ll_rw_blk.c 102 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/bio.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/highmem.h>
  18. #include <linux/mm.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/string.h>
  21. #include <linux/init.h>
  22. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  23. #include <linux/completion.h>
  24. #include <linux/slab.h>
  25. #include <linux/swap.h>
  26. #include <linux/writeback.h>
  27. #include <linux/task_io_accounting_ops.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/cpu.h>
  30. #include <linux/blktrace_api.h>
  31. #include <linux/fault-inject.h>
  32. /*
  33. * for max sense size
  34. */
  35. #include <scsi/scsi_cmnd.h>
  36. static void blk_unplug_work(struct work_struct *work);
  37. static void blk_unplug_timeout(unsigned long data);
  38. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  39. static void init_request_from_bio(struct request *req, struct bio *bio);
  40. static int __make_request(request_queue_t *q, struct bio *bio);
  41. static struct io_context *current_io_context(gfp_t gfp_flags, int node);
  42. /*
  43. * For the allocated request tables
  44. */
  45. static struct kmem_cache *request_cachep;
  46. /*
  47. * For queue allocation
  48. */
  49. static struct kmem_cache *requestq_cachep;
  50. /*
  51. * For io context allocations
  52. */
  53. static struct kmem_cache *iocontext_cachep;
  54. /*
  55. * Controlling structure to kblockd
  56. */
  57. static struct workqueue_struct *kblockd_workqueue;
  58. unsigned long blk_max_low_pfn, blk_max_pfn;
  59. EXPORT_SYMBOL(blk_max_low_pfn);
  60. EXPORT_SYMBOL(blk_max_pfn);
  61. static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
  62. /* Amount of time in which a process may batch requests */
  63. #define BLK_BATCH_TIME (HZ/50UL)
  64. /* Number of requests a "batching" process may submit */
  65. #define BLK_BATCH_REQ 32
  66. /*
  67. * Return the threshold (number of used requests) at which the queue is
  68. * considered to be congested. It include a little hysteresis to keep the
  69. * context switch rate down.
  70. */
  71. static inline int queue_congestion_on_threshold(struct request_queue *q)
  72. {
  73. return q->nr_congestion_on;
  74. }
  75. /*
  76. * The threshold at which a queue is considered to be uncongested
  77. */
  78. static inline int queue_congestion_off_threshold(struct request_queue *q)
  79. {
  80. return q->nr_congestion_off;
  81. }
  82. static void blk_queue_congestion_threshold(struct request_queue *q)
  83. {
  84. int nr;
  85. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  86. if (nr > q->nr_requests)
  87. nr = q->nr_requests;
  88. q->nr_congestion_on = nr;
  89. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  90. if (nr < 1)
  91. nr = 1;
  92. q->nr_congestion_off = nr;
  93. }
  94. /**
  95. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  96. * @bdev: device
  97. *
  98. * Locates the passed device's request queue and returns the address of its
  99. * backing_dev_info
  100. *
  101. * Will return NULL if the request queue cannot be located.
  102. */
  103. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  104. {
  105. struct backing_dev_info *ret = NULL;
  106. request_queue_t *q = bdev_get_queue(bdev);
  107. if (q)
  108. ret = &q->backing_dev_info;
  109. return ret;
  110. }
  111. EXPORT_SYMBOL(blk_get_backing_dev_info);
  112. /**
  113. * blk_queue_prep_rq - set a prepare_request function for queue
  114. * @q: queue
  115. * @pfn: prepare_request function
  116. *
  117. * It's possible for a queue to register a prepare_request callback which
  118. * is invoked before the request is handed to the request_fn. The goal of
  119. * the function is to prepare a request for I/O, it can be used to build a
  120. * cdb from the request data for instance.
  121. *
  122. */
  123. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  124. {
  125. q->prep_rq_fn = pfn;
  126. }
  127. EXPORT_SYMBOL(blk_queue_prep_rq);
  128. /**
  129. * blk_queue_merge_bvec - set a merge_bvec function for queue
  130. * @q: queue
  131. * @mbfn: merge_bvec_fn
  132. *
  133. * Usually queues have static limitations on the max sectors or segments that
  134. * we can put in a request. Stacking drivers may have some settings that
  135. * are dynamic, and thus we have to query the queue whether it is ok to
  136. * add a new bio_vec to a bio at a given offset or not. If the block device
  137. * has such limitations, it needs to register a merge_bvec_fn to control
  138. * the size of bio's sent to it. Note that a block device *must* allow a
  139. * single page to be added to an empty bio. The block device driver may want
  140. * to use the bio_split() function to deal with these bio's. By default
  141. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  142. * honored.
  143. */
  144. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  145. {
  146. q->merge_bvec_fn = mbfn;
  147. }
  148. EXPORT_SYMBOL(blk_queue_merge_bvec);
  149. void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
  150. {
  151. q->softirq_done_fn = fn;
  152. }
  153. EXPORT_SYMBOL(blk_queue_softirq_done);
  154. /**
  155. * blk_queue_make_request - define an alternate make_request function for a device
  156. * @q: the request queue for the device to be affected
  157. * @mfn: the alternate make_request function
  158. *
  159. * Description:
  160. * The normal way for &struct bios to be passed to a device
  161. * driver is for them to be collected into requests on a request
  162. * queue, and then to allow the device driver to select requests
  163. * off that queue when it is ready. This works well for many block
  164. * devices. However some block devices (typically virtual devices
  165. * such as md or lvm) do not benefit from the processing on the
  166. * request queue, and are served best by having the requests passed
  167. * directly to them. This can be achieved by providing a function
  168. * to blk_queue_make_request().
  169. *
  170. * Caveat:
  171. * The driver that does this *must* be able to deal appropriately
  172. * with buffers in "highmemory". This can be accomplished by either calling
  173. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  174. * blk_queue_bounce() to create a buffer in normal memory.
  175. **/
  176. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  177. {
  178. /*
  179. * set defaults
  180. */
  181. q->nr_requests = BLKDEV_MAX_RQ;
  182. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  183. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  184. q->make_request_fn = mfn;
  185. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  186. q->backing_dev_info.state = 0;
  187. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  188. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  189. blk_queue_hardsect_size(q, 512);
  190. blk_queue_dma_alignment(q, 511);
  191. blk_queue_congestion_threshold(q);
  192. q->nr_batching = BLK_BATCH_REQ;
  193. q->unplug_thresh = 4; /* hmm */
  194. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  195. if (q->unplug_delay == 0)
  196. q->unplug_delay = 1;
  197. INIT_WORK(&q->unplug_work, blk_unplug_work);
  198. q->unplug_timer.function = blk_unplug_timeout;
  199. q->unplug_timer.data = (unsigned long)q;
  200. /*
  201. * by default assume old behaviour and bounce for any highmem page
  202. */
  203. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  204. }
  205. EXPORT_SYMBOL(blk_queue_make_request);
  206. static void rq_init(request_queue_t *q, struct request *rq)
  207. {
  208. INIT_LIST_HEAD(&rq->queuelist);
  209. INIT_LIST_HEAD(&rq->donelist);
  210. rq->errors = 0;
  211. rq->bio = rq->biotail = NULL;
  212. INIT_HLIST_NODE(&rq->hash);
  213. RB_CLEAR_NODE(&rq->rb_node);
  214. rq->ioprio = 0;
  215. rq->buffer = NULL;
  216. rq->ref_count = 1;
  217. rq->q = q;
  218. rq->special = NULL;
  219. rq->data_len = 0;
  220. rq->data = NULL;
  221. rq->nr_phys_segments = 0;
  222. rq->sense = NULL;
  223. rq->end_io = NULL;
  224. rq->end_io_data = NULL;
  225. rq->completion_data = NULL;
  226. }
  227. /**
  228. * blk_queue_ordered - does this queue support ordered writes
  229. * @q: the request queue
  230. * @ordered: one of QUEUE_ORDERED_*
  231. * @prepare_flush_fn: rq setup helper for cache flush ordered writes
  232. *
  233. * Description:
  234. * For journalled file systems, doing ordered writes on a commit
  235. * block instead of explicitly doing wait_on_buffer (which is bad
  236. * for performance) can be a big win. Block drivers supporting this
  237. * feature should call this function and indicate so.
  238. *
  239. **/
  240. int blk_queue_ordered(request_queue_t *q, unsigned ordered,
  241. prepare_flush_fn *prepare_flush_fn)
  242. {
  243. if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  244. prepare_flush_fn == NULL) {
  245. printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  246. return -EINVAL;
  247. }
  248. if (ordered != QUEUE_ORDERED_NONE &&
  249. ordered != QUEUE_ORDERED_DRAIN &&
  250. ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  251. ordered != QUEUE_ORDERED_DRAIN_FUA &&
  252. ordered != QUEUE_ORDERED_TAG &&
  253. ordered != QUEUE_ORDERED_TAG_FLUSH &&
  254. ordered != QUEUE_ORDERED_TAG_FUA) {
  255. printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  256. return -EINVAL;
  257. }
  258. q->ordered = ordered;
  259. q->next_ordered = ordered;
  260. q->prepare_flush_fn = prepare_flush_fn;
  261. return 0;
  262. }
  263. EXPORT_SYMBOL(blk_queue_ordered);
  264. /**
  265. * blk_queue_issue_flush_fn - set function for issuing a flush
  266. * @q: the request queue
  267. * @iff: the function to be called issuing the flush
  268. *
  269. * Description:
  270. * If a driver supports issuing a flush command, the support is notified
  271. * to the block layer by defining it through this call.
  272. *
  273. **/
  274. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  275. {
  276. q->issue_flush_fn = iff;
  277. }
  278. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  279. /*
  280. * Cache flushing for ordered writes handling
  281. */
  282. inline unsigned blk_ordered_cur_seq(request_queue_t *q)
  283. {
  284. if (!q->ordseq)
  285. return 0;
  286. return 1 << ffz(q->ordseq);
  287. }
  288. unsigned blk_ordered_req_seq(struct request *rq)
  289. {
  290. request_queue_t *q = rq->q;
  291. BUG_ON(q->ordseq == 0);
  292. if (rq == &q->pre_flush_rq)
  293. return QUEUE_ORDSEQ_PREFLUSH;
  294. if (rq == &q->bar_rq)
  295. return QUEUE_ORDSEQ_BAR;
  296. if (rq == &q->post_flush_rq)
  297. return QUEUE_ORDSEQ_POSTFLUSH;
  298. if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
  299. (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
  300. return QUEUE_ORDSEQ_DRAIN;
  301. else
  302. return QUEUE_ORDSEQ_DONE;
  303. }
  304. void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
  305. {
  306. struct request *rq;
  307. int uptodate;
  308. if (error && !q->orderr)
  309. q->orderr = error;
  310. BUG_ON(q->ordseq & seq);
  311. q->ordseq |= seq;
  312. if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  313. return;
  314. /*
  315. * Okay, sequence complete.
  316. */
  317. rq = q->orig_bar_rq;
  318. uptodate = q->orderr ? q->orderr : 1;
  319. q->ordseq = 0;
  320. end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
  321. end_that_request_last(rq, uptodate);
  322. }
  323. static void pre_flush_end_io(struct request *rq, int error)
  324. {
  325. elv_completed_request(rq->q, rq);
  326. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  327. }
  328. static void bar_end_io(struct request *rq, int error)
  329. {
  330. elv_completed_request(rq->q, rq);
  331. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  332. }
  333. static void post_flush_end_io(struct request *rq, int error)
  334. {
  335. elv_completed_request(rq->q, rq);
  336. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  337. }
  338. static void queue_flush(request_queue_t *q, unsigned which)
  339. {
  340. struct request *rq;
  341. rq_end_io_fn *end_io;
  342. if (which == QUEUE_ORDERED_PREFLUSH) {
  343. rq = &q->pre_flush_rq;
  344. end_io = pre_flush_end_io;
  345. } else {
  346. rq = &q->post_flush_rq;
  347. end_io = post_flush_end_io;
  348. }
  349. rq->cmd_flags = REQ_HARDBARRIER;
  350. rq_init(q, rq);
  351. rq->elevator_private = NULL;
  352. rq->elevator_private2 = NULL;
  353. rq->rq_disk = q->bar_rq.rq_disk;
  354. rq->end_io = end_io;
  355. q->prepare_flush_fn(q, rq);
  356. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  357. }
  358. static inline struct request *start_ordered(request_queue_t *q,
  359. struct request *rq)
  360. {
  361. q->bi_size = 0;
  362. q->orderr = 0;
  363. q->ordered = q->next_ordered;
  364. q->ordseq |= QUEUE_ORDSEQ_STARTED;
  365. /*
  366. * Prep proxy barrier request.
  367. */
  368. blkdev_dequeue_request(rq);
  369. q->orig_bar_rq = rq;
  370. rq = &q->bar_rq;
  371. rq->cmd_flags = 0;
  372. rq_init(q, rq);
  373. if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
  374. rq->cmd_flags |= REQ_RW;
  375. rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
  376. rq->elevator_private = NULL;
  377. rq->elevator_private2 = NULL;
  378. init_request_from_bio(rq, q->orig_bar_rq->bio);
  379. rq->end_io = bar_end_io;
  380. /*
  381. * Queue ordered sequence. As we stack them at the head, we
  382. * need to queue in reverse order. Note that we rely on that
  383. * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  384. * request gets inbetween ordered sequence.
  385. */
  386. if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
  387. queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  388. else
  389. q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  390. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  391. if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  392. queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  393. rq = &q->pre_flush_rq;
  394. } else
  395. q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  396. if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  397. q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  398. else
  399. rq = NULL;
  400. return rq;
  401. }
  402. int blk_do_ordered(request_queue_t *q, struct request **rqp)
  403. {
  404. struct request *rq = *rqp;
  405. int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  406. if (!q->ordseq) {
  407. if (!is_barrier)
  408. return 1;
  409. if (q->next_ordered != QUEUE_ORDERED_NONE) {
  410. *rqp = start_ordered(q, rq);
  411. return 1;
  412. } else {
  413. /*
  414. * This can happen when the queue switches to
  415. * ORDERED_NONE while this request is on it.
  416. */
  417. blkdev_dequeue_request(rq);
  418. end_that_request_first(rq, -EOPNOTSUPP,
  419. rq->hard_nr_sectors);
  420. end_that_request_last(rq, -EOPNOTSUPP);
  421. *rqp = NULL;
  422. return 0;
  423. }
  424. }
  425. /*
  426. * Ordered sequence in progress
  427. */
  428. /* Special requests are not subject to ordering rules. */
  429. if (!blk_fs_request(rq) &&
  430. rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
  431. return 1;
  432. if (q->ordered & QUEUE_ORDERED_TAG) {
  433. /* Ordered by tag. Blocking the next barrier is enough. */
  434. if (is_barrier && rq != &q->bar_rq)
  435. *rqp = NULL;
  436. } else {
  437. /* Ordered by draining. Wait for turn. */
  438. WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
  439. if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
  440. *rqp = NULL;
  441. }
  442. return 1;
  443. }
  444. static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
  445. {
  446. request_queue_t *q = bio->bi_private;
  447. struct bio_vec *bvec;
  448. int i;
  449. /*
  450. * This is dry run, restore bio_sector and size. We'll finish
  451. * this request again with the original bi_end_io after an
  452. * error occurs or post flush is complete.
