disk-io.c 70 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include "compat.h"
  32. #include "ctree.h"
  33. #include "disk-io.h"
  34. #include "transaction.h"
  35. #include "btrfs_inode.h"
  36. #include "volumes.h"
  37. #include "print-tree.h"
  38. #include "async-thread.h"
  39. #include "locking.h"
  40. #include "tree-log.h"
  41. #include "free-space-cache.h"
  42. static struct extent_io_ops btree_extent_io_ops;
  43. static void end_workqueue_fn(struct btrfs_work *work);
  44. static void free_fs_root(struct btrfs_root *root);
  45. /*
  46. * end_io_wq structs are used to do processing in task context when an IO is
  47. * complete. This is used during reads to verify checksums, and it is used
  48. * by writes to insert metadata for new file extents after IO is complete.
  49. */
  50. struct end_io_wq {
  51. struct bio *bio;
  52. bio_end_io_t *end_io;
  53. void *private;
  54. struct btrfs_fs_info *info;
  55. int error;
  56. int metadata;
  57. struct list_head list;
  58. struct btrfs_work work;
  59. };
  60. /*
  61. * async submit bios are used to offload expensive checksumming
  62. * onto the worker threads. They checksum file and metadata bios
  63. * just before they are sent down the IO stack.
  64. */
  65. struct async_submit_bio {
  66. struct inode *inode;
  67. struct bio *bio;
  68. struct list_head list;
  69. extent_submit_bio_hook_t *submit_bio_start;
  70. extent_submit_bio_hook_t *submit_bio_done;
  71. int rw;
  72. int mirror_num;
  73. unsigned long bio_flags;
  74. /*
  75. * bio_offset is optional, can be used if the pages in the bio
  76. * can't tell us where in the file the bio should go
  77. */
  78. u64 bio_offset;
  79. struct btrfs_work work;
  80. };
  81. /* These are used to set the lockdep class on the extent buffer locks.
  82. * The class is set by the readpage_end_io_hook after the buffer has
  83. * passed csum validation but before the pages are unlocked.
  84. *
  85. * The lockdep class is also set by btrfs_init_new_buffer on freshly
  86. * allocated blocks.
  87. *
  88. * The class is based on the level in the tree block, which allows lockdep
  89. * to know that lower nodes nest inside the locks of higher nodes.
  90. *
  91. * We also add a check to make sure the highest level of the tree is
  92. * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
  93. * code needs update as well.
  94. */
  95. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  96. # if BTRFS_MAX_LEVEL != 8
  97. # error
  98. # endif
  99. static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
  100. static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
  101. /* leaf */
  102. "btrfs-extent-00",
  103. "btrfs-extent-01",
  104. "btrfs-extent-02",
  105. "btrfs-extent-03",
  106. "btrfs-extent-04",
  107. "btrfs-extent-05",
  108. "btrfs-extent-06",
  109. "btrfs-extent-07",
  110. /* highest possible level */
  111. "btrfs-extent-08",
  112. };
  113. #endif
  114. /*
  115. * extents on the btree inode are pretty simple, there's one extent
  116. * that covers the entire device
  117. */
  118. static struct extent_map *btree_get_extent(struct inode *inode,
  119. struct page *page, size_t page_offset, u64 start, u64 len,
  120. int create)
  121. {
  122. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  123. struct extent_map *em;
  124. int ret;
  125. read_lock(&em_tree->lock);
  126. em = lookup_extent_mapping(em_tree, start, len);
  127. if (em) {
  128. em->bdev =
  129. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  130. read_unlock(&em_tree->lock);
  131. goto out;
  132. }
  133. read_unlock(&em_tree->lock);
  134. em = alloc_extent_map(GFP_NOFS);
  135. if (!em) {
  136. em = ERR_PTR(-ENOMEM);
  137. goto out;
  138. }
  139. em->start = 0;
  140. em->len = (u64)-1;
  141. em->block_len = (u64)-1;
  142. em->block_start = 0;
  143. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  144. write_lock(&em_tree->lock);
  145. ret = add_extent_mapping(em_tree, em);
  146. if (ret == -EEXIST) {
  147. u64 failed_start = em->start;
  148. u64 failed_len = em->len;
  149. free_extent_map(em);
  150. em = lookup_extent_mapping(em_tree, start, len);
  151. if (em) {
  152. ret = 0;
  153. } else {
  154. em = lookup_extent_mapping(em_tree, failed_start,
  155. failed_len);
  156. ret = -EIO;
  157. }
  158. } else if (ret) {
  159. free_extent_map(em);
  160. em = NULL;
  161. }
  162. write_unlock(&em_tree->lock);
  163. if (ret)
  164. em = ERR_PTR(ret);
  165. out:
  166. return em;
  167. }
  168. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  169. {
  170. return crc32c(seed, data, len);
  171. }
  172. void btrfs_csum_final(u32 crc, char *result)
  173. {
  174. *(__le32 *)result = ~cpu_to_le32(crc);
  175. }
  176. /*
  177. * compute the csum for a btree block, and either verify it or write it
  178. * into the csum field of the block.
  179. */
  180. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  181. int verify)
  182. {
  183. u16 csum_size =
  184. btrfs_super_csum_size(&root->fs_info->super_copy);
  185. char *result = NULL;
  186. unsigned long len;
  187. unsigned long cur_len;
  188. unsigned long offset = BTRFS_CSUM_SIZE;
  189. char *map_token = NULL;
  190. char *kaddr;
  191. unsigned long map_start;
  192. unsigned long map_len;
  193. int err;
  194. u32 crc = ~(u32)0;
  195. unsigned long inline_result;
  196. len = buf->len - offset;
  197. while (len > 0) {
  198. err = map_private_extent_buffer(buf, offset, 32,
  199. &map_token, &kaddr,
  200. &map_start, &map_len, KM_USER0);
  201. if (err)
  202. return 1;
  203. cur_len = min(len, map_len - (offset - map_start));
  204. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  205. crc, cur_len);
  206. len -= cur_len;
  207. offset += cur_len;
  208. unmap_extent_buffer(buf, map_token, KM_USER0);
  209. }
  210. if (csum_size > sizeof(inline_result)) {
  211. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  212. if (!result)
  213. return 1;
  214. } else {
  215. result = (char *)&inline_result;
  216. }
  217. btrfs_csum_final(crc, result);
  218. if (verify) {
  219. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  220. u32 val;
  221. u32 found = 0;
  222. memcpy(&found, result, csum_size);
  223. read_extent_buffer(buf, &val, 0, csum_size);
  224. if (printk_ratelimit()) {
  225. printk(KERN_INFO "btrfs: %s checksum verify "
  226. "failed on %llu wanted %X found %X "
  227. "level %d\n",
  228. root->fs_info->sb->s_id,
  229. (unsigned long long)buf->start, val, found,
  230. btrfs_header_level(buf));
  231. }
  232. if (result != (char *)&inline_result)
  233. kfree(result);
  234. return 1;
  235. }
  236. } else {
  237. write_extent_buffer(buf, result, 0, csum_size);
  238. }
  239. if (result != (char *)&inline_result)
  240. kfree(result);
  241. return 0;
  242. }
  243. /*
  244. * we can't consider a given block up to date unless the transid of the
  245. * block matches the transid in the parent node's pointer. This is how we
  246. * detect blocks that either didn't get written at all or got written
  247. * in the wrong place.
  248. */
  249. static int verify_parent_transid(struct extent_io_tree *io_tree,
  250. struct extent_buffer *eb, u64 parent_transid)
  251. {
  252. struct extent_state *cached_state = NULL;
  253. int ret;
  254. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  255. return 0;
  256. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  257. 0, &cached_state, GFP_NOFS);
  258. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  259. btrfs_header_generation(eb) == parent_transid) {
  260. ret = 0;
  261. goto out;
  262. }
  263. if (printk_ratelimit()) {
  264. printk("parent transid verify failed on %llu wanted %llu "
  265. "found %llu\n",
  266. (unsigned long long)eb->start,
  267. (unsigned long long)parent_transid,
  268. (unsigned long long)btrfs_header_generation(eb));
  269. }
  270. ret = 1;
  271. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  272. out:
  273. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  274. &cached_state, GFP_NOFS);
  275. return ret;
  276. }
  277. /*
  278. * helper to read a given tree block, doing retries as required when
  279. * the checksums don't match and we have alternate mirrors to try.
