return -EFAULT;
  1809. return 1;
  1810. }
  1811. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1812. {
  1813. int r;
  1814. int level;
  1815. pfn_t pfn;
  1816. unsigned long mmu_seq;
  1817. level = mapping_level(vcpu, gfn);
  1818. /*
  1819. * This path builds a PAE pagetable - so we can map 2mb pages at
  1820. * maximum. Therefore check if the level is larger than that.
  1821. */
  1822. if (level > PT_DIRECTORY_LEVEL)
  1823. level = PT_DIRECTORY_LEVEL;
  1824. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1825. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1826. smp_rmb();
  1827. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1828. /* mmio */
  1829. if (is_error_pfn(pfn))
  1830. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1831. spin_lock(&vcpu->kvm->mmu_lock);
  1832. if (mmu_notifier_retry(vcpu, mmu_seq))
  1833. goto out_unlock;
  1834. kvm_mmu_free_some_pages(vcpu);
  1835. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1836. spin_unlock(&vcpu->kvm->mmu_lock);
  1837. return r;
  1838. out_unlock:
  1839. spin_unlock(&vcpu->kvm->mmu_lock);
  1840. kvm_release_pfn_clean(pfn);
  1841. return 0;
  1842. }
  1843. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1844. {
  1845. int i;
  1846. struct kvm_mmu_page *sp;
  1847. LIST_HEAD(invalid_list);
  1848. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1849. return;
  1850. spin_lock(&vcpu->kvm->mmu_lock);
  1851. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1852. hpa_t root = vcpu->arch.mmu.root_hpa;
  1853. sp = page_header(root);
  1854. --sp->root_count;
  1855. if (!sp->root_count && sp->role.invalid) {
  1856. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  1857. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1858. }
  1859. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1860. spin_unlock(&vcpu->kvm->mmu_lock);
  1861. return;
  1862. }
  1863. for (i = 0; i < 4; ++i) {
  1864. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1865. if (root) {
  1866. root &= PT64_BASE_ADDR_MASK;
  1867. sp = page_header(root);
  1868. --sp->root_count;
  1869. if (!sp->root_count && sp->role.invalid)
  1870. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  1871. &invalid_list);
  1872. }
  1873. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1874. }
  1875. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1876. spin_unlock(&vcpu->kvm->mmu_lock);
  1877. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1878. }
  1879. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1880. {
  1881. int ret = 0;
  1882. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1883. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1884. ret = 1;
  1885. }
  1886. return ret;
  1887. }
  1888. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1889. {
  1890. int i;
  1891. gfn_t root_gfn;
  1892. struct kvm_mmu_page *sp;
  1893. int direct = 0;
  1894. u64 pdptr;
  1895. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1896. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1897. hpa_t root = vcpu->arch.mmu.root_hpa;
  1898. ASSERT(!VALID_PAGE(root));
  1899. if (mmu_check_root(vcpu, root_gfn))
  1900. return 1;
  1901. if (tdp_enabled) {
  1902. direct = 1;
  1903. root_gfn = 0;
  1904. }
  1905. spin_lock(&vcpu->kvm->mmu_lock);
  1906. kvm_mmu_free_some_pages(vcpu);
  1907. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1908. PT64_ROOT_LEVEL, direct,
  1909. ACC_ALL, NULL);
  1910. root = __pa(sp->spt);
  1911. ++sp->root_count;
  1912. spin_unlock(&vcpu->kvm->mmu_lock);
  1913. vcpu->arch.mmu.root_hpa = root;
  1914. return 0;
  1915. }
  1916. direct = !is_paging(vcpu);
  1917. for (i = 0; i < 4; ++i) {
  1918. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1919. ASSERT(!VALID_PAGE(root));
  1920. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1921. pdptr = kvm_pdptr_read(vcpu, i);
  1922. if (!is_present_gpte(pdptr)) {
  1923. vcpu->arch.mmu.pae_root[i] = 0;
  1924. continue;
  1925. }
  1926. root_gfn = pdptr >> PAGE_SHIFT;
  1927. } else if (vcpu->arch.mmu.root_level == 0)
  1928. root_gfn = 0;
  1929. if (mmu_check_root(vcpu, root_gfn))
  1930. return 1;
  1931. if (tdp_enabled) {
  1932. direct = 1;
  1933. root_gfn = i << 30;
  1934. }
  1935. spin_lock(&vcpu->kvm->mmu_lock);
  1936. kvm_mmu_free_some_pages(vcpu);
  1937. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1938. PT32_ROOT_LEVEL, direct,
  1939. ACC_ALL, NULL);
  1940. root = __pa(sp->spt);
  1941. ++sp->root_count;
  1942. spin_unlock(&vcpu->kvm->mmu_lock);
  1943. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1944. }
  1945. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1946. return 0;
  1947. }
  1948. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1949. {
  1950. int i;
  1951. struct kvm_mmu_page *sp;
  1952. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1953. return;
  1954. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1955. hpa_t root = vcpu->arch.mmu.root_hpa;
  1956. sp = page_header(root);
  1957. mmu_sync_children(vcpu, sp);
  1958. return;
  1959. }
  1960. for (i = 0; i < 4; ++i) {
  1961. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1962. if (root && VALID_PAGE(root)) {
  1963. root &= PT64_BASE_ADDR_MASK;
  1964. sp = page_header(root);
  1965. mmu_sync_children(vcpu, sp);
  1966. }
  1967. }
  1968. }
  1969. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1970. {
  1971. spin_lock(&vcpu->kvm->mmu_lock);
  1972. mmu_sync_roots(vcpu);
