vmx.c 243 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "cpuid.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <linux/mod_devicetable.h>
  29. #include <linux/ftrace_event.h>
  30. #include <linux/slab.h>
  31. #include <linux/tboot.h>
  32. #include "kvm_cache_regs.h"
  33. #include "x86.h"
  34. #include <asm/io.h>
  35. #include <asm/desc.h>
  36. #include <asm/vmx.h>
  37. #include <asm/virtext.h>
  38. #include <asm/mce.h>
  39. #include <asm/i387.h>
  40. #include <asm/xcr.h>
  41. #include <asm/perf_event.h>
  42. #include <asm/kexec.h>
  43. #include "trace.h"
  44. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  45. #define __ex_clear(x, reg) \
  46. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. static const struct x86_cpu_id vmx_cpu_id[] = {
  50. X86_FEATURE_MATCH(X86_FEATURE_VMX),
  51. {}
  52. };
  53. MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  54. static bool __read_mostly enable_vpid = 1;
  55. module_param_named(vpid, enable_vpid, bool, 0444);
  56. static bool __read_mostly flexpriority_enabled = 1;
  57. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  58. static bool __read_mostly enable_ept = 1;
  59. module_param_named(ept, enable_ept, bool, S_IRUGO);
  60. static bool __read_mostly enable_unrestricted_guest = 1;
  61. module_param_named(unrestricted_guest,
  62. enable_unrestricted_guest, bool, S_IRUGO);
  63. static bool __read_mostly enable_ept_ad_bits = 1;
  64. module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  65. static bool __read_mostly emulate_invalid_guest_state = true;
  66. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  67. static bool __read_mostly vmm_exclusive = 1;
  68. module_param(vmm_exclusive, bool, S_IRUGO);
  69. static bool __read_mostly fasteoi = 1;
  70. module_param(fasteoi, bool, S_IRUGO);
  71. static bool __read_mostly enable_apicv = 1;
  72. module_param(enable_apicv, bool, S_IRUGO);
  73. static bool __read_mostly enable_shadow_vmcs = 1;
  74. module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
  75. /*
  76. * If nested=1, nested virtualization is supported, i.e., guests may use
  77. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  78. * use VMX instructions.
  79. */
  80. static bool __read_mostly nested = 0;
  81. module_param(nested, bool, S_IRUGO);
  82. #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
  83. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
  84. #define KVM_VM_CR0_ALWAYS_ON \
  85. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  86. #define KVM_CR4_GUEST_OWNED_BITS \
  87. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  88. | X86_CR4_OSXMMEXCPT)
  89. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  90. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  91. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  92. /*
  93. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  94. * ple_gap: upper bound on the amount of time between two successive
  95. * executions of PAUSE in a loop. Also indicate if ple enabled.
  96. * According to test, this time is usually smaller than 128 cycles.
  97. * ple_window: upper bound on the amount of time a guest is allowed to execute
  98. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  99. * less than 2^12 cycles
  100. * Time is measured based on a counter that runs at the same rate as the TSC,
  101. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  102. */
  103. #define KVM_VMX_DEFAULT_PLE_GAP 128
  104. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  105. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  106. module_param(ple_gap, int, S_IRUGO);
  107. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  108. module_param(ple_window, int, S_IRUGO);
  109. extern const ulong vmx_return;
  110. #define NR_AUTOLOAD_MSRS 8
  111. #define VMCS02_POOL_SIZE 1
  112. struct vmcs {
  113. u32 revision_id;
  114. u32 abort;
  115. char data[0];
  116. };
  117. /*
  118. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  119. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  120. * loaded on this CPU (so we can clear them if the CPU goes down).
  121. */
  122. struct loaded_vmcs {
  123. struct vmcs *vmcs;
  124. int cpu;
  125. int launched;
  126. struct list_head loaded_vmcss_on_cpu_link;
  127. };
  128. struct shared_msr_entry {
  129. unsigned index;
  130. u64 data;
  131. u64 mask;
  132. };
  133. /*
  134. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  135. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  136. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  137. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  138. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  139. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  140. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  141. * underlying hardware which will be used to run L2.