  280. */
  281. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  282. struct extent_buffer *eb,
  283. u64 start, u64 parent_transid)
  284. {
  285. struct extent_io_tree *io_tree;
  286. int ret;
  287. int num_copies = 0;
  288. int mirror_num = 0;
  289. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  290. while (1) {
  291. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  292. btree_get_extent, mirror_num);
  293. if (!ret &&
  294. !verify_parent_transid(io_tree, eb, parent_transid))
  295. return ret;
  296. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  297. eb->start, eb->len);
  298. if (num_copies == 1)
  299. return ret;
  300. mirror_num++;
  301. if (mirror_num > num_copies)
  302. return ret;
  303. }
  304. return -EIO;
  305. }
  306. /*
  307. * checksum a dirty tree block before IO. This has extra checks to make sure
  308. * we only fill in the checksum field in the first page of a multi-page block
  309. */
  310. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  311. {
  312. struct extent_io_tree *tree;
  313. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  314. u64 found_start;
  315. unsigned long len;
  316. struct extent_buffer *eb;
  317. int ret;
  318. tree = &BTRFS_I(page->mapping->host)->io_tree;
  319. if (page->private == EXTENT_PAGE_PRIVATE)
  320. goto out;
  321. if (!page->private)
  322. goto out;
  323. len = page->private >> 2;
  324. WARN_ON(len == 0);
  325. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  326. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  327. btrfs_header_generation(eb));
  328. BUG_ON(ret);
  329. WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
  330. found_start = btrfs_header_bytenr(eb);
  331. if (found_start != start) {
  332. WARN_ON(1);
  333. goto err;
  334. }
  335. if (eb->first_page != page) {
  336. WARN_ON(1);
  337. goto err;
  338. }
  339. if (!PageUptodate(page)) {
  340. WARN_ON(1);
  341. goto err;
  342. }
  343. csum_tree_block(root, eb, 0);
  344. err:
  345. free_extent_buffer(eb);
  346. out:
  347. return 0;
  348. }
  349. static int check_tree_block_fsid(struct btrfs_root *root,
  350. struct extent_buffer *eb)
  351. {
  352. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  353. u8 fsid[BTRFS_UUID_SIZE];
  354. int ret = 1;
  355. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  356. BTRFS_FSID_SIZE);
  357. while (fs_devices) {
  358. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  359. ret = 0;
  360. break;
  361. }
  362. fs_devices = fs_devices->seed;
  363. }
  364. return ret;
  365. }
  366. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  367. void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
  368. {
  369. lockdep_set_class_and_name(&eb->lock,
  370. &btrfs_eb_class[level],
  371. btrfs_eb_name[level]);
  372. }
  373. #endif
  374. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  375. struct extent_state *state)
  376. {
  377. struct extent_io_tree *tree;
  378. u64 found_start;
  379. int found_level;
  380. unsigned long len;
  381. struct extent_buffer *eb;
  382. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  383. int ret = 0;
  384. tree = &BTRFS_I(page->mapping->host)->io_tree;
  385. if (page->private == EXTENT_PAGE_PRIVATE)
  386. goto out;
  387. if (!page->private)
  388. goto out;
  389. len = page->private >> 2;
  390. WARN_ON(len == 0);
  391. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  392. found_start = btrfs_header_bytenr(eb);
  393. if (found_start != start) {
  394. if (printk_ratelimit()) {
  395. printk(KERN_INFO "btrfs bad tree block start "
  396. "%llu %llu\n",
  397. (unsigned long long)found_start,
  398. (unsigned long long)eb->start);
  399. }
  400. ret = -EIO;
  401. goto err;
  402. }
  403. if (eb->first_page != page) {
  404. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  405. eb->first_page->index, page->index);
  406. WARN_ON(1);
  407. ret = -EIO;
  408. goto err;
  409. }
  410. if (check_tree_block_fsid(root, eb)) {
  411. if (printk_ratelimit()) {
  412. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  413. (unsigned long long)eb->start);
  414. }
  415. ret = -EIO;
  416. goto err;
  417. }
  418. found_level = btrfs_header_level(eb);
  419. btrfs_set_buffer_lockdep_class(eb, found_level);
  420. ret = csum_tree_block(root, eb, 1);
  421. if (ret)
  422. ret = -EIO;
  423. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  424. end = eb->start + end - 1;
  425. err:
  426. free_extent_buffer(eb);
  427. out:
  428. return ret;
  429. }
  430. static void end_workqueue_bio(struct bio *bio, int err)
  431. {
  432. struct end_io_wq *end_io_wq = bio->bi_private;
  433. struct btrfs_fs_info *fs_info;
  434. fs_info = end_io_wq->info;
  435. end_io_wq->error = err;
  436. end_io_wq->work.func = end_workqueue_fn;
  437. end_io_wq->work.flags = 0;
  438. if (bio->bi_rw & REQ_WRITE) {
  439. if (end_io_wq->metadata == 1)
  440. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  441. &end_io_wq->work);
  442. else if (end_io_wq->metadata == 2)
  443. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  444. &end_io_wq->work);
  445. else
  446. btrfs_queue_worker(&fs_info->endio_write_workers,
  447. &end_io_wq->work);
  448. } else {
  449. if (end_io_wq->metadata)
  450. btrfs_queue_worker(&fs_info->endio_meta_workers,
  451. &end_io_wq->work);
  452. else
  453. btrfs_queue_worker(&fs_info->endio_workers,
  454. &end_io_wq->work);
  455. }
  456. }
  457. /*
  458. * For the metadata arg you want
  459. *
  460. * 0 - if data
  461. * 1 - if normal metadta
  462. * 2 - if writing to the free space cache area
  463. */
  464. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  465. int metadata)
  466. {
  467. struct end_io_wq *end_io_wq;
  468. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  469. if (!end_io_wq)
  470. return -ENOMEM;
  471. end_io_wq->private = bio->bi_private;
  472. end_io_wq->end_io = bio->bi_end_io;
  473. end_io_wq->info = info;
  474. end_io_wq->error = 0;
  475. end_io_wq->bio = bio;
  476. end_io_wq->metadata = metadata;
  477. bio->bi_private = end_io_wq;
  478. bio->bi_end_io = end_workqueue_bio;
  479. return 0;
  480. }
  481. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  482. {
  483. unsigned long limit = min_t(unsigned long,
  484. info->workers.max_workers,
  485. info->fs_devices->open_devices);
  486. return 256 * limit;
  487. }
  488. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  489. {
  490. return atomic_read(&info->nr_async_bios) >
  491. btrfs_async_submit_limit(info);
  492. }
  493. static void run_one_async_start(struct btrfs_work *work)
  494. {
  495. struct async_submit_bio *async;
  496. async = container_of(work, struct async_submit_bio, work);
  497. async->submit_bio_start(async->inode, async->rw, async->bio,
  498. async->mirror_num, async->bio_flags,
  499. async->bio_offset);
  500. }
  501. static void run_one_async_done(struct btrfs_work *work)
  502. {
  503. struct btrfs_fs_info *fs_info;
  504. struct async_submit_bio *async;
  505. int limit;
  506. async = container_of(work, struct async_submit_bio, work);
  507. fs_info = BTRFS_I(async->inode)->root->fs_info;
  508. limit = btrfs_async_submit_limit(fs_info);
  509. limit = limit * 2 / 3;
  510. atomic_dec(&fs_info->nr_async_submits);
  511. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  512. waitqueue_active(&fs_info->async_submit_wait))
  513. wake_up(&fs_info->async_submit_wait);
  514. async->submit_bio_done(async->inode, async->rw, async->bio,
  515. async->mirror_num, async->bio_flags,
  516. async->bio_offset);
  517. }
  518. static void run_one_async_free(struct btrfs_work *work)
  519. {
  520. struct async_submit_bio *async;
  521. async = container_of(work, struct async_submit_bio, work);
  522. kfree(async);
  523. }
  524. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  525. int rw, struct bio *bio, int mirror_num,
  526. unsigned long bio_flags,
  527. u64 bio_offset,
  528. extent_submit_bio_hook_t *submit_bio_start,
  529. extent_submit_bio_hook_t *submit_bio_done)
  530. {
  531. struct async_submit_bio *async;
  532. async = kmalloc(sizeof(*async), GFP_NOFS);
  533. if (!async)
  534. return -ENOMEM;
  535. async->inode = inode;
  536. async->rw = rw;
  537. async->bio = bio;
  538. async->mirror_num = mirror_num;
  539. async->submit_bio_start = submit_bio_start;
  540. async->submit_bio_done = submit_bio_done;
  541. async->work.func = run_one_async_start;
  542. async->work.ordered_func = run_one_async_done;
  543. async->work.ordered_free = run_one_async_free;
  544. async->work.flags = 0;
  545. async->bio_flags = bio_flags;
  546. async->bio_offset = bio_offset;
  547. atomic_inc(&fs_info->nr_async_submits);
  548. if (rw & REQ_SYNC)
  549. btrfs_set_work_high_prio(&async->work);
  550. btrfs_queue_worker(&fs_info->workers, &async->work);
  551. while (atomic_read(&fs_info->async_submit_draining) &&
  552. atomic_read(&fs_info->nr_async_submits)) {
  553. wait_event(fs_info->async_submit_wait,
  554. (atomic_read(&fs_info->nr_async_submits) == 0));
  555. }
  556. return 0;
  557. }
  558. static int btree_csum_one_bio(struct bio *bio)
  559. {
  560. struct bio_vec *bvec = bio->bi_io_vec;
  561. int bio_index = 0;
  562. struct btrfs_root *root;
  563. WARN_ON(bio->bi_vcnt <= 0);
  564. while (bio_index < bio->bi_vcnt) {
  565. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  566. csum_dirty_buffer(root, bvec->bv_page);
  567. bio_index++;
  568. bvec++;
  569. }
  570. return 0;
  571. }
  572. static int __btree_submit_bio_start(struct inode *inode, int rw,
  573. struct bio *bio, int mirror_num,
  574. unsigned long bio_flags,
  575. u64 bio_offset)
  576. {
  577. /*
  578. * when we're called for a write, we're already in the async
  579. * submission context. Just jump into btrfs_map_bio
  580. */
  581. btree_csum_one_bio(bio);
  582. return 0;
  583. }
  584. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  585. int mirror_num, unsigned long bio_flags,
  586. u64 bio_offset)
  587. {
  588. /*
  589. * when we're called for a write, we're already in the async
  590. * submission context. Just jump into btrfs_map_bio
  591. */
  592. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  593. }
  594. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  595. int mirror_num, unsigned long bio_flags,
  596. u64 bio_offset)
  597. {
  598. int ret;
  599. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  600. bio, 1);
  601. BUG_ON(ret);
  602. if (!(rw & REQ_WRITE)) {
  603. /*
  604. * called for a read, do the setup so that checksum validation
  605. * can happen in the async kernel threads
  606. */
  607. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  608. mirror_num, 0);
  609. }
  610. /*
  611. * kthread helpers are used to submit writes so that checksumming
  612. * can happen in parallel across all CPUs
  613. */
  614. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  615. inode, rw, bio, mirror_num, 0,
  616. bio_offset,
  617. __btree_submit_bio_start,
  618. __btree_submit_bio_done);
  619. }
  620. static int btree_migratepage(struct address_space *mapping,
  621. struct page *newpage, struct page *page)
  622. {
  623. /*
  624. * we can't safely write a btree page from here,
  625. * we haven't done the locking hook
  626. */
  627. if (PageDirty(page))
  628. return -EAGAIN;
  629. /*
  630. * Buffers may be managed in a filesystem specific way.
  631. * We must have no buffers or drop them.