  1973. spin_unlock(&vcpu->kvm->mmu_lock);
  1974. }
  1975. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1976. u32 access, u32 *error)
  1977. {
  1978. if (error)
  1979. *error = 0;
  1980. return vaddr;
  1981. }
  1982. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1983. u32 error_code)
  1984. {
  1985. gfn_t gfn;
  1986. int r;
  1987. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1988. r = mmu_topup_memory_caches(vcpu);
  1989. if (r)
  1990. return r;
  1991. ASSERT(vcpu);
  1992. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1993. gfn = gva >> PAGE_SHIFT;
  1994. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1995. error_code & PFERR_WRITE_MASK, gfn);
  1996. }
  1997. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1998. u32 error_code)
  1999. {
  2000. pfn_t pfn;
  2001. int r;
  2002. int level;
  2003. gfn_t gfn = gpa >> PAGE_SHIFT;
  2004. unsigned long mmu_seq;
  2005. ASSERT(vcpu);
  2006. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2007. r = mmu_topup_memory_caches(vcpu);
  2008. if (r)
  2009. return r;
  2010. level = mapping_level(vcpu, gfn);
  2011. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2012. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2013. smp_rmb();
  2014. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2015. if (is_error_pfn(pfn))
  2016. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  2017. spin_lock(&vcpu->kvm->mmu_lock);
  2018. if (mmu_notifier_retry(vcpu, mmu_seq))
  2019. goto out_unlock;
  2020. kvm_mmu_free_some_pages(vcpu);
  2021. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  2022. level, gfn, pfn);
  2023. spin_unlock(&vcpu->kvm->mmu_lock);
  2024. return r;
  2025. out_unlock:
  2026. spin_unlock(&vcpu->kvm->mmu_lock);
  2027. kvm_release_pfn_clean(pfn);
  2028. return 0;
  2029. }
  2030. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2031. {
  2032. mmu_free_roots(vcpu);
  2033. }
  2034. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  2035. {
  2036. struct kvm_mmu *context = &vcpu->arch.mmu;
  2037. context->new_cr3 = nonpaging_new_cr3;
  2038. context->page_fault = nonpaging_page_fault;
  2039. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2040. context->free = nonpaging_free;
  2041. context->prefetch_page = nonpaging_prefetch_page;
  2042. context->sync_page = nonpaging_sync_page;
  2043. context->invlpg = nonpaging_invlpg;
  2044. context->root_level = 0;
  2045. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2046. context->root_hpa = INVALID_PAGE;
  2047. return 0;
  2048. }
  2049. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2050. {
  2051. ++vcpu->stat.tlb_flush;
  2052. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2053. }
  2054. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2055. {
  2056. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  2057. mmu_free_roots(vcpu);
  2058. }
  2059. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2060. u64 addr,
  2061. u32 err_code)
  2062. {
  2063. kvm_inject_page_fault(vcpu, addr, err_code);
  2064. }
  2065. static void paging_free(struct kvm_vcpu *vcpu)
  2066. {
  2067. nonpaging_free(vcpu);
  2068. }
  2069. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  2070. {
  2071. int bit7;
  2072. bit7 = (gpte >> 7) & 1;
  2073. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  2074. }
  2075. #define PTTYPE 64
  2076. #include "paging_tmpl.h"
  2077. #undef PTTYPE
  2078. #define PTTYPE 32
  2079. #include "paging_tmpl.h"
  2080. #undef PTTYPE
  2081. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  2082. {
  2083. struct kvm_mmu *context = &vcpu->arch.mmu;
  2084. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2085. u64 exb_bit_rsvd = 0;
  2086. if (!is_nx(vcpu))
  2087. exb_bit_rsvd = rsvd_bits(63, 63);
  2088. switch (level) {
  2089. case PT32_ROOT_LEVEL:
  2090. /* no rsvd bits for 2 level 4K page table entries */
  2091. context->rsvd_bits_mask[0][1] = 0;
  2092. context->rsvd_bits_mask[0][0] = 0;
  2093. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2094. if (!is_pse(vcpu)) {
  2095. context->rsvd_bits_mask[1][1] = 0;
  2096. break;
  2097. }
  2098. if (is_cpuid_PSE36())
  2099. /* 36bits PSE 4MB page */
  2100. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2101. else
  2102. /* 32 bits PSE 4MB page */
  2103. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2104. break;
  2105. case PT32E_ROOT_LEVEL:
  2106. context->rsvd_bits_mask[0][2] =
  2107. rsvd_bits(maxphyaddr, 63) |
  2108. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2109. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2110. rsvd_bits(maxphyaddr, 62); /* PDE */
  2111. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2112. rsvd_bits(maxphyaddr, 62); /* PTE */
  2113. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2114. rsvd_bits(maxphyaddr, 62) |
  2115. rsvd_bits(13, 20); /* large page */
  2116. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2117. break;
  2118. case PT64_ROOT_LEVEL:
  2119. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2120. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2121. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2122. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2123. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2124. rsvd_bits(maxphyaddr, 51);
  2125. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2126. rsvd_bits(maxphyaddr, 51);
  2127. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2128. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2129. rsvd_bits(maxphyaddr, 51) |