  453. */
  454. q->bi_size += bytes;
  455. if (bio->bi_size)
  456. return 1;
  457. /* Rewind bvec's */
  458. bio->bi_idx = 0;
  459. bio_for_each_segment(bvec, bio, i) {
  460. bvec->bv_len += bvec->bv_offset;
  461. bvec->bv_offset = 0;
  462. }
  463. /* Reset bio */
  464. set_bit(BIO_UPTODATE, &bio->bi_flags);
  465. bio->bi_size = q->bi_size;
  466. bio->bi_sector -= (q->bi_size >> 9);
  467. q->bi_size = 0;
  468. return 0;
  469. }
  470. static int ordered_bio_endio(struct request *rq, struct bio *bio,
  471. unsigned int nbytes, int error)
  472. {
  473. request_queue_t *q = rq->q;
  474. bio_end_io_t *endio;
  475. void *private;
  476. if (&q->bar_rq != rq)
  477. return 0;
  478. /*
  479. * Okay, this is the barrier request in progress, dry finish it.
  480. */
  481. if (error && !q->orderr)
  482. q->orderr = error;
  483. endio = bio->bi_end_io;
  484. private = bio->bi_private;
  485. bio->bi_end_io = flush_dry_bio_endio;
  486. bio->bi_private = q;
  487. bio_endio(bio, nbytes, error);
  488. bio->bi_end_io = endio;
  489. bio->bi_private = private;
  490. return 1;
  491. }
  492. /**
  493. * blk_queue_bounce_limit - set bounce buffer limit for queue
  494. * @q: the request queue for the device
  495. * @dma_addr: bus address limit
  496. *
  497. * Description:
  498. * Different hardware can have different requirements as to what pages
  499. * it can do I/O directly to. A low level driver can call
  500. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  501. * buffers for doing I/O to pages residing above @page.
  502. **/
  503. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  504. {
  505. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  506. int dma = 0;
  507. q->bounce_gfp = GFP_NOIO;
  508. #if BITS_PER_LONG == 64
  509. /* Assume anything <= 4GB can be handled by IOMMU.
  510. Actually some IOMMUs can handle everything, but I don't
  511. know of a way to test this here. */
  512. if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  513. dma = 1;
  514. q->bounce_pfn = max_low_pfn;
  515. #else
  516. if (bounce_pfn < blk_max_low_pfn)
  517. dma = 1;
  518. q->bounce_pfn = bounce_pfn;
  519. #endif
  520. if (dma) {
  521. init_emergency_isa_pool();
  522. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  523. q->bounce_pfn = bounce_pfn;
  524. }
  525. }
  526. EXPORT_SYMBOL(blk_queue_bounce_limit);
  527. /**
  528. * blk_queue_max_sectors - set max sectors for a request for this queue
  529. * @q: the request queue for the device
  530. * @max_sectors: max sectors in the usual 512b unit
  531. *
  532. * Description:
  533. * Enables a low level driver to set an upper limit on the size of
  534. * received requests.
  535. **/
  536. void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
  537. {
  538. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  539. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  540. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  541. }
  542. if (BLK_DEF_MAX_SECTORS > max_sectors)
  543. q->max_hw_sectors = q->max_sectors = max_sectors;
  544. else {
  545. q->max_sectors = BLK_DEF_MAX_SECTORS;
  546. q->max_hw_sectors = max_sectors;
  547. }
  548. }
  549. EXPORT_SYMBOL(blk_queue_max_sectors);
  550. /**
  551. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  552. * @q: the request queue for the device
  553. * @max_segments: max number of segments
  554. *
  555. * Description:
  556. * Enables a low level driver to set an upper limit on the number of
  557. * physical data segments in a request. This would be the largest sized
  558. * scatter list the driver could handle.
  559. **/
  560. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  561. {
  562. if (!max_segments) {
  563. max_segments = 1;
  564. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  565. }
  566. q->max_phys_segments = max_segments;
  567. }
  568. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  569. /**
  570. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  571. * @q: the request queue for the device
  572. * @max_segments: max number of segments
  573. *
  574. * Description:
  575. * Enables a low level driver to set an upper limit on the number of
  576. * hw data segments in a request. This would be the largest number of
  577. * address/length pairs the host adapter can actually give as once
  578. * to the device.
  579. **/
  580. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  581. {
  582. if (!max_segments) {
  583. max_segments = 1;
  584. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  585. }
  586. q->max_hw_segments = max_segments;
  587. }
  588. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  589. /**
  590. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  591. * @q: the request queue for the device
  592. * @max_size: max size of segment in bytes
  593. *
  594. * Description:
  595. * Enables a low level driver to set an upper limit on the size of a
  596. * coalesced segment
  597. **/
  598. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  599. {
  600. if (max_size < PAGE_CACHE_SIZE) {
  601. max_size = PAGE_CACHE_SIZE;
  602. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  603. }
  604. q->max_segment_size = max_size;
  605. }
  606. EXPORT_SYMBOL(blk_queue_max_segment_size);
  607. /**
  608. * blk_queue_hardsect_size - set hardware sector size for the queue
  609. * @q: the request queue for the device
  610. * @size: the hardware sector size, in bytes
  611. *
  612. * Description:
  613. * This should typically be set to the lowest possible sector size
  614. * that the hardware can operate on (possible without reverting to
  615. * even internal read-modify-write operations). Usually the default
  616. * of 512 covers most hardware.
  617. **/
  618. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  619. {
  620. q->hardsect_size = size;
  621. }
  622. EXPORT_SYMBOL(blk_queue_hardsect_size);
  623. /*
  624. * Returns the minimum that is _not_ zero, unless both are zero.
  625. */
  626. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  627. /**
  628. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  629. * @t: the stacking driver (top)
  630. * @b: the underlying device (bottom)
  631. **/
  632. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  633. {
  634. /* zero is "infinity" */
  635. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  636. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  637. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  638. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  639. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  640. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  641. if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
  642. clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
  643. }
  644. EXPORT_SYMBOL(blk_queue_stack_limits);
  645. /**
  646. * blk_queue_segment_boundary - set boundary rules for segment merging
  647. * @q: the request queue for the device
  648. * @mask: the memory boundary mask
  649. **/
  650. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  651. {
  652. if (mask < PAGE_CACHE_SIZE - 1) {
  653. mask = PAGE_CACHE_SIZE - 1;
  654. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  655. }
  656. q->seg_boundary_mask = mask;
  657. }
  658. EXPORT_SYMBOL(blk_queue_segment_boundary);
  659. /**
  660. * blk_queue_dma_alignment - set dma length and memory alignment
  661. * @q: the request queue for the device
  662. * @mask: alignment mask
  663. *
  664. * description:
  665. * set required memory and length aligment for direct dma transactions.
  666. * this is used when buiding direct io requests for the queue.
  667. *
  668. **/
  669. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  670. {
  671. q->dma_alignment = mask;
  672. }
  673. EXPORT_SYMBOL(blk_queue_dma_alignment);
  674. /**
  675. * blk_queue_find_tag - find a request by its tag and queue
  676. * @q: The request queue for the device
  677. * @tag: The tag of the request
  678. *
  679. * Notes:
  680. * Should be used when a device returns a tag and you want to match
  681. * it with a request.
  682. *
  683. * no locks need be held.
  684. **/
  685. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  686. {
  687. return blk_map_queue_find_tag(q->queue_tags, tag);
  688. }
  689. EXPORT_SYMBOL(blk_queue_find_tag);
  690. /**
  691. * __blk_free_tags - release a given set of tag maintenance info
  692. * @bqt: the tag map to free
  693. *
  694. * Tries to free the specified @bqt@. Returns true if it was
  695. * actually freed and false if there are still references using it
  696. */
  697. static int __blk_free_tags(struct blk_queue_tag *bqt)
  698. {
  699. int retval;
  700. retval = atomic_dec_and_test(&bqt->refcnt);
  701. if (retval) {
  702. BUG_ON(bqt->busy);
  703. BUG_ON(!list_empty(&bqt->busy_list));
  704. kfree(bqt->tag_index);
  705. bqt->tag_index = NULL;
  706. kfree(bqt->tag_map);
  707. bqt->tag_map = NULL;
  708. kfree(bqt);
  709. }
  710. return retval;
  711. }
  712. /**
  713. * __blk_queue_free_tags - release tag maintenance info
  714. * @q: the request queue for the device
  715. *
  716. * Notes:
  717. * blk_cleanup_queue() will take care of calling this function, if tagging
  718. * has been used. So there's no need to call this directly.
  719. **/
  720. static void __blk_queue_free_tags(request_queue_t *q)
  721. {
  722. struct blk_queue_tag *bqt = q->queue_tags;
  723. if (!bqt)
  724. return;
  725. __blk_free_tags(bqt);
  726. q->queue_tags = NULL;
  727. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  728. }
  729. /**
  730. * blk_free_tags - release a given set of tag maintenance info
  731. * @bqt: the tag map to free
  732. *
  733. * For externally managed @bqt@ frees the map. Callers of this
  734. * function must guarantee to have released all the queues that
  735. * might have been using this tag map.
  736. */
  737. void blk_free_tags(struct blk_queue_tag *bqt)
  738. {
  739. if (unlikely(!__blk_free_tags(bqt)))
  740. BUG();
  741. }
  742. EXPORT_SYMBOL(blk_free_tags);
  743. /**
  744. * blk_queue_free_tags - release tag maintenance info
  745. * @q: the request queue for the device
  746. *
  747. * Notes:
  748. * This is used to disabled tagged queuing to a device, yet leave
  749. * queue in function.
  750. **/
  751. void blk_queue_free_tags(request_queue_t *q)
  752. {
  753. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  754. }
  755. EXPORT_SYMBOL(blk_queue_free_tags);
  756. static int
  757. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  758. {
  759. struct request **tag_index;
  760. unsigned long *tag_map;
  761. int nr_ulongs;
  762. if (q && depth > q->nr_requests * 2) {
  763. depth = q->nr_requests * 2;
  764. printk(KERN_ERR "%s: adjusted depth to %d\n",
  765. __FUNCTION__, depth);
  766. }
  767. tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  768. if (!tag_index)
  769. goto fail;
  770. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  771. tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  772. if (!tag_map)
  773. goto fail;
  774. tags->real_max_depth = depth;
  775. tags->max_depth = depth;
  776. tags->tag_index = tag_index;
  777. tags->tag_map = tag_map;
  778. return 0;
  779. fail:
  780. kfree(tag_index);
  781. return -ENOMEM;
  782. }
  783. static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
  784. int depth)
  785. {
  786. struct blk_queue_tag *tags;
  787. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  788. if (!tags)
  789. goto fail;
  790. if (init_tag_map(q, tags, depth))
  791. goto fail;
  792. INIT_LIST_HEAD(&tags->busy_list);
  793. tags->busy = 0;
  794. atomic_set(&tags->refcnt, 1);
  795. return tags;
  796. fail:
  797. kfree(tags);
  798. return NULL;
  799. }
  800. /**
  801. * blk_init_tags - initialize the tag info for an external tag map
  802. * @depth: the maximum queue depth supported
  803. * @tags: the tag to use
  804. **/
  805. struct blk_queue_tag *blk_init_tags(int depth)
  806. {
  807. return __blk_queue_init_tags(NULL, depth);
  808. }
  809. EXPORT_SYMBOL(blk_init_tags);
  810. /**
  811. * blk_queue_init_tags - initialize the queue tag info
  812. * @q: the request queue for the device
  813. * @depth: the maximum queue depth supported
  814. * @tags: the tag to use
  815. **/
  816. int blk_queue_init_tags(request_queue_t *q, int depth,
  817. struct blk_queue_tag *tags)
  818. {
  819. int rc;
  820. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  821. if (!tags && !q->queue_tags) {
  822. tags = __blk_queue_init_tags(q, depth);
  823. if (!tags)
  824. goto fail;
  825. } else if (q->queue_tags) {
  826. if ((rc = blk_queue_resize_tags(q, depth)))
  827. return rc;
  828. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  829. return 0;
  830. } else
  831. atomic_inc(&tags->refcnt);
  832. /*
  833. * assign it, all done
  834. */
  835. q->queue_tags = tags;
  836. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  837. return 0;
  838. fail:
  839. kfree(tags);
  840. return -ENOMEM;
  841. }
  842. EXPORT_SYMBOL(blk_queue_init_tags);
  843. /**
  844. * blk_queue_resize_tags - change the queueing depth
  845. * @q: the request queue for the device
  846. * @new_depth: the new max command queueing depth
  847. *
  848. * Notes:
  849. * Must be called with the queue lock held.
  850. **/
  851. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  852. {
  853. struct blk_queue_tag *bqt = q->queue_tags;
  854. struct request **tag_index;
  855. unsigned long *tag_map;
  856. int max_depth, nr_ulongs;
  857. if (!bqt)
  858. return -ENXIO;
  859. /*
  860. * if we already have large enough real_max_depth. just
  861. * adjust max_depth. *NOTE* as requests with tag value
  862. * between new_depth and real_max_depth can be in-flight, tag
  863. * map can not be shrunk blindly here.
  864. */
  865. if (new_depth <= bqt->real_max_depth) {
  866. bqt->max_depth = new_depth;
  867. return 0;
  868. }
  869. /*
  870. * Currently cannot replace a shared tag map with a new
  871. * one, so error out if this is the case
  872. */
  873. if (atomic_read(&bqt->refcnt) != 1)
  874. return -EBUSY;
  875. /*
  876. * save the old state info, so we can copy it back
  877. */
  878. tag_index = bqt->tag_index;
  879. tag_map = bqt->tag_map;
  880. max_depth = bqt->real_max_depth;
  881. if (init_tag_map(q, bqt, new_depth))
  882. return -ENOMEM;
  883. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  884. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  885. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  886. kfree(tag_index);
  887. kfree(tag_map);
  888. return 0;
  889. }
  890. EXPORT_SYMBOL(blk_queue_resize_tags);
  891. /**
  892. * blk_queue_end_tag - end tag operations for a request
  893. * @q: the request queue for the device
  894. * @rq: the request that has completed
  895. *
  896. * Description:
  897. * Typically called when end_that_request_first() returns 0, meaning
  898. * all transfers have been done for a request. It's important to call
  899. * this function before end_that_request_last(), as that will put the
  900. * request back on the free list thus corrupting the internal tag list.
  901. *
  902. * Notes:
  903. * queue lock must be held.
  904. **/
  905. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  906. {
  907. struct blk_queue_tag *bqt = q->queue_tags;
  908. int tag = rq->tag;
  909. BUG_ON(tag == -1);
  910. if (unlikely(tag >= bqt->real_max_depth))
  911. /*
  912. * This can happen after tag depth has been reduced.
  913. * FIXME: how about a warning or info message here?