  632. */
  633. if (page_has_private(page) &&
  634. !try_to_release_page(page, GFP_KERNEL))
  635. return -EAGAIN;
  636. return migrate_page(mapping, newpage, page);
  637. }
  638. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  639. {
  640. struct extent_io_tree *tree;
  641. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  642. struct extent_buffer *eb;
  643. int was_dirty;
  644. tree = &BTRFS_I(page->mapping->host)->io_tree;
  645. if (!(current->flags & PF_MEMALLOC)) {
  646. return extent_write_full_page(tree, page,
  647. btree_get_extent, wbc);
  648. }
  649. redirty_page_for_writepage(wbc, page);
  650. eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
  651. WARN_ON(!eb);
  652. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  653. if (!was_dirty) {
  654. spin_lock(&root->fs_info->delalloc_lock);
  655. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  656. spin_unlock(&root->fs_info->delalloc_lock);
  657. }
  658. free_extent_buffer(eb);
  659. unlock_page(page);
  660. return 0;
  661. }
  662. static int btree_writepages(struct address_space *mapping,
  663. struct writeback_control *wbc)
  664. {
  665. struct extent_io_tree *tree;
  666. tree = &BTRFS_I(mapping->host)->io_tree;
  667. if (wbc->sync_mode == WB_SYNC_NONE) {
  668. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  669. u64 num_dirty;
  670. unsigned long thresh = 32 * 1024 * 1024;
  671. if (wbc->for_kupdate)
  672. return 0;
  673. /* this is a bit racy, but that's ok */
  674. num_dirty = root->fs_info->dirty_metadata_bytes;
  675. if (num_dirty < thresh)
  676. return 0;
  677. }
  678. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  679. }
  680. static int btree_readpage(struct file *file, struct page *page)
  681. {
  682. struct extent_io_tree *tree;
  683. tree = &BTRFS_I(page->mapping->host)->io_tree;
  684. return extent_read_full_page(tree, page, btree_get_extent);
  685. }
  686. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  687. {
  688. struct extent_io_tree *tree;
  689. struct extent_map_tree *map;
  690. int ret;
  691. if (PageWriteback(page) || PageDirty(page))
  692. return 0;
  693. tree = &BTRFS_I(page->mapping->host)->io_tree;
  694. map = &BTRFS_I(page->mapping->host)->extent_tree;
  695. ret = try_release_extent_state(map, tree, page, gfp_flags);
  696. if (!ret)
  697. return 0;
  698. ret = try_release_extent_buffer(tree, page);
  699. if (ret == 1) {
  700. ClearPagePrivate(page);
  701. set_page_private(page, 0);
  702. page_cache_release(page);
  703. }
  704. return ret;
  705. }
  706. static void btree_invalidatepage(struct page *page, unsigned long offset)
  707. {
  708. struct extent_io_tree *tree;
  709. tree = &BTRFS_I(page->mapping->host)->io_tree;
  710. extent_invalidatepage(tree, page, offset);
  711. btree_releasepage(page, GFP_NOFS);
  712. if (PagePrivate(page)) {
  713. printk(KERN_WARNING "btrfs warning page private not zero "
  714. "on page %llu\n", (unsigned long long)page_offset(page));
  715. ClearPagePrivate(page);
  716. set_page_private(page, 0);
  717. page_cache_release(page);
  718. }
  719. }
  720. static const struct address_space_operations btree_aops = {
  721. .readpage = btree_readpage,
  722. .writepage = btree_writepage,
  723. .writepages = btree_writepages,
  724. .releasepage = btree_releasepage,
  725. .invalidatepage = btree_invalidatepage,
  726. .sync_page = block_sync_page,
  727. .migratepage = btree_migratepage,
  728. };
  729. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  730. u64 parent_transid)
  731. {
  732. struct extent_buffer *buf = NULL;
  733. struct inode *btree_inode = root->fs_info->btree_inode;
  734. int ret = 0;
  735. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  736. if (!buf)
  737. return 0;
  738. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  739. buf, 0, 0, btree_get_extent, 0);
  740. free_extent_buffer(buf);
  741. return ret;
  742. }
  743. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  744. u64 bytenr, u32 blocksize)
  745. {
  746. struct inode *btree_inode = root->fs_info->btree_inode;
  747. struct extent_buffer *eb;
  748. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  749. bytenr, blocksize, GFP_NOFS);
  750. return eb;
  751. }
  752. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  753. u64 bytenr, u32 blocksize)
  754. {
  755. struct inode *btree_inode = root->fs_info->btree_inode;
  756. struct extent_buffer *eb;
  757. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  758. bytenr, blocksize, NULL, GFP_NOFS);
  759. return eb;
  760. }
  761. int btrfs_write_tree_block(struct extent_buffer *buf)
  762. {
  763. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  764. buf->start + buf->len - 1);
  765. }
  766. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  767. {
  768. return filemap_fdatawait_range(buf->first_page->mapping,
  769. buf->start, buf->start + buf->len - 1);
  770. }
  771. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  772. u32 blocksize, u64 parent_transid)
  773. {
  774. struct extent_buffer *buf = NULL;
  775. int ret;
  776. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  777. if (!buf)
  778. return NULL;
  779. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  780. if (ret == 0)
  781. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  782. return buf;
  783. }
  784. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  785. struct extent_buffer *buf)
  786. {
  787. struct inode *btree_inode = root->fs_info->btree_inode;
  788. if (btrfs_header_generation(buf) ==
  789. root->fs_info->running_transaction->transid) {
  790. btrfs_assert_tree_locked(buf);
  791. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  792. spin_lock(&root->fs_info->delalloc_lock);
  793. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  794. root->fs_info->dirty_metadata_bytes -= buf->len;
  795. else
  796. WARN_ON(1);
  797. spin_unlock(&root->fs_info->delalloc_lock);
  798. }
  799. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  800. btrfs_set_lock_blocking(buf);
  801. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  802. buf);
  803. }
  804. return 0;
  805. }
  806. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  807. u32 stripesize, struct btrfs_root *root,
  808. struct btrfs_fs_info *fs_info,
  809. u64 objectid)
  810. {
  811. root->node = NULL;
  812. root->commit_root = NULL;
  813. root->sectorsize = sectorsize;
  814. root->nodesize = nodesize;
  815. root->leafsize = leafsize;
  816. root->stripesize = stripesize;
  817. root->ref_cows = 0;
  818. root->track_dirty = 0;
  819. root->in_radix = 0;
  820. root->orphan_item_inserted = 0;
  821. root->orphan_cleanup_state = 0;
  822. root->fs_info = fs_info;
  823. root->objectid = objectid;
  824. root->last_trans = 0;
  825. root->highest_objectid = 0;
  826. root->name = NULL;
  827. root->in_sysfs = 0;
  828. root->inode_tree = RB_ROOT;
  829. root->block_rsv = NULL;
  830. root->orphan_block_rsv = NULL;
  831. INIT_LIST_HEAD(&root->dirty_list);
  832. INIT_LIST_HEAD(&root->orphan_list);
  833. INIT_LIST_HEAD(&root->root_list);
  834. spin_lock_init(&root->node_lock);
  835. spin_lock_init(&root->orphan_lock);
  836. spin_lock_init(&root->inode_lock);
  837. spin_lock_init(&root->accounting_lock);
  838. mutex_init(&root->objectid_mutex);
  839. mutex_init(&root->log_mutex);
  840. init_waitqueue_head(&root->log_writer_wait);
  841. init_waitqueue_head(&root->log_commit_wait[0]);
  842. init_waitqueue_head(&root->log_commit_wait[1]);
  843. atomic_set(&root->log_commit[0], 0);
  844. atomic_set(&root->log_commit[1], 0);
  845. atomic_set(&root->log_writers, 0);
  846. root->log_batch = 0;
  847. root->log_transid = 0;
  848. root->last_log_commit = 0;
  849. extent_io_tree_init(&root->dirty_log_pages,
  850. fs_info->btree_inode->i_mapping, GFP_NOFS);
  851. memset(&root->root_key, 0, sizeof(root->root_key));
  852. memset(&root->root_item, 0, sizeof(root->root_item));
  853. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  854. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  855. root->defrag_trans_start = fs_info->generation;
  856. init_completion(&root->kobj_unregister);
  857. root->defrag_running = 0;
  858. root->root_key.objectid = objectid;
  859. root->anon_super.s_root = NULL;
  860. root->anon_super.s_dev = 0;
  861. INIT_LIST_HEAD(&root->anon_super.s_list);
  862. INIT_LIST_HEAD(&root->anon_super.s_instances);
  863. init_rwsem(&root->anon_super.s_umount);
  864. return 0;
  865. }
  866. static int find_and_setup_root(struct btrfs_root *tree_root,
  867. struct btrfs_fs_info *fs_info,
  868. u64 objectid,
  869. struct btrfs_root *root)
  870. {
  871. int ret;
  872. u32 blocksize;
  873. u64 generation;
  874. __setup_root(tree_root->nodesize, tree_root->leafsize,
  875. tree_root->sectorsize, tree_root->stripesize,
  876. root, fs_info, objectid);
  877. ret = btrfs_find_last_root(tree_root, objectid,
  878. &root->root_item, &root->root_key);
  879. if (ret > 0)
  880. return -ENOENT;
  881. BUG_ON(ret);
  882. generation = btrfs_root_generation(&root->root_item);
  883. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  884. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  885. blocksize, generation);
  886. BUG_ON(!root->node);
  887. root->commit_root = btrfs_root_node(root);
  888. return 0;
  889. }
  890. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  891. struct btrfs_fs_info *fs_info)
  892. {
  893. struct btrfs_root *root;
  894. struct btrfs_root *tree_root = fs_info->tree_root;
  895. struct extent_buffer *leaf;
  896. root = kzalloc(sizeof(*root), GFP_NOFS);
  897. if (!root)
  898. return ERR_PTR(-ENOMEM);
  899. __setup_root(tree_root->nodesize, tree_root->leafsize,
  900. tree_root->sectorsize, tree_root->stripesize,
  901. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  902. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  903. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  904. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  905. /*
  906. * log trees do not get reference counted because they go away
  907. * before a real commit is actually done. They do store pointers
  908. * to file data extents, and those reference counts still get
  909. * updated (along with back refs to the log tree).
