zd_chip.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676
  1. /* zd_chip.c
  2. *
  3. * This program is free software; you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation; either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  16. */
  17. /* This file implements all the hardware specific functions for the ZD1211
  18. * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
  19. * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/errno.h>
  23. #include "zd_def.h"
  24. #include "zd_chip.h"
  25. #include "zd_ieee80211.h"
  26. #include "zd_mac.h"
  27. #include "zd_rf.h"
  28. #include "zd_util.h"
  29. void zd_chip_init(struct zd_chip *chip,
  30. struct net_device *netdev,
  31. struct usb_interface *intf)
  32. {
  33. memset(chip, 0, sizeof(*chip));
  34. mutex_init(&chip->mutex);
  35. zd_usb_init(&chip->usb, netdev, intf);
  36. zd_rf_init(&chip->rf);
  37. }
  38. void zd_chip_clear(struct zd_chip *chip)
  39. {
  40. ZD_ASSERT(!mutex_is_locked(&chip->mutex));
  41. zd_usb_clear(&chip->usb);
  42. zd_rf_clear(&chip->rf);
  43. mutex_destroy(&chip->mutex);
  44. ZD_MEMCLEAR(chip, sizeof(*chip));
  45. }
  46. static int scnprint_mac_oui(const u8 *addr, char *buffer, size_t size)
  47. {
  48. return scnprintf(buffer, size, "%02x-%02x-%02x",
  49. addr[0], addr[1], addr[2]);
  50. }
  51. /* Prints an identifier line, which will support debugging. */
  52. static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
  53. {
  54. int i = 0;
  55. i = scnprintf(buffer, size, "zd1211%s chip ",
  56. chip->is_zd1211b ? "b" : "");
  57. i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
  58. i += scnprintf(buffer+i, size-i, " ");
  59. i += scnprint_mac_oui(chip->e2p_mac, buffer+i, size-i);
  60. i += scnprintf(buffer+i, size-i, " ");
  61. i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
  62. i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c", chip->pa_type,
  63. chip->patch_cck_gain ? 'g' : '-',
  64. chip->patch_cr157 ? '7' : '-',
  65. chip->patch_6m_band_edge ? '6' : '-',
  66. chip->new_phy_layout ? 'N' : '-');
  67. return i;
  68. }
  69. static void print_id(struct zd_chip *chip)
  70. {
  71. char buffer[80];
  72. scnprint_id(chip, buffer, sizeof(buffer));
  73. buffer[sizeof(buffer)-1] = 0;
  74. dev_info(zd_chip_dev(chip), "%s\n", buffer);
  75. }
  76. /* Read a variable number of 32-bit values. Parameter count is not allowed to
  77. * exceed USB_MAX_IOREAD32_COUNT.
  78. */
  79. int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
  80. unsigned int count)
  81. {
  82. int r;
  83. int i;
  84. zd_addr_t *a16 = (zd_addr_t *)NULL;
  85. u16 *v16;
  86. unsigned int count16;
  87. if (count > USB_MAX_IOREAD32_COUNT)
  88. return -EINVAL;
  89. /* Allocate a single memory block for values and addresses. */
  90. count16 = 2*count;
  91. a16 = (zd_addr_t *)kmalloc(count16 * (sizeof(zd_addr_t) + sizeof(u16)),
  92. GFP_NOFS);
  93. if (!a16) {
  94. dev_dbg_f(zd_chip_dev(chip),
  95. "error ENOMEM in allocation of a16\n");
  96. r = -ENOMEM;
  97. goto out;
  98. }
  99. v16 = (u16 *)(a16 + count16);
  100. for (i = 0; i < count; i++) {
  101. int j = 2*i;
  102. /* We read the high word always first. */
  103. a16[j] = zd_inc_word(addr[i]);
  104. a16[j+1] = addr[i];
  105. }
  106. r = zd_ioread16v_locked(chip, v16, a16, count16);
  107. if (r) {
  108. dev_dbg_f(zd_chip_dev(chip),
  109. "error: zd_ioread16v_locked. Error number %d\n", r);
  110. goto out;
  111. }
  112. for (i = 0; i < count; i++) {
  113. int j = 2*i;
  114. values[i] = (v16[j] << 16) | v16[j+1];
  115. }
  116. out:
  117. kfree((void *)a16);
  118. return r;
  119. }
  120. int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
  121. unsigned int count)
  122. {
  123. int i, j, r;
  124. struct zd_ioreq16 *ioreqs16;
  125. unsigned int count16;
  126. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  127. if (count == 0)
  128. return 0;
  129. if (count > USB_MAX_IOWRITE32_COUNT)
  130. return -EINVAL;
  131. /* Allocate a single memory block for values and addresses. */
  132. count16 = 2*count;
  133. ioreqs16 = kmalloc(count16 * sizeof(struct zd_ioreq16), GFP_NOFS);
  134. if (!ioreqs16) {
  135. r = -ENOMEM;
  136. dev_dbg_f(zd_chip_dev(chip),
  137. "error %d in ioreqs16 allocation\n", r);
  138. goto out;
  139. }
  140. for (i = 0; i < count; i++) {
  141. j = 2*i;
  142. /* We write the high word always first. */
  143. ioreqs16[j].value = ioreqs[i].value >> 16;
  144. ioreqs16[j].addr = zd_inc_word(ioreqs[i].addr);
  145. ioreqs16[j+1].value = ioreqs[i].value;
  146. ioreqs16[j+1].addr = ioreqs[i].addr;
  147. }
  148. r = zd_usb_iowrite16v(&chip->usb, ioreqs16, count16);
  149. #ifdef DEBUG
  150. if (r) {
  151. dev_dbg_f(zd_chip_dev(chip),
  152. "error %d in zd_usb_write16v\n", r);
  153. }
  154. #endif /* DEBUG */
  155. out:
  156. kfree(ioreqs16);
  157. return r;
  158. }
  159. int zd_iowrite16a_locked(struct zd_chip *chip,
  160. const struct zd_ioreq16 *ioreqs, unsigned int count)
  161. {
  162. int r;
  163. unsigned int i, j, t, max;
  164. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  165. for (i = 0; i < count; i += j + t) {
  166. t = 0;
  167. max = count-i;
  168. if (max > USB_MAX_IOWRITE16_COUNT)
  169. max = USB_MAX_IOWRITE16_COUNT;
  170. for (j = 0; j < max; j++) {
  171. if (!ioreqs[i+j].addr) {
  172. t = 1;
  173. break;
  174. }
  175. }
  176. r = zd_usb_iowrite16v(&chip->usb, &ioreqs[i], j);
  177. if (r) {
  178. dev_dbg_f(zd_chip_dev(chip),
  179. "error zd_usb_iowrite16v. Error number %d\n",
  180. r);
  181. return r;
  182. }
  183. }
  184. return 0;
  185. }
  186. /* Writes a variable number of 32 bit registers. The functions will split
  187. * that in several USB requests. A split can be forced by inserting an IO
  188. * request with an zero address field.
  189. */
  190. int zd_iowrite32a_locked(struct zd_chip *chip,
  191. const struct zd_ioreq32 *ioreqs, unsigned int count)
  192. {
  193. int r;
  194. unsigned int i, j, t, max;
  195. for (i = 0; i < count; i += j + t) {
  196. t = 0;
  197. max = count-i;
  198. if (max > USB_MAX_IOWRITE32_COUNT)
  199. max = USB_MAX_IOWRITE32_COUNT;
  200. for (j = 0; j < max; j++) {
  201. if (!ioreqs[i+j].addr) {
  202. t = 1;
  203. break;
  204. }
  205. }
  206. r = _zd_iowrite32v_locked(chip, &ioreqs[i], j);
  207. if (r) {
  208. dev_dbg_f(zd_chip_dev(chip),
  209. "error _zd_iowrite32v_locked."