  914. */
  915. return;
  916. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  917. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  918. __FUNCTION__, tag);
  919. return;
  920. }
  921. list_del_init(&rq->queuelist);
  922. rq->cmd_flags &= ~REQ_QUEUED;
  923. rq->tag = -1;
  924. if (unlikely(bqt->tag_index[tag] == NULL))
  925. printk(KERN_ERR "%s: tag %d is missing\n",
  926. __FUNCTION__, tag);
  927. bqt->tag_index[tag] = NULL;
  928. bqt->busy--;
  929. }
  930. EXPORT_SYMBOL(blk_queue_end_tag);
  931. /**
  932. * blk_queue_start_tag - find a free tag and assign it
  933. * @q: the request queue for the device
  934. * @rq: the block request that needs tagging
  935. *
  936. * Description:
  937. * This can either be used as a stand-alone helper, or possibly be
  938. * assigned as the queue &prep_rq_fn (in which case &struct request
  939. * automagically gets a tag assigned). Note that this function
  940. * assumes that any type of request can be queued! if this is not
  941. * true for your device, you must check the request type before
  942. * calling this function. The request will also be removed from
  943. * the request queue, so it's the drivers responsibility to readd
  944. * it if it should need to be restarted for some reason.
  945. *
  946. * Notes:
  947. * queue lock must be held.
  948. **/
  949. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  950. {
  951. struct blk_queue_tag *bqt = q->queue_tags;
  952. int tag;
  953. if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
  954. printk(KERN_ERR
  955. "%s: request %p for device [%s] already tagged %d",
  956. __FUNCTION__, rq,
  957. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  958. BUG();
  959. }
  960. /*
  961. * Protect against shared tag maps, as we may not have exclusive
  962. * access to the tag map.
  963. */
  964. do {
  965. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  966. if (tag >= bqt->max_depth)
  967. return 1;
  968. } while (test_and_set_bit(tag, bqt->tag_map));
  969. rq->cmd_flags |= REQ_QUEUED;
  970. rq->tag = tag;
  971. bqt->tag_index[tag] = rq;
  972. blkdev_dequeue_request(rq);
  973. list_add(&rq->queuelist, &bqt->busy_list);
  974. bqt->busy++;
  975. return 0;
  976. }
  977. EXPORT_SYMBOL(blk_queue_start_tag);
  978. /**
  979. * blk_queue_invalidate_tags - invalidate all pending tags
  980. * @q: the request queue for the device
  981. *
  982. * Description:
  983. * Hardware conditions may dictate a need to stop all pending requests.
  984. * In this case, we will safely clear the block side of the tag queue and
  985. * readd all requests to the request queue in the right order.
  986. *
  987. * Notes:
  988. * queue lock must be held.
  989. **/
  990. void blk_queue_invalidate_tags(request_queue_t *q)
  991. {
  992. struct blk_queue_tag *bqt = q->queue_tags;
  993. struct list_head *tmp, *n;
  994. struct request *rq;
  995. list_for_each_safe(tmp, n, &bqt->busy_list) {
  996. rq = list_entry_rq(tmp);
  997. if (rq->tag == -1) {
  998. printk(KERN_ERR
  999. "%s: bad tag found on list\n", __FUNCTION__);
  1000. list_del_init(&rq->queuelist);
  1001. rq->cmd_flags &= ~REQ_QUEUED;
  1002. } else
  1003. blk_queue_end_tag(q, rq);
  1004. rq->cmd_flags &= ~REQ_STARTED;
  1005. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  1006. }
  1007. }
  1008. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  1009. void blk_dump_rq_flags(struct request *rq, char *msg)
  1010. {
  1011. int bit;
  1012. printk("%s: dev %s: type=%x, flags=%x\n", msg,
  1013. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
  1014. rq->cmd_flags);
  1015. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  1016. rq->nr_sectors,
  1017. rq->current_nr_sectors);
  1018. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  1019. if (blk_pc_request(rq)) {
  1020. printk("cdb: ");
  1021. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  1022. printk("%02x ", rq->cmd[bit]);
  1023. printk("\n");
  1024. }
  1025. }
  1026. EXPORT_SYMBOL(blk_dump_rq_flags);
  1027. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  1028. {
  1029. struct bio_vec *bv, *bvprv = NULL;
  1030. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  1031. int high, highprv = 1;
  1032. if (unlikely(!bio->bi_io_vec))
  1033. return;
  1034. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1035. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  1036. bio_for_each_segment(bv, bio, i) {
  1037. /*
  1038. * the trick here is making sure that a high page is never
  1039. * considered part of another segment, since that might
  1040. * change with the bounce page.
  1041. */
  1042. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  1043. if (high || highprv)
  1044. goto new_hw_segment;
  1045. if (cluster) {
  1046. if (seg_size + bv->bv_len > q->max_segment_size)
  1047. goto new_segment;
  1048. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  1049. goto new_segment;
  1050. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  1051. goto new_segment;
  1052. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1053. goto new_hw_segment;
  1054. seg_size += bv->bv_len;
  1055. hw_seg_size += bv->bv_len;
  1056. bvprv = bv;
  1057. continue;
  1058. }
  1059. new_segment:
  1060. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  1061. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  1062. hw_seg_size += bv->bv_len;
  1063. } else {
  1064. new_hw_segment:
  1065. if (hw_seg_size > bio->bi_hw_front_size)
  1066. bio->bi_hw_front_size = hw_seg_size;
  1067. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  1068. nr_hw_segs++;
  1069. }
  1070. nr_phys_segs++;
  1071. bvprv = bv;
  1072. seg_size = bv->bv_len;
  1073. highprv = high;
  1074. }
  1075. if (hw_seg_size > bio->bi_hw_back_size)
  1076. bio->bi_hw_back_size = hw_seg_size;
  1077. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  1078. bio->bi_hw_front_size = hw_seg_size;
  1079. bio->bi_phys_segments = nr_phys_segs;
  1080. bio->bi_hw_segments = nr_hw_segs;
  1081. bio->bi_flags |= (1 << BIO_SEG_VALID);
  1082. }
  1083. EXPORT_SYMBOL(blk_recount_segments);
  1084. static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  1085. struct bio *nxt)
  1086. {
  1087. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  1088. return 0;
  1089. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  1090. return 0;
  1091. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1092. return 0;
  1093. /*
  1094. * bio and nxt are contigous in memory, check if the queue allows
  1095. * these two to be merged into one
  1096. */
  1097. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1098. return 1;
  1099. return 0;
  1100. }
  1101. static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  1102. struct bio *nxt)
  1103. {
  1104. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1105. blk_recount_segments(q, bio);
  1106. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1107. blk_recount_segments(q, nxt);
  1108. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1109. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  1110. return 0;
  1111. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1112. return 0;
  1113. return 1;
  1114. }
  1115. /*
  1116. * map a request to scatterlist, return number of sg entries setup. Caller
  1117. * must make sure sg can hold rq->nr_phys_segments entries
  1118. */
  1119. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1120. {
  1121. struct bio_vec *bvec, *bvprv;
  1122. struct bio *bio;
  1123. int nsegs, i, cluster;
  1124. nsegs = 0;
  1125. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1126. /*
  1127. * for each bio in rq
  1128. */
  1129. bvprv = NULL;
  1130. rq_for_each_bio(bio, rq) {
  1131. /*
  1132. * for each segment in bio
  1133. */
  1134. bio_for_each_segment(bvec, bio, i) {
  1135. int nbytes = bvec->bv_len;
  1136. if (bvprv && cluster) {
  1137. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1138. goto new_segment;
  1139. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1140. goto new_segment;
  1141. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1142. goto new_segment;
  1143. sg[nsegs - 1].length += nbytes;
  1144. } else {
  1145. new_segment:
  1146. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1147. sg[nsegs].page = bvec->bv_page;
  1148. sg[nsegs].length = nbytes;
  1149. sg[nsegs].offset = bvec->bv_offset;
  1150. nsegs++;
  1151. }
  1152. bvprv = bvec;
  1153. } /* segments in bio */
  1154. } /* bios in rq */
  1155. return nsegs;
  1156. }
  1157. EXPORT_SYMBOL(blk_rq_map_sg);
  1158. /*
  1159. * the standard queue merge functions, can be overridden with device
  1160. * specific ones if so desired
  1161. */
  1162. static inline int ll_new_mergeable(request_queue_t *q,
  1163. struct request *req,
  1164. struct bio *bio)
  1165. {
  1166. int nr_phys_segs = bio_phys_segments(q, bio);
  1167. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1168. req->cmd_flags |= REQ_NOMERGE;
  1169. if (req == q->last_merge)
  1170. q->last_merge = NULL;
  1171. return 0;
  1172. }
  1173. /*
  1174. * A hw segment is just getting larger, bump just the phys
  1175. * counter.
  1176. */
  1177. req->nr_phys_segments += nr_phys_segs;
  1178. return 1;
  1179. }
  1180. static inline int ll_new_hw_segment(request_queue_t *q,
  1181. struct request *req,
  1182. struct bio *bio)
  1183. {
  1184. int nr_hw_segs = bio_hw_segments(q, bio);
  1185. int nr_phys_segs = bio_phys_segments(q, bio);
  1186. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1187. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1188. req->cmd_flags |= REQ_NOMERGE;
  1189. if (req == q->last_merge)
  1190. q->last_merge = NULL;
  1191. return 0;
  1192. }
  1193. /*
  1194. * This will form the start of a new hw segment. Bump both
  1195. * counters.
  1196. */
  1197. req->nr_hw_segments += nr_hw_segs;
  1198. req->nr_phys_segments += nr_phys_segs;
  1199. return 1;
  1200. }
  1201. int ll_back_merge_fn(request_queue_t *q, struct request *req, struct bio *bio)
  1202. {
  1203. unsigned short max_sectors;
  1204. int len;
  1205. if (unlikely(blk_pc_request(req)))
  1206. max_sectors = q->max_hw_sectors;
  1207. else
  1208. max_sectors = q->max_sectors;
  1209. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1210. req->cmd_flags |= REQ_NOMERGE;
  1211. if (req == q->last_merge)
  1212. q->last_merge = NULL;
  1213. return 0;
  1214. }
  1215. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1216. blk_recount_segments(q, req->biotail);
  1217. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1218. blk_recount_segments(q, bio);
  1219. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1220. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1221. !BIOVEC_VIRT_OVERSIZE(len)) {
  1222. int mergeable = ll_new_mergeable(q, req, bio);
  1223. if (mergeable) {
  1224. if (req->nr_hw_segments == 1)
  1225. req->bio->bi_hw_front_size = len;
  1226. if (bio->bi_hw_segments == 1)
  1227. bio->bi_hw_back_size = len;
  1228. }
  1229. return mergeable;
  1230. }
  1231. return ll_new_hw_segment(q, req, bio);
  1232. }
  1233. EXPORT_SYMBOL(ll_back_merge_fn);
  1234. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1235. struct bio *bio)
  1236. {
  1237. unsigned short max_sectors;
  1238. int len;
  1239. if (unlikely(blk_pc_request(req)))
  1240. max_sectors = q->max_hw_sectors;
  1241. else
  1242. max_sectors = q->max_sectors;
  1243. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1244. req->cmd_flags |= REQ_NOMERGE;
  1245. if (req == q->last_merge)
  1246. q->last_merge = NULL;
  1247. return 0;
  1248. }
  1249. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1250. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1251. blk_recount_segments(q, bio);
  1252. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1253. blk_recount_segments(q, req->bio);
  1254. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1255. !BIOVEC_VIRT_OVERSIZE(len)) {
  1256. int mergeable = ll_new_mergeable(q, req, bio);
  1257. if (mergeable) {
  1258. if (bio->bi_hw_segments == 1)
  1259. bio->bi_hw_front_size = len;
  1260. if (req->nr_hw_segments == 1)
  1261. req->biotail->bi_hw_back_size = len;
  1262. }
  1263. return mergeable;
  1264. }
  1265. return ll_new_hw_segment(q, req, bio);
  1266. }
  1267. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1268. struct request *next)
  1269. {
  1270. int total_phys_segments;
  1271. int total_hw_segments;
  1272. /*
  1273. * First check if the either of the requests are re-queued
  1274. * requests. Can't merge them if they are.
  1275. */
  1276. if (req->special || next->special)
  1277. return 0;
  1278. /*
  1279. * Will it become too large?
  1280. */
  1281. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1282. return 0;
  1283. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1284. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1285. total_phys_segments--;
  1286. if (total_phys_segments > q->max_phys_segments)
  1287. return 0;
  1288. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1289. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1290. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1291. /*
  1292. * propagate the combined length to the end of the requests
  1293. */
  1294. if (req->nr_hw_segments == 1)
  1295. req->bio->bi_hw_front_size = len;
  1296. if (next->nr_hw_segments == 1)
  1297. next->biotail->bi_hw_back_size = len;
  1298. total_hw_segments--;
  1299. }
  1300. if (total_hw_segments > q->max_hw_segments)
  1301. return 0;
  1302. /* Merge is OK... */
  1303. req->nr_phys_segments = total_phys_segments;
  1304. req->nr_hw_segments = total_hw_segments;
  1305. return 1;
  1306. }
  1307. /*
  1308. * "plug" the device if there are no outstanding requests: this will
  1309. * force the transfer to start only after we have put all the requests
  1310. * on the list.
  1311. *
  1312. * This is called with interrupts off and no requests on the queue and
  1313. * with the queue lock held.
  1314. */
  1315. void blk_plug_device(request_queue_t *q)
  1316. {
  1317. WARN_ON(!irqs_disabled());
  1318. /*
  1319. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1320. * which will restart the queueing
  1321. */
  1322. if (blk_queue_stopped(q))
  1323. return;
  1324. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
  1325. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1326. blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
  1327. }
  1328. }
  1329. EXPORT_SYMBOL(blk_plug_device);
  1330. /*
  1331. * remove the queue from the plugged list, if present. called with
  1332. * queue lock held and interrupts disabled.
  1333. */
  1334. int blk_remove_plug(request_queue_t *q)
  1335. {
  1336. WARN_ON(!irqs_disabled());
  1337. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1338. return 0;
  1339. del_timer(&q->unplug_timer);
  1340. return 1;
  1341. }
  1342. EXPORT_SYMBOL(blk_remove_plug);
  1343. /*
  1344. * remove the plug and let it rip..
  1345. */
  1346. void __generic_unplug_device(request_queue_t *q)
  1347. {
  1348. if (unlikely(blk_queue_stopped(q)))
  1349. return;
  1350. if (!blk_remove_plug(q))
  1351. return;
  1352. q->request_fn(q);
  1353. }
  1354. EXPORT_SYMBOL(__generic_unplug_device);
  1355. /**
  1356. * generic_unplug_device - fire a request queue
  1357. * @q: The &request_queue_t in question
  1358. *
  1359. * Description:
  1360. * Linux uses plugging to build bigger requests queues before letting
  1361. * the device have at them. If a queue is plugged, the I/O scheduler
  1362. * is still adding and merging requests on the queue. Once the queue
  1363. * gets unplugged, the request_fn defined for the queue is invoked and
  1364. * transfers started.