  910. */
  911. root->ref_cows = 0;
  912. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  913. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  914. if (IS_ERR(leaf)) {
  915. kfree(root);
  916. return ERR_CAST(leaf);
  917. }
  918. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  919. btrfs_set_header_bytenr(leaf, leaf->start);
  920. btrfs_set_header_generation(leaf, trans->transid);
  921. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  922. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  923. root->node = leaf;
  924. write_extent_buffer(root->node, root->fs_info->fsid,
  925. (unsigned long)btrfs_header_fsid(root->node),
  926. BTRFS_FSID_SIZE);
  927. btrfs_mark_buffer_dirty(root->node);
  928. btrfs_tree_unlock(root->node);
  929. return root;
  930. }
  931. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  932. struct btrfs_fs_info *fs_info)
  933. {
  934. struct btrfs_root *log_root;
  935. log_root = alloc_log_tree(trans, fs_info);
  936. if (IS_ERR(log_root))
  937. return PTR_ERR(log_root);
  938. WARN_ON(fs_info->log_root_tree);
  939. fs_info->log_root_tree = log_root;
  940. return 0;
  941. }
  942. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  943. struct btrfs_root *root)
  944. {
  945. struct btrfs_root *log_root;
  946. struct btrfs_inode_item *inode_item;
  947. log_root = alloc_log_tree(trans, root->fs_info);
  948. if (IS_ERR(log_root))
  949. return PTR_ERR(log_root);
  950. log_root->last_trans = trans->transid;
  951. log_root->root_key.offset = root->root_key.objectid;
  952. inode_item = &log_root->root_item.inode;
  953. inode_item->generation = cpu_to_le64(1);
  954. inode_item->size = cpu_to_le64(3);
  955. inode_item->nlink = cpu_to_le32(1);
  956. inode_item->nbytes = cpu_to_le64(root->leafsize);
  957. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  958. btrfs_set_root_node(&log_root->root_item, log_root->node);
  959. WARN_ON(root->log_root);
  960. root->log_root = log_root;
  961. root->log_transid = 0;
  962. root->last_log_commit = 0;
  963. return 0;
  964. }
  965. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  966. struct btrfs_key *location)
  967. {
  968. struct btrfs_root *root;
  969. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  970. struct btrfs_path *path;
  971. struct extent_buffer *l;
  972. u64 generation;
  973. u32 blocksize;
  974. int ret = 0;
  975. root = kzalloc(sizeof(*root), GFP_NOFS);
  976. if (!root)
  977. return ERR_PTR(-ENOMEM);
  978. if (location->offset == (u64)-1) {
  979. ret = find_and_setup_root(tree_root, fs_info,
  980. location->objectid, root);
  981. if (ret) {
  982. kfree(root);
  983. return ERR_PTR(ret);
  984. }
  985. goto out;
  986. }
  987. __setup_root(tree_root->nodesize, tree_root->leafsize,
  988. tree_root->sectorsize, tree_root->stripesize,
  989. root, fs_info, location->objectid);
  990. path = btrfs_alloc_path();
  991. BUG_ON(!path);
  992. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  993. if (ret == 0) {
  994. l = path->nodes[0];
  995. read_extent_buffer(l, &root->root_item,
  996. btrfs_item_ptr_offset(l, path->slots[0]),
  997. sizeof(root->root_item));
  998. memcpy(&root->root_key, location, sizeof(*location));
  999. }
  1000. btrfs_free_path(path);
  1001. if (ret) {
  1002. if (ret > 0)
  1003. ret = -ENOENT;
  1004. return ERR_PTR(ret);
  1005. }
  1006. generation = btrfs_root_generation(&root->root_item);
  1007. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1008. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1009. blocksize, generation);
  1010. root->commit_root = btrfs_root_node(root);
  1011. BUG_ON(!root->node);
  1012. out:
  1013. if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
  1014. root->ref_cows = 1;
  1015. return root;
  1016. }
  1017. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1018. u64 root_objectid)
  1019. {
  1020. struct btrfs_root *root;
  1021. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  1022. return fs_info->tree_root;
  1023. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1024. return fs_info->extent_root;
  1025. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1026. (unsigned long)root_objectid);
  1027. return root;
  1028. }
  1029. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1030. struct btrfs_key *location)
  1031. {
  1032. struct btrfs_root *root;
  1033. int ret;
  1034. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1035. return fs_info->tree_root;
  1036. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1037. return fs_info->extent_root;
  1038. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1039. return fs_info->chunk_root;
  1040. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1041. return fs_info->dev_root;
  1042. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1043. return fs_info->csum_root;
  1044. again:
  1045. spin_lock(&fs_info->fs_roots_radix_lock);
  1046. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1047. (unsigned long)location->objectid);
  1048. spin_unlock(&fs_info->fs_roots_radix_lock);
  1049. if (root)
  1050. return root;
  1051. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1052. if (IS_ERR(root))
  1053. return root;
  1054. set_anon_super(&root->anon_super, NULL);
  1055. if (btrfs_root_refs(&root->root_item) == 0) {
  1056. ret = -ENOENT;
  1057. goto fail;
  1058. }
  1059. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1060. if (ret < 0)
  1061. goto fail;
  1062. if (ret == 0)
  1063. root->orphan_item_inserted = 1;
  1064. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1065. if (ret)
  1066. goto fail;
  1067. spin_lock(&fs_info->fs_roots_radix_lock);
  1068. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1069. (unsigned long)root->root_key.objectid,
  1070. root);
  1071. if (ret == 0)
  1072. root->in_radix = 1;
  1073. spin_unlock(&fs_info->fs_roots_radix_lock);
  1074. radix_tree_preload_end();
  1075. if (ret) {
  1076. if (ret == -EEXIST) {
  1077. free_fs_root(root);
  1078. goto again;
  1079. }
  1080. goto fail;
  1081. }
  1082. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1083. root->root_key.objectid);
  1084. WARN_ON(ret);
  1085. return root;
  1086. fail:
  1087. free_fs_root(root);
  1088. return ERR_PTR(ret);
  1089. }
  1090. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  1091. struct btrfs_key *location,
  1092. const char *name, int namelen)
  1093. {
  1094. return btrfs_read_fs_root_no_name(fs_info, location);
  1095. #if 0
  1096. struct btrfs_root *root;
  1097. int ret;
  1098. root = btrfs_read_fs_root_no_name(fs_info, location);
  1099. if (!root)
  1100. return NULL;
  1101. if (root->in_sysfs)
  1102. return root;
  1103. ret = btrfs_set_root_name(root, name, namelen);
  1104. if (ret) {
  1105. free_extent_buffer(root->node);
  1106. kfree(root);
  1107. return ERR_PTR(ret);
  1108. }
  1109. ret = btrfs_sysfs_add_root(root);
  1110. if (ret) {
  1111. free_extent_buffer(root->node);
  1112. kfree(root->name);
  1113. kfree(root);
  1114. return ERR_PTR(ret);
  1115. }
  1116. root->in_sysfs = 1;
  1117. return root;
  1118. #endif
  1119. }
  1120. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1121. {
  1122. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1123. int ret = 0;
  1124. struct btrfs_device *device;
  1125. struct backing_dev_info *bdi;
  1126. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1127. if (!device->bdev)
  1128. continue;
  1129. bdi = blk_get_backing_dev_info(device->bdev);
  1130. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1131. ret = 1;
  1132. break;
  1133. }
  1134. }
  1135. return ret;
  1136. }
  1137. /*
  1138. * this unplugs every device on the box, and it is only used when page
  1139. * is null
  1140. */
  1141. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1142. {
  1143. struct btrfs_device *device;
  1144. struct btrfs_fs_info *info;
  1145. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1146. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1147. if (!device->bdev)
  1148. continue;
  1149. bdi = blk_get_backing_dev_info(device->bdev);
  1150. if (bdi->unplug_io_fn)
  1151. bdi->unplug_io_fn(bdi, page);
  1152. }
  1153. }
  1154. static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1155. {
  1156. struct inode *inode;
  1157. struct extent_map_tree *em_tree;
  1158. struct extent_map *em;
  1159. struct address_space *mapping;
  1160. u64 offset;
  1161. /* the generic O_DIRECT read code does this */
  1162. if (1 || !page) {
  1163. __unplug_io_fn(bdi, page);
  1164. return;
  1165. }
  1166. /*
  1167. * page->mapping may change at any time. Get a consistent copy
  1168. * and use that for everything below
  1169. */
  1170. smp_mb();
  1171. mapping = page->mapping;
  1172. if (!mapping)
  1173. return;
  1174. inode = mapping->host;
  1175. /*
  1176. * don't do the expensive searching for a small number of
  1177. * devices
  1178. */
  1179. if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
  1180. __unplug_io_fn(bdi, page);
  1181. return;
  1182. }
  1183. offset = page_offset(page);
  1184. em_tree = &BTRFS_I(inode)->extent_tree;
  1185. read_lock(&em_tree->lock);
  1186. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1187. read_unlock(&em_tree->lock);
  1188. if (!em) {
  1189. __unplug_io_fn(bdi, page);
  1190. return;
  1191. }
  1192. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1193. free_extent_map(em);
  1194. __unplug_io_fn(bdi, page);
  1195. return;
  1196. }
  1197. offset = offset - em->start;
  1198. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1199. em->block_start + offset, page);
  1200. free_extent_map(em);
  1201. }
  1202. /*
  1203. * If this fails, caller must call bdi_destroy() to get rid of the
  1204. * bdi again.