  142. * This structure is packed to ensure that its layout is identical across
  143. * machines (necessary for live migration).
  144. * If there are changes in this struct, VMCS12_REVISION must be changed.
  145. */
  146. typedef u64 natural_width;
  147. struct __packed vmcs12 {
  148. /* According to the Intel spec, a VMCS region must start with the
  149. * following two fields. Then follow implementation-specific data.
  150. */
  151. u32 revision_id;
  152. u32 abort;
  153. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  154. u32 padding[7]; /* room for future expansion */
  155. u64 io_bitmap_a;
  156. u64 io_bitmap_b;
  157. u64 msr_bitmap;
  158. u64 vm_exit_msr_store_addr;
  159. u64 vm_exit_msr_load_addr;
  160. u64 vm_entry_msr_load_addr;
  161. u64 tsc_offset;
  162. u64 virtual_apic_page_addr;
  163. u64 apic_access_addr;
  164. u64 ept_pointer;
  165. u64 guest_physical_address;
  166. u64 vmcs_link_pointer;
  167. u64 guest_ia32_debugctl;
  168. u64 guest_ia32_pat;
  169. u64 guest_ia32_efer;
  170. u64 guest_ia32_perf_global_ctrl;
  171. u64 guest_pdptr0;
  172. u64 guest_pdptr1;
  173. u64 guest_pdptr2;
  174. u64 guest_pdptr3;
  175. u64 host_ia32_pat;
  176. u64 host_ia32_efer;
  177. u64 host_ia32_perf_global_ctrl;
  178. u64 padding64[8]; /* room for future expansion */
  179. /*
  180. * To allow migration of L1 (complete with its L2 guests) between
  181. * machines of different natural widths (32 or 64 bit), we cannot have
  182. * unsigned long fields with no explict size. We use u64 (aliased
  183. * natural_width) instead. Luckily, x86 is little-endian.
  184. */
  185. natural_width cr0_guest_host_mask;
  186. natural_width cr4_guest_host_mask;
  187. natural_width cr0_read_shadow;
  188. natural_width cr4_read_shadow;
  189. natural_width cr3_target_value0;
  190. natural_width cr3_target_value1;
  191. natural_width cr3_target_value2;
  192. natural_width cr3_target_value3;
  193. natural_width exit_qualification;
  194. natural_width guest_linear_address;
  195. natural_width guest_cr0;
  196. natural_width guest_cr3;
  197. natural_width guest_cr4;
  198. natural_width guest_es_base;
  199. natural_width guest_cs_base;
  200. natural_width guest_ss_base;
  201. natural_width guest_ds_base;
  202. natural_width guest_fs_base;
  203. natural_width guest_gs_base;
  204. natural_width guest_ldtr_base;
  205. natural_width guest_tr_base;
  206. natural_width guest_gdtr_base;
  207. natural_width guest_idtr_base;
  208. natural_width guest_dr7;
  209. natural_width guest_rsp;
  210. natural_width guest_rip;
  211. natural_width guest_rflags;
  212. natural_width guest_pending_dbg_exceptions;
  213. natural_width guest_sysenter_esp;
  214. natural_width guest_sysenter_eip;
  215. natural_width host_cr0;
  216. natural_width host_cr3;
  217. natural_width host_cr4;
  218. natural_width host_fs_base;
  219. natural_width host_gs_base;
  220. natural_width host_tr_base;
  221. natural_width host_gdtr_base;
  222. natural_width host_idtr_base;
  223. natural_width host_ia32_sysenter_esp;
  224. natural_width host_ia32_sysenter_eip;
  225. natural_width host_rsp;
  226. natural_width host_rip;
  227. natural_width paddingl[8]; /* room for future expansion */
  228. u32 pin_based_vm_exec_control;
  229. u32 cpu_based_vm_exec_control;
  230. u32 exception_bitmap;
  231. u32 page_fault_error_code_mask;
  232. u32 page_fault_error_code_match;
  233. u32 cr3_target_count;
  234. u32 vm_exit_controls;