  2130. rsvd_bits(13, 29);
  2131. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2132. rsvd_bits(maxphyaddr, 51) |
  2133. rsvd_bits(13, 20); /* large page */
  2134. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2135. break;
  2136. }
  2137. }
  2138. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2139. {
  2140. struct kvm_mmu *context = &vcpu->arch.mmu;
  2141. ASSERT(is_pae(vcpu));
  2142. context->new_cr3 = paging_new_cr3;
  2143. context->page_fault = paging64_page_fault;
  2144. context->gva_to_gpa = paging64_gva_to_gpa;
  2145. context->prefetch_page = paging64_prefetch_page;
  2146. context->sync_page = paging64_sync_page;
  2147. context->invlpg = paging64_invlpg;
  2148. context->free = paging_free;
  2149. context->root_level = level;
  2150. context->shadow_root_level = level;
  2151. context->root_hpa = INVALID_PAGE;
  2152. return 0;
  2153. }
  2154. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2155. {
  2156. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2157. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2158. }
  2159. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2160. {
  2161. struct kvm_mmu *context = &vcpu->arch.mmu;
  2162. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2163. context->new_cr3 = paging_new_cr3;
  2164. context->page_fault = paging32_page_fault;
  2165. context->gva_to_gpa = paging32_gva_to_gpa;
  2166. context->free = paging_free;
  2167. context->prefetch_page = paging32_prefetch_page;
  2168. context->sync_page = paging32_sync_page;
  2169. context->invlpg = paging32_invlpg;
  2170. context->root_level = PT32_ROOT_LEVEL;
  2171. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2172. context->root_hpa = INVALID_PAGE;
  2173. return 0;
  2174. }
  2175. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2176. {
  2177. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2178. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2179. }
  2180. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2181. {
  2182. struct kvm_mmu *context = &vcpu->arch.mmu;
  2183. context->new_cr3 = nonpaging_new_cr3;
  2184. context->page_fault = tdp_page_fault;
  2185. context->free = nonpaging_free;
  2186. context->prefetch_page = nonpaging_prefetch_page;
  2187. context->sync_page = nonpaging_sync_page;
  2188. context->invlpg = nonpaging_invlpg;
  2189. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2190. context->root_hpa = INVALID_PAGE;
  2191. if (!is_paging(vcpu)) {
  2192. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2193. context->root_level = 0;
  2194. } else if (is_long_mode(vcpu)) {
  2195. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2196. context->gva_to_gpa = paging64_gva_to_gpa;
  2197. context->root_level = PT64_ROOT_LEVEL;
  2198. } else if (is_pae(vcpu)) {
  2199. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2200. context->gva_to_gpa = paging64_gva_to_gpa;
  2201. context->root_level = PT32E_ROOT_LEVEL;
  2202. } else {
  2203. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2204. context->gva_to_gpa = paging32_gva_to_gpa;
  2205. context->root_level = PT32_ROOT_LEVEL;
  2206. }
  2207. return 0;
  2208. }
  2209. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2210. {
  2211. int r;
  2212. ASSERT(vcpu);
  2213. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2214. if (!is_paging(vcpu))
  2215. r = nonpaging_init_context(vcpu);
  2216. else if (is_long_mode(vcpu))
  2217. r = paging64_init_context(vcpu);
  2218. else if (is_pae(vcpu))
  2219. r = paging32E_init_context(vcpu);
  2220. else
  2221. r = paging32_init_context(vcpu);
  2222. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2223. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2224. return r;
  2225. }
  2226. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2227. {
  2228. vcpu->arch.update_pte.pfn = bad_pfn;
  2229. if (tdp_enabled)
  2230. return init_kvm_tdp_mmu(vcpu);
  2231. else
  2232. return init_kvm_softmmu(vcpu);
  2233. }
  2234. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2235. {
  2236. ASSERT(vcpu);
  2237. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2238. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2239. vcpu->arch.mmu.free(vcpu);
  2240. }
  2241. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2242. {
  2243. destroy_kvm_mmu(vcpu);
  2244. return init_kvm_mmu(vcpu);
  2245. }
  2246. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2247. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2248. {
  2249. int r;
  2250. r = mmu_topup_memory_caches(vcpu);
  2251. if (r)
  2252. goto out;
  2253. r = mmu_alloc_roots(vcpu);
  2254. spin_lock(&vcpu->kvm->mmu_lock);
  2255. mmu_sync_roots(vcpu);
  2256. spin_unlock(&vcpu->kvm->mmu_lock);
  2257. if (r)
  2258. goto out;
  2259. /* set_cr3() should ensure TLB has been flushed */
  2260. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2261. out:
  2262. return r;
  2263. }
  2264. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2265. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2266. {
  2267. mmu_free_roots(vcpu);
  2268. }
  2269. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2270. struct kvm_mmu_page *sp,
  2271. u64 *spte)
  2272. {
  2273. u64 pte;
  2274. struct kvm_mmu_page *child;
  2275. pte = *spte;
  2276. if (is_shadow_present_pte(pte)) {
  2277. if (is_last_spte(pte, sp->role.level))