  210. " Error number %d\n", r);
  211. return r;
  212. }
  213. }
  214. return 0;
  215. }
  216. int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
  217. {
  218. int r;
  219. mutex_lock(&chip->mutex);
  220. r = zd_ioread16_locked(chip, value, addr);
  221. mutex_unlock(&chip->mutex);
  222. return r;
  223. }
  224. int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
  225. {
  226. int r;
  227. mutex_lock(&chip->mutex);
  228. r = zd_ioread32_locked(chip, value, addr);
  229. mutex_unlock(&chip->mutex);
  230. return r;
  231. }
  232. int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
  233. {
  234. int r;
  235. mutex_lock(&chip->mutex);
  236. r = zd_iowrite16_locked(chip, value, addr);
  237. mutex_unlock(&chip->mutex);
  238. return r;
  239. }
  240. int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
  241. {
  242. int r;
  243. mutex_lock(&chip->mutex);
  244. r = zd_iowrite32_locked(chip, value, addr);
  245. mutex_unlock(&chip->mutex);
  246. return r;
  247. }
  248. int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
  249. u32 *values, unsigned int count)
  250. {
  251. int r;
  252. mutex_lock(&chip->mutex);
  253. r = zd_ioread32v_locked(chip, values, addresses, count);
  254. mutex_unlock(&chip->mutex);
  255. return r;
  256. }
  257. int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
  258. unsigned int count)
  259. {
  260. int r;
  261. mutex_lock(&chip->mutex);
  262. r = zd_iowrite32a_locked(chip, ioreqs, count);
  263. mutex_unlock(&chip->mutex);
  264. return r;
  265. }
  266. static int read_pod(struct zd_chip *chip, u8 *rf_type)
  267. {
  268. int r;
  269. u32 value;
  270. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  271. r = zd_ioread32_locked(chip, &value, E2P_POD);
  272. if (r)
  273. goto error;
  274. dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
  275. /* FIXME: AL2230 handling (Bit 7 in POD) */
  276. *rf_type = value & 0x0f;
  277. chip->pa_type = (value >> 16) & 0x0f;
  278. chip->patch_cck_gain = (value >> 8) & 0x1;
  279. chip->patch_cr157 = (value >> 13) & 0x1;
  280. chip->patch_6m_band_edge = (value >> 21) & 0x1;
  281. chip->new_phy_layout = (value >> 31) & 0x1;
  282. dev_dbg_f(zd_chip_dev(chip),
  283. "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
  284. "patch 6M %d new PHY %d\n",
  285. zd_rf_name(*rf_type), *rf_type,
  286. chip->pa_type, chip->patch_cck_gain,
  287. chip->patch_cr157, chip->patch_6m_band_edge, chip->new_phy_layout);
  288. return 0;
  289. error:
  290. *rf_type = 0;
  291. chip->pa_type = 0;
  292. chip->patch_cck_gain = 0;
  293. chip->patch_cr157 = 0;
  294. chip->patch_6m_band_edge = 0;
  295. chip->new_phy_layout = 0;
  296. return r;
  297. }
  298. static int _read_mac_addr(struct zd_chip *chip, u8 *mac_addr,
  299. const zd_addr_t *addr)
  300. {
  301. int r;
  302. u32 parts[2];
  303. r = zd_ioread32v_locked(chip, parts, (const zd_addr_t *)addr, 2);
  304. if (r) {
  305. dev_dbg_f(zd_chip_dev(chip),
  306. "error: couldn't read e2p macs. Error number %d\n", r);
  307. return r;
  308. }
  309. mac_addr[0] = parts[0];
  310. mac_addr[1] = parts[0] >> 8;
  311. mac_addr[2] = parts[0] >> 16;
  312. mac_addr[3] = parts[0] >> 24;
  313. mac_addr[4] = parts[1];
  314. mac_addr[5] = parts[1] >> 8;
  315. return 0;
  316. }
  317. static int read_e2p_mac_addr(struct zd_chip *chip)
  318. {
  319. static const zd_addr_t addr[2] = { E2P_MAC_ADDR_P1, E2P_MAC_ADDR_P2 };
  320. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  321. return _read_mac_addr(chip, chip->e2p_mac, (const zd_addr_t *)addr);
  322. }
  323. /* MAC address: if custom mac addresses are to to be used CR_MAC_ADDR_P1 and
  324. * CR_MAC_ADDR_P2 must be overwritten
  325. */
  326. void zd_get_e2p_mac_addr(struct zd_chip *chip, u8 *mac_addr)
  327. {
  328. mutex_lock(&chip->mutex);
  329. memcpy(mac_addr, chip->e2p_mac, ETH_ALEN);
  330. mutex_unlock(&chip->mutex);
  331. }
  332. static int read_mac_addr(struct zd_chip *chip, u8 *mac_addr)
  333. {
  334. static const zd_addr_t addr[2] = { CR_MAC_ADDR_P1, CR_MAC_ADDR_P2 };
  335. return _read_mac_addr(chip, mac_addr, (const zd_addr_t *)addr);
  336. }
  337. int zd_read_mac_addr(struct zd_chip *chip, u8 *mac_addr)
  338. {
  339. int r;
  340. dev_dbg_f(zd_chip_dev(chip), "\n");
  341. mutex_lock(&chip->mutex);
  342. r = read_mac_addr(chip, mac_addr);
  343. mutex_unlock(&chip->mutex);
  344. return r;
  345. }
  346. int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
  347. {
  348. int r;
  349. struct zd_ioreq32 reqs[2] = {
  350. [0] = { .addr = CR_MAC_ADDR_P1 },
  351. [1] = { .addr = CR_MAC_ADDR_P2 },
  352. };
  353. reqs[0].value = (mac_addr[3] << 24)
  354. | (mac_addr[2] << 16)
  355. | (mac_addr[1] << 8)
  356. | mac_addr[0];
  357. reqs[1].value = (mac_addr[5] << 8)
  358. | mac_addr[4];
  359. dev_dbg_f(zd_chip_dev(chip),
  360. "mac addr " MAC_FMT "\n", MAC_ARG(mac_addr));
  361. mutex_lock(&chip->mutex);
  362. r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
  363. #ifdef DEBUG
  364. {
  365. u8 tmp[ETH_ALEN];
  366. read_mac_addr(chip, tmp);
  367. }
  368. #endif /* DEBUG */
  369. mutex_unlock(&chip->mutex);
  370. return r;
  371. }
  372. int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
  373. {
  374. int r;
  375. u32 value;
  376. mutex_lock(&chip->mutex);
  377. r = zd_ioread32_locked(chip, &value, E2P_SUBID);
  378. mutex_unlock(&chip->mutex);
  379. if (r)
  380. return r;
  381. *regdomain = value >> 16;
  382. dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
  383. return 0;
  384. }
  385. static int read_values(struct zd_chip *chip, u8 *values, size_t count,
  386. zd_addr_t e2p_addr, u32 guard)
  387. {
  388. int r;
  389. int i;
  390. u32 v;
  391. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  392. for (i = 0;;) {
  393. r = zd_ioread32_locked(chip, &v, e2p_addr+i/2);