  235. u32 vm_exit_msr_store_count;
  236. u32 vm_exit_msr_load_count;
  237. u32 vm_entry_controls;
  238. u32 vm_entry_msr_load_count;
  239. u32 vm_entry_intr_info_field;
  240. u32 vm_entry_exception_error_code;
  241. u32 vm_entry_instruction_len;
  242. u32 tpr_threshold;
  243. u32 secondary_vm_exec_control;
  244. u32 vm_instruction_error;
  245. u32 vm_exit_reason;
  246. u32 vm_exit_intr_info;
  247. u32 vm_exit_intr_error_code;
  248. u32 idt_vectoring_info_field;
  249. u32 idt_vectoring_error_code;
  250. u32 vm_exit_instruction_len;
  251. u32 vmx_instruction_info;
  252. u32 guest_es_limit;
  253. u32 guest_cs_limit;
  254. u32 guest_ss_limit;
  255. u32 guest_ds_limit;
  256. u32 guest_fs_limit;
  257. u32 guest_gs_limit;
  258. u32 guest_ldtr_limit;
  259. u32 guest_tr_limit;
  260. u32 guest_gdtr_limit;
  261. u32 guest_idtr_limit;
  262. u32 guest_es_ar_bytes;
  263. u32 guest_cs_ar_bytes;
  264. u32 guest_ss_ar_bytes;
  265. u32 guest_ds_ar_bytes;
  266. u32 guest_fs_ar_bytes;
  267. u32 guest_gs_ar_bytes;
  268. u32 guest_ldtr_ar_bytes;
  269. u32 guest_tr_ar_bytes;
  270. u32 guest_interruptibility_info;
  271. u32 guest_activity_state;
  272. u32 guest_sysenter_cs;
  273. u32 host_ia32_sysenter_cs;
  274. u32 vmx_preemption_timer_value;
  275. u32 padding32[7]; /* room for future expansion */
  276. u16 virtual_processor_id;
  277. u16 guest_es_selector;
  278. u16 guest_cs_selector;
  279. u16 guest_ss_selector;
  280. u16 guest_ds_selector;
  281. u16 guest_fs_selector;
  282. u16 guest_gs_selector;
  283. u16 guest_ldtr_selector;
  284. u16 guest_tr_selector;
  285. u16 host_es_selector;
  286. u16 host_cs_selector;
  287. u16 host_ss_selector;
  288. u16 host_ds_selector;
  289. u16 host_fs_selector;
  290. u16 host_gs_selector;
  291. u16 host_tr_selector;
  292. };
  293. /*
  294. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  295. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  296. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  297. */
  298. #define VMCS12_REVISION 0x11e57ed0
  299. /*
  300. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  301. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  302. * current implementation, 4K are reserved to avoid future complications.
  303. */
  304. #define VMCS12_SIZE 0x1000
  305. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  306. struct vmcs02_list {
  307. struct list_head list;
  308. gpa_t vmptr;
  309. struct loaded_vmcs vmcs02;
  310. };
  311. /*
  312. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  313. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  314. */
  315. struct nested_vmx {
  316. /* Has the level1 guest done vmxon? */
  317. bool vmxon;
  318. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  319. gpa_t current_vmptr;
  320. /* The host-usable pointer to the above */
  321. struct page *current_vmcs12_page;
  322. struct vmcs12 *current_vmcs12;
  323. struct vmcs *current_shadow_vmcs;
  324. /*
  325. * Indicates if the shadow vmcs must be updated with the
  326. * data hold by vmcs12
  327. */
  328. bool sync_shadow_vmcs;
  329. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  330. struct list_head vmcs02_pool;
  331. int vmcs02_num;
  332. u64 vmcs01_tsc_offset;
  333. /* L2 must run next, and mustn't decide to exit to L1. */
  334. bool nested_run_pending;
  335. /*
  336. * Guest pages referred to in vmcs02 with host-physical pointers, so
  337. * we must keep them pinned while L2 runs.