  2278. drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
  2279. else {
  2280. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2281. mmu_page_remove_parent_pte(child, spte);
  2282. }
  2283. }
  2284. __set_spte(spte, shadow_trap_nonpresent_pte);
  2285. if (is_large_pte(pte))
  2286. --vcpu->kvm->stat.lpages;
  2287. }
  2288. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2289. struct kvm_mmu_page *sp,
  2290. u64 *spte,
  2291. const void *new)
  2292. {
  2293. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2294. ++vcpu->kvm->stat.mmu_pde_zapped;
  2295. return;
  2296. }
  2297. if (is_rsvd_bits_set(vcpu, *(u64 *)new, PT_PAGE_TABLE_LEVEL))
  2298. return;
  2299. ++vcpu->kvm->stat.mmu_pte_updated;
  2300. if (!sp->role.cr4_pae)
  2301. paging32_update_pte(vcpu, sp, spte, new);
  2302. else
  2303. paging64_update_pte(vcpu, sp, spte, new);
  2304. }
  2305. static bool need_remote_flush(u64 old, u64 new)
  2306. {
  2307. if (!is_shadow_present_pte(old))
  2308. return false;
  2309. if (!is_shadow_present_pte(new))
  2310. return true;
  2311. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2312. return true;
  2313. old ^= PT64_NX_MASK;
  2314. new ^= PT64_NX_MASK;
  2315. return (old & ~new & PT64_PERM_MASK) != 0;
  2316. }
  2317. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2318. bool remote_flush, bool local_flush)
  2319. {
  2320. if (zap_page)
  2321. return;
  2322. if (remote_flush)
  2323. kvm_flush_remote_tlbs(vcpu->kvm);
  2324. else if (local_flush)
  2325. kvm_mmu_flush_tlb(vcpu);
  2326. }
  2327. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2328. {
  2329. u64 *spte = vcpu->arch.last_pte_updated;
  2330. return !!(spte && (*spte & shadow_accessed_mask));
  2331. }
  2332. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2333. u64 gpte)
  2334. {
  2335. gfn_t gfn;
  2336. pfn_t pfn;
  2337. if (!is_present_gpte(gpte))
  2338. return;
  2339. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2340. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2341. smp_rmb();
  2342. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2343. if (is_error_pfn(pfn)) {
  2344. kvm_release_pfn_clean(pfn);
  2345. return;
  2346. }
  2347. vcpu->arch.update_pte.gfn = gfn;
  2348. vcpu->arch.update_pte.pfn = pfn;
  2349. }
  2350. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2351. {
  2352. u64 *spte = vcpu->arch.last_pte_updated;
  2353. if (spte
  2354. && vcpu->arch.last_pte_gfn == gfn
  2355. && shadow_accessed_mask
  2356. && !(*spte & shadow_accessed_mask)
  2357. && is_shadow_present_pte(*spte))
  2358. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2359. }
  2360. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2361. const u8 *new, int bytes,
  2362. bool guest_initiated)
  2363. {
  2364. gfn_t gfn = gpa >> PAGE_SHIFT;
  2365. union kvm_mmu_page_role mask = { .word = 0 };
  2366. struct kvm_mmu_page *sp;
  2367. struct hlist_node *node;
  2368. LIST_HEAD(invalid_list);
  2369. u64 entry, gentry;
  2370. u64 *spte;
  2371. unsigned offset = offset_in_page(gpa);
  2372. unsigned pte_size;
  2373. unsigned page_offset;
  2374. unsigned misaligned;
  2375. unsigned quadrant;
  2376. int level;
  2377. int flooded = 0;
  2378. int npte;
  2379. int r;
  2380. int invlpg_counter;
  2381. bool remote_flush, local_flush, zap_page;
  2382. zap_page = remote_flush = local_flush = false;
  2383. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2384. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2385. /*
  2386. * Assume that the pte write on a page table of the same type
  2387. * as the current vcpu paging mode. This is nearly always true
  2388. * (might be false while changing modes). Note it is verified later
  2389. * by update_pte().
  2390. */
  2391. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2392. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2393. if (is_pae(vcpu)) {
  2394. gpa &= ~(gpa_t)7;
  2395. bytes = 8;
  2396. }
  2397. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2398. if (r)
  2399. gentry = 0;
  2400. new = (const u8 *)&gentry;
  2401. }
  2402. switch (bytes) {
  2403. case 4:
  2404. gentry = *(const u32 *)new;
  2405. break;
  2406. case 8:
  2407. gentry = *(const u64 *)new;
  2408. break;
  2409. default:
  2410. gentry = 0;
  2411. break;
  2412. }
  2413. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2414. spin_lock(&vcpu->kvm->mmu_lock);
  2415. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2416. gentry = 0;
  2417. kvm_mmu_access_page(vcpu, gfn);
  2418. kvm_mmu_free_some_pages(vcpu);
  2419. ++vcpu->kvm->stat.mmu_pte_write;
  2420. kvm_mmu_audit(vcpu, "pre pte write");
  2421. if (guest_initiated) {
  2422. if (gfn == vcpu->arch.last_pt_write_gfn
  2423. && !last_updated_pte_accessed(vcpu)) {
  2424. ++vcpu->arch.last_pt_write_count;
  2425. if (vcpu->arch.last_pt_write_count >= 3)
  2426. flooded = 1;
  2427. } else {
  2428. vcpu->arch.last_pt_write_gfn = gfn;
  2429. vcpu->arch.last_pt_write_count = 1;
  2430. vcpu->arch.last_pte_updated = NULL;
  2431. }
  2432. }
  2433. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  2434. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2435. pte_size = sp->role.cr4_pae ? 8 : 4;
  2436. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2437. misaligned |= bytes < 4;
  2438. if (misaligned || flooded) {
  2439. /*
  2440. * Misaligned accesses are too much trouble to fix
  2441. * up; also, they usually indicate a page is not used
  2442. * as a page table.