  394. if (r)
  395. return r;
  396. v -= guard;
  397. if (i+4 < count) {
  398. values[i++] = v;
  399. values[i++] = v >> 8;
  400. values[i++] = v >> 16;
  401. values[i++] = v >> 24;
  402. continue;
  403. }
  404. for (;i < count; i++)
  405. values[i] = v >> (8*(i%3));
  406. return 0;
  407. }
  408. }
  409. static int read_pwr_cal_values(struct zd_chip *chip)
  410. {
  411. return read_values(chip, chip->pwr_cal_values,
  412. E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
  413. 0);
  414. }
  415. static int read_pwr_int_values(struct zd_chip *chip)
  416. {
  417. return read_values(chip, chip->pwr_int_values,
  418. E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
  419. E2P_PWR_INT_GUARD);
  420. }
  421. static int read_ofdm_cal_values(struct zd_chip *chip)
  422. {
  423. int r;
  424. int i;
  425. static const zd_addr_t addresses[] = {
  426. E2P_36M_CAL_VALUE1,
  427. E2P_48M_CAL_VALUE1,
  428. E2P_54M_CAL_VALUE1,
  429. };
  430. for (i = 0; i < 3; i++) {
  431. r = read_values(chip, chip->ofdm_cal_values[i],
  432. E2P_CHANNEL_COUNT, addresses[i], 0);
  433. if (r)
  434. return r;
  435. }
  436. return 0;
  437. }
  438. static int read_cal_int_tables(struct zd_chip *chip)
  439. {
  440. int r;
  441. r = read_pwr_cal_values(chip);
  442. if (r)
  443. return r;
  444. r = read_pwr_int_values(chip);
  445. if (r)
  446. return r;
  447. r = read_ofdm_cal_values(chip);
  448. if (r)
  449. return r;
  450. return 0;
  451. }
  452. /* phy means physical registers */
  453. int zd_chip_lock_phy_regs(struct zd_chip *chip)
  454. {
  455. int r;
  456. u32 tmp;
  457. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  458. r = zd_ioread32_locked(chip, &tmp, CR_REG1);
  459. if (r) {
  460. dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
  461. return r;
  462. }
  463. dev_dbg_f(zd_chip_dev(chip),
  464. "CR_REG1: 0x%02x -> 0x%02x\n", tmp, tmp & ~UNLOCK_PHY_REGS);
  465. tmp &= ~UNLOCK_PHY_REGS;
  466. r = zd_iowrite32_locked(chip, tmp, CR_REG1);
  467. if (r)
  468. dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
  469. return r;
  470. }
  471. int zd_chip_unlock_phy_regs(struct zd_chip *chip)
  472. {
  473. int r;
  474. u32 tmp;
  475. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  476. r = zd_ioread32_locked(chip, &tmp, CR_REG1);
  477. if (r) {
  478. dev_err(zd_chip_dev(chip),
  479. "error ioread32(CR_REG1): %d\n", r);
  480. return r;
  481. }
  482. dev_dbg_f(zd_chip_dev(chip),
  483. "CR_REG1: 0x%02x -> 0x%02x\n", tmp, tmp | UNLOCK_PHY_REGS);
  484. tmp |= UNLOCK_PHY_REGS;
  485. r = zd_iowrite32_locked(chip, tmp, CR_REG1);
  486. if (r)
  487. dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
  488. return r;
  489. }
  490. /* CR157 can be optionally patched by the EEPROM */
  491. static int patch_cr157(struct zd_chip *chip)
  492. {
  493. int r;
  494. u32 value;
  495. if (!chip->patch_cr157)
  496. return 0;
  497. r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
  498. if (r)
  499. return r;
  500. dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
  501. return zd_iowrite32_locked(chip, value >> 8, CR157);
  502. }
  503. /*
  504. * 6M band edge can be optionally overwritten for certain RF's
  505. * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
  506. * bit (for AL2230, AL2230S)
  507. */
  508. static int patch_6m_band_edge(struct zd_chip *chip, int channel)
  509. {
  510. struct zd_ioreq16 ioreqs[] = {
  511. { CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 },
  512. { CR47, 0x1e },
  513. };
  514. if (!chip->patch_6m_band_edge || !chip->rf.patch_6m_band_edge)
  515. return 0;
  516. /* FIXME: Channel 11 is not the edge for all regulatory domains. */
  517. if (channel == 1 || channel == 11)
  518. ioreqs[0].value = 0x12;
  519. dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
  520. return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
  521. }
  522. static int zd1211_hw_reset_phy(struct zd_chip *chip)
  523. {
  524. static const struct zd_ioreq16 ioreqs[] = {
  525. { CR0, 0x0a }, { CR1, 0x06 }, { CR2, 0x26 },
  526. { CR3, 0x38 }, { CR4, 0x80 }, { CR9, 0xa0 },
  527. { CR10, 0x81 }, { CR11, 0x00 }, { CR12, 0x7f },
  528. { CR13, 0x8c }, { CR14, 0x80 }, { CR15, 0x3d },
  529. { CR16, 0x20 }, { CR17, 0x1e }, { CR18, 0x0a },
  530. { CR19, 0x48 }, { CR20, 0x0c }, { CR21, 0x0c },
  531. { CR22, 0x23 }, { CR23, 0x90 }, { CR24, 0x14 },
  532. { CR25, 0x40 }, { CR26, 0x10 }, { CR27, 0x19 },
  533. { CR28, 0x7f }, { CR29, 0x80 }, { CR30, 0x4b },
  534. { CR31, 0x60 }, { CR32, 0x43 }, { CR33, 0x08 },
  535. { CR34, 0x06 }, { CR35, 0x0a }, { CR36, 0x00 },
  536. { CR37, 0x00 }, { CR38, 0x38 }, { CR39, 0x0c },
  537. { CR40, 0x84 }, { CR41, 0x2a }, { CR42, 0x80 },
  538. { CR43, 0x10 }, { CR44, 0x12 }, { CR46, 0xff },
  539. { CR47, 0x1E }, { CR48, 0x26 }, { CR49, 0x5b },
  540. { CR64, 0xd0 }, { CR65, 0x04 }, { CR66, 0x58 },
  541. { CR67, 0xc9 }, { CR68, 0x88 }, { CR69, 0x41 },
  542. { CR70, 0x23 }, { CR71, 0x10 }, { CR72, 0xff },
  543. { CR73, 0x32 }, { CR74, 0x30 }, { CR75, 0x65 },
  544. { CR76, 0x41 }, { CR77, 0x1b }, { CR78, 0x30 },
  545. { CR79, 0x68 }, { CR80, 0x64 }, { CR81, 0x64 },
  546. { CR82, 0x00 }, { CR83, 0x00 }, { CR84, 0x00 },
  547. { CR85, 0x02 }, { CR86, 0x00 }, { CR87, 0x00 },
  548. { CR88, 0xff }, { CR89, 0xfc }, { CR90, 0x00 },
  549. { CR91, 0x00 }, { CR92, 0x00 }, { CR93, 0x08 },
  550. { CR94, 0x00 }, { CR95, 0x00 }, { CR96, 0xff },
  551. { CR97, 0xe7 }, { CR98, 0x00 }, { CR99, 0x00 },
  552. { CR100, 0x00 }, { CR101, 0xae }, { CR102, 0x02 },
  553. { CR103, 0x00 }, { CR104, 0x03 }, { CR105, 0x65 },
  554. { CR106, 0x04 }, { CR107, 0x00 }, { CR108, 0x0a },
  555. { CR109, 0xaa }, { CR110, 0xaa }, { CR111, 0x25 },
  556. { CR112, 0x25 }, { CR113, 0x00 }, { CR119, 0x1e },
  557. { CR125, 0x90 }, { CR126, 0x00 }, { CR127, 0x00 },
  558. { },