  1365. **/
  1366. void generic_unplug_device(request_queue_t *q)
  1367. {
  1368. spin_lock_irq(q->queue_lock);
  1369. __generic_unplug_device(q);
  1370. spin_unlock_irq(q->queue_lock);
  1371. }
  1372. EXPORT_SYMBOL(generic_unplug_device);
  1373. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1374. struct page *page)
  1375. {
  1376. request_queue_t *q = bdi->unplug_io_data;
  1377. /*
  1378. * devices don't necessarily have an ->unplug_fn defined
  1379. */
  1380. if (q->unplug_fn) {
  1381. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1382. q->rq.count[READ] + q->rq.count[WRITE]);
  1383. q->unplug_fn(q);
  1384. }
  1385. }
  1386. static void blk_unplug_work(struct work_struct *work)
  1387. {
  1388. request_queue_t *q = container_of(work, request_queue_t, unplug_work);
  1389. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1390. q->rq.count[READ] + q->rq.count[WRITE]);
  1391. q->unplug_fn(q);
  1392. }
  1393. static void blk_unplug_timeout(unsigned long data)
  1394. {
  1395. request_queue_t *q = (request_queue_t *)data;
  1396. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
  1397. q->rq.count[READ] + q->rq.count[WRITE]);
  1398. kblockd_schedule_work(&q->unplug_work);
  1399. }
  1400. /**
  1401. * blk_start_queue - restart a previously stopped queue
  1402. * @q: The &request_queue_t in question
  1403. *
  1404. * Description:
  1405. * blk_start_queue() will clear the stop flag on the queue, and call
  1406. * the request_fn for the queue if it was in a stopped state when
  1407. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1408. **/
  1409. void blk_start_queue(request_queue_t *q)
  1410. {
  1411. WARN_ON(!irqs_disabled());
  1412. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1413. /*
  1414. * one level of recursion is ok and is much faster than kicking
  1415. * the unplug handling
  1416. */
  1417. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1418. q->request_fn(q);
  1419. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1420. } else {
  1421. blk_plug_device(q);
  1422. kblockd_schedule_work(&q->unplug_work);
  1423. }
  1424. }
  1425. EXPORT_SYMBOL(blk_start_queue);
  1426. /**
  1427. * blk_stop_queue - stop a queue
  1428. * @q: The &request_queue_t in question
  1429. *
  1430. * Description:
  1431. * The Linux block layer assumes that a block driver will consume all
  1432. * entries on the request queue when the request_fn strategy is called.
  1433. * Often this will not happen, because of hardware limitations (queue
  1434. * depth settings). If a device driver gets a 'queue full' response,
  1435. * or if it simply chooses not to queue more I/O at one point, it can
  1436. * call this function to prevent the request_fn from being called until
  1437. * the driver has signalled it's ready to go again. This happens by calling
  1438. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1439. **/
  1440. void blk_stop_queue(request_queue_t *q)
  1441. {
  1442. blk_remove_plug(q);
  1443. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1444. }
  1445. EXPORT_SYMBOL(blk_stop_queue);
  1446. /**
  1447. * blk_sync_queue - cancel any pending callbacks on a queue
  1448. * @q: the queue
  1449. *
  1450. * Description:
  1451. * The block layer may perform asynchronous callback activity
  1452. * on a queue, such as calling the unplug function after a timeout.
  1453. * A block device may call blk_sync_queue to ensure that any
  1454. * such activity is cancelled, thus allowing it to release resources
  1455. * the the callbacks might use. The caller must already have made sure
  1456. * that its ->make_request_fn will not re-add plugging prior to calling
  1457. * this function.
  1458. *
  1459. */
  1460. void blk_sync_queue(struct request_queue *q)
  1461. {
  1462. del_timer_sync(&q->unplug_timer);
  1463. kblockd_flush();
  1464. }
  1465. EXPORT_SYMBOL(blk_sync_queue);
  1466. /**
  1467. * blk_run_queue - run a single device queue
  1468. * @q: The queue to run
  1469. */
  1470. void blk_run_queue(struct request_queue *q)
  1471. {
  1472. unsigned long flags;
  1473. spin_lock_irqsave(q->queue_lock, flags);
  1474. blk_remove_plug(q);
  1475. /*
  1476. * Only recurse once to avoid overrunning the stack, let the unplug
  1477. * handling reinvoke the handler shortly if we already got there.
  1478. */
  1479. if (!elv_queue_empty(q)) {
  1480. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1481. q->request_fn(q);
  1482. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1483. } else {
  1484. blk_plug_device(q);
  1485. kblockd_schedule_work(&q->unplug_work);
  1486. }
  1487. }
  1488. spin_unlock_irqrestore(q->queue_lock, flags);
  1489. }
  1490. EXPORT_SYMBOL(blk_run_queue);
  1491. /**
  1492. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1493. * @kobj: the kobj belonging of the request queue to be released
  1494. *
  1495. * Description:
  1496. * blk_cleanup_queue is the pair to blk_init_queue() or
  1497. * blk_queue_make_request(). It should be called when a request queue is
  1498. * being released; typically when a block device is being de-registered.
  1499. * Currently, its primary task it to free all the &struct request
  1500. * structures that were allocated to the queue and the queue itself.
  1501. *
  1502. * Caveat:
  1503. * Hopefully the low level driver will have finished any
  1504. * outstanding requests first...
  1505. **/
  1506. static void blk_release_queue(struct kobject *kobj)
  1507. {
  1508. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  1509. struct request_list *rl = &q->rq;
  1510. blk_sync_queue(q);
  1511. if (rl->rq_pool)
  1512. mempool_destroy(rl->rq_pool);
  1513. if (q->queue_tags)
  1514. __blk_queue_free_tags(q);
  1515. blk_trace_shutdown(q);
  1516. kmem_cache_free(requestq_cachep, q);
  1517. }
  1518. void blk_put_queue(request_queue_t *q)
  1519. {
  1520. kobject_put(&q->kobj);
  1521. }
  1522. EXPORT_SYMBOL(blk_put_queue);
  1523. void blk_cleanup_queue(request_queue_t * q)
  1524. {
  1525. mutex_lock(&q->sysfs_lock);
  1526. set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
  1527. mutex_unlock(&q->sysfs_lock);
  1528. if (q->elevator)
  1529. elevator_exit(q->elevator);
  1530. blk_put_queue(q);
  1531. }
  1532. EXPORT_SYMBOL(blk_cleanup_queue);
  1533. static int blk_init_free_list(request_queue_t *q)
  1534. {
  1535. struct request_list *rl = &q->rq;
  1536. rl->count[READ] = rl->count[WRITE] = 0;
  1537. rl->starved[READ] = rl->starved[WRITE] = 0;
  1538. rl->elvpriv = 0;
  1539. init_waitqueue_head(&rl->wait[READ]);
  1540. init_waitqueue_head(&rl->wait[WRITE]);
  1541. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1542. mempool_free_slab, request_cachep, q->node);
  1543. if (!rl->rq_pool)
  1544. return -ENOMEM;
  1545. return 0;
  1546. }
  1547. request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
  1548. {
  1549. return blk_alloc_queue_node(gfp_mask, -1);
  1550. }
  1551. EXPORT_SYMBOL(blk_alloc_queue);
  1552. static struct kobj_type queue_ktype;
  1553. request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1554. {
  1555. request_queue_t *q;
  1556. q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
  1557. if (!q)
  1558. return NULL;
  1559. memset(q, 0, sizeof(*q));
  1560. init_timer(&q->unplug_timer);
  1561. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  1562. q->kobj.ktype = &queue_ktype;
  1563. kobject_init(&q->kobj);
  1564. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1565. q->backing_dev_info.unplug_io_data = q;
  1566. mutex_init(&q->sysfs_lock);
  1567. return q;
  1568. }
  1569. EXPORT_SYMBOL(blk_alloc_queue_node);
  1570. /**
  1571. * blk_init_queue - prepare a request queue for use with a block device
  1572. * @rfn: The function to be called to process requests that have been
  1573. * placed on the queue.
  1574. * @lock: Request queue spin lock
  1575. *
  1576. * Description:
  1577. * If a block device wishes to use the standard request handling procedures,
  1578. * which sorts requests and coalesces adjacent requests, then it must
  1579. * call blk_init_queue(). The function @rfn will be called when there
  1580. * are requests on the queue that need to be processed. If the device
  1581. * supports plugging, then @rfn may not be called immediately when requests
  1582. * are available on the queue, but may be called at some time later instead.
  1583. * Plugged queues are generally unplugged when a buffer belonging to one
  1584. * of the requests on the queue is needed, or due to memory pressure.
  1585. *
  1586. * @rfn is not required, or even expected, to remove all requests off the
  1587. * queue, but only as many as it can handle at a time. If it does leave
  1588. * requests on the queue, it is responsible for arranging that the requests
  1589. * get dealt with eventually.
  1590. *
  1591. * The queue spin lock must be held while manipulating the requests on the
  1592. * request queue; this lock will be taken also from interrupt context, so irq
  1593. * disabling is needed for it.
  1594. *
  1595. * Function returns a pointer to the initialized request queue, or NULL if
  1596. * it didn't succeed.
  1597. *
  1598. * Note:
  1599. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1600. * when the block device is deactivated (such as at module unload).
  1601. **/
  1602. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1603. {
  1604. return blk_init_queue_node(rfn, lock, -1);
  1605. }
  1606. EXPORT_SYMBOL(blk_init_queue);
  1607. request_queue_t *
  1608. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1609. {
  1610. request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1611. if (!q)
  1612. return NULL;
  1613. q->node = node_id;
  1614. if (blk_init_free_list(q)) {
  1615. kmem_cache_free(requestq_cachep, q);
  1616. return NULL;
  1617. }
  1618. /*
  1619. * if caller didn't supply a lock, they get per-queue locking with
  1620. * our embedded lock
  1621. */
  1622. if (!lock) {
  1623. spin_lock_init(&q->__queue_lock);
  1624. lock = &q->__queue_lock;
  1625. }
  1626. q->request_fn = rfn;
  1627. q->prep_rq_fn = NULL;
  1628. q->unplug_fn = generic_unplug_device;
  1629. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1630. q->queue_lock = lock;
  1631. blk_queue_segment_boundary(q, 0xffffffff);
  1632. blk_queue_make_request(q, __make_request);
  1633. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1634. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1635. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1636. q->sg_reserved_size = INT_MAX;
  1637. /*
  1638. * all done
  1639. */
  1640. if (!elevator_init(q, NULL)) {
  1641. blk_queue_congestion_threshold(q);
  1642. return q;
  1643. }
  1644. blk_put_queue(q);
  1645. return NULL;
  1646. }
  1647. EXPORT_SYMBOL(blk_init_queue_node);
  1648. int blk_get_queue(request_queue_t *q)
  1649. {
  1650. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1651. kobject_get(&q->kobj);
  1652. return 0;
  1653. }
  1654. return 1;
  1655. }
  1656. EXPORT_SYMBOL(blk_get_queue);
  1657. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1658. {
  1659. if (rq->cmd_flags & REQ_ELVPRIV)
  1660. elv_put_request(q, rq);
  1661. mempool_free(rq, q->rq.rq_pool);
  1662. }
  1663. static struct request *
  1664. blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
  1665. {
  1666. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1667. if (!rq)
  1668. return NULL;
  1669. /*
  1670. * first three bits are identical in rq->cmd_flags and bio->bi_rw,
  1671. * see bio.h and blkdev.h
  1672. */
  1673. rq->cmd_flags = rw | REQ_ALLOCED;
  1674. if (priv) {
  1675. if (unlikely(elv_set_request(q, rq, gfp_mask))) {
  1676. mempool_free(rq, q->rq.rq_pool);
  1677. return NULL;
  1678. }
  1679. rq->cmd_flags |= REQ_ELVPRIV;
  1680. }
  1681. return rq;
  1682. }
  1683. /*
  1684. * ioc_batching returns true if the ioc is a valid batching request and
  1685. * should be given priority access to a request.
  1686. */
  1687. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1688. {
  1689. if (!ioc)
  1690. return 0;
  1691. /*
  1692. * Make sure the process is able to allocate at least 1 request
  1693. * even if the batch times out, otherwise we could theoretically
  1694. * lose wakeups.
  1695. */
  1696. return ioc->nr_batch_requests == q->nr_batching ||
  1697. (ioc->nr_batch_requests > 0
  1698. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1699. }
  1700. /*
  1701. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1702. * will cause the process to be a "batcher" on all queues in the system. This
  1703. * is the behaviour we want though - once it gets a wakeup it should be given
  1704. * a nice run.
  1705. */
  1706. static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1707. {
  1708. if (!ioc || ioc_batching(q, ioc))
  1709. return;
  1710. ioc->nr_batch_requests = q->nr_batching;
  1711. ioc->last_waited = jiffies;
  1712. }
  1713. static void __freed_request(request_queue_t *q, int rw)
  1714. {
  1715. struct request_list *rl = &q->rq;
  1716. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1717. blk_clear_queue_congested(q, rw);
  1718. if (rl->count[rw] + 1 <= q->nr_requests) {
  1719. if (waitqueue_active(&rl->wait[rw]))
  1720. wake_up(&rl->wait[rw]);
  1721. blk_clear_queue_full(q, rw);
  1722. }
  1723. }
  1724. /*
  1725. * A request has just been released. Account for it, update the full and
  1726. * congestion status, wake up any waiters. Called under q->queue_lock.
  1727. */
  1728. static void freed_request(request_queue_t *q, int rw, int priv)
  1729. {
  1730. struct request_list *rl = &q->rq;
  1731. rl->count[rw]--;
  1732. if (priv)
  1733. rl->elvpriv--;
  1734. __freed_request(q, rw);
  1735. if (unlikely(rl->starved[rw ^ 1]))
  1736. __freed_request(q, rw ^ 1);
  1737. }
  1738. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1739. /*
  1740. * Get a free request, queue_lock must be held.
  1741. * Returns NULL on failure, with queue_lock held.
  1742. * Returns !NULL on success, with queue_lock *not held*.
  1743. */
  1744. static struct request *get_request(request_queue_t *q, int rw_flags,
  1745. struct bio *bio, gfp_t gfp_mask)
  1746. {
  1747. struct request *rq = NULL;
  1748. struct request_list *rl = &q->rq;
  1749. struct io_context *ioc = NULL;
  1750. const int rw = rw_flags & 0x01;
  1751. int may_queue, priv;
  1752. may_queue = elv_may_queue(q, rw_flags);
  1753. if (may_queue == ELV_MQUEUE_NO)
  1754. goto rq_starved;
  1755. if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
  1756. if (rl->count[rw]+1 >= q->nr_requests) {
  1757. ioc = current_io_context(GFP_ATOMIC, q->node);
  1758. /*
  1759. * The queue will fill after this allocation, so set
  1760. * it as full, and mark this process as "batching".
  1761. * This process will be allowed to complete a batch of
  1762. * requests, others will be blocked.