  2443. *
  2444. * If we're seeing too many writes to a page,
  2445. * it may no longer be a page table, or we may be
  2446. * forking, in which case it is better to unmap the
  2447. * page.
  2448. */
  2449. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2450. gpa, bytes, sp->role.word);
  2451. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2452. &invalid_list);
  2453. ++vcpu->kvm->stat.mmu_flooded;
  2454. continue;
  2455. }
  2456. page_offset = offset;
  2457. level = sp->role.level;
  2458. npte = 1;
  2459. if (!sp->role.cr4_pae) {
  2460. page_offset <<= 1; /* 32->64 */
  2461. /*
  2462. * A 32-bit pde maps 4MB while the shadow pdes map
  2463. * only 2MB. So we need to double the offset again
  2464. * and zap two pdes instead of one.
  2465. */
  2466. if (level == PT32_ROOT_LEVEL) {
  2467. page_offset &= ~7; /* kill rounding error */
  2468. page_offset <<= 1;
  2469. npte = 2;
  2470. }
  2471. quadrant = page_offset >> PAGE_SHIFT;
  2472. page_offset &= ~PAGE_MASK;
  2473. if (quadrant != sp->role.quadrant)
  2474. continue;
  2475. }
  2476. local_flush = true;
  2477. spte = &sp->spt[page_offset / sizeof(*spte)];
  2478. while (npte--) {
  2479. entry = *spte;
  2480. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2481. if (gentry &&
  2482. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  2483. & mask.word))
  2484. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2485. if (!remote_flush && need_remote_flush(entry, *spte))
  2486. remote_flush = true;
  2487. ++spte;
  2488. }
  2489. }
  2490. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2491. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2492. kvm_mmu_audit(vcpu, "post pte write");
  2493. spin_unlock(&vcpu->kvm->mmu_lock);
  2494. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2495. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2496. vcpu->arch.update_pte.pfn = bad_pfn;
  2497. }
  2498. }
  2499. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2500. {
  2501. gpa_t gpa;
  2502. int r;
  2503. if (tdp_enabled)
  2504. return 0;
  2505. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2506. spin_lock(&vcpu->kvm->mmu_lock);
  2507. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2508. spin_unlock(&vcpu->kvm->mmu_lock);
  2509. return r;
  2510. }
  2511. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2512. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2513. {
  2514. LIST_HEAD(invalid_list);
  2515. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  2516. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2517. struct kvm_mmu_page *sp;
  2518. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2519. struct kvm_mmu_page, link);
  2520. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2521. ++vcpu->kvm->stat.mmu_recycled;
  2522. }
  2523. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2524. }
  2525. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2526. {
  2527. int r;
  2528. enum emulation_result er;
  2529. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2530. if (r < 0)
  2531. goto out;
  2532. if (!r) {
  2533. r = 1;
  2534. goto out;
  2535. }
  2536. r = mmu_topup_memory_caches(vcpu);
  2537. if (r)
  2538. goto out;
  2539. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2540. switch (er) {
  2541. case EMULATE_DONE:
  2542. return 1;
  2543. case EMULATE_DO_MMIO:
  2544. ++vcpu->stat.mmio_exits;
  2545. /* fall through */
  2546. case EMULATE_FAIL:
  2547. return 0;
  2548. default:
  2549. BUG();
  2550. }
  2551. out:
  2552. return r;
  2553. }
  2554. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2555. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2556. {
  2557. vcpu->arch.mmu.invlpg(vcpu, gva);
  2558. kvm_mmu_flush_tlb(vcpu);
  2559. ++vcpu->stat.invlpg;
  2560. }
  2561. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2562. void kvm_enable_tdp(void)
  2563. {
  2564. tdp_enabled = true;
  2565. }
  2566. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2567. void kvm_disable_tdp(void)
  2568. {
  2569. tdp_enabled = false;
  2570. }
  2571. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2572. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2573. {
  2574. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2575. }
  2576. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2577. {
  2578. struct page *page;
  2579. int i;
  2580. ASSERT(vcpu);
  2581. /*
  2582. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2583. * Therefore we need to allocate shadow page tables in the first
  2584. * 4GB of memory, which happens to fit the DMA32 zone.