  559. { CR5, 0x00 }, { CR6, 0x00 }, { CR7, 0x00 },
  560. { CR8, 0x00 }, { CR9, 0x20 }, { CR12, 0xf0 },
  561. { CR20, 0x0e }, { CR21, 0x0e }, { CR27, 0x10 },
  562. { CR44, 0x33 }, { CR47, 0x1E }, { CR83, 0x24 },
  563. { CR84, 0x04 }, { CR85, 0x00 }, { CR86, 0x0C },
  564. { CR87, 0x12 }, { CR88, 0x0C }, { CR89, 0x00 },
  565. { CR90, 0x10 }, { CR91, 0x08 }, { CR93, 0x00 },
  566. { CR94, 0x01 }, { CR95, 0x00 }, { CR96, 0x50 },
  567. { CR97, 0x37 }, { CR98, 0x35 }, { CR101, 0x13 },
  568. { CR102, 0x27 }, { CR103, 0x27 }, { CR104, 0x18 },
  569. { CR105, 0x12 }, { CR109, 0x27 }, { CR110, 0x27 },
  570. { CR111, 0x27 }, { CR112, 0x27 }, { CR113, 0x27 },
  571. { CR114, 0x27 }, { CR115, 0x26 }, { CR116, 0x24 },
  572. { CR117, 0xfc }, { CR118, 0xfa }, { CR120, 0x4f },
  573. { CR123, 0x27 }, { CR125, 0xaa }, { CR127, 0x03 },
  574. { CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 },
  575. { CR131, 0x0C }, { CR136, 0xdf }, { CR137, 0x40 },
  576. { CR138, 0xa0 }, { CR139, 0xb0 }, { CR140, 0x99 },
  577. { CR141, 0x82 }, { CR142, 0x54 }, { CR143, 0x1c },
  578. { CR144, 0x6c }, { CR147, 0x07 }, { CR148, 0x4c },
  579. { CR149, 0x50 }, { CR150, 0x0e }, { CR151, 0x18 },
  580. { CR160, 0xfe }, { CR161, 0xee }, { CR162, 0xaa },
  581. { CR163, 0xfa }, { CR164, 0xfa }, { CR165, 0xea },
  582. { CR166, 0xbe }, { CR167, 0xbe }, { CR168, 0x6a },
  583. { CR169, 0xba }, { CR170, 0xba }, { CR171, 0xba },
  584. /* Note: CR204 must lead the CR203 */
  585. { CR204, 0x7d },
  586. { },
  587. { CR203, 0x30 },
  588. };
  589. int r, t;
  590. dev_dbg_f(zd_chip_dev(chip), "\n");
  591. r = zd_chip_lock_phy_regs(chip);
  592. if (r)
  593. goto out;
  594. r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
  595. if (r)
  596. goto unlock;
  597. r = patch_cr157(chip);
  598. unlock:
  599. t = zd_chip_unlock_phy_regs(chip);
  600. if (t && !r)
  601. r = t;
  602. out:
  603. return r;
  604. }
  605. static int zd1211b_hw_reset_phy(struct zd_chip *chip)
  606. {
  607. static const struct zd_ioreq16 ioreqs[] = {
  608. { CR0, 0x14 }, { CR1, 0x06 }, { CR2, 0x26 },
  609. { CR3, 0x38 }, { CR4, 0x80 }, { CR9, 0xe0 },
  610. { CR10, 0x81 },
  611. /* power control { { CR11, 1 << 6 }, */
  612. { CR11, 0x00 },
  613. { CR12, 0xf0 }, { CR13, 0x8c }, { CR14, 0x80 },
  614. { CR15, 0x3d }, { CR16, 0x20 }, { CR17, 0x1e },
  615. { CR18, 0x0a }, { CR19, 0x48 },
  616. { CR20, 0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
  617. { CR21, 0x0e }, { CR22, 0x23 }, { CR23, 0x90 },
  618. { CR24, 0x14 }, { CR25, 0x40 }, { CR26, 0x10 },
  619. { CR27, 0x10 }, { CR28, 0x7f }, { CR29, 0x80 },
  620. { CR30, 0x4b }, /* ASIC/FWT, no jointly decoder */
  621. { CR31, 0x60 }, { CR32, 0x43 }, { CR33, 0x08 },
  622. { CR34, 0x06 }, { CR35, 0x0a }, { CR36, 0x00 },
  623. { CR37, 0x00 }, { CR38, 0x38 }, { CR39, 0x0c },
  624. { CR40, 0x84 }, { CR41, 0x2a }, { CR42, 0x80 },
  625. { CR43, 0x10 }, { CR44, 0x33 }, { CR46, 0xff },
  626. { CR47, 0x1E }, { CR48, 0x26 }, { CR49, 0x5b },
  627. { CR64, 0xd0 }, { CR65, 0x04 }, { CR66, 0x58 },
  628. { CR67, 0xc9 }, { CR68, 0x88 }, { CR69, 0x41 },
  629. { CR70, 0x23 }, { CR71, 0x10 }, { CR72, 0xff },
  630. { CR73, 0x32 }, { CR74, 0x30 }, { CR75, 0x65 },
  631. { CR76, 0x41 }, { CR77, 0x1b }, { CR78, 0x30 },
  632. { CR79, 0xf0 }, { CR80, 0x64 }, { CR81, 0x64 },
  633. { CR82, 0x00 }, { CR83, 0x24 }, { CR84, 0x04 },
  634. { CR85, 0x00 }, { CR86, 0x0c }, { CR87, 0x12 },
  635. { CR88, 0x0c }, { CR89, 0x00 }, { CR90, 0x58 },
  636. { CR91, 0x04 }, { CR92, 0x00 }, { CR93, 0x00 },
  637. { CR94, 0x01 },
  638. { CR95, 0x20 }, /* ZD1211B */
  639. { CR96, 0x50 }, { CR97, 0x37 }, { CR98, 0x35 },
  640. { CR99, 0x00 }, { CR100, 0x01 }, { CR101, 0x13 },
  641. { CR102, 0x27 }, { CR103, 0x27 }, { CR104, 0x18 },
  642. { CR105, 0x12 }, { CR106, 0x04 }, { CR107, 0x00 },
  643. { CR108, 0x0a }, { CR109, 0x27 }, { CR110, 0x27 },
  644. { CR111, 0x27 }, { CR112, 0x27 }, { CR113, 0x27 },
  645. { CR114, 0x27 }, { CR115, 0x26 }, { CR116, 0x24 },
  646. { CR117, 0xfc }, { CR118, 0xfa }, { CR119, 0x1e },
  647. { CR125, 0x90 }, { CR126, 0x00 }, { CR127, 0x00 },
  648. { CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 },
  649. { CR131, 0x0c }, { CR136, 0xdf }, { CR137, 0xa0 },
  650. { CR138, 0xa8 }, { CR139, 0xb4 }, { CR140, 0x98 },
  651. { CR141, 0x82 }, { CR142, 0x53 }, { CR143, 0x1c },
  652. { CR144, 0x6c }, { CR147, 0x07 }, { CR148, 0x40 },
  653. { CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
  654. { CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
  655. { CR151, 0x18 }, { CR159, 0x70 }, { CR160, 0xfe },
  656. { CR161, 0xee }, { CR162, 0xaa }, { CR163, 0xfa },
  657. { CR164, 0xfa }, { CR165, 0xea }, { CR166, 0xbe },
  658. { CR167, 0xbe }, { CR168, 0x6a }, { CR169, 0xba },
  659. { CR170, 0xba }, { CR171, 0xba },
  660. /* Note: CR204 must lead the CR203 */
  661. { CR204, 0x7d },
  662. {},
  663. { CR203, 0x30 },
  664. };
  665. int r, t;
  666. dev_dbg_f(zd_chip_dev(chip), "\n");
  667. r = zd_chip_lock_phy_regs(chip);
  668. if (r)
  669. goto out;
  670. r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
  671. if (r)
  672. goto unlock;
  673. r = patch_cr157(chip);
  674. unlock:
  675. t = zd_chip_unlock_phy_regs(chip);
  676. if (t && !r)
  677. r = t;
  678. out:
  679. return r;
  680. }
  681. static int hw_reset_phy(struct zd_chip *chip)
  682. {
  683. return chip->is_zd1211b ? zd1211b_hw_reset_phy(chip) :
  684. zd1211_hw_reset_phy(chip);
  685. }
  686. static int zd1211_hw_init_hmac(struct zd_chip *chip)
  687. {
  688. static const struct zd_ioreq32 ioreqs[] = {
  689. { CR_ACK_TIMEOUT_EXT, 0x20 },
  690. { CR_ADDA_MBIAS_WARMTIME, 0x30000808 },
  691. { CR_ZD1211_RETRY_MAX, 0x2 },
  692. { CR_SNIFFER_ON, 0 },
  693. { CR_RX_FILTER, STA_RX_FILTER },
  694. { CR_GROUP_HASH_P1, 0x00 },
  695. { CR_GROUP_HASH_P2, 0x80000000 },