  1763. */
  1764. if (!blk_queue_full(q, rw)) {
  1765. ioc_set_batching(q, ioc);
  1766. blk_set_queue_full(q, rw);
  1767. } else {
  1768. if (may_queue != ELV_MQUEUE_MUST
  1769. && !ioc_batching(q, ioc)) {
  1770. /*
  1771. * The queue is full and the allocating
  1772. * process is not a "batcher", and not
  1773. * exempted by the IO scheduler
  1774. */
  1775. goto out;
  1776. }
  1777. }
  1778. }
  1779. blk_set_queue_congested(q, rw);
  1780. }
  1781. /*
  1782. * Only allow batching queuers to allocate up to 50% over the defined
  1783. * limit of requests, otherwise we could have thousands of requests
  1784. * allocated with any setting of ->nr_requests
  1785. */
  1786. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1787. goto out;
  1788. rl->count[rw]++;
  1789. rl->starved[rw] = 0;
  1790. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1791. if (priv)
  1792. rl->elvpriv++;
  1793. spin_unlock_irq(q->queue_lock);
  1794. rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
  1795. if (unlikely(!rq)) {
  1796. /*
  1797. * Allocation failed presumably due to memory. Undo anything
  1798. * we might have messed up.
  1799. *
  1800. * Allocating task should really be put onto the front of the
  1801. * wait queue, but this is pretty rare.
  1802. */
  1803. spin_lock_irq(q->queue_lock);
  1804. freed_request(q, rw, priv);
  1805. /*
  1806. * in the very unlikely event that allocation failed and no
  1807. * requests for this direction was pending, mark us starved
  1808. * so that freeing of a request in the other direction will
  1809. * notice us. another possible fix would be to split the
  1810. * rq mempool into READ and WRITE
  1811. */
  1812. rq_starved:
  1813. if (unlikely(rl->count[rw] == 0))
  1814. rl->starved[rw] = 1;
  1815. goto out;
  1816. }
  1817. /*
  1818. * ioc may be NULL here, and ioc_batching will be false. That's
  1819. * OK, if the queue is under the request limit then requests need
  1820. * not count toward the nr_batch_requests limit. There will always
  1821. * be some limit enforced by BLK_BATCH_TIME.
  1822. */
  1823. if (ioc_batching(q, ioc))
  1824. ioc->nr_batch_requests--;
  1825. rq_init(q, rq);
  1826. blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
  1827. out:
  1828. return rq;
  1829. }
  1830. /*
  1831. * No available requests for this queue, unplug the device and wait for some
  1832. * requests to become available.
  1833. *
  1834. * Called with q->queue_lock held, and returns with it unlocked.
  1835. */
  1836. static struct request *get_request_wait(request_queue_t *q, int rw_flags,
  1837. struct bio *bio)
  1838. {
  1839. const int rw = rw_flags & 0x01;
  1840. struct request *rq;
  1841. rq = get_request(q, rw_flags, bio, GFP_NOIO);
  1842. while (!rq) {
  1843. DEFINE_WAIT(wait);
  1844. struct request_list *rl = &q->rq;
  1845. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1846. TASK_UNINTERRUPTIBLE);
  1847. rq = get_request(q, rw_flags, bio, GFP_NOIO);
  1848. if (!rq) {
  1849. struct io_context *ioc;
  1850. blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
  1851. __generic_unplug_device(q);
  1852. spin_unlock_irq(q->queue_lock);
  1853. io_schedule();
  1854. /*
  1855. * After sleeping, we become a "batching" process and
  1856. * will be able to allocate at least one request, and
  1857. * up to a big batch of them for a small period time.
  1858. * See ioc_batching, ioc_set_batching
  1859. */
  1860. ioc = current_io_context(GFP_NOIO, q->node);
  1861. ioc_set_batching(q, ioc);
  1862. spin_lock_irq(q->queue_lock);
  1863. }
  1864. finish_wait(&rl->wait[rw], &wait);
  1865. }
  1866. return rq;
  1867. }
  1868. struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
  1869. {
  1870. struct request *rq;
  1871. BUG_ON(rw != READ && rw != WRITE);
  1872. spin_lock_irq(q->queue_lock);
  1873. if (gfp_mask & __GFP_WAIT) {
  1874. rq = get_request_wait(q, rw, NULL);
  1875. } else {
  1876. rq = get_request(q, rw, NULL, gfp_mask);
  1877. if (!rq)
  1878. spin_unlock_irq(q->queue_lock);
  1879. }
  1880. /* q->queue_lock is unlocked at this point */
  1881. return rq;
  1882. }
  1883. EXPORT_SYMBOL(blk_get_request);
  1884. /**
  1885. * blk_start_queueing - initiate dispatch of requests to device
  1886. * @q: request queue to kick into gear
  1887. *
  1888. * This is basically a helper to remove the need to know whether a queue
  1889. * is plugged or not if someone just wants to initiate dispatch of requests
  1890. * for this queue.
  1891. *
  1892. * The queue lock must be held with interrupts disabled.
  1893. */
  1894. void blk_start_queueing(request_queue_t *q)
  1895. {
  1896. if (!blk_queue_plugged(q))
  1897. q->request_fn(q);
  1898. else
  1899. __generic_unplug_device(q);
  1900. }
  1901. EXPORT_SYMBOL(blk_start_queueing);
  1902. /**
  1903. * blk_requeue_request - put a request back on queue
  1904. * @q: request queue where request should be inserted
  1905. * @rq: request to be inserted
  1906. *
  1907. * Description:
  1908. * Drivers often keep queueing requests until the hardware cannot accept
  1909. * more, when that condition happens we need to put the request back
  1910. * on the queue. Must be called with queue lock held.
  1911. */
  1912. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1913. {
  1914. blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
  1915. if (blk_rq_tagged(rq))
  1916. blk_queue_end_tag(q, rq);
  1917. elv_requeue_request(q, rq);
  1918. }
  1919. EXPORT_SYMBOL(blk_requeue_request);
  1920. /**
  1921. * blk_insert_request - insert a special request in to a request queue
  1922. * @q: request queue where request should be inserted
  1923. * @rq: request to be inserted
  1924. * @at_head: insert request at head or tail of queue
  1925. * @data: private data
  1926. *
  1927. * Description:
  1928. * Many block devices need to execute commands asynchronously, so they don't
  1929. * block the whole kernel from preemption during request execution. This is
  1930. * accomplished normally by inserting aritficial requests tagged as
  1931. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1932. * scheduled for actual execution by the request queue.
  1933. *
  1934. * We have the option of inserting the head or the tail of the queue.
  1935. * Typically we use the tail for new ioctls and so forth. We use the head
  1936. * of the queue for things like a QUEUE_FULL message from a device, or a
  1937. * host that is unable to accept a particular command.
  1938. */
  1939. void blk_insert_request(request_queue_t *q, struct request *rq,
  1940. int at_head, void *data)
  1941. {
  1942. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1943. unsigned long flags;
  1944. /*
  1945. * tell I/O scheduler that this isn't a regular read/write (ie it
  1946. * must not attempt merges on this) and that it acts as a soft
  1947. * barrier
  1948. */
  1949. rq->cmd_type = REQ_TYPE_SPECIAL;
  1950. rq->cmd_flags |= REQ_SOFTBARRIER;
  1951. rq->special = data;
  1952. spin_lock_irqsave(q->queue_lock, flags);
  1953. /*
  1954. * If command is tagged, release the tag
  1955. */
  1956. if (blk_rq_tagged(rq))
  1957. blk_queue_end_tag(q, rq);
  1958. drive_stat_acct(rq, rq->nr_sectors, 1);
  1959. __elv_add_request(q, rq, where, 0);
  1960. blk_start_queueing(q);
  1961. spin_unlock_irqrestore(q->queue_lock, flags);
  1962. }
  1963. EXPORT_SYMBOL(blk_insert_request);
  1964. static int __blk_rq_unmap_user(struct bio *bio)
  1965. {
  1966. int ret = 0;
  1967. if (bio) {
  1968. if (bio_flagged(bio, BIO_USER_MAPPED))
  1969. bio_unmap_user(bio);
  1970. else
  1971. ret = bio_uncopy_user(bio);
  1972. }
  1973. return ret;
  1974. }
  1975. static int __blk_rq_map_user(request_queue_t *q, struct request *rq,
  1976. void __user *ubuf, unsigned int len)
  1977. {
  1978. unsigned long uaddr;
  1979. struct bio *bio, *orig_bio;
  1980. int reading, ret;
  1981. reading = rq_data_dir(rq) == READ;
  1982. /*
  1983. * if alignment requirement is satisfied, map in user pages for
  1984. * direct dma. else, set up kernel bounce buffers
  1985. */
  1986. uaddr = (unsigned long) ubuf;
  1987. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  1988. bio = bio_map_user(q, NULL, uaddr, len, reading);
  1989. else
  1990. bio = bio_copy_user(q, uaddr, len, reading);
  1991. if (IS_ERR(bio))
  1992. return PTR_ERR(bio);
  1993. orig_bio = bio;
  1994. blk_queue_bounce(q, &bio);
  1995. /*
  1996. * We link the bounce buffer in and could have to traverse it
  1997. * later so we have to get a ref to prevent it from being freed
  1998. */
  1999. bio_get(bio);
  2000. if (!rq->bio)
  2001. blk_rq_bio_prep(q, rq, bio);
  2002. else if (!ll_back_merge_fn(q, rq, bio)) {
  2003. ret = -EINVAL;
  2004. goto unmap_bio;
  2005. } else {
  2006. rq->biotail->bi_next = bio;
  2007. rq->biotail = bio;
  2008. rq->data_len += bio->bi_size;
  2009. }
  2010. return bio->bi_size;
  2011. unmap_bio:
  2012. /* if it was boucned we must call the end io function */
  2013. bio_endio(bio, bio->bi_size, 0);
  2014. __blk_rq_unmap_user(orig_bio);
  2015. bio_put(bio);
  2016. return ret;
  2017. }
  2018. /**
  2019. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  2020. * @q: request queue where request should be inserted
  2021. * @rq: request structure to fill
  2022. * @ubuf: the user buffer
  2023. * @len: length of user data
  2024. *
  2025. * Description:
  2026. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2027. * a kernel bounce buffer is used.
  2028. *
  2029. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2030. * still in process context.
  2031. *
  2032. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2033. * before being submitted to the device, as pages mapped may be out of
  2034. * reach. It's the callers responsibility to make sure this happens. The
  2035. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2036. * unmapping.
  2037. */
  2038. int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
  2039. unsigned long len)
  2040. {
  2041. unsigned long bytes_read = 0;
  2042. struct bio *bio = NULL;
  2043. int ret;
  2044. if (len > (q->max_hw_sectors << 9))
  2045. return -EINVAL;
  2046. if (!len || !ubuf)
  2047. return -EINVAL;
  2048. while (bytes_read != len) {
  2049. unsigned long map_len, end, start;
  2050. map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
  2051. end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
  2052. >> PAGE_SHIFT;
  2053. start = (unsigned long)ubuf >> PAGE_SHIFT;
  2054. /*
  2055. * A bad offset could cause us to require BIO_MAX_PAGES + 1
  2056. * pages. If this happens we just lower the requested
  2057. * mapping len by a page so that we can fit
  2058. */
  2059. if (end - start > BIO_MAX_PAGES)
  2060. map_len -= PAGE_SIZE;
  2061. ret = __blk_rq_map_user(q, rq, ubuf, map_len);
  2062. if (ret < 0)
  2063. goto unmap_rq;
  2064. if (!bio)
  2065. bio = rq->bio;
  2066. bytes_read += ret;
  2067. ubuf += ret;
  2068. }
  2069. rq->buffer = rq->data = NULL;
  2070. return 0;
  2071. unmap_rq:
  2072. blk_rq_unmap_user(bio);
  2073. return ret;
  2074. }
  2075. EXPORT_SYMBOL(blk_rq_map_user);
  2076. /**
  2077. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  2078. * @q: request queue where request should be inserted
  2079. * @rq: request to map data to
  2080. * @iov: pointer to the iovec
  2081. * @iov_count: number of elements in the iovec
  2082. * @len: I/O byte count
  2083. *
  2084. * Description:
  2085. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2086. * a kernel bounce buffer is used.
  2087. *
  2088. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2089. * still in process context.
  2090. *
  2091. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2092. * before being submitted to the device, as pages mapped may be out of
  2093. * reach. It's the callers responsibility to make sure this happens. The
  2094. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2095. * unmapping.
  2096. */
  2097. int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
  2098. struct sg_iovec *iov, int iov_count, unsigned int len)
  2099. {
  2100. struct bio *bio;
  2101. if (!iov || iov_count <= 0)
  2102. return -EINVAL;
  2103. /* we don't allow misaligned data like bio_map_user() does. If the
  2104. * user is using sg, they're expected to know the alignment constraints
  2105. * and respect them accordingly */
  2106. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  2107. if (IS_ERR(bio))
  2108. return PTR_ERR(bio);
  2109. if (bio->bi_size != len) {
  2110. bio_endio(bio, bio->bi_size, 0);
  2111. bio_unmap_user(bio);
  2112. return -EINVAL;
  2113. }
  2114. bio_get(bio);
  2115. blk_rq_bio_prep(q, rq, bio);
  2116. rq->buffer = rq->data = NULL;
  2117. return 0;
  2118. }
  2119. EXPORT_SYMBOL(blk_rq_map_user_iov);
  2120. /**
  2121. * blk_rq_unmap_user - unmap a request with user data
  2122. * @bio: start of bio list
  2123. *
  2124. * Description:
  2125. * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
  2126. * supply the original rq->bio from the blk_rq_map_user() return, since
  2127. * the io completion may have changed rq->bio.
  2128. */
  2129. int blk_rq_unmap_user(struct bio *bio)
  2130. {
  2131. struct bio *mapped_bio;
  2132. int ret = 0, ret2;
  2133. while (bio) {
  2134. mapped_bio = bio;
  2135. if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
  2136. mapped_bio = bio->bi_private;
  2137. ret2 = __blk_rq_unmap_user(mapped_bio);
  2138. if (ret2 && !ret)
  2139. ret = ret2;
  2140. mapped_bio = bio;
  2141. bio = bio->bi_next;
  2142. bio_put(mapped_bio);
  2143. }
  2144. return ret;
  2145. }
  2146. EXPORT_SYMBOL(blk_rq_unmap_user);
  2147. /**
  2148. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  2149. * @q: request queue where request should be inserted
  2150. * @rq: request to fill
  2151. * @kbuf: the kernel buffer
  2152. * @len: length of user data
  2153. * @gfp_mask: memory allocation flags
  2154. */
  2155. int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
  2156. unsigned int len, gfp_t gfp_mask)
  2157. {
  2158. struct bio *bio;
  2159. if (len > (q->max_hw_sectors << 9))
  2160. return -EINVAL;
  2161. if (!len || !kbuf)
  2162. return -EINVAL;
  2163. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  2164. if (IS_ERR(bio))
  2165. return PTR_ERR(bio);
  2166. if (rq_data_dir(rq) == WRITE)
  2167. bio->bi_rw |= (1 << BIO_RW);
  2168. blk_rq_bio_prep(q, rq, bio);
  2169. rq->buffer = rq->data = NULL;
  2170. return 0;
  2171. }
  2172. EXPORT_SYMBOL(blk_rq_map_kern);
  2173. /**
  2174. * blk_execute_rq_nowait - insert a request into queue for execution
  2175. * @q: queue to insert the request in
  2176. * @bd_disk: matching gendisk
  2177. * @rq: request to insert
  2178. * @at_head: insert request at head or tail of queue
  2179. * @done: I/O completion handler
  2180. *
  2181. * Description:
  2182. * Insert a fully prepared request at the back of the io scheduler queue
  2183. * for execution. Don't wait for completion.