  2585. */
  2586. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2587. if (!page)
  2588. return -ENOMEM;
  2589. vcpu->arch.mmu.pae_root = page_address(page);
  2590. for (i = 0; i < 4; ++i)
  2591. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2592. return 0;
  2593. }
  2594. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2595. {
  2596. ASSERT(vcpu);
  2597. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2598. return alloc_mmu_pages(vcpu);
  2599. }
  2600. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2601. {
  2602. ASSERT(vcpu);
  2603. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2604. return init_kvm_mmu(vcpu);
  2605. }
  2606. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2607. {
  2608. ASSERT(vcpu);
  2609. destroy_kvm_mmu(vcpu);
  2610. free_mmu_pages(vcpu);
  2611. mmu_free_memory_caches(vcpu);
  2612. }
  2613. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2614. {
  2615. struct kvm_mmu_page *sp;
  2616. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2617. int i;
  2618. u64 *pt;
  2619. if (!test_bit(slot, sp->slot_bitmap))
  2620. continue;
  2621. pt = sp->spt;
  2622. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2623. /* avoid RMW */
  2624. if (is_writable_pte(pt[i]))
  2625. pt[i] &= ~PT_WRITABLE_MASK;
  2626. }
  2627. kvm_flush_remote_tlbs(kvm);
  2628. }
  2629. void kvm_mmu_zap_all(struct kvm *kvm)
  2630. {
  2631. struct kvm_mmu_page *sp, *node;
  2632. LIST_HEAD(invalid_list);
  2633. spin_lock(&kvm->mmu_lock);
  2634. restart:
  2635. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2636. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2637. goto restart;
  2638. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2639. spin_unlock(&kvm->mmu_lock);
  2640. }
  2641. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2642. struct list_head *invalid_list)
  2643. {
  2644. struct kvm_mmu_page *page;
  2645. page = container_of(kvm->arch.active_mmu_pages.prev,
  2646. struct kvm_mmu_page, link);
  2647. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  2648. }
  2649. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2650. {
  2651. struct kvm *kvm;
  2652. struct kvm *kvm_freed = NULL;
  2653. if (nr_to_scan == 0)
  2654. goto out;
  2655. spin_lock(&kvm_lock);
  2656. list_for_each_entry(kvm, &vm_list, vm_list) {
  2657. int idx, freed_pages;
  2658. LIST_HEAD(invalid_list);
  2659. idx = srcu_read_lock(&kvm->srcu);
  2660. spin_lock(&kvm->mmu_lock);
  2661. if (!kvm_freed && nr_to_scan > 0 &&
  2662. kvm->arch.n_used_mmu_pages > 0) {
  2663. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  2664. &invalid_list);
  2665. kvm_freed = kvm;
  2666. }
  2667. nr_to_scan--;
  2668. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2669. spin_unlock(&kvm->mmu_lock);
  2670. srcu_read_unlock(&kvm->srcu, idx);
  2671. }
  2672. if (kvm_freed)
  2673. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2674. spin_unlock(&kvm_lock);
  2675. out:
  2676. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  2677. }
  2678. static struct shrinker mmu_shrinker = {
  2679. .shrink = mmu_shrink,
  2680. .seeks = DEFAULT_SEEKS * 10,
  2681. };
  2682. static void mmu_destroy_caches(void)
  2683. {
  2684. if (pte_chain_cache)
  2685. kmem_cache_destroy(pte_chain_cache);
  2686. if (rmap_desc_cache)
  2687. kmem_cache_destroy(rmap_desc_cache);
  2688. if (mmu_page_header_cache)
  2689. kmem_cache_destroy(mmu_page_header_cache);
  2690. }
  2691. void kvm_mmu_module_exit(void)
  2692. {
  2693. mmu_destroy_caches();
  2694. unregister_shrinker(&mmu_shrinker);
  2695. }
  2696. int kvm_mmu_module_init(void)
  2697. {
  2698. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2699. sizeof(struct kvm_pte_chain),
  2700. 0, 0, NULL);
  2701. if (!pte_chain_cache)
  2702. goto nomem;
  2703. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2704. sizeof(struct kvm_rmap_desc),
  2705. 0, 0, NULL);
  2706. if (!rmap_desc_cache)
  2707. goto nomem;
  2708. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2709. sizeof(struct kvm_mmu_page),
  2710. 0, 0, NULL);
  2711. if (!mmu_page_header_cache)
  2712. goto nomem;
  2713. percpu_counter_init(&kvm_total_used_mmu_pages, 0);
  2714. register_shrinker(&mmu_shrinker);
  2715. return 0;
  2716. nomem:
  2717. mmu_destroy_caches();
  2718. return -ENOMEM;
  2719. }
  2720. /*
  2721. * Caculate mmu pages needed for kvm.