  338. */
  339. struct page *apic_access_page;
  340. u64 msr_ia32_feature_control;
  341. };
  342. #define POSTED_INTR_ON 0
  343. /* Posted-Interrupt Descriptor */
  344. struct pi_desc {
  345. u32 pir[8]; /* Posted interrupt requested */
  346. u32 control; /* bit 0 of control is outstanding notification bit */
  347. u32 rsvd[7];
  348. } __aligned(64);
  349. static bool pi_test_and_set_on(struct pi_desc *pi_desc)
  350. {
  351. return test_and_set_bit(POSTED_INTR_ON,
  352. (unsigned long *)&pi_desc->control);
  353. }
  354. static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
  355. {
  356. return test_and_clear_bit(POSTED_INTR_ON,
  357. (unsigned long *)&pi_desc->control);
  358. }
  359. static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
  360. {
  361. return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
  362. }
  363. struct vcpu_vmx {
  364. struct kvm_vcpu vcpu;
  365. unsigned long host_rsp;
  366. u8 fail;
  367. u8 cpl;
  368. bool nmi_known_unmasked;
  369. u32 exit_intr_info;
  370. u32 idt_vectoring_info;
  371. ulong rflags;
  372. struct shared_msr_entry *guest_msrs;
  373. int nmsrs;
  374. int save_nmsrs;
  375. unsigned long host_idt_base;
  376. #ifdef CONFIG_X86_64
  377. u64 msr_host_kernel_gs_base;
  378. u64 msr_guest_kernel_gs_base;
  379. #endif
  380. /*
  381. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  382. * non-nested (L1) guest, it always points to vmcs01. For a nested
  383. * guest (L2), it points to a different VMCS.
  384. */
  385. struct loaded_vmcs vmcs01;
  386. struct loaded_vmcs *loaded_vmcs;
  387. bool __launched; /* temporary, used in vmx_vcpu_run */
  388. struct msr_autoload {
  389. unsigned nr;
  390. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  391. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  392. } msr_autoload;
  393. struct {
  394. int loaded;
  395. u16 fs_sel, gs_sel, ldt_sel;
  396. #ifdef CONFIG_X86_64
  397. u16 ds_sel, es_sel;
  398. #endif
  399. int gs_ldt_reload_needed;
  400. int fs_reload_needed;
  401. } host_state;
  402. struct {
  403. int vm86_active;
  404. ulong save_rflags;
  405. struct kvm_segment segs[8];
  406. } rmode;
  407. struct {
  408. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  409. struct kvm_save_segment {
  410. u16 selector;
  411. unsigned long base;
  412. u32 limit;
  413. u32 ar;
  414. } seg[8];
  415. } segment_cache;
  416. int vpid;
  417. bool emulation_required;
  418. /* Support for vnmi-less CPUs */
  419. int soft_vnmi_blocked;
  420. ktime_t entry_time;
  421. s64 vnmi_blocked_time;
  422. u32 exit_reason;
  423. bool rdtscp_enabled;
  424. /* Posted interrupt descriptor */
  425. struct pi_desc pi_desc;
  426. /* Support for a guest hypervisor (nested VMX) */
  427. struct nested_vmx nested;
  428. };
  429. enum segment_cache_field {
  430. SEG_FIELD_SEL = 0,
  431. SEG_FIELD_BASE = 1,
  432. SEG_FIELD_LIMIT = 2,
  433. SEG_FIELD_AR = 3,
  434. SEG_FIELD_NR = 4
  435. };
  436. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  437. {
  438. return container_of(vcpu, struct vcpu_vmx, vcpu);
  439. }
  440. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  441. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  442. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  443. [number##_HIGH] = VMCS12_OFFSET(name)+4
  444. static const unsigned long shadow_read_only_fields[] = {
  445. /*
  446. * We do NOT shadow fields that are modified when L0
  447. * traps and emulates any vmx instruction (e.g. VMPTRLD,
  448. * VMXON...) executed by L1.
  449. * For example, VM_INSTRUCTION_ERROR is read
  450. * by L1 if a vmx instruction fails (part of the error path).