  2184. */
  2185. void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
  2186. struct request *rq, int at_head,
  2187. rq_end_io_fn *done)
  2188. {
  2189. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  2190. rq->rq_disk = bd_disk;
  2191. rq->cmd_flags |= REQ_NOMERGE;
  2192. rq->end_io = done;
  2193. WARN_ON(irqs_disabled());
  2194. spin_lock_irq(q->queue_lock);
  2195. __elv_add_request(q, rq, where, 1);
  2196. __generic_unplug_device(q);
  2197. spin_unlock_irq(q->queue_lock);
  2198. }
  2199. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  2200. /**
  2201. * blk_execute_rq - insert a request into queue for execution
  2202. * @q: queue to insert the request in
  2203. * @bd_disk: matching gendisk
  2204. * @rq: request to insert
  2205. * @at_head: insert request at head or tail of queue
  2206. *
  2207. * Description:
  2208. * Insert a fully prepared request at the back of the io scheduler queue
  2209. * for execution and wait for completion.
  2210. */
  2211. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  2212. struct request *rq, int at_head)
  2213. {
  2214. DECLARE_COMPLETION_ONSTACK(wait);
  2215. char sense[SCSI_SENSE_BUFFERSIZE];
  2216. int err = 0;
  2217. /*
  2218. * we need an extra reference to the request, so we can look at
  2219. * it after io completion
  2220. */
  2221. rq->ref_count++;
  2222. if (!rq->sense) {
  2223. memset(sense, 0, sizeof(sense));
  2224. rq->sense = sense;
  2225. rq->sense_len = 0;
  2226. }
  2227. rq->end_io_data = &wait;
  2228. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2229. wait_for_completion(&wait);
  2230. if (rq->errors)
  2231. err = -EIO;
  2232. return err;
  2233. }
  2234. EXPORT_SYMBOL(blk_execute_rq);
  2235. /**
  2236. * blkdev_issue_flush - queue a flush
  2237. * @bdev: blockdev to issue flush for
  2238. * @error_sector: error sector
  2239. *
  2240. * Description:
  2241. * Issue a flush for the block device in question. Caller can supply
  2242. * room for storing the error offset in case of a flush error, if they
  2243. * wish to. Caller must run wait_for_completion() on its own.
  2244. */
  2245. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2246. {
  2247. request_queue_t *q;
  2248. if (bdev->bd_disk == NULL)
  2249. return -ENXIO;
  2250. q = bdev_get_queue(bdev);
  2251. if (!q)
  2252. return -ENXIO;
  2253. if (!q->issue_flush_fn)
  2254. return -EOPNOTSUPP;
  2255. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  2256. }
  2257. EXPORT_SYMBOL(blkdev_issue_flush);
  2258. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2259. {
  2260. int rw = rq_data_dir(rq);
  2261. if (!blk_fs_request(rq) || !rq->rq_disk)
  2262. return;
  2263. if (!new_io) {
  2264. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2265. } else {
  2266. disk_round_stats(rq->rq_disk);
  2267. rq->rq_disk->in_flight++;
  2268. }
  2269. }
  2270. /*
  2271. * add-request adds a request to the linked list.
  2272. * queue lock is held and interrupts disabled, as we muck with the
  2273. * request queue list.
  2274. */
  2275. static inline void add_request(request_queue_t * q, struct request * req)
  2276. {
  2277. drive_stat_acct(req, req->nr_sectors, 1);
  2278. /*
  2279. * elevator indicated where it wants this request to be
  2280. * inserted at elevator_merge time
  2281. */
  2282. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2283. }
  2284. /*
  2285. * disk_round_stats() - Round off the performance stats on a struct
  2286. * disk_stats.
  2287. *
  2288. * The average IO queue length and utilisation statistics are maintained
  2289. * by observing the current state of the queue length and the amount of
  2290. * time it has been in this state for.
  2291. *
  2292. * Normally, that accounting is done on IO completion, but that can result
  2293. * in more than a second's worth of IO being accounted for within any one
  2294. * second, leading to >100% utilisation. To deal with that, we call this
  2295. * function to do a round-off before returning the results when reading
  2296. * /proc/diskstats. This accounts immediately for all queue usage up to
  2297. * the current jiffies and restarts the counters again.
  2298. */
  2299. void disk_round_stats(struct gendisk *disk)
  2300. {
  2301. unsigned long now = jiffies;
  2302. if (now == disk->stamp)
  2303. return;
  2304. if (disk->in_flight) {
  2305. __disk_stat_add(disk, time_in_queue,
  2306. disk->in_flight * (now - disk->stamp));
  2307. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2308. }
  2309. disk->stamp = now;
  2310. }
  2311. EXPORT_SYMBOL_GPL(disk_round_stats);
  2312. /*
  2313. * queue lock must be held
  2314. */
  2315. void __blk_put_request(request_queue_t *q, struct request *req)
  2316. {
  2317. if (unlikely(!q))
  2318. return;
  2319. if (unlikely(--req->ref_count))
  2320. return;
  2321. elv_completed_request(q, req);
  2322. /*
  2323. * Request may not have originated from ll_rw_blk. if not,
  2324. * it didn't come out of our reserved rq pools
  2325. */
  2326. if (req->cmd_flags & REQ_ALLOCED) {
  2327. int rw = rq_data_dir(req);
  2328. int priv = req->cmd_flags & REQ_ELVPRIV;
  2329. BUG_ON(!list_empty(&req->queuelist));
  2330. BUG_ON(!hlist_unhashed(&req->hash));
  2331. blk_free_request(q, req);
  2332. freed_request(q, rw, priv);
  2333. }
  2334. }
  2335. EXPORT_SYMBOL_GPL(__blk_put_request);
  2336. void blk_put_request(struct request *req)
  2337. {
  2338. unsigned long flags;
  2339. request_queue_t *q = req->q;
  2340. /*
  2341. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2342. * following if (q) test.
  2343. */
  2344. if (q) {
  2345. spin_lock_irqsave(q->queue_lock, flags);
  2346. __blk_put_request(q, req);
  2347. spin_unlock_irqrestore(q->queue_lock, flags);
  2348. }
  2349. }
  2350. EXPORT_SYMBOL(blk_put_request);
  2351. /**
  2352. * blk_end_sync_rq - executes a completion event on a request
  2353. * @rq: request to complete
  2354. * @error: end io status of the request
  2355. */
  2356. void blk_end_sync_rq(struct request *rq, int error)
  2357. {
  2358. struct completion *waiting = rq->end_io_data;
  2359. rq->end_io_data = NULL;
  2360. __blk_put_request(rq->q, rq);
  2361. /*
  2362. * complete last, if this is a stack request the process (and thus
  2363. * the rq pointer) could be invalid right after this complete()
  2364. */
  2365. complete(waiting);
  2366. }
  2367. EXPORT_SYMBOL(blk_end_sync_rq);
  2368. /*
  2369. * Has to be called with the request spinlock acquired
  2370. */
  2371. static int attempt_merge(request_queue_t *q, struct request *req,
  2372. struct request *next)
  2373. {
  2374. if (!rq_mergeable(req) || !rq_mergeable(next))
  2375. return 0;
  2376. /*
  2377. * not contiguous
  2378. */
  2379. if (req->sector + req->nr_sectors != next->sector)
  2380. return 0;
  2381. if (rq_data_dir(req) != rq_data_dir(next)
  2382. || req->rq_disk != next->rq_disk
  2383. || next->special)
  2384. return 0;
  2385. /*
  2386. * If we are allowed to merge, then append bio list
  2387. * from next to rq and release next. merge_requests_fn
  2388. * will have updated segment counts, update sector
  2389. * counts here.
  2390. */
  2391. if (!ll_merge_requests_fn(q, req, next))
  2392. return 0;
  2393. /*
  2394. * At this point we have either done a back merge
  2395. * or front merge. We need the smaller start_time of
  2396. * the merged requests to be the current request
  2397. * for accounting purposes.
  2398. */
  2399. if (time_after(req->start_time, next->start_time))
  2400. req->start_time = next->start_time;
  2401. req->biotail->bi_next = next->bio;
  2402. req->biotail = next->biotail;
  2403. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2404. elv_merge_requests(q, req, next);
  2405. if (req->rq_disk) {
  2406. disk_round_stats(req->rq_disk);
  2407. req->rq_disk->in_flight--;
  2408. }
  2409. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2410. __blk_put_request(q, next);
  2411. return 1;
  2412. }
  2413. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2414. {
  2415. struct request *next = elv_latter_request(q, rq);
  2416. if (next)
  2417. return attempt_merge(q, rq, next);
  2418. return 0;
  2419. }
  2420. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2421. {
  2422. struct request *prev = elv_former_request(q, rq);
  2423. if (prev)
  2424. return attempt_merge(q, prev, rq);
  2425. return 0;
  2426. }
  2427. static void init_request_from_bio(struct request *req, struct bio *bio)
  2428. {
  2429. req->cmd_type = REQ_TYPE_FS;
  2430. /*
  2431. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2432. */
  2433. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2434. req->cmd_flags |= REQ_FAILFAST;
  2435. /*
  2436. * REQ_BARRIER implies no merging, but lets make it explicit
  2437. */
  2438. if (unlikely(bio_barrier(bio)))
  2439. req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2440. if (bio_sync(bio))
  2441. req->cmd_flags |= REQ_RW_SYNC;
  2442. if (bio_rw_meta(bio))
  2443. req->cmd_flags |= REQ_RW_META;
  2444. req->errors = 0;
  2445. req->hard_sector = req->sector = bio->bi_sector;
  2446. req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
  2447. req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
  2448. req->nr_phys_segments = bio_phys_segments(req->q, bio);
  2449. req->nr_hw_segments = bio_hw_segments(req->q, bio);
  2450. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2451. req->bio = req->biotail = bio;
  2452. req->ioprio = bio_prio(bio);
  2453. req->rq_disk = bio->bi_bdev->bd_disk;
  2454. req->start_time = jiffies;
  2455. }
  2456. static int __make_request(request_queue_t *q, struct bio *bio)
  2457. {
  2458. struct request *req;
  2459. int el_ret, nr_sectors, barrier, err;
  2460. const unsigned short prio = bio_prio(bio);
  2461. const int sync = bio_sync(bio);
  2462. int rw_flags;
  2463. nr_sectors = bio_sectors(bio);
  2464. /*
  2465. * low level driver can indicate that it wants pages above a
  2466. * certain limit bounced to low memory (ie for highmem, or even
  2467. * ISA dma in theory)
  2468. */
  2469. blk_queue_bounce(q, &bio);
  2470. barrier = bio_barrier(bio);
  2471. if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
  2472. err = -EOPNOTSUPP;
  2473. goto end_io;
  2474. }
  2475. spin_lock_irq(q->queue_lock);
  2476. if (unlikely(barrier) || elv_queue_empty(q))
  2477. goto get_rq;
  2478. el_ret = elv_merge(q, &req, bio);
  2479. switch (el_ret) {
  2480. case ELEVATOR_BACK_MERGE:
  2481. BUG_ON(!rq_mergeable(req));
  2482. if (!ll_back_merge_fn(q, req, bio))
  2483. break;
  2484. blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
  2485. req->biotail->bi_next = bio;
  2486. req->biotail = bio;
  2487. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2488. req->ioprio = ioprio_best(req->ioprio, prio);
  2489. drive_stat_acct(req, nr_sectors, 0);
  2490. if (!attempt_back_merge(q, req))
  2491. elv_merged_request(q, req, el_ret);
  2492. goto out;
  2493. case ELEVATOR_FRONT_MERGE:
  2494. BUG_ON(!rq_mergeable(req));
  2495. if (!ll_front_merge_fn(q, req, bio))
  2496. break;
  2497. blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
  2498. bio->bi_next = req->bio;
  2499. req->bio = bio;
  2500. /*
  2501. * may not be valid. if the low level driver said
  2502. * it didn't need a bounce buffer then it better
  2503. * not touch req->buffer either...
  2504. */
  2505. req->buffer = bio_data(bio);
  2506. req->current_nr_sectors = bio_cur_sectors(bio);
  2507. req->hard_cur_sectors = req->current_nr_sectors;
  2508. req->sector = req->hard_sector = bio->bi_sector;
  2509. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2510. req->ioprio = ioprio_best(req->ioprio, prio);
  2511. drive_stat_acct(req, nr_sectors, 0);
  2512. if (!attempt_front_merge(q, req))
  2513. elv_merged_request(q, req, el_ret);
  2514. goto out;
  2515. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2516. default:
  2517. ;
  2518. }
  2519. get_rq:
  2520. /*
  2521. * This sync check and mask will be re-done in init_request_from_bio(),
  2522. * but we need to set it earlier to expose the sync flag to the
  2523. * rq allocator and io schedulers.
  2524. */
  2525. rw_flags = bio_data_dir(bio);
  2526. if (sync)
  2527. rw_flags |= REQ_RW_SYNC;
  2528. /*
  2529. * Grab a free request. This is might sleep but can not fail.
  2530. * Returns with the queue unlocked.
  2531. */
  2532. req = get_request_wait(q, rw_flags, bio);
  2533. /*
  2534. * After dropping the lock and possibly sleeping here, our request
  2535. * may now be mergeable after it had proven unmergeable (above).
  2536. * We don't worry about that case for efficiency. It won't happen
  2537. * often, and the elevators are able to handle it.
  2538. */
  2539. init_request_from_bio(req, bio);
  2540. spin_lock_irq(q->queue_lock);
  2541. if (elv_queue_empty(q))
  2542. blk_plug_device(q);
  2543. add_request(q, req);
  2544. out:
  2545. if (sync)
  2546. __generic_unplug_device(q);
  2547. spin_unlock_irq(q->queue_lock);
  2548. return 0;
  2549. end_io:
  2550. bio_endio(bio, nr_sectors << 9, err);
  2551. return 0;
  2552. }
  2553. /*
  2554. * If bio->bi_dev is a partition, remap the location
  2555. */
  2556. static inline void blk_partition_remap(struct bio *bio)
  2557. {
  2558. struct block_device *bdev = bio->bi_bdev;
  2559. if (bdev != bdev->bd_contains) {
  2560. struct hd_struct *p = bdev->bd_part;
  2561. const int rw = bio_data_dir(bio);
  2562. p->sectors[rw] += bio_sectors(bio);
  2563. p->ios[rw]++;
  2564. bio->bi_sector += p->start_sect;
  2565. bio->bi_bdev = bdev->bd_contains;
  2566. }
  2567. }
  2568. static void handle_bad_sector(struct bio *bio)
  2569. {
  2570. char b[BDEVNAME_SIZE];
  2571. printk(KERN_INFO "attempt to access beyond end of device\n");
  2572. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2573. bdevname(bio->bi_bdev, b),
  2574. bio->bi_rw,
  2575. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2576. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2577. set_bit(BIO_EOF, &bio->bi_flags);
  2578. }
  2579. #ifdef CONFIG_FAIL_MAKE_REQUEST
  2580. static DECLARE_FAULT_ATTR(fail_make_request);
  2581. static int __init setup_fail_make_request(char *str)
  2582. {
  2583. return setup_fault_attr(&fail_make_request, str);
  2584. }
  2585. __setup("fail_make_request=", setup_fail_make_request);
  2586. static int should_fail_request(struct bio *bio)
  2587. {
  2588. if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
  2589. (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
  2590. return should_fail(&fail_make_request, bio->bi_size);
  2591. return 0;
  2592. }
  2593. static int __init fail_make_request_debugfs(void)
  2594. {
  2595. return init_fault_attr_dentries(&fail_make_request,
  2596. "fail_make_request");
  2597. }
  2598. late_initcall(fail_make_request_debugfs);
  2599. #else /* CONFIG_FAIL_MAKE_REQUEST */
  2600. static inline int should_fail_request(struct bio *bio)
  2601. {
  2602. return 0;
  2603. }
  2604. #endif /* CONFIG_FAIL_MAKE_REQUEST */
  2605. /**
  2606. * generic_make_request: hand a buffer to its device driver for I/O
  2607. * @bio: The bio describing the location in memory and on the device.