  696. { CR_REG1, 0xa4 },
  697. { CR_ADDA_PWR_DWN, 0x7f },
  698. { CR_BCN_PLCP_CFG, 0x00f00401 },
  699. { CR_PHY_DELAY, 0x00 },
  700. { CR_ACK_TIMEOUT_EXT, 0x80 },
  701. { CR_ADDA_PWR_DWN, 0x00 },
  702. { CR_ACK_TIME_80211, 0x100 },
  703. { CR_RX_PE_DELAY, 0x70 },
  704. { CR_PS_CTRL, 0x10000000 },
  705. { CR_RTS_CTS_RATE, 0x02030203 },
  706. { CR_RX_THRESHOLD, 0x000c0640 },
  707. { CR_AFTER_PNP, 0x1 },
  708. { CR_WEP_PROTECT, 0x114 },
  709. };
  710. int r;
  711. dev_dbg_f(zd_chip_dev(chip), "\n");
  712. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  713. r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
  714. #ifdef DEBUG
  715. if (r) {
  716. dev_err(zd_chip_dev(chip),
  717. "error in zd_iowrite32a_locked. Error number %d\n", r);
  718. }
  719. #endif /* DEBUG */
  720. return r;
  721. }
  722. static int zd1211b_hw_init_hmac(struct zd_chip *chip)
  723. {
  724. static const struct zd_ioreq32 ioreqs[] = {
  725. { CR_ACK_TIMEOUT_EXT, 0x20 },
  726. { CR_ADDA_MBIAS_WARMTIME, 0x30000808 },
  727. { CR_ZD1211B_RETRY_MAX, 0x02020202 },
  728. { CR_ZD1211B_TX_PWR_CTL4, 0x007f003f },
  729. { CR_ZD1211B_TX_PWR_CTL3, 0x007f003f },
  730. { CR_ZD1211B_TX_PWR_CTL2, 0x003f001f },
  731. { CR_ZD1211B_TX_PWR_CTL1, 0x001f000f },
  732. { CR_ZD1211B_AIFS_CTL1, 0x00280028 },
  733. { CR_ZD1211B_AIFS_CTL2, 0x008C003C },
  734. { CR_ZD1211B_TXOP, 0x01800824 },
  735. { CR_SNIFFER_ON, 0 },
  736. { CR_RX_FILTER, STA_RX_FILTER },
  737. { CR_GROUP_HASH_P1, 0x00 },
  738. { CR_GROUP_HASH_P2, 0x80000000 },
  739. { CR_REG1, 0xa4 },
  740. { CR_ADDA_PWR_DWN, 0x7f },
  741. { CR_BCN_PLCP_CFG, 0x00f00401 },
  742. { CR_PHY_DELAY, 0x00 },
  743. { CR_ACK_TIMEOUT_EXT, 0x80 },
  744. { CR_ADDA_PWR_DWN, 0x00 },
  745. { CR_ACK_TIME_80211, 0x100 },
  746. { CR_RX_PE_DELAY, 0x70 },
  747. { CR_PS_CTRL, 0x10000000 },
  748. { CR_RTS_CTS_RATE, 0x02030203 },
  749. { CR_RX_THRESHOLD, 0x000c0eff, },
  750. { CR_AFTER_PNP, 0x1 },
  751. { CR_WEP_PROTECT, 0x114 },
  752. };
  753. int r;
  754. dev_dbg_f(zd_chip_dev(chip), "\n");
  755. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  756. r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
  757. if (r) {
  758. dev_dbg_f(zd_chip_dev(chip),
  759. "error in zd_iowrite32a_locked. Error number %d\n", r);
  760. }
  761. return r;
  762. }
  763. static int hw_init_hmac(struct zd_chip *chip)
  764. {
  765. return chip->is_zd1211b ?
  766. zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
  767. }
  768. struct aw_pt_bi {
  769. u32 atim_wnd_period;
  770. u32 pre_tbtt;
  771. u32 beacon_interval;
  772. };
  773. static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
  774. {
  775. int r;
  776. static const zd_addr_t aw_pt_bi_addr[] =
  777. { CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
  778. u32 values[3];
  779. r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
  780. ARRAY_SIZE(aw_pt_bi_addr));
  781. if (r) {
  782. memset(s, 0, sizeof(*s));
  783. return r;
  784. }
  785. s->atim_wnd_period = values[0];
  786. s->pre_tbtt = values[1];
  787. s->beacon_interval = values[2];
  788. dev_dbg_f(zd_chip_dev(chip), "aw %u pt %u bi %u\n",
  789. s->atim_wnd_period, s->pre_tbtt, s->beacon_interval);
  790. return 0;
  791. }
  792. static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
  793. {
  794. struct zd_ioreq32 reqs[3];
  795. if (s->beacon_interval <= 5)
  796. s->beacon_interval = 5;
  797. if (s->pre_tbtt < 4 || s->pre_tbtt >= s->beacon_interval)
  798. s->pre_tbtt = s->beacon_interval - 1;
  799. if (s->atim_wnd_period >= s->pre_tbtt)
  800. s->atim_wnd_period = s->pre_tbtt - 1;
  801. reqs[0].addr = CR_ATIM_WND_PERIOD;
  802. reqs[0].value = s->atim_wnd_period;
  803. reqs[1].addr = CR_PRE_TBTT;
  804. reqs[1].value = s->pre_tbtt;
  805. reqs[2].addr = CR_BCN_INTERVAL;
  806. reqs[2].value = s->beacon_interval;
  807. dev_dbg_f(zd_chip_dev(chip),
  808. "aw %u pt %u bi %u\n", s->atim_wnd_period, s->pre_tbtt,
  809. s->beacon_interval);
  810. return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
  811. }
  812. static int set_beacon_interval(struct zd_chip *chip, u32 interval)
  813. {
  814. int r;
  815. struct aw_pt_bi s;
  816. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  817. r = get_aw_pt_bi(chip, &s);
  818. if (r)
  819. return r;
  820. s.beacon_interval = interval;
  821. return set_aw_pt_bi(chip, &s);
  822. }
  823. int zd_set_beacon_interval(struct zd_chip *chip, u32 interval)
  824. {
  825. int r;
  826. mutex_lock(&chip->mutex);
  827. r = set_beacon_interval(chip, interval);
  828. mutex_unlock(&chip->mutex);
  829. return r;
  830. }
  831. static int hw_init(struct zd_chip *chip)
  832. {
  833. int r;
  834. dev_dbg_f(zd_chip_dev(chip), "\n");
  835. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  836. r = hw_reset_phy(chip);
  837. if (r)
  838. return r;
  839. r = hw_init_hmac(chip);
  840. if (r)
  841. return r;
  842. /* Although the vendor driver defaults to a different value during
  843. * init, it overwrites the IFS value with the following every time
  844. * the channel changes. We should aim to be more intelligent... */
  845. r = zd_iowrite32_locked(chip, IFS_VALUE_DEFAULT, CR_IFS_VALUE);
  846. if (r)
  847. return r;
  848. return set_beacon_interval(chip, 100);
  849. }
  850. #ifdef DEBUG
  851. static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
  852. const char *addr_string)
  853. {
  854. int r;
  855. u32 value;
  856. r = zd_ioread32_locked(chip, &value, addr);
  857. if (r) {
  858. dev_dbg_f(zd_chip_dev(chip),
  859. "error reading %s. Error number %d\n", addr_string, r);
  860. return r;
  861. }
  862. dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
  863. addr_string, (unsigned int)value);
  864. return 0;
  865. }
  866. static int test_init(struct zd_chip *chip)
  867. {
  868. int r;