  1205. */
  1206. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1207. {
  1208. int err;
  1209. bdi->capabilities = BDI_CAP_MAP_COPY;
  1210. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1211. if (err)
  1212. return err;
  1213. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1214. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1215. bdi->unplug_io_data = info;
  1216. bdi->congested_fn = btrfs_congested_fn;
  1217. bdi->congested_data = info;
  1218. return 0;
  1219. }
  1220. static int bio_ready_for_csum(struct bio *bio)
  1221. {
  1222. u64 length = 0;
  1223. u64 buf_len = 0;
  1224. u64 start = 0;
  1225. struct page *page;
  1226. struct extent_io_tree *io_tree = NULL;
  1227. struct bio_vec *bvec;
  1228. int i;
  1229. int ret;
  1230. bio_for_each_segment(bvec, bio, i) {
  1231. page = bvec->bv_page;
  1232. if (page->private == EXTENT_PAGE_PRIVATE) {
  1233. length += bvec->bv_len;
  1234. continue;
  1235. }
  1236. if (!page->private) {
  1237. length += bvec->bv_len;
  1238. continue;
  1239. }
  1240. length = bvec->bv_len;
  1241. buf_len = page->private >> 2;
  1242. start = page_offset(page) + bvec->bv_offset;
  1243. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1244. }
  1245. /* are we fully contained in this bio? */
  1246. if (buf_len <= length)
  1247. return 1;
  1248. ret = extent_range_uptodate(io_tree, start + length,
  1249. start + buf_len - 1);
  1250. return ret;
  1251. }
  1252. /*
  1253. * called by the kthread helper functions to finally call the bio end_io
  1254. * functions. This is where read checksum verification actually happens
  1255. */
  1256. static void end_workqueue_fn(struct btrfs_work *work)
  1257. {
  1258. struct bio *bio;
  1259. struct end_io_wq *end_io_wq;
  1260. struct btrfs_fs_info *fs_info;
  1261. int error;
  1262. end_io_wq = container_of(work, struct end_io_wq, work);
  1263. bio = end_io_wq->bio;
  1264. fs_info = end_io_wq->info;
  1265. /* metadata bio reads are special because the whole tree block must
  1266. * be checksummed at once. This makes sure the entire block is in
  1267. * ram and up to date before trying to verify things. For
  1268. * blocksize <= pagesize, it is basically a noop
  1269. */
  1270. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1271. !bio_ready_for_csum(bio)) {
  1272. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1273. &end_io_wq->work);
  1274. return;
  1275. }
  1276. error = end_io_wq->error;
  1277. bio->bi_private = end_io_wq->private;
  1278. bio->bi_end_io = end_io_wq->end_io;
  1279. kfree(end_io_wq);
  1280. bio_endio(bio, error);
  1281. }
  1282. static int cleaner_kthread(void *arg)
  1283. {
  1284. struct btrfs_root *root = arg;
  1285. do {
  1286. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1287. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1288. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1289. btrfs_run_delayed_iputs(root);
  1290. btrfs_clean_old_snapshots(root);
  1291. mutex_unlock(&root->fs_info->cleaner_mutex);
  1292. }
  1293. if (freezing(current)) {
  1294. refrigerator();
  1295. } else {
  1296. set_current_state(TASK_INTERRUPTIBLE);
  1297. if (!kthread_should_stop())
  1298. schedule();
  1299. __set_current_state(TASK_RUNNING);
  1300. }
  1301. } while (!kthread_should_stop());
  1302. return 0;
  1303. }
  1304. static int transaction_kthread(void *arg)
  1305. {
  1306. struct btrfs_root *root = arg;
  1307. struct btrfs_trans_handle *trans;
  1308. struct btrfs_transaction *cur;
  1309. u64 transid;
  1310. unsigned long now;
  1311. unsigned long delay;
  1312. int ret;
  1313. do {
  1314. delay = HZ * 30;
  1315. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1316. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1317. spin_lock(&root->fs_info->new_trans_lock);
  1318. cur = root->fs_info->running_transaction;
  1319. if (!cur) {
  1320. spin_unlock(&root->fs_info->new_trans_lock);
  1321. goto sleep;
  1322. }
  1323. now = get_seconds();
  1324. if (!cur->blocked &&
  1325. (now < cur->start_time || now - cur->start_time < 30)) {
  1326. spin_unlock(&root->fs_info->new_trans_lock);
  1327. delay = HZ * 5;
  1328. goto sleep;
  1329. }
  1330. transid = cur->transid;
  1331. spin_unlock(&root->fs_info->new_trans_lock);
  1332. trans = btrfs_join_transaction(root, 1);
  1333. if (transid == trans->transid) {
  1334. ret = btrfs_commit_transaction(trans, root);
  1335. BUG_ON(ret);
  1336. } else {
  1337. btrfs_end_transaction(trans, root);
  1338. }
  1339. sleep:
  1340. wake_up_process(root->fs_info->cleaner_kthread);
  1341. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1342. if (freezing(current)) {
  1343. refrigerator();
  1344. } else {
  1345. set_current_state(TASK_INTERRUPTIBLE);
  1346. if (!kthread_should_stop() &&
  1347. !btrfs_transaction_blocked(root->fs_info))
  1348. schedule_timeout(delay);
  1349. __set_current_state(TASK_RUNNING);
  1350. }
  1351. } while (!kthread_should_stop());
  1352. return 0;
  1353. }
  1354. struct btrfs_root *open_ctree(struct super_block *sb,
  1355. struct btrfs_fs_devices *fs_devices,
  1356. char *options)
  1357. {
  1358. u32 sectorsize;
  1359. u32 nodesize;
  1360. u32 leafsize;
  1361. u32 blocksize;
  1362. u32 stripesize;
  1363. u64 generation;
  1364. u64 features;
  1365. struct btrfs_key location;
  1366. struct buffer_head *bh;
  1367. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1368. GFP_NOFS);
  1369. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1370. GFP_NOFS);
  1371. struct btrfs_root *tree_root = btrfs_sb(sb);
  1372. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1373. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1374. GFP_NOFS);
  1375. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1376. GFP_NOFS);
  1377. struct btrfs_root *log_tree_root;
  1378. int ret;
  1379. int err = -EINVAL;
  1380. struct btrfs_super_block *disk_super;
  1381. if (!extent_root || !tree_root || !fs_info ||
  1382. !chunk_root || !dev_root || !csum_root) {
  1383. err = -ENOMEM;
  1384. goto fail;
  1385. }
  1386. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1387. if (ret) {
  1388. err = ret;
  1389. goto fail;
  1390. }
  1391. ret = setup_bdi(fs_info, &fs_info->bdi);
  1392. if (ret) {
  1393. err = ret;
  1394. goto fail_srcu;
  1395. }
  1396. fs_info->btree_inode = new_inode(sb);
  1397. if (!fs_info->btree_inode) {
  1398. err = -ENOMEM;
  1399. goto fail_bdi;
  1400. }
  1401. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1402. INIT_LIST_HEAD(&fs_info->trans_list);
  1403. INIT_LIST_HEAD(&fs_info->dead_roots);
  1404. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1405. INIT_LIST_HEAD(&fs_info->hashers);
  1406. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1407. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1408. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1409. spin_lock_init(&fs_info->delalloc_lock);
  1410. spin_lock_init(&fs_info->new_trans_lock);
  1411. spin_lock_init(&fs_info->ref_cache_lock);
  1412. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1413. spin_lock_init(&fs_info->delayed_iput_lock);
  1414. init_completion(&fs_info->kobj_unregister);
  1415. fs_info->tree_root = tree_root;
  1416. fs_info->extent_root = extent_root;
  1417. fs_info->csum_root = csum_root;
  1418. fs_info->chunk_root = chunk_root;
  1419. fs_info->dev_root = dev_root;
  1420. fs_info->fs_devices = fs_devices;
  1421. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1422. INIT_LIST_HEAD(&fs_info->space_info);
  1423. btrfs_mapping_init(&fs_info->mapping_tree);
  1424. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1425. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1426. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1427. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1428. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1429. INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
  1430. mutex_init(&fs_info->durable_block_rsv_mutex);
  1431. atomic_set(&fs_info->nr_async_submits, 0);
  1432. atomic_set(&fs_info->async_delalloc_pages, 0);
  1433. atomic_set(&fs_info->async_submit_draining, 0);
  1434. atomic_set(&fs_info->nr_async_bios, 0);
  1435. fs_info->sb = sb;
  1436. fs_info->max_inline = 8192 * 1024;
  1437. fs_info->metadata_ratio = 0;
  1438. fs_info->thread_pool_size = min_t(unsigned long,
  1439. num_online_cpus() + 2, 8);
  1440. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1441. spin_lock_init(&fs_info->ordered_extent_lock);
  1442. sb->s_blocksize = 4096;
  1443. sb->s_blocksize_bits = blksize_bits(4096);
  1444. sb->s_bdi = &fs_info->bdi;
  1445. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1446. fs_info->btree_inode->i_nlink = 1;
  1447. /*
  1448. * we set the i_size on the btree inode to the max possible int.