  2608. *
  2609. * generic_make_request() is used to make I/O requests of block
  2610. * devices. It is passed a &struct bio, which describes the I/O that needs
  2611. * to be done.
  2612. *
  2613. * generic_make_request() does not return any status. The
  2614. * success/failure status of the request, along with notification of
  2615. * completion, is delivered asynchronously through the bio->bi_end_io
  2616. * function described (one day) else where.
  2617. *
  2618. * The caller of generic_make_request must make sure that bi_io_vec
  2619. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2620. * set to describe the device address, and the
  2621. * bi_end_io and optionally bi_private are set to describe how
  2622. * completion notification should be signaled.
  2623. *
  2624. * generic_make_request and the drivers it calls may use bi_next if this
  2625. * bio happens to be merged with someone else, and may change bi_dev and
  2626. * bi_sector for remaps as it sees fit. So the values of these fields
  2627. * should NOT be depended on after the call to generic_make_request.
  2628. */
  2629. void generic_make_request(struct bio *bio)
  2630. {
  2631. request_queue_t *q;
  2632. sector_t maxsector;
  2633. sector_t old_sector;
  2634. int ret, nr_sectors = bio_sectors(bio);
  2635. dev_t old_dev;
  2636. might_sleep();
  2637. /* Test device or partition size, when known. */
  2638. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2639. if (maxsector) {
  2640. sector_t sector = bio->bi_sector;
  2641. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2642. /*
  2643. * This may well happen - the kernel calls bread()
  2644. * without checking the size of the device, e.g., when
  2645. * mounting a device.
  2646. */
  2647. handle_bad_sector(bio);
  2648. goto end_io;
  2649. }
  2650. }
  2651. /*
  2652. * Resolve the mapping until finished. (drivers are
  2653. * still free to implement/resolve their own stacking
  2654. * by explicitly returning 0)
  2655. *
  2656. * NOTE: we don't repeat the blk_size check for each new device.
  2657. * Stacking drivers are expected to know what they are doing.
  2658. */
  2659. old_sector = -1;
  2660. old_dev = 0;
  2661. do {
  2662. char b[BDEVNAME_SIZE];
  2663. q = bdev_get_queue(bio->bi_bdev);
  2664. if (!q) {
  2665. printk(KERN_ERR
  2666. "generic_make_request: Trying to access "
  2667. "nonexistent block-device %s (%Lu)\n",
  2668. bdevname(bio->bi_bdev, b),
  2669. (long long) bio->bi_sector);
  2670. end_io:
  2671. bio_endio(bio, bio->bi_size, -EIO);
  2672. break;
  2673. }
  2674. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2675. printk("bio too big device %s (%u > %u)\n",
  2676. bdevname(bio->bi_bdev, b),
  2677. bio_sectors(bio),
  2678. q->max_hw_sectors);
  2679. goto end_io;
  2680. }
  2681. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2682. goto end_io;
  2683. if (should_fail_request(bio))
  2684. goto end_io;
  2685. /*
  2686. * If this device has partitions, remap block n
  2687. * of partition p to block n+start(p) of the disk.
  2688. */
  2689. blk_partition_remap(bio);
  2690. if (old_sector != -1)
  2691. blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
  2692. old_sector);
  2693. blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
  2694. old_sector = bio->bi_sector;
  2695. old_dev = bio->bi_bdev->bd_dev;
  2696. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2697. if (maxsector) {
  2698. sector_t sector = bio->bi_sector;
  2699. if (maxsector < nr_sectors ||
  2700. maxsector - nr_sectors < sector) {
  2701. /*
  2702. * This may well happen - partitions are not
  2703. * checked to make sure they are within the size
  2704. * of the whole device.
  2705. */
  2706. handle_bad_sector(bio);
  2707. goto end_io;
  2708. }
  2709. }
  2710. ret = q->make_request_fn(q, bio);
  2711. } while (ret);
  2712. }
  2713. EXPORT_SYMBOL(generic_make_request);
  2714. /**
  2715. * submit_bio: submit a bio to the block device layer for I/O
  2716. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2717. * @bio: The &struct bio which describes the I/O
  2718. *
  2719. * submit_bio() is very similar in purpose to generic_make_request(), and
  2720. * uses that function to do most of the work. Both are fairly rough
  2721. * interfaces, @bio must be presetup and ready for I/O.
  2722. *
  2723. */
  2724. void submit_bio(int rw, struct bio *bio)
  2725. {
  2726. int count = bio_sectors(bio);
  2727. BIO_BUG_ON(!bio->bi_size);
  2728. BIO_BUG_ON(!bio->bi_io_vec);
  2729. bio->bi_rw |= rw;
  2730. if (rw & WRITE) {
  2731. count_vm_events(PGPGOUT, count);
  2732. } else {
  2733. task_io_account_read(bio->bi_size);
  2734. count_vm_events(PGPGIN, count);
  2735. }
  2736. if (unlikely(block_dump)) {
  2737. char b[BDEVNAME_SIZE];
  2738. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2739. current->comm, current->pid,
  2740. (rw & WRITE) ? "WRITE" : "READ",
  2741. (unsigned long long)bio->bi_sector,
  2742. bdevname(bio->bi_bdev,b));
  2743. }
  2744. generic_make_request(bio);
  2745. }
  2746. EXPORT_SYMBOL(submit_bio);
  2747. static void blk_recalc_rq_segments(struct request *rq)
  2748. {
  2749. struct bio *bio, *prevbio = NULL;
  2750. int nr_phys_segs, nr_hw_segs;
  2751. unsigned int phys_size, hw_size;
  2752. request_queue_t *q = rq->q;
  2753. if (!rq->bio)
  2754. return;
  2755. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2756. rq_for_each_bio(bio, rq) {
  2757. /* Force bio hw/phys segs to be recalculated. */
  2758. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2759. nr_phys_segs += bio_phys_segments(q, bio);
  2760. nr_hw_segs += bio_hw_segments(q, bio);
  2761. if (prevbio) {
  2762. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2763. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2764. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2765. pseg <= q->max_segment_size) {
  2766. nr_phys_segs--;
  2767. phys_size += prevbio->bi_size + bio->bi_size;
  2768. } else
  2769. phys_size = 0;
  2770. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2771. hseg <= q->max_segment_size) {
  2772. nr_hw_segs--;
  2773. hw_size += prevbio->bi_size + bio->bi_size;
  2774. } else
  2775. hw_size = 0;
  2776. }
  2777. prevbio = bio;
  2778. }
  2779. rq->nr_phys_segments = nr_phys_segs;
  2780. rq->nr_hw_segments = nr_hw_segs;
  2781. }
  2782. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2783. {
  2784. if (blk_fs_request(rq)) {
  2785. rq->hard_sector += nsect;
  2786. rq->hard_nr_sectors -= nsect;
  2787. /*
  2788. * Move the I/O submission pointers ahead if required.
  2789. */
  2790. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2791. (rq->sector <= rq->hard_sector)) {
  2792. rq->sector = rq->hard_sector;
  2793. rq->nr_sectors = rq->hard_nr_sectors;
  2794. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2795. rq->current_nr_sectors = rq->hard_cur_sectors;
  2796. rq->buffer = bio_data(rq->bio);
  2797. }
  2798. /*
  2799. * if total number of sectors is less than the first segment
  2800. * size, something has gone terribly wrong
  2801. */
  2802. if (rq->nr_sectors < rq->current_nr_sectors) {
  2803. printk("blk: request botched\n");
  2804. rq->nr_sectors = rq->current_nr_sectors;
  2805. }
  2806. }
  2807. }
  2808. static int __end_that_request_first(struct request *req, int uptodate,
  2809. int nr_bytes)
  2810. {
  2811. int total_bytes, bio_nbytes, error, next_idx = 0;
  2812. struct bio *bio;
  2813. blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
  2814. /*
  2815. * extend uptodate bool to allow < 0 value to be direct io error
  2816. */
  2817. error = 0;
  2818. if (end_io_error(uptodate))
  2819. error = !uptodate ? -EIO : uptodate;
  2820. /*
  2821. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2822. * sense key with us all the way through
  2823. */
  2824. if (!blk_pc_request(req))
  2825. req->errors = 0;
  2826. if (!uptodate) {
  2827. if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
  2828. printk("end_request: I/O error, dev %s, sector %llu\n",
  2829. req->rq_disk ? req->rq_disk->disk_name : "?",
  2830. (unsigned long long)req->sector);
  2831. }
  2832. if (blk_fs_request(req) && req->rq_disk) {
  2833. const int rw = rq_data_dir(req);
  2834. disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2835. }
  2836. total_bytes = bio_nbytes = 0;
  2837. while ((bio = req->bio) != NULL) {
  2838. int nbytes;
  2839. if (nr_bytes >= bio->bi_size) {
  2840. req->bio = bio->bi_next;
  2841. nbytes = bio->bi_size;
  2842. if (!ordered_bio_endio(req, bio, nbytes, error))
  2843. bio_endio(bio, nbytes, error);
  2844. next_idx = 0;
  2845. bio_nbytes = 0;
  2846. } else {
  2847. int idx = bio->bi_idx + next_idx;
  2848. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2849. blk_dump_rq_flags(req, "__end_that");
  2850. printk("%s: bio idx %d >= vcnt %d\n",
  2851. __FUNCTION__,
  2852. bio->bi_idx, bio->bi_vcnt);
  2853. break;
  2854. }
  2855. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2856. BIO_BUG_ON(nbytes > bio->bi_size);
  2857. /*
  2858. * not a complete bvec done
  2859. */
  2860. if (unlikely(nbytes > nr_bytes)) {
  2861. bio_nbytes += nr_bytes;
  2862. total_bytes += nr_bytes;
  2863. break;
  2864. }
  2865. /*
  2866. * advance to the next vector
  2867. */
  2868. next_idx++;
  2869. bio_nbytes += nbytes;
  2870. }
  2871. total_bytes += nbytes;
  2872. nr_bytes -= nbytes;
  2873. if ((bio = req->bio)) {
  2874. /*
  2875. * end more in this run, or just return 'not-done'
  2876. */
  2877. if (unlikely(nr_bytes <= 0))
  2878. break;
  2879. }
  2880. }
  2881. /*
  2882. * completely done
  2883. */
  2884. if (!req->bio)
  2885. return 0;
  2886. /*
  2887. * if the request wasn't completed, update state
  2888. */
  2889. if (bio_nbytes) {
  2890. if (!ordered_bio_endio(req, bio, bio_nbytes, error))
  2891. bio_endio(bio, bio_nbytes, error);
  2892. bio->bi_idx += next_idx;
  2893. bio_iovec(bio)->bv_offset += nr_bytes;
  2894. bio_iovec(bio)->bv_len -= nr_bytes;
  2895. }
  2896. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2897. blk_recalc_rq_segments(req);
  2898. return 1;
  2899. }
  2900. /**
  2901. * end_that_request_first - end I/O on a request
  2902. * @req: the request being processed
  2903. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2904. * @nr_sectors: number of sectors to end I/O on
  2905. *
  2906. * Description:
  2907. * Ends I/O on a number of sectors attached to @req, and sets it up
  2908. * for the next range of segments (if any) in the cluster.
  2909. *
  2910. * Return:
  2911. * 0 - we are done with this request, call end_that_request_last()
  2912. * 1 - still buffers pending for this request
  2913. **/
  2914. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2915. {
  2916. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2917. }
  2918. EXPORT_SYMBOL(end_that_request_first);
  2919. /**
  2920. * end_that_request_chunk - end I/O on a request
  2921. * @req: the request being processed
  2922. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2923. * @nr_bytes: number of bytes to complete
  2924. *
  2925. * Description:
  2926. * Ends I/O on a number of bytes attached to @req, and sets it up
  2927. * for the next range of segments (if any). Like end_that_request_first(),
  2928. * but deals with bytes instead of sectors.
  2929. *
  2930. * Return:
  2931. * 0 - we are done with this request, call end_that_request_last()
  2932. * 1 - still buffers pending for this request
  2933. **/
  2934. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2935. {
  2936. return __end_that_request_first(req, uptodate, nr_bytes);
  2937. }
  2938. EXPORT_SYMBOL(end_that_request_chunk);
  2939. /*
  2940. * splice the completion data to a local structure and hand off to
  2941. * process_completion_queue() to complete the requests
  2942. */
  2943. static void blk_done_softirq(struct softirq_action *h)
  2944. {
  2945. struct list_head *cpu_list, local_list;
  2946. local_irq_disable();
  2947. cpu_list = &__get_cpu_var(blk_cpu_done);
  2948. list_replace_init(cpu_list, &local_list);
  2949. local_irq_enable();
  2950. while (!list_empty(&local_list)) {
  2951. struct request *rq = list_entry(local_list.next, struct request, donelist);
  2952. list_del_init(&rq->donelist);
  2953. rq->q->softirq_done_fn(rq);
  2954. }
  2955. }
  2956. static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
  2957. void *hcpu)
  2958. {
  2959. /*
  2960. * If a CPU goes away, splice its entries to the current CPU
  2961. * and trigger a run of the softirq
  2962. */
  2963. if (action == CPU_DEAD) {
  2964. int cpu = (unsigned long) hcpu;
  2965. local_irq_disable();
  2966. list_splice_init(&per_cpu(blk_cpu_done, cpu),
  2967. &__get_cpu_var(blk_cpu_done));
  2968. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  2969. local_irq_enable();
  2970. }
  2971. return NOTIFY_OK;
  2972. }
  2973. static struct notifier_block __devinitdata blk_cpu_notifier = {
  2974. .notifier_call = blk_cpu_notify,
  2975. };
  2976. /**
  2977. * blk_complete_request - end I/O on a request
  2978. * @req: the request being processed
  2979. *
  2980. * Description:
  2981. * Ends all I/O on a request. It does not handle partial completions,
  2982. * unless the driver actually implements this in its completion callback
  2983. * through requeueing. Theh actual completion happens out-of-order,
  2984. * through a softirq handler. The user must have registered a completion
  2985. * callback through blk_queue_softirq_done().