  869. r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
  870. if (r)
  871. return r;
  872. r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
  873. if (r)
  874. return r;
  875. return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
  876. }
  877. static void dump_fw_registers(struct zd_chip *chip)
  878. {
  879. static const zd_addr_t addr[4] = {
  880. FW_FIRMWARE_VER, FW_USB_SPEED, FW_FIX_TX_RATE,
  881. FW_LINK_STATUS
  882. };
  883. int r;
  884. u16 values[4];
  885. r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
  886. ARRAY_SIZE(addr));
  887. if (r) {
  888. dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
  889. r);
  890. return;
  891. }
  892. dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
  893. dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
  894. dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
  895. dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
  896. }
  897. #endif /* DEBUG */
  898. static int print_fw_version(struct zd_chip *chip)
  899. {
  900. int r;
  901. u16 version;
  902. r = zd_ioread16_locked(chip, &version, FW_FIRMWARE_VER);
  903. if (r)
  904. return r;
  905. dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
  906. return 0;
  907. }
  908. static int set_mandatory_rates(struct zd_chip *chip, enum ieee80211_std std)
  909. {
  910. u32 rates;
  911. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  912. /* This sets the mandatory rates, which only depend from the standard
  913. * that the device is supporting. Until further notice we should try
  914. * to support 802.11g also for full speed USB.
  915. */
  916. switch (std) {
  917. case IEEE80211B:
  918. rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
  919. break;
  920. case IEEE80211G:
  921. rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
  922. CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
  923. break;
  924. default:
  925. return -EINVAL;
  926. }
  927. return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
  928. }
  929. int zd_chip_enable_hwint(struct zd_chip *chip)
  930. {
  931. int r;
  932. mutex_lock(&chip->mutex);
  933. r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
  934. mutex_unlock(&chip->mutex);
  935. return r;
  936. }
  937. static int disable_hwint(struct zd_chip *chip)
  938. {
  939. return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
  940. }
  941. int zd_chip_disable_hwint(struct zd_chip *chip)
  942. {
  943. int r;
  944. mutex_lock(&chip->mutex);
  945. r = disable_hwint(chip);
  946. mutex_unlock(&chip->mutex);
  947. return r;
  948. }
  949. int zd_chip_init_hw(struct zd_chip *chip, u8 device_type)
  950. {
  951. int r;
  952. u8 rf_type;
  953. dev_dbg_f(zd_chip_dev(chip), "\n");
  954. mutex_lock(&chip->mutex);
  955. chip->is_zd1211b = (device_type == DEVICE_ZD1211B) != 0;
  956. #ifdef DEBUG
  957. r = test_init(chip);
  958. if (r)
  959. goto out;
  960. #endif
  961. r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
  962. if (r)
  963. goto out;
  964. r = zd_usb_init_hw(&chip->usb);
  965. if (r)
  966. goto out;
  967. /* GPI is always disabled, also in the other driver.
  968. */
  969. r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
  970. if (r)
  971. goto out;
  972. r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
  973. if (r)
  974. goto out;
  975. /* Currently we support IEEE 802.11g for full and high speed USB.
  976. * It might be discussed, whether we should suppport pure b mode for
  977. * full speed USB.
  978. */
  979. r = set_mandatory_rates(chip, IEEE80211G);
  980. if (r)
  981. goto out;
  982. /* Disabling interrupts is certainly a smart thing here.
  983. */
  984. r = disable_hwint(chip);
  985. if (r)
  986. goto out;
  987. r = read_pod(chip, &rf_type);
  988. if (r)
  989. goto out;
  990. r = hw_init(chip);
  991. if (r)
  992. goto out;
  993. r = zd_rf_init_hw(&chip->rf, rf_type);
  994. if (r)
  995. goto out;
  996. r = print_fw_version(chip);
  997. if (r)
  998. goto out;
  999. #ifdef DEBUG
  1000. dump_fw_registers(chip);
  1001. r = test_init(chip);
  1002. if (r)
  1003. goto out;
  1004. #endif /* DEBUG */
  1005. r = read_e2p_mac_addr(chip);
  1006. if (r)
  1007. goto out;
  1008. r = read_cal_int_tables(chip);
  1009. if (r)
  1010. goto out;
  1011. print_id(chip);
  1012. out:
  1013. mutex_unlock(&chip->mutex);
  1014. return r;
  1015. }
  1016. static int update_pwr_int(struct zd_chip *chip, u8 channel)
  1017. {
  1018. u8 value = chip->pwr_int_values[channel - 1];
  1019. dev_dbg_f(zd_chip_dev(chip), "channel %d pwr_int %#04x\n",
  1020. channel, value);
  1021. return zd_iowrite16_locked(chip, value, CR31);
  1022. }
  1023. static int update_pwr_cal(struct zd_chip *chip, u8 channel)
  1024. {
  1025. u8 value = chip->pwr_cal_values[channel-1];
  1026. dev_dbg_f(zd_chip_dev(chip), "channel %d pwr_cal %#04x\n",
  1027. channel, value);
  1028. return zd_iowrite16_locked(chip, value, CR68);
  1029. }
  1030. static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
  1031. {
  1032. struct zd_ioreq16 ioreqs[3];
  1033. ioreqs[0].addr = CR67;
  1034. ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
  1035. ioreqs[1].addr = CR66;
  1036. ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
  1037. ioreqs[2].addr = CR65;
  1038. ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
  1039. dev_dbg_f(zd_chip_dev(chip),
  1040. "channel %d ofdm_cal 36M %#04x 48M %#04x 54M %#04x\n",
  1041. channel, ioreqs[0].value, ioreqs[1].value, ioreqs[2].value);
  1042. return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
  1043. }
  1044. static int update_channel_integration_and_calibration(struct zd_chip *chip,
  1045. u8 channel)
  1046. {
  1047. int r;
  1048. r = update_pwr_int(chip, channel);
  1049. if (r)
  1050. return r;
  1051. if (chip->is_zd1211b) {
  1052. static const struct zd_ioreq16 ioreqs[] = {