  1449. * the real end of the address space is determined by all of
  1450. * the devices in the system
  1451. */
  1452. fs_info->btree_inode->i_size = OFFSET_MAX;
  1453. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1454. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1455. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1456. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1457. fs_info->btree_inode->i_mapping,
  1458. GFP_NOFS);
  1459. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1460. GFP_NOFS);
  1461. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1462. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1463. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1464. sizeof(struct btrfs_key));
  1465. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1466. insert_inode_hash(fs_info->btree_inode);
  1467. spin_lock_init(&fs_info->block_group_cache_lock);
  1468. fs_info->block_group_cache_tree = RB_ROOT;
  1469. extent_io_tree_init(&fs_info->freed_extents[0],
  1470. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1471. extent_io_tree_init(&fs_info->freed_extents[1],
  1472. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1473. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1474. fs_info->do_barriers = 1;
  1475. mutex_init(&fs_info->trans_mutex);
  1476. mutex_init(&fs_info->ordered_operations_mutex);
  1477. mutex_init(&fs_info->tree_log_mutex);
  1478. mutex_init(&fs_info->chunk_mutex);
  1479. mutex_init(&fs_info->transaction_kthread_mutex);
  1480. mutex_init(&fs_info->cleaner_mutex);
  1481. mutex_init(&fs_info->volume_mutex);
  1482. init_rwsem(&fs_info->extent_commit_sem);
  1483. init_rwsem(&fs_info->cleanup_work_sem);
  1484. init_rwsem(&fs_info->subvol_sem);
  1485. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1486. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1487. init_waitqueue_head(&fs_info->transaction_throttle);
  1488. init_waitqueue_head(&fs_info->transaction_wait);
  1489. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1490. init_waitqueue_head(&fs_info->async_submit_wait);
  1491. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1492. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1493. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1494. if (!bh)
  1495. goto fail_iput;
  1496. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1497. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1498. sizeof(fs_info->super_for_commit));
  1499. brelse(bh);
  1500. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1501. disk_super = &fs_info->super_copy;
  1502. if (!btrfs_super_root(disk_super))
  1503. goto fail_iput;
  1504. ret = btrfs_parse_options(tree_root, options);
  1505. if (ret) {
  1506. err = ret;
  1507. goto fail_iput;
  1508. }
  1509. features = btrfs_super_incompat_flags(disk_super) &
  1510. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1511. if (features) {
  1512. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1513. "unsupported optional features (%Lx).\n",
  1514. (unsigned long long)features);
  1515. err = -EINVAL;
  1516. goto fail_iput;
  1517. }
  1518. features = btrfs_super_incompat_flags(disk_super);
  1519. if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
  1520. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1521. btrfs_set_super_incompat_flags(disk_super, features);
  1522. }
  1523. features = btrfs_super_compat_ro_flags(disk_super) &
  1524. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1525. if (!(sb->s_flags & MS_RDONLY) && features) {
  1526. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1527. "unsupported option features (%Lx).\n",
  1528. (unsigned long long)features);
  1529. err = -EINVAL;
  1530. goto fail_iput;
  1531. }
  1532. btrfs_init_workers(&fs_info->generic_worker,
  1533. "genwork", 1, NULL);
  1534. btrfs_init_workers(&fs_info->workers, "worker",
  1535. fs_info->thread_pool_size,
  1536. &fs_info->generic_worker);
  1537. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1538. fs_info->thread_pool_size,
  1539. &fs_info->generic_worker);
  1540. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1541. min_t(u64, fs_devices->num_devices,
  1542. fs_info->thread_pool_size),
  1543. &fs_info->generic_worker);
  1544. /* a higher idle thresh on the submit workers makes it much more
  1545. * likely that bios will be send down in a sane order to the
  1546. * devices
  1547. */
  1548. fs_info->submit_workers.idle_thresh = 64;
  1549. fs_info->workers.idle_thresh = 16;
  1550. fs_info->workers.ordered = 1;
  1551. fs_info->delalloc_workers.idle_thresh = 2;
  1552. fs_info->delalloc_workers.ordered = 1;
  1553. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1554. &fs_info->generic_worker);
  1555. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1556. fs_info->thread_pool_size,
  1557. &fs_info->generic_worker);
  1558. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1559. fs_info->thread_pool_size,
  1560. &fs_info->generic_worker);
  1561. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1562. "endio-meta-write", fs_info->thread_pool_size,
  1563. &fs_info->generic_worker);
  1564. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1565. fs_info->thread_pool_size,
  1566. &fs_info->generic_worker);
  1567. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1568. 1, &fs_info->generic_worker);
  1569. /*
  1570. * endios are largely parallel and should have a very
  1571. * low idle thresh
  1572. */
  1573. fs_info->endio_workers.idle_thresh = 4;
  1574. fs_info->endio_meta_workers.idle_thresh = 4;
  1575. fs_info->endio_write_workers.idle_thresh = 2;
  1576. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1577. btrfs_start_workers(&fs_info->workers, 1);
  1578. btrfs_start_workers(&fs_info->generic_worker, 1);
  1579. btrfs_start_workers(&fs_info->submit_workers, 1);
  1580. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1581. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1582. btrfs_start_workers(&fs_info->endio_workers, 1);
  1583. btrfs_start_workers(&fs_info->endio_meta_workers, 1);
  1584. btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
  1585. btrfs_start_workers(&fs_info->endio_write_workers, 1);
  1586. btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
  1587. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1588. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1589. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1590. nodesize = btrfs_super_nodesize(disk_super);
  1591. leafsize = btrfs_super_leafsize(disk_super);
  1592. sectorsize = btrfs_super_sectorsize(disk_super);
  1593. stripesize = btrfs_super_stripesize(disk_super);
  1594. tree_root->nodesize = nodesize;
  1595. tree_root->leafsize = leafsize;
  1596. tree_root->sectorsize = sectorsize;
  1597. tree_root->stripesize = stripesize;
  1598. sb->s_blocksize = sectorsize;
  1599. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1600. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1601. sizeof(disk_super->magic))) {
  1602. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1603. goto fail_sb_buffer;
  1604. }
  1605. mutex_lock(&fs_info->chunk_mutex);
  1606. ret = btrfs_read_sys_array(tree_root);
  1607. mutex_unlock(&fs_info->chunk_mutex);
  1608. if (ret) {
  1609. printk(KERN_WARNING "btrfs: failed to read the system "
  1610. "array on %s\n", sb->s_id);
  1611. goto fail_sb_buffer;
  1612. }
  1613. blocksize = btrfs_level_size(tree_root,
  1614. btrfs_super_chunk_root_level(disk_super));
  1615. generation = btrfs_super_chunk_root_generation(disk_super);
  1616. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1617. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1618. chunk_root->node = read_tree_block(chunk_root,
  1619. btrfs_super_chunk_root(disk_super),
  1620. blocksize, generation);
  1621. BUG_ON(!chunk_root->node);
  1622. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1623. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1624. sb->s_id);
  1625. goto fail_chunk_root;
  1626. }
  1627. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1628. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1629. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1630. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1631. BTRFS_UUID_SIZE);
  1632. mutex_lock(&fs_info->chunk_mutex);
  1633. ret = btrfs_read_chunk_tree(chunk_root);
  1634. mutex_unlock(&fs_info->chunk_mutex);
  1635. if (ret) {
  1636. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1637. sb->s_id);
  1638. goto fail_chunk_root;
  1639. }
  1640. btrfs_close_extra_devices(fs_devices);
  1641. blocksize = btrfs_level_size(tree_root,
  1642. btrfs_super_root_level(disk_super));
  1643. generation = btrfs_super_generation(disk_super);
  1644. tree_root->node = read_tree_block(tree_root,
  1645. btrfs_super_root(disk_super),
  1646. blocksize, generation);
  1647. if (!tree_root->node)
  1648. goto fail_chunk_root;
  1649. if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1650. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1651. sb->s_id);
  1652. goto fail_tree_root;
  1653. }
  1654. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1655. tree_root->commit_root = btrfs_root_node(tree_root);
  1656. ret = find_and_setup_root(tree_root, fs_info,
  1657. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1658. if (ret)
  1659. goto fail_tree_root;
  1660. extent_root->track_dirty = 1;
  1661. ret = find_and_setup_root(tree_root, fs_info,
  1662. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1663. if (ret)
  1664. goto fail_extent_root;
  1665. dev_root->track_dirty = 1;
  1666. ret = find_and_setup_root(tree_root, fs_info,
  1667. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1668. if (ret)
  1669. goto fail_dev_root;
  1670. csum_root->track_dirty = 1;
  1671. fs_info->generation = generation;
  1672. fs_info->last_trans_committed = generation;
  1673. fs_info->data_alloc_profile = (u64)-1;
  1674. fs_info->metadata_alloc_profile = (u64)-1;
  1675. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1676. ret = btrfs_read_block_groups(extent_root);
  1677. if (ret) {
  1678. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  1679. goto fail_block_groups;
  1680. }
  1681. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1682. "btrfs-cleaner");
  1683. if (IS_ERR(fs_info->cleaner_kthread))
  1684. goto fail_block_groups;
  1685. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1686. tree_root,
  1687. "btrfs-transaction");
  1688. if (IS_ERR(fs_info->transaction_kthread))
  1689. goto fail_cleaner;