  2722. */
  2723. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2724. {
  2725. int i;
  2726. unsigned int nr_mmu_pages;
  2727. unsigned int nr_pages = 0;
  2728. struct kvm_memslots *slots;
  2729. slots = kvm_memslots(kvm);
  2730. for (i = 0; i < slots->nmemslots; i++)
  2731. nr_pages += slots->memslots[i].npages;
  2732. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2733. nr_mmu_pages = max(nr_mmu_pages,
  2734. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2735. return nr_mmu_pages;
  2736. }
  2737. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2738. unsigned len)
  2739. {
  2740. if (len > buffer->len)
  2741. return NULL;
  2742. return buffer->ptr;
  2743. }
  2744. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2745. unsigned len)
  2746. {
  2747. void *ret;
  2748. ret = pv_mmu_peek_buffer(buffer, len);
  2749. if (!ret)
  2750. return ret;
  2751. buffer->ptr += len;
  2752. buffer->len -= len;
  2753. buffer->processed += len;
  2754. return ret;
  2755. }
  2756. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2757. gpa_t addr, gpa_t value)
  2758. {
  2759. int bytes = 8;
  2760. int r;
  2761. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2762. bytes = 4;
  2763. r = mmu_topup_memory_caches(vcpu);
  2764. if (r)
  2765. return r;
  2766. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2767. return -EFAULT;
  2768. return 1;
  2769. }
  2770. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2771. {
  2772. (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2773. return 1;
  2774. }
  2775. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2776. {
  2777. spin_lock(&vcpu->kvm->mmu_lock);
  2778. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2779. spin_unlock(&vcpu->kvm->mmu_lock);
  2780. return 1;
  2781. }
  2782. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2783. struct kvm_pv_mmu_op_buffer *buffer)
  2784. {
  2785. struct kvm_mmu_op_header *header;
  2786. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2787. if (!header)
  2788. return 0;
  2789. switch (header->op) {
  2790. case KVM_MMU_OP_WRITE_PTE: {
  2791. struct kvm_mmu_op_write_pte *wpte;
  2792. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2793. if (!wpte)
  2794. return 0;
  2795. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2796. wpte->pte_val);
  2797. }
  2798. case KVM_MMU_OP_FLUSH_TLB: {
  2799. struct kvm_mmu_op_flush_tlb *ftlb;
  2800. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2801. if (!ftlb)
  2802. return 0;
  2803. return kvm_pv_mmu_flush_tlb(vcpu);
  2804. }
  2805. case KVM_MMU_OP_RELEASE_PT: {
  2806. struct kvm_mmu_op_release_pt *rpt;
  2807. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2808. if (!rpt)
  2809. return 0;
  2810. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2811. }
  2812. default: return 0;
  2813. }
  2814. }
  2815. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2816. gpa_t addr, unsigned long *ret)
  2817. {
  2818. int r;
  2819. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2820. buffer->ptr = buffer->buf;
  2821. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2822. buffer->processed = 0;
  2823. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2824. if (r)
  2825. goto out;
  2826. while (buffer->len) {
  2827. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2828. if (r < 0)
  2829. goto out;
  2830. if (r == 0)
  2831. break;
  2832. }
  2833. r = 1;
  2834. out:
  2835. *ret = buffer->processed;
  2836. return r;
  2837. }
  2838. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2839. {
  2840. struct kvm_shadow_walk_iterator iterator;
  2841. int nr_sptes = 0;
  2842. spin_lock(&vcpu->kvm->mmu_lock);
  2843. for_each_shadow_entry(vcpu, addr, iterator) {
  2844. sptes[iterator.level-1] = *iterator.sptep;
  2845. nr_sptes++;
  2846. if (!is_shadow_present_pte(*iterator.sptep))
  2847. break;
  2848. }
  2849. spin_unlock(&vcpu->kvm->mmu_lock);
  2850. return nr_sptes;
  2851. }
  2852. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2853. #ifdef AUDIT
  2854. static const char *audit_msg;
  2855. static gva_t canonicalize(gva_t gva)
  2856. {
  2857. #ifdef CONFIG_X86_64
  2858. gva = (long long)(gva << 16) >> 16;
  2859. #endif
  2860. return gva;
  2861. }
  2862. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2863. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2864. inspect_spte_fn fn)
  2865. {
  2866. int i;
  2867. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2868. u64 ent = sp->spt[i];
  2869. if (is_shadow_present_pte(ent)) {
  2870. if (!is_last_spte(ent, sp->role.level)) {
  2871. struct kvm_mmu_page *child;
  2872. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2873. __mmu_spte_walk(kvm, child, fn);
  2874. } else
  2875. fn(kvm, &sp->spt[i]);
  2876. }
  2877. }
  2878. }
  2879. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2880. {
  2881. int i;
  2882. struct kvm_mmu_page *sp;
  2883. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2884. return;
  2885. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2886. hpa_t root = vcpu->arch.mmu.root_hpa;
  2887. sp = page_header(root);
  2888. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2889. return;
  2890. }
  2891. for (i = 0; i < 4; ++i) {
  2892. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2893. if (root && VALID_PAGE(root)) {
  2894. root &= PT64_BASE_ADDR_MASK;
  2895. sp = page_header(root);
  2896. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2897. }
  2898. }
  2899. return;
  2900. }
  2901. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2902. gva_t va, int level)
  2903. {