  1053. { CR69, 0x28 },
  1054. {},
  1055. { CR69, 0x2a },
  1056. };
  1057. r = update_ofdm_cal(chip, channel);
  1058. if (r)
  1059. return r;
  1060. r = update_pwr_cal(chip, channel);
  1061. if (r)
  1062. return r;
  1063. r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
  1064. if (r)
  1065. return r;
  1066. }
  1067. return 0;
  1068. }
  1069. /* The CCK baseband gain can be optionally patched by the EEPROM */
  1070. static int patch_cck_gain(struct zd_chip *chip)
  1071. {
  1072. int r;
  1073. u32 value;
  1074. if (!chip->patch_cck_gain)
  1075. return 0;
  1076. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  1077. r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
  1078. if (r)
  1079. return r;
  1080. dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
  1081. return zd_iowrite16_locked(chip, value & 0xff, CR47);
  1082. }
  1083. int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
  1084. {
  1085. int r, t;
  1086. mutex_lock(&chip->mutex);
  1087. r = zd_chip_lock_phy_regs(chip);
  1088. if (r)
  1089. goto out;
  1090. r = zd_rf_set_channel(&chip->rf, channel);
  1091. if (r)
  1092. goto unlock;
  1093. r = update_channel_integration_and_calibration(chip, channel);
  1094. if (r)
  1095. goto unlock;
  1096. r = patch_cck_gain(chip);
  1097. if (r)
  1098. goto unlock;
  1099. r = patch_6m_band_edge(chip, channel);
  1100. if (r)
  1101. goto unlock;
  1102. r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
  1103. unlock:
  1104. t = zd_chip_unlock_phy_regs(chip);
  1105. if (t && !r)
  1106. r = t;
  1107. out:
  1108. mutex_unlock(&chip->mutex);
  1109. return r;
  1110. }
  1111. u8 zd_chip_get_channel(struct zd_chip *chip)
  1112. {
  1113. u8 channel;
  1114. mutex_lock(&chip->mutex);
  1115. channel = chip->rf.channel;
  1116. mutex_unlock(&chip->mutex);
  1117. return channel;
  1118. }
  1119. static u16 led_mask(int led)
  1120. {
  1121. switch (led) {
  1122. case 1:
  1123. return LED1;
  1124. case 2:
  1125. return LED2;
  1126. default:
  1127. return 0;
  1128. }
  1129. }
  1130. static int read_led_reg(struct zd_chip *chip, u16 *status)
  1131. {
  1132. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  1133. return zd_ioread16_locked(chip, status, CR_LED);
  1134. }
  1135. static int write_led_reg(struct zd_chip *chip, u16 status)
  1136. {
  1137. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  1138. return zd_iowrite16_locked(chip, status, CR_LED);
  1139. }
  1140. int zd_chip_led_status(struct zd_chip *chip, int led, enum led_status status)
  1141. {
  1142. int r, ret;
  1143. u16 mask = led_mask(led);
  1144. u16 reg;
  1145. if (!mask)
  1146. return -EINVAL;
  1147. mutex_lock(&chip->mutex);
  1148. r = read_led_reg(chip, &reg);
  1149. if (r)
  1150. return r;
  1151. switch (status) {
  1152. case LED_STATUS:
  1153. return (reg & mask) ? LED_ON : LED_OFF;
  1154. case LED_OFF:
  1155. reg &= ~mask;
  1156. ret = LED_OFF;
  1157. break;
  1158. case LED_FLIP:
  1159. reg ^= mask;
  1160. ret = (reg&mask) ? LED_ON : LED_OFF;
  1161. break;
  1162. case LED_ON:
  1163. reg |= mask;
  1164. ret = LED_ON;
  1165. break;
  1166. default:
  1167. return -EINVAL;
  1168. }
  1169. r = write_led_reg(chip, reg);
  1170. if (r) {
  1171. ret = r;
  1172. goto out;
  1173. }
  1174. out:
  1175. mutex_unlock(&chip->mutex);
  1176. return r;
  1177. }
  1178. int zd_chip_led_flip(struct zd_chip *chip, int led,
  1179. const unsigned int *phases_msecs, unsigned int count)
  1180. {
  1181. int i, r;
  1182. enum led_status status;
  1183. r = zd_chip_led_status(chip, led, LED_STATUS);
  1184. if (r)
  1185. return r;
  1186. status = r;
  1187. for (i = 0; i < count; i++) {
  1188. r = zd_chip_led_status(chip, led, LED_FLIP);
  1189. if (r < 0)
  1190. goto out;
  1191. msleep(phases_msecs[i]);
  1192. }
  1193. out:
  1194. zd_chip_led_status(chip, led, status);
  1195. return r;
  1196. }
  1197. int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
  1198. {
  1199. int r;
  1200. if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
  1201. return -EINVAL;
  1202. mutex_lock(&chip->mutex);
  1203. r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
  1204. mutex_unlock(&chip->mutex);
  1205. return r;
  1206. }
  1207. static int ofdm_qual_db(u8 status_quality, u8 rate, unsigned int size)
  1208. {
  1209. static const u16 constants[] = {
  1210. 715, 655, 585, 540, 470, 410, 360, 315,
  1211. 270, 235, 205, 175, 150, 125, 105, 85,
  1212. 65, 50, 40, 25, 15
  1213. };
  1214. int i;
  1215. u32 x;
  1216. /* It seems that their quality parameter is somehow per signal
  1217. * and is now transferred per bit.
  1218. */
  1219. switch (rate) {
  1220. case ZD_OFDM_RATE_6M:
  1221. case ZD_OFDM_RATE_12M:
  1222. case ZD_OFDM_RATE_24M:
  1223. size *= 2;
  1224. break;
  1225. case ZD_OFDM_RATE_9M:
  1226. case ZD_OFDM_RATE_18M:
  1227. case ZD_OFDM_RATE_36M:
  1228. case ZD_OFDM_RATE_54M:
  1229. size *= 4;
  1230. size /= 3;
  1231. break;
  1232. case ZD_OFDM_RATE_48M:
  1233. size *= 3;
  1234. size /= 2;
  1235. break;
  1236. default:
  1237. return -EINVAL;
  1238. }
  1239. x = (10000 * status_quality)/size;
  1240. for (i = 0; i < ARRAY_SIZE(constants); i++) {
  1241. if (x > constants[i])
  1242. break;
  1243. }
  1244. switch (rate) {
  1245. case ZD_OFDM_RATE_6M:
  1246. case ZD_OFDM_RATE_9M:
  1247. i += 3;
  1248. break;
  1249. case ZD_OFDM_RATE_12M:
  1250. case ZD_OFDM_RATE_18M:
  1251. i += 5;
  1252. break;
  1253. case ZD_OFDM_RATE_24M:
  1254. case ZD_OFDM_RATE_36M:
  1255. i += 9;
  1256. break;
  1257. case ZD_OFDM_RATE_48M:
  1258. case ZD_OFDM_RATE_54M:
  1259. i += 15;
  1260. break;
  1261. default:
  1262. return -EINVAL;
  1263. }
  1264. return i;
  1265. }
  1266. static int ofdm_qual_percent(u8 status_quality, u8 rate, unsigned int size)
  1267. {
  1268. int r;