  1690. if (!btrfs_test_opt(tree_root, SSD) &&
  1691. !btrfs_test_opt(tree_root, NOSSD) &&
  1692. !fs_info->fs_devices->rotating) {
  1693. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1694. "mode\n");
  1695. btrfs_set_opt(fs_info->mount_opt, SSD);
  1696. }
  1697. if (btrfs_super_log_root(disk_super) != 0) {
  1698. u64 bytenr = btrfs_super_log_root(disk_super);
  1699. if (fs_devices->rw_devices == 0) {
  1700. printk(KERN_WARNING "Btrfs log replay required "
  1701. "on RO media\n");
  1702. err = -EIO;
  1703. goto fail_trans_kthread;
  1704. }
  1705. blocksize =
  1706. btrfs_level_size(tree_root,
  1707. btrfs_super_log_root_level(disk_super));
  1708. log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1709. if (!log_tree_root) {
  1710. err = -ENOMEM;
  1711. goto fail_trans_kthread;
  1712. }
  1713. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1714. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1715. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1716. blocksize,
  1717. generation + 1);
  1718. ret = btrfs_recover_log_trees(log_tree_root);
  1719. BUG_ON(ret);
  1720. if (sb->s_flags & MS_RDONLY) {
  1721. ret = btrfs_commit_super(tree_root);
  1722. BUG_ON(ret);
  1723. }
  1724. }
  1725. ret = btrfs_find_orphan_roots(tree_root);
  1726. BUG_ON(ret);
  1727. if (!(sb->s_flags & MS_RDONLY)) {
  1728. ret = btrfs_cleanup_fs_roots(fs_info);
  1729. BUG_ON(ret);
  1730. ret = btrfs_recover_relocation(tree_root);
  1731. if (ret < 0) {
  1732. printk(KERN_WARNING
  1733. "btrfs: failed to recover relocation\n");
  1734. err = -EINVAL;
  1735. goto fail_trans_kthread;
  1736. }
  1737. }
  1738. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1739. location.type = BTRFS_ROOT_ITEM_KEY;
  1740. location.offset = (u64)-1;
  1741. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1742. if (!fs_info->fs_root)
  1743. goto fail_trans_kthread;
  1744. if (IS_ERR(fs_info->fs_root)) {
  1745. err = PTR_ERR(fs_info->fs_root);
  1746. goto fail_trans_kthread;
  1747. }
  1748. if (!(sb->s_flags & MS_RDONLY)) {
  1749. down_read(&fs_info->cleanup_work_sem);
  1750. btrfs_orphan_cleanup(fs_info->fs_root);
  1751. btrfs_orphan_cleanup(fs_info->tree_root);
  1752. up_read(&fs_info->cleanup_work_sem);
  1753. }
  1754. return tree_root;
  1755. fail_trans_kthread:
  1756. kthread_stop(fs_info->transaction_kthread);
  1757. fail_cleaner:
  1758. kthread_stop(fs_info->cleaner_kthread);
  1759. /*
  1760. * make sure we're done with the btree inode before we stop our
  1761. * kthreads
  1762. */
  1763. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1764. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1765. fail_block_groups:
  1766. btrfs_free_block_groups(fs_info);
  1767. free_extent_buffer(csum_root->node);
  1768. free_extent_buffer(csum_root->commit_root);
  1769. fail_dev_root:
  1770. free_extent_buffer(dev_root->node);
  1771. free_extent_buffer(dev_root->commit_root);
  1772. fail_extent_root:
  1773. free_extent_buffer(extent_root->node);
  1774. free_extent_buffer(extent_root->commit_root);
  1775. fail_tree_root:
  1776. free_extent_buffer(tree_root->node);
  1777. free_extent_buffer(tree_root->commit_root);
  1778. fail_chunk_root:
  1779. free_extent_buffer(chunk_root->node);
  1780. free_extent_buffer(chunk_root->commit_root);
  1781. fail_sb_buffer:
  1782. btrfs_stop_workers(&fs_info->generic_worker);
  1783. btrfs_stop_workers(&fs_info->fixup_workers);
  1784. btrfs_stop_workers(&fs_info->delalloc_workers);
  1785. btrfs_stop_workers(&fs_info->workers);
  1786. btrfs_stop_workers(&fs_info->endio_workers);
  1787. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1788. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1789. btrfs_stop_workers(&fs_info->endio_write_workers);
  1790. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1791. btrfs_stop_workers(&fs_info->submit_workers);
  1792. fail_iput:
  1793. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1794. iput(fs_info->btree_inode);
  1795. btrfs_close_devices(fs_info->fs_devices);
  1796. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1797. fail_bdi:
  1798. bdi_destroy(&fs_info->bdi);
  1799. fail_srcu:
  1800. cleanup_srcu_struct(&fs_info->subvol_srcu);
  1801. fail:
  1802. kfree(extent_root);
  1803. kfree(tree_root);
  1804. kfree(fs_info);
  1805. kfree(chunk_root);
  1806. kfree(dev_root);
  1807. kfree(csum_root);
  1808. return ERR_PTR(err);
  1809. }
  1810. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1811. {
  1812. char b[BDEVNAME_SIZE];
  1813. if (uptodate) {
  1814. set_buffer_uptodate(bh);
  1815. } else {
  1816. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1817. printk(KERN_WARNING "lost page write due to "
  1818. "I/O error on %s\n",
  1819. bdevname(bh->b_bdev, b));
  1820. }
  1821. /* note, we dont' set_buffer_write_io_error because we have
  1822. * our own ways of dealing with the IO errors
  1823. */
  1824. clear_buffer_uptodate(bh);
  1825. }
  1826. unlock_buffer(bh);
  1827. put_bh(bh);
  1828. }
  1829. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1830. {
  1831. struct buffer_head *bh;
  1832. struct buffer_head *latest = NULL;
  1833. struct btrfs_super_block *super;
  1834. int i;
  1835. u64 transid = 0;
  1836. u64 bytenr;
  1837. /* we would like to check all the supers, but that would make
  1838. * a btrfs mount succeed after a mkfs from a different FS.
  1839. * So, we need to add a special mount option to scan for
  1840. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1841. */
  1842. for (i = 0; i < 1; i++) {
  1843. bytenr = btrfs_sb_offset(i);
  1844. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1845. break;
  1846. bh = __bread(bdev, bytenr / 4096, 4096);
  1847. if (!bh)
  1848. continue;
  1849. super = (struct btrfs_super_block *)bh->b_data;
  1850. if (btrfs_super_bytenr(super) != bytenr ||
  1851. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1852. sizeof(super->magic))) {
  1853. brelse(bh);
  1854. continue;
  1855. }
  1856. if (!latest || btrfs_super_generation(super) > transid) {
  1857. brelse(latest);
  1858. latest = bh;
  1859. transid = btrfs_super_generation(super);
  1860. } else {
  1861. brelse(bh);
  1862. }
  1863. }
  1864. return latest;
  1865. }
  1866. /*
  1867. * this should be called twice, once with wait == 0 and
  1868. * once with wait == 1. When wait == 0 is done, all the buffer heads
  1869. * we write are pinned.
  1870. *
  1871. * They are released when wait == 1 is done.
  1872. * max_mirrors must be the same for both runs, and it indicates how
  1873. * many supers on this one device should be written.
  1874. *
  1875. * max_mirrors == 0 means to write them all.
  1876. */
  1877. static int write_dev_supers(struct btrfs_device *device,
  1878. struct btrfs_super_block *sb,
  1879. int do_barriers, int wait, int max_mirrors)
  1880. {
  1881. struct buffer_head *bh;
  1882. int i;
  1883. int ret;
  1884. int errors = 0;
  1885. u32 crc;
  1886. u64 bytenr;
  1887. int last_barrier = 0;
  1888. if (max_mirrors == 0)
  1889. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1890. /* make sure only the last submit_bh does a barrier */
  1891. if (do_barriers) {
  1892. for (i = 0; i < max_mirrors; i++) {
  1893. bytenr = btrfs_sb_offset(i);
  1894. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1895. device->total_bytes)
  1896. break;
  1897. last_barrier = i;
  1898. }
  1899. }
  1900. for (i = 0; i < max_mirrors; i++) {
  1901. bytenr = btrfs_sb_offset(i);
  1902. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1903. break;
  1904. if (wait) {
  1905. bh = __find_get_block(device->bdev, bytenr / 4096,
  1906. BTRFS_SUPER_INFO_SIZE);
  1907. BUG_ON(!bh);
  1908. wait_on_buffer(bh);
  1909. if (!buffer_uptodate(bh))
  1910. errors++;
  1911. /* drop our reference */
  1912. brelse(bh);
  1913. /* drop the reference from the wait == 0 run */
  1914. brelse(bh);
  1915. continue;
  1916. } else {
  1917. btrfs_set_super_bytenr(sb, bytenr);
  1918. crc = ~(u32)0;
  1919. crc = btrfs_csum_data(NULL, (char *)sb +
  1920. BTRFS_CSUM_SIZE, crc,
  1921. BTRFS_SUPER_INFO_SIZE -
  1922. BTRFS_CSUM_SIZE);
  1923. btrfs_csum_final(crc, sb->csum);
  1924. /*
  1925. * one reference for us, and we leave it for the
  1926. * caller
  1927. */
  1928. bh = __getblk(device->bdev, bytenr / 4096,
  1929. BTRFS_SUPER_INFO_SIZE);
  1930. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1931. /* one reference for submit_bh */
  1932. get_bh(bh);
  1933. set_buffer_uptodate(bh);
  1934. lock_buffer(bh);
  1935. bh->b_end_io = btrfs_end_buffer_write_sync;
  1936. }
  1937. if (i == last_barrier && do_barriers && device->barriers) {
  1938. ret = submit_bh(WRITE_BARRIER, bh);
  1939. if (ret == -EOPNOTSUPP) {
  1940. printk("btrfs: disabling barriers on dev %s\n",
  1941. device->name);
  1942. set_buffer_uptodate(bh);
  1943. device->barriers = 0;
  1944. /* one reference for submit_bh */
  1945. get_bh(bh);
  1946. lock_buffer(bh);
  1947. ret = submit_bh(WRITE_SYNC, bh);
  1948. }
  1949. } else {
  1950. ret = submit_bh(WRITE_SYNC, bh);
  1951. }
  1952. if (ret)
  1953. errors++;
  1954. }
  1955. return errors < i ? 0 : -1;
  1956. }
  1957. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  1958. {
  1959. struct list_head *head;
  1960. struct btrfs_device *dev;
  1961. struct btrfs_super_block *sb;
  1962. struct btrfs_dev_item *dev_item;
  1963. int ret;
  1964. int do_barriers;
  1965. int max_errors;
  1966. int total_errors = 0;
  1967. u64 flags;
  1968. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1969. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1970. sb = &root->fs_info->super_for_commit;
  1971. dev_item = &sb->dev_item;
  1972. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  1973. head = &root->fs_info->fs_devices->devices;
  1974. list_for_each_entry(dev, head, dev_list) {
  1975. if (!dev->bdev) {
  1976. total_errors++;
  1977. continue;
  1978. }
  1979. if (!dev->in_fs_metadata || !dev->writeable)
  1980. continue;
  1981. btrfs_set_stack_device_generation(dev_item, 0);
  1982. btrfs_set_stack_device_type(dev_item, dev->type);
  1983. btrfs_set_stack_device_id(dev_item, dev->devid);
  1984. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1985. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1986. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1987. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1988. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1989. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1990. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  1991. flags = btrfs_super_flags(sb);