  2904. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2905. int i;
  2906. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2907. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2908. u64 ent = pt[i];
  2909. if (ent == shadow_trap_nonpresent_pte)
  2910. continue;
  2911. va = canonicalize(va);
  2912. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2913. audit_mappings_page(vcpu, ent, va, level - 1);
  2914. else {
  2915. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2916. gfn_t gfn = gpa >> PAGE_SHIFT;
  2917. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2918. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2919. if (is_error_pfn(pfn)) {
  2920. kvm_release_pfn_clean(pfn);
  2921. continue;
  2922. }
  2923. if (is_shadow_present_pte(ent)
  2924. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2925. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2926. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2927. audit_msg, vcpu->arch.mmu.root_level,
  2928. va, gpa, hpa, ent,
  2929. is_shadow_present_pte(ent));
  2930. else if (ent == shadow_notrap_nonpresent_pte
  2931. && !is_error_hpa(hpa))
  2932. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2933. " valid guest gva %lx\n", audit_msg, va);
  2934. kvm_release_pfn_clean(pfn);
  2935. }
  2936. }
  2937. }
  2938. static void audit_mappings(struct kvm_vcpu *vcpu)
  2939. {
  2940. unsigned i;
  2941. if (vcpu->arch.mmu.root_level == 4)
  2942. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2943. else
  2944. for (i = 0; i < 4; ++i)
  2945. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2946. audit_mappings_page(vcpu,
  2947. vcpu->arch.mmu.pae_root[i],
  2948. i << 30,
  2949. 2);
  2950. }
  2951. static int count_rmaps(struct kvm_vcpu *vcpu)
  2952. {
  2953. struct kvm *kvm = vcpu->kvm;
  2954. struct kvm_memslots *slots;
  2955. int nmaps = 0;
  2956. int i, j, k, idx;
  2957. idx = srcu_read_lock(&kvm->srcu);
  2958. slots = kvm_memslots(kvm);
  2959. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2960. struct kvm_memory_slot *m = &slots->memslots[i];
  2961. struct kvm_rmap_desc *d;
  2962. for (j = 0; j < m->npages; ++j) {
  2963. unsigned long *rmapp = &m->rmap[j];
  2964. if (!*rmapp)
  2965. continue;
  2966. if (!(*rmapp & 1)) {
  2967. ++nmaps;
  2968. continue;
  2969. }
  2970. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2971. while (d) {
  2972. for (k = 0; k < RMAP_EXT; ++k)
  2973. if (d->sptes[k])
  2974. ++nmaps;
  2975. else
  2976. break;
  2977. d = d->more;
  2978. }
  2979. }
  2980. }
  2981. srcu_read_unlock(&kvm->srcu, idx);
  2982. return nmaps;
  2983. }
  2984. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2985. {
  2986. unsigned long *rmapp;
  2987. struct kvm_mmu_page *rev_sp;
  2988. gfn_t gfn;
  2989. if (is_writable_pte(*sptep)) {
  2990. rev_sp = page_header(__pa(sptep));
  2991. gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
  2992. if (!gfn_to_memslot(kvm, gfn)) {
  2993. if (!printk_ratelimit())
  2994. return;
  2995. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2996. audit_msg, gfn);
  2997. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2998. audit_msg, (long int)(sptep - rev_sp->spt),
  2999. rev_sp->gfn);
  3000. dump_stack();
  3001. return;
  3002. }
  3003. rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
  3004. if (!*rmapp) {
  3005. if (!printk_ratelimit())
  3006. return;
  3007. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  3008. audit_msg, *sptep);
  3009. dump_stack();
  3010. }
  3011. }
  3012. }
  3013. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  3014. {
  3015. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  3016. }
  3017. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  3018. {
  3019. struct kvm_mmu_page *sp;
  3020. int i;
  3021. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  3022. u64 *pt = sp->spt;
  3023. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  3024. continue;
  3025. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3026. u64 ent = pt[i];
  3027. if (!(ent & PT_PRESENT_MASK))
  3028. continue;
  3029. if (!is_writable_pte(ent))
  3030. continue;
  3031. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  3032. }
  3033. }
  3034. return;
  3035. }
  3036. static void audit_rmap(struct kvm_vcpu *vcpu)
  3037. {
  3038. check_writable_mappings_rmap(vcpu);
  3039. count_rmaps(vcpu);
  3040. }
  3041. static void audit_write_protection(struct kvm_vcpu *vcpu)
  3042. {
  3043. struct kvm_mmu_page *sp;
  3044. struct kvm_memory_slot *slot;
  3045. unsigned long *rmapp;
  3046. u64 *spte;
  3047. gfn_t gfn;
  3048. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  3049. if (sp->role.direct)
  3050. continue;
  3051. if (sp->unsync)
  3052. continue;
  3053. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  3054. rmapp = &slot->rmap[gfn - slot->base_gfn];
  3055. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  3056. while (spte) {
  3057. if (is_writable_pte(*spte))
  3058. printk(KERN_ERR "%s: (%s) shadow page has "
  3059. "writable mappings: gfn %lx role %x\n",
  3060. __func__, audit_msg, sp->gfn,
  3061. sp->role.word);
  3062. spte = rmap_next(vcpu->kvm, rmapp, spte);
  3063. }
  3064. }
  3065. }
  3066. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  3067. {
  3068. int olddbg = dbg;
  3069. dbg = 0;
  3070. audit_msg = msg;
  3071. audit_rmap(vcpu);
  3072. audit_write_protection(vcpu);
  3073. if (strcmp("pre pte write", audit_msg) != 0)
  3074. audit_mappings(vcpu);
  3075. audit_writable_sptes_have_rmaps(vcpu);
  3076. dbg = olddbg;
  3077. }
  3078. #endif