  2986. **/
  2987. void blk_complete_request(struct request *req)
  2988. {
  2989. struct list_head *cpu_list;
  2990. unsigned long flags;
  2991. BUG_ON(!req->q->softirq_done_fn);
  2992. local_irq_save(flags);
  2993. cpu_list = &__get_cpu_var(blk_cpu_done);
  2994. list_add_tail(&req->donelist, cpu_list);
  2995. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  2996. local_irq_restore(flags);
  2997. }
  2998. EXPORT_SYMBOL(blk_complete_request);
  2999. /*
  3000. * queue lock must be held
  3001. */
  3002. void end_that_request_last(struct request *req, int uptodate)
  3003. {
  3004. struct gendisk *disk = req->rq_disk;
  3005. int error;
  3006. /*
  3007. * extend uptodate bool to allow < 0 value to be direct io error
  3008. */
  3009. error = 0;
  3010. if (end_io_error(uptodate))
  3011. error = !uptodate ? -EIO : uptodate;
  3012. if (unlikely(laptop_mode) && blk_fs_request(req))
  3013. laptop_io_completion();
  3014. /*
  3015. * Account IO completion. bar_rq isn't accounted as a normal
  3016. * IO on queueing nor completion. Accounting the containing
  3017. * request is enough.
  3018. */
  3019. if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
  3020. unsigned long duration = jiffies - req->start_time;
  3021. const int rw = rq_data_dir(req);
  3022. __disk_stat_inc(disk, ios[rw]);
  3023. __disk_stat_add(disk, ticks[rw], duration);
  3024. disk_round_stats(disk);
  3025. disk->in_flight--;
  3026. }
  3027. if (req->end_io)
  3028. req->end_io(req, error);
  3029. else
  3030. __blk_put_request(req->q, req);
  3031. }
  3032. EXPORT_SYMBOL(end_that_request_last);
  3033. void end_request(struct request *req, int uptodate)
  3034. {
  3035. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  3036. add_disk_randomness(req->rq_disk);
  3037. blkdev_dequeue_request(req);
  3038. end_that_request_last(req, uptodate);
  3039. }
  3040. }
  3041. EXPORT_SYMBOL(end_request);
  3042. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  3043. {
  3044. /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
  3045. rq->cmd_flags |= (bio->bi_rw & 3);
  3046. rq->nr_phys_segments = bio_phys_segments(q, bio);
  3047. rq->nr_hw_segments = bio_hw_segments(q, bio);
  3048. rq->current_nr_sectors = bio_cur_sectors(bio);
  3049. rq->hard_cur_sectors = rq->current_nr_sectors;
  3050. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  3051. rq->buffer = bio_data(bio);
  3052. rq->data_len = bio->bi_size;
  3053. rq->bio = rq->biotail = bio;
  3054. }
  3055. EXPORT_SYMBOL(blk_rq_bio_prep);
  3056. int kblockd_schedule_work(struct work_struct *work)
  3057. {
  3058. return queue_work(kblockd_workqueue, work);
  3059. }
  3060. EXPORT_SYMBOL(kblockd_schedule_work);
  3061. void kblockd_flush(void)
  3062. {
  3063. flush_workqueue(kblockd_workqueue);
  3064. }
  3065. EXPORT_SYMBOL(kblockd_flush);
  3066. int __init blk_dev_init(void)
  3067. {
  3068. int i;
  3069. kblockd_workqueue = create_workqueue("kblockd");
  3070. if (!kblockd_workqueue)
  3071. panic("Failed to create kblockd\n");
  3072. request_cachep = kmem_cache_create("blkdev_requests",
  3073. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  3074. requestq_cachep = kmem_cache_create("blkdev_queue",
  3075. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  3076. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  3077. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  3078. for_each_possible_cpu(i)
  3079. INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
  3080. open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
  3081. register_hotcpu_notifier(&blk_cpu_notifier);
  3082. blk_max_low_pfn = max_low_pfn;
  3083. blk_max_pfn = max_pfn;
  3084. return 0;
  3085. }
  3086. /*
  3087. * IO Context helper functions
  3088. */
  3089. void put_io_context(struct io_context *ioc)
  3090. {
  3091. if (ioc == NULL)
  3092. return;
  3093. BUG_ON(atomic_read(&ioc->refcount) == 0);
  3094. if (atomic_dec_and_test(&ioc->refcount)) {
  3095. struct cfq_io_context *cic;
  3096. rcu_read_lock();
  3097. if (ioc->aic && ioc->aic->dtor)
  3098. ioc->aic->dtor(ioc->aic);
  3099. if (ioc->cic_root.rb_node != NULL) {
  3100. struct rb_node *n = rb_first(&ioc->cic_root);
  3101. cic = rb_entry(n, struct cfq_io_context, rb_node);
  3102. cic->dtor(ioc);
  3103. }
  3104. rcu_read_unlock();
  3105. kmem_cache_free(iocontext_cachep, ioc);
  3106. }
  3107. }
  3108. EXPORT_SYMBOL(put_io_context);
  3109. /* Called by the exitting task */
  3110. void exit_io_context(void)
  3111. {
  3112. struct io_context *ioc;
  3113. struct cfq_io_context *cic;
  3114. task_lock(current);
  3115. ioc = current->io_context;
  3116. current->io_context = NULL;
  3117. task_unlock(current);
  3118. ioc->task = NULL;
  3119. if (ioc->aic && ioc->aic->exit)
  3120. ioc->aic->exit(ioc->aic);
  3121. if (ioc->cic_root.rb_node != NULL) {
  3122. cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
  3123. cic->exit(ioc);
  3124. }
  3125. put_io_context(ioc);
  3126. }
  3127. /*
  3128. * If the current task has no IO context then create one and initialise it.
  3129. * Otherwise, return its existing IO context.
  3130. *
  3131. * This returned IO context doesn't have a specifically elevated refcount,
  3132. * but since the current task itself holds a reference, the context can be
  3133. * used in general code, so long as it stays within `current` context.
  3134. */
  3135. static struct io_context *current_io_context(gfp_t gfp_flags, int node)
  3136. {
  3137. struct task_struct *tsk = current;
  3138. struct io_context *ret;
  3139. ret = tsk->io_context;
  3140. if (likely(ret))
  3141. return ret;
  3142. ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
  3143. if (ret) {
  3144. atomic_set(&ret->refcount, 1);
  3145. ret->task = current;
  3146. ret->ioprio_changed = 0;
  3147. ret->last_waited = jiffies; /* doesn't matter... */
  3148. ret->nr_batch_requests = 0; /* because this is 0 */
  3149. ret->aic = NULL;
  3150. ret->cic_root.rb_node = NULL;
  3151. /* make sure set_task_ioprio() sees the settings above */
  3152. smp_wmb();
  3153. tsk->io_context = ret;
  3154. }
  3155. return ret;
  3156. }
  3157. EXPORT_SYMBOL(current_io_context);
  3158. /*
  3159. * If the current task has no IO context then create one and initialise it.
  3160. * If it does have a context, take a ref on it.
  3161. *
  3162. * This is always called in the context of the task which submitted the I/O.
  3163. */
  3164. struct io_context *get_io_context(gfp_t gfp_flags, int node)
  3165. {
  3166. struct io_context *ret;
  3167. ret = current_io_context(gfp_flags, node);
  3168. if (likely(ret))
  3169. atomic_inc(&ret->refcount);
  3170. return ret;
  3171. }
  3172. EXPORT_SYMBOL(get_io_context);
  3173. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  3174. {
  3175. struct io_context *src = *psrc;
  3176. struct io_context *dst = *pdst;
  3177. if (src) {
  3178. BUG_ON(atomic_read(&src->refcount) == 0);
  3179. atomic_inc(&src->refcount);
  3180. put_io_context(dst);
  3181. *pdst = src;
  3182. }
  3183. }
  3184. EXPORT_SYMBOL(copy_io_context);
  3185. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  3186. {
  3187. struct io_context *temp;
  3188. temp = *ioc1;
  3189. *ioc1 = *ioc2;
  3190. *ioc2 = temp;
  3191. }
  3192. EXPORT_SYMBOL(swap_io_context);
  3193. /*
  3194. * sysfs parts below
  3195. */
  3196. struct queue_sysfs_entry {
  3197. struct attribute attr;
  3198. ssize_t (*show)(struct request_queue *, char *);
  3199. ssize_t (*store)(struct request_queue *, const char *, size_t);
  3200. };
  3201. static ssize_t
  3202. queue_var_show(unsigned int var, char *page)
  3203. {
  3204. return sprintf(page, "%d\n", var);
  3205. }
  3206. static ssize_t
  3207. queue_var_store(unsigned long *var, const char *page, size_t count)
  3208. {
  3209. char *p = (char *) page;
  3210. *var = simple_strtoul(p, &p, 10);
  3211. return count;
  3212. }
  3213. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  3214. {
  3215. return queue_var_show(q->nr_requests, (page));
  3216. }
  3217. static ssize_t
  3218. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  3219. {
  3220. struct request_list *rl = &q->rq;
  3221. unsigned long nr;
  3222. int ret = queue_var_store(&nr, page, count);
  3223. if (nr < BLKDEV_MIN_RQ)
  3224. nr = BLKDEV_MIN_RQ;
  3225. spin_lock_irq(q->queue_lock);
  3226. q->nr_requests = nr;
  3227. blk_queue_congestion_threshold(q);
  3228. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  3229. blk_set_queue_congested(q, READ);
  3230. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  3231. blk_clear_queue_congested(q, READ);
  3232. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  3233. blk_set_queue_congested(q, WRITE);
  3234. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  3235. blk_clear_queue_congested(q, WRITE);
  3236. if (rl->count[READ] >= q->nr_requests) {
  3237. blk_set_queue_full(q, READ);
  3238. } else if (rl->count[READ]+1 <= q->nr_requests) {
  3239. blk_clear_queue_full(q, READ);
  3240. wake_up(&rl->wait[READ]);
  3241. }
  3242. if (rl->count[WRITE] >= q->nr_requests) {
  3243. blk_set_queue_full(q, WRITE);
  3244. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  3245. blk_clear_queue_full(q, WRITE);
  3246. wake_up(&rl->wait[WRITE]);
  3247. }
  3248. spin_unlock_irq(q->queue_lock);
  3249. return ret;
  3250. }
  3251. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  3252. {
  3253. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3254. return queue_var_show(ra_kb, (page));
  3255. }
  3256. static ssize_t
  3257. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  3258. {
  3259. unsigned long ra_kb;
  3260. ssize_t ret = queue_var_store(&ra_kb, page, count);
  3261. spin_lock_irq(q->queue_lock);
  3262. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  3263. spin_unlock_irq(q->queue_lock);
  3264. return ret;
  3265. }
  3266. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  3267. {
  3268. int max_sectors_kb = q->max_sectors >> 1;
  3269. return queue_var_show(max_sectors_kb, (page));
  3270. }
  3271. static ssize_t
  3272. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3273. {
  3274. unsigned long max_sectors_kb,
  3275. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3276. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3277. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3278. int ra_kb;
  3279. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3280. return -EINVAL;
  3281. /*
  3282. * Take the queue lock to update the readahead and max_sectors
  3283. * values synchronously:
  3284. */
  3285. spin_lock_irq(q->queue_lock);
  3286. /*
  3287. * Trim readahead window as well, if necessary:
  3288. */
  3289. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3290. if (ra_kb > max_sectors_kb)
  3291. q->backing_dev_info.ra_pages =
  3292. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  3293. q->max_sectors = max_sectors_kb << 1;
  3294. spin_unlock_irq(q->queue_lock);
  3295. return ret;
  3296. }
  3297. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3298. {
  3299. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3300. return queue_var_show(max_hw_sectors_kb, (page));
  3301. }
  3302. static struct queue_sysfs_entry queue_requests_entry = {
  3303. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3304. .show = queue_requests_show,
  3305. .store = queue_requests_store,
  3306. };
  3307. static struct queue_sysfs_entry queue_ra_entry = {
  3308. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3309. .show = queue_ra_show,
  3310. .store = queue_ra_store,
  3311. };
  3312. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3313. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3314. .show = queue_max_sectors_show,
  3315. .store = queue_max_sectors_store,
  3316. };
  3317. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3318. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3319. .show = queue_max_hw_sectors_show,
  3320. };
  3321. static struct queue_sysfs_entry queue_iosched_entry = {
  3322. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3323. .show = elv_iosched_show,
  3324. .store = elv_iosched_store,
  3325. };
  3326. static struct attribute *default_attrs[] = {
  3327. &queue_requests_entry.attr,
  3328. &queue_ra_entry.attr,
  3329. &queue_max_hw_sectors_entry.attr,
  3330. &queue_max_sectors_entry.attr,
  3331. &queue_iosched_entry.attr,
  3332. NULL,
  3333. };
  3334. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3335. static ssize_t
  3336. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3337. {
  3338. struct queue_sysfs_entry *entry = to_queue(attr);
  3339. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  3340. ssize_t res;
  3341. if (!entry->show)
  3342. return -EIO;
  3343. mutex_lock(&q->sysfs_lock);
  3344. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3345. mutex_unlock(&q->sysfs_lock);
  3346. return -ENOENT;
  3347. }
  3348. res = entry->show(q, page);
  3349. mutex_unlock(&q->sysfs_lock);
  3350. return res;
  3351. }
  3352. static ssize_t
  3353. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3354. const char *page, size_t length)
  3355. {
  3356. struct queue_sysfs_entry *entry = to_queue(attr);
  3357. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  3358. ssize_t res;
  3359. if (!entry->store)
  3360. return -EIO;
  3361. mutex_lock(&q->sysfs_lock);
  3362. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3363. mutex_unlock(&q->sysfs_lock);
  3364. return -ENOENT;
  3365. }
  3366. res = entry->store(q, page, length);
  3367. mutex_unlock(&q->sysfs_lock);
  3368. return res;
  3369. }
  3370. static struct sysfs_ops queue_sysfs_ops = {
  3371. .show = queue_attr_show,
  3372. .store = queue_attr_store,
  3373. };
  3374. static struct kobj_type queue_ktype = {
  3375. .sysfs_ops = &queue_sysfs_ops,
  3376. .default_attrs = default_attrs,
  3377. .release = blk_release_queue,
  3378. };
  3379. int blk_register_queue(struct gendisk *disk)
  3380. {
  3381. int ret;
  3382. request_queue_t *q = disk->queue;
  3383. if (!q || !q->request_fn)
  3384. return -ENXIO;
  3385. q->kobj.parent = kobject_get(&disk->kobj);
  3386. ret = kobject_add(&q->kobj);
  3387. if (ret < 0)
  3388. return ret;
  3389. kobject_uevent(&q->kobj, KOBJ_ADD);
  3390. ret = elv_register_queue(q);
  3391. if (ret) {
  3392. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3393. kobject_del(&q->kobj);
  3394. return ret;
  3395. }
  3396. return 0;
  3397. }
  3398. void blk_unregister_queue(struct gendisk *disk)
  3399. {
  3400. request_queue_t *q = disk->queue;
  3401. if (q && q->request_fn) {
  3402. elv_unregister_queue(q);
  3403. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3404. kobject_del(&q->kobj);
  3405. kobject_put(&disk->kobj);
  3406. }
  3407. }