  1992. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1993. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  1994. if (ret)
  1995. total_errors++;
  1996. }
  1997. if (total_errors > max_errors) {
  1998. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1999. total_errors);
  2000. BUG();
  2001. }
  2002. total_errors = 0;
  2003. list_for_each_entry(dev, head, dev_list) {
  2004. if (!dev->bdev)
  2005. continue;
  2006. if (!dev->in_fs_metadata || !dev->writeable)
  2007. continue;
  2008. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2009. if (ret)
  2010. total_errors++;
  2011. }
  2012. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2013. if (total_errors > max_errors) {
  2014. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2015. total_errors);
  2016. BUG();
  2017. }
  2018. return 0;
  2019. }
  2020. int write_ctree_super(struct btrfs_trans_handle *trans,
  2021. struct btrfs_root *root, int max_mirrors)
  2022. {
  2023. int ret;
  2024. ret = write_all_supers(root, max_mirrors);
  2025. return ret;
  2026. }
  2027. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2028. {
  2029. spin_lock(&fs_info->fs_roots_radix_lock);
  2030. radix_tree_delete(&fs_info->fs_roots_radix,
  2031. (unsigned long)root->root_key.objectid);
  2032. spin_unlock(&fs_info->fs_roots_radix_lock);
  2033. if (btrfs_root_refs(&root->root_item) == 0)
  2034. synchronize_srcu(&fs_info->subvol_srcu);
  2035. free_fs_root(root);
  2036. return 0;
  2037. }
  2038. static void free_fs_root(struct btrfs_root *root)
  2039. {
  2040. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2041. if (root->anon_super.s_dev) {
  2042. down_write(&root->anon_super.s_umount);
  2043. kill_anon_super(&root->anon_super);
  2044. }
  2045. free_extent_buffer(root->node);
  2046. free_extent_buffer(root->commit_root);
  2047. kfree(root->name);
  2048. kfree(root);
  2049. }
  2050. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2051. {
  2052. int ret;
  2053. struct btrfs_root *gang[8];
  2054. int i;
  2055. while (!list_empty(&fs_info->dead_roots)) {
  2056. gang[0] = list_entry(fs_info->dead_roots.next,
  2057. struct btrfs_root, root_list);
  2058. list_del(&gang[0]->root_list);
  2059. if (gang[0]->in_radix) {
  2060. btrfs_free_fs_root(fs_info, gang[0]);
  2061. } else {
  2062. free_extent_buffer(gang[0]->node);
  2063. free_extent_buffer(gang[0]->commit_root);
  2064. kfree(gang[0]);
  2065. }
  2066. }
  2067. while (1) {
  2068. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2069. (void **)gang, 0,
  2070. ARRAY_SIZE(gang));
  2071. if (!ret)
  2072. break;
  2073. for (i = 0; i < ret; i++)
  2074. btrfs_free_fs_root(fs_info, gang[i]);
  2075. }
  2076. return 0;
  2077. }
  2078. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2079. {
  2080. u64 root_objectid = 0;
  2081. struct btrfs_root *gang[8];
  2082. int i;
  2083. int ret;
  2084. while (1) {
  2085. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2086. (void **)gang, root_objectid,
  2087. ARRAY_SIZE(gang));
  2088. if (!ret)
  2089. break;
  2090. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2091. for (i = 0; i < ret; i++) {
  2092. root_objectid = gang[i]->root_key.objectid;
  2093. btrfs_orphan_cleanup(gang[i]);
  2094. }
  2095. root_objectid++;
  2096. }
  2097. return 0;
  2098. }
  2099. int btrfs_commit_super(struct btrfs_root *root)
  2100. {
  2101. struct btrfs_trans_handle *trans;
  2102. int ret;
  2103. mutex_lock(&root->fs_info->cleaner_mutex);
  2104. btrfs_run_delayed_iputs(root);
  2105. btrfs_clean_old_snapshots(root);
  2106. mutex_unlock(&root->fs_info->cleaner_mutex);
  2107. /* wait until ongoing cleanup work done */
  2108. down_write(&root->fs_info->cleanup_work_sem);
  2109. up_write(&root->fs_info->cleanup_work_sem);
  2110. trans = btrfs_join_transaction(root, 1);
  2111. ret = btrfs_commit_transaction(trans, root);
  2112. BUG_ON(ret);
  2113. /* run commit again to drop the original snapshot */
  2114. trans = btrfs_join_transaction(root, 1);
  2115. btrfs_commit_transaction(trans, root);
  2116. ret = btrfs_write_and_wait_transaction(NULL, root);
  2117. BUG_ON(ret);
  2118. ret = write_ctree_super(NULL, root, 0);
  2119. return ret;
  2120. }
  2121. int close_ctree(struct btrfs_root *root)
  2122. {
  2123. struct btrfs_fs_info *fs_info = root->fs_info;
  2124. int ret;
  2125. fs_info->closing = 1;
  2126. smp_mb();
  2127. btrfs_put_block_group_cache(fs_info);
  2128. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2129. ret = btrfs_commit_super(root);
  2130. if (ret)
  2131. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2132. }
  2133. kthread_stop(root->fs_info->transaction_kthread);
  2134. kthread_stop(root->fs_info->cleaner_kthread);
  2135. fs_info->closing = 2;
  2136. smp_mb();
  2137. if (fs_info->delalloc_bytes) {
  2138. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2139. (unsigned long long)fs_info->delalloc_bytes);
  2140. }
  2141. if (fs_info->total_ref_cache_size) {
  2142. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2143. (unsigned long long)fs_info->total_ref_cache_size);
  2144. }
  2145. free_extent_buffer(fs_info->extent_root->node);
  2146. free_extent_buffer(fs_info->extent_root->commit_root);
  2147. free_extent_buffer(fs_info->tree_root->node);
  2148. free_extent_buffer(fs_info->tree_root->commit_root);
  2149. free_extent_buffer(root->fs_info->chunk_root->node);
  2150. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2151. free_extent_buffer(root->fs_info->dev_root->node);
  2152. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2153. free_extent_buffer(root->fs_info->csum_root->node);
  2154. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2155. btrfs_free_block_groups(root->fs_info);
  2156. del_fs_roots(fs_info);
  2157. iput(fs_info->btree_inode);
  2158. btrfs_stop_workers(&fs_info->generic_worker);
  2159. btrfs_stop_workers(&fs_info->fixup_workers);
  2160. btrfs_stop_workers(&fs_info->delalloc_workers);
  2161. btrfs_stop_workers(&fs_info->workers);
  2162. btrfs_stop_workers(&fs_info->endio_workers);
  2163. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2164. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2165. btrfs_stop_workers(&fs_info->endio_write_workers);
  2166. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2167. btrfs_stop_workers(&fs_info->submit_workers);
  2168. btrfs_close_devices(fs_info->fs_devices);
  2169. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2170. bdi_destroy(&fs_info->bdi);
  2171. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2172. kfree(fs_info->extent_root);
  2173. kfree(fs_info->tree_root);
  2174. kfree(fs_info->chunk_root);
  2175. kfree(fs_info->dev_root);
  2176. kfree(fs_info->csum_root);
  2177. return 0;
  2178. }
  2179. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2180. {
  2181. int ret;
  2182. struct inode *btree_inode = buf->first_page->mapping->host;
  2183. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2184. NULL);
  2185. if (!ret)
  2186. return ret;
  2187. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2188. parent_transid);
  2189. return !ret;
  2190. }
  2191. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2192. {
  2193. struct inode *btree_inode = buf->first_page->mapping->host;
  2194. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2195. buf);
  2196. }
  2197. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2198. {
  2199. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2200. u64 transid = btrfs_header_generation(buf);
  2201. struct inode *btree_inode = root->fs_info->btree_inode;
  2202. int was_dirty;
  2203. btrfs_assert_tree_locked(buf);
  2204. if (transid != root->fs_info->generation) {
  2205. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2206. "found %llu running %llu\n",
  2207. (unsigned long long)buf->start,
  2208. (unsigned long long)transid,
  2209. (unsigned long long)root->fs_info->generation);
  2210. WARN_ON(1);
  2211. }
  2212. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2213. buf);
  2214. if (!was_dirty) {
  2215. spin_lock(&root->fs_info->delalloc_lock);
  2216. root->fs_info->dirty_metadata_bytes += buf->len;
  2217. spin_unlock(&root->fs_info->delalloc_lock);
  2218. }
  2219. }
  2220. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2221. {
  2222. /*
  2223. * looks as though older kernels can get into trouble with
  2224. * this code, they end up stuck in balance_dirty_pages forever
  2225. */
  2226. u64 num_dirty;
  2227. unsigned long thresh = 32 * 1024 * 1024;
  2228. if (current->flags & PF_MEMALLOC)
  2229. return;
  2230. num_dirty = root->fs_info->dirty_metadata_bytes;
  2231. if (num_dirty > thresh) {
  2232. balance_dirty_pages_ratelimited_nr(
  2233. root->fs_info->btree_inode->i_mapping, 1);
  2234. }
  2235. return;
  2236. }
  2237. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2238. {
  2239. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2240. int ret;
  2241. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2242. if (ret == 0)
  2243. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2244. return ret;
  2245. }
  2246. int btree_lock_page_hook(struct page *page)
  2247. {
  2248. struct inode *inode = page->mapping->host;
  2249. struct btrfs_root *root = BTRFS_I(inode)->root;
  2250. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2251. struct extent_buffer *eb;
  2252. unsigned long len;
  2253. u64 bytenr = page_offset(page);
  2254. if (page->private == EXTENT_PAGE_PRIVATE)
  2255. goto out;
  2256. len = page->private >> 2;
  2257. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2258. if (!eb)
  2259. goto out;
  2260. btrfs_tree_lock(eb);
  2261. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2262. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2263. spin_lock(&root->fs_info->delalloc_lock);
  2264. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2265. root->fs_info->dirty_metadata_bytes -= eb->len;
  2266. else
  2267. WARN_ON(1);
  2268. spin_unlock(&root->fs_info->delalloc_lock);
  2269. }
  2270. btrfs_tree_unlock(eb);
  2271. free_extent_buffer(eb);
  2272. out:
  2273. lock_page(page);
  2274. return 0;
  2275. }
  2276. static struct extent_io_ops btree_extent_io_ops = {
  2277. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2278. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2279. .submit_bio_hook = btree_submit_bio_hook,
  2280. /* note we're sharing with inode.c for the merge bio hook */
  2281. .merge_bio_hook = btrfs_merge_bio_hook,
  2282. };