  1269. r = ofdm_qual_db(status_quality, rate, size);
  1270. ZD_ASSERT(r >= 0);
  1271. if (r < 0)
  1272. r = 0;
  1273. r = (r * 100)/29;
  1274. return r <= 100 ? r : 100;
  1275. }
  1276. static unsigned int log10times100(unsigned int x)
  1277. {
  1278. static const u8 log10[] = {
  1279. 0,
  1280. 0, 30, 47, 60, 69, 77, 84, 90, 95, 100,
  1281. 104, 107, 111, 114, 117, 120, 123, 125, 127, 130,
  1282. 132, 134, 136, 138, 139, 141, 143, 144, 146, 147,
  1283. 149, 150, 151, 153, 154, 155, 156, 157, 159, 160,
  1284. 161, 162, 163, 164, 165, 166, 167, 168, 169, 169,
  1285. 170, 171, 172, 173, 174, 174, 175, 176, 177, 177,
  1286. 178, 179, 179, 180, 181, 181, 182, 183, 183, 184,
  1287. 185, 185, 186, 186, 187, 188, 188, 189, 189, 190,
  1288. 190, 191, 191, 192, 192, 193, 193, 194, 194, 195,
  1289. 195, 196, 196, 197, 197, 198, 198, 199, 199, 200,
  1290. 200, 200, 201, 201, 202, 202, 202, 203, 203, 204,
  1291. 204, 204, 205, 205, 206, 206, 206, 207, 207, 207,
  1292. 208, 208, 208, 209, 209, 210, 210, 210, 211, 211,
  1293. 211, 212, 212, 212, 213, 213, 213, 213, 214, 214,
  1294. 214, 215, 215, 215, 216, 216, 216, 217, 217, 217,
  1295. 217, 218, 218, 218, 219, 219, 219, 219, 220, 220,
  1296. 220, 220, 221, 221, 221, 222, 222, 222, 222, 223,
  1297. 223, 223, 223, 224, 224, 224, 224,
  1298. };
  1299. return x < ARRAY_SIZE(log10) ? log10[x] : 225;
  1300. }
  1301. enum {
  1302. MAX_CCK_EVM_DB = 45,
  1303. };
  1304. static int cck_evm_db(u8 status_quality)
  1305. {
  1306. return (20 * log10times100(status_quality)) / 100;
  1307. }
  1308. static int cck_snr_db(u8 status_quality)
  1309. {
  1310. int r = MAX_CCK_EVM_DB - cck_evm_db(status_quality);
  1311. ZD_ASSERT(r >= 0);
  1312. return r;
  1313. }
  1314. static int cck_qual_percent(u8 status_quality)
  1315. {
  1316. int r;
  1317. r = cck_snr_db(status_quality);
  1318. r = (100*r)/17;
  1319. return r <= 100 ? r : 100;
  1320. }
  1321. u8 zd_rx_qual_percent(const void *rx_frame, unsigned int size,
  1322. const struct rx_status *status)
  1323. {
  1324. return (status->frame_status&ZD_RX_OFDM) ?
  1325. ofdm_qual_percent(status->signal_quality_ofdm,
  1326. zd_ofdm_plcp_header_rate(rx_frame),
  1327. size) :
  1328. cck_qual_percent(status->signal_quality_cck);
  1329. }
  1330. u8 zd_rx_strength_percent(u8 rssi)
  1331. {
  1332. int r = (rssi*100) / 41;
  1333. if (r > 100)
  1334. r = 100;
  1335. return (u8) r;
  1336. }
  1337. u16 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
  1338. {
  1339. static const u16 ofdm_rates[] = {
  1340. [ZD_OFDM_RATE_6M] = 60,
  1341. [ZD_OFDM_RATE_9M] = 90,
  1342. [ZD_OFDM_RATE_12M] = 120,
  1343. [ZD_OFDM_RATE_18M] = 180,
  1344. [ZD_OFDM_RATE_24M] = 240,
  1345. [ZD_OFDM_RATE_36M] = 360,
  1346. [ZD_OFDM_RATE_48M] = 480,
  1347. [ZD_OFDM_RATE_54M] = 540,
  1348. };
  1349. u16 rate;
  1350. if (status->frame_status & ZD_RX_OFDM) {
  1351. u8 ofdm_rate = zd_ofdm_plcp_header_rate(rx_frame);
  1352. rate = ofdm_rates[ofdm_rate & 0xf];
  1353. } else {
  1354. u8 cck_rate = zd_cck_plcp_header_rate(rx_frame);
  1355. switch (cck_rate) {
  1356. case ZD_CCK_SIGNAL_1M:
  1357. rate = 10;
  1358. break;
  1359. case ZD_CCK_SIGNAL_2M:
  1360. rate = 20;
  1361. break;
  1362. case ZD_CCK_SIGNAL_5M5:
  1363. rate = 55;
  1364. break;
  1365. case ZD_CCK_SIGNAL_11M:
  1366. rate = 110;
  1367. break;
  1368. default:
  1369. rate = 0;
  1370. }
  1371. }
  1372. return rate;
  1373. }
  1374. int zd_chip_switch_radio_on(struct zd_chip *chip)
  1375. {
  1376. int r;
  1377. mutex_lock(&chip->mutex);
  1378. r = zd_switch_radio_on(&chip->rf);
  1379. mutex_unlock(&chip->mutex);
  1380. return r;
  1381. }
  1382. int zd_chip_switch_radio_off(struct zd_chip *chip)
  1383. {
  1384. int r;
  1385. mutex_lock(&chip->mutex);
  1386. r = zd_switch_radio_off(&chip->rf);
  1387. mutex_unlock(&chip->mutex);
  1388. return r;
  1389. }
  1390. int zd_chip_enable_int(struct zd_chip *chip)
  1391. {
  1392. int r;
  1393. mutex_lock(&chip->mutex);
  1394. r = zd_usb_enable_int(&chip->usb);
  1395. mutex_unlock(&chip->mutex);
  1396. return r;
  1397. }
  1398. void zd_chip_disable_int(struct zd_chip *chip)
  1399. {
  1400. mutex_lock(&chip->mutex);
  1401. zd_usb_disable_int(&chip->usb);
  1402. mutex_unlock(&chip->mutex);
  1403. }
  1404. int zd_chip_enable_rx(struct zd_chip *chip)
  1405. {
  1406. int r;
  1407. mutex_lock(&chip->mutex);
  1408. r = zd_usb_enable_rx(&chip->usb);
  1409. mutex_unlock(&chip->mutex);
  1410. return r;
  1411. }
  1412. void zd_chip_disable_rx(struct zd_chip *chip)
  1413. {
  1414. mutex_lock(&chip->mutex);
  1415. zd_usb_disable_rx(&chip->usb);
  1416. mutex_unlock(&chip->mutex);
  1417. }
  1418. int zd_rfwritev_locked(struct zd_chip *chip,
  1419. const u32* values, unsigned int count, u8 bits)
  1420. {
  1421. int r;
  1422. unsigned int i;
  1423. for (i = 0; i < count; i++) {
  1424. r = zd_rfwrite_locked(chip, values[i], bits);
  1425. if (r)
  1426. return r;
  1427. }
  1428. return 0;
  1429. }
  1430. /*
  1431. * We can optionally program the RF directly through CR regs, if supported by
  1432. * the hardware. This is much faster than the older method.
  1433. */
  1434. int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
  1435. {
  1436. struct zd_ioreq16 ioreqs[] = {
  1437. { CR244, (value >> 16) & 0xff },
  1438. { CR243, (value >> 8) & 0xff },
  1439. { CR242, value & 0xff },
  1440. };
  1441. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  1442. return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
  1443. }
  1444. int zd_rfwritev_cr_locked(struct zd_chip *chip,
  1445. const u32 *values, unsigned int count)
  1446. {
  1447. int r;
  1448. unsigned int i;
  1449. for (i = 0; i < count; i++) {
  1450. r = zd_rfwrite_cr_locked(chip, values[i]);
  1451. if (r)
  1452. return r;
  1453. }
  1454. return 0;
  1455. }