  451. * Note the code assumes this logic. If for some reason
  452. * we start shadowing these fields then we need to
  453. * force a shadow sync when L0 emulates vmx instructions
  454. * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
  455. * by nested_vmx_failValid)
  456. */
  457. VM_EXIT_REASON,
  458. VM_EXIT_INTR_INFO,
  459. VM_EXIT_INSTRUCTION_LEN,
  460. IDT_VECTORING_INFO_FIELD,
  461. IDT_VECTORING_ERROR_CODE,
  462. VM_EXIT_INTR_ERROR_CODE,
  463. EXIT_QUALIFICATION,
  464. GUEST_LINEAR_ADDRESS,
  465. GUEST_PHYSICAL_ADDRESS
  466. };
  467. static const int max_shadow_read_only_fields =
  468. ARRAY_SIZE(shadow_read_only_fields);
  469. static const unsigned long shadow_read_write_fields[] = {
  470. GUEST_RIP,
  471. GUEST_RSP,
  472. GUEST_CR0,
  473. GUEST_CR3,
  474. GUEST_CR4,
  475. GUEST_INTERRUPTIBILITY_INFO,
  476. GUEST_RFLAGS,
  477. GUEST_CS_SELECTOR,
  478. GUEST_CS_AR_BYTES,
  479. GUEST_CS_LIMIT,
  480. GUEST_CS_BASE,
  481. GUEST_ES_BASE,
  482. CR0_GUEST_HOST_MASK,
  483. CR0_READ_SHADOW,
  484. CR4_READ_SHADOW,
  485. TSC_OFFSET,
  486. EXCEPTION_BITMAP,
  487. CPU_BASED_VM_EXEC_CONTROL,
  488. VM_ENTRY_EXCEPTION_ERROR_CODE,
  489. VM_ENTRY_INTR_INFO_FIELD,
  490. VM_ENTRY_INSTRUCTION_LEN,
  491. VM_ENTRY_EXCEPTION_ERROR_CODE,
  492. HOST_FS_BASE,
  493. HOST_GS_BASE,
  494. HOST_FS_SELECTOR,
  495. HOST_GS_SELECTOR
  496. };
  497. static const int max_shadow_read_write_fields =
  498. ARRAY_SIZE(shadow_read_write_fields);
  499. static const unsigned short vmcs_field_to_offset_table[] = {
  500. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  501. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  502. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  503. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  504. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  505. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  506. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  507. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  508. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  509. FIELD(HOST_ES_SELECTOR, host_es_selector),
  510. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  511. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  512. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  513. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  514. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  515. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  516. FIELD64(IO_BITMAP_A, io_bitmap_a),
  517. FIELD64(IO_BITMAP_B, io_bitmap_b),
  518. FIELD64(MSR_BITMAP, msr_bitmap),
  519. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  520. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  521. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  522. FIELD64(TSC_OFFSET, tsc_offset),
  523. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  524. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  525. FIELD64(EPT_POINTER, ept_pointer),
  526. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  527. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  528. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  529. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  530. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  531. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  532. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  533. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  534. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  535. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  536. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  537. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  538. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  539. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  540. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  541. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  542. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  543. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  544. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  545. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  546. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  547. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  548. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  549. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  550. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  551. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  552. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  553. FIELD(TPR_THRESHOLD, tpr_threshold),
  554. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  555. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  556. FIELD(VM_EXIT_REASON, vm_exit_reason),
  557. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  558. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  559. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  560. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  561. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  562. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  563. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  564. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  565. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  566. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  567. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  568. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  569. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  570. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  571. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  572. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  573. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  574. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  575. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  576. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  577. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  578. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  579. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  580. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  581. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  582. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  583. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  584. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  585. FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
  586. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  587. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  588. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  589. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  590. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  591. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  592. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  593. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  594. FIELD(EXIT_QUALIFICATION, exit_qualification),
  595. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  596. FIELD(GUEST_CR0, guest_cr0),
  597. FIELD(GUEST_CR3, guest_cr3),
  598. FIELD(GUEST_CR4, guest_cr4),
  599. FIELD(GUEST_ES_BASE, guest_es_base),
  600. FIELD(GUEST_CS_BASE, guest_cs_base),
  601. FIELD(GUEST_SS_BASE, guest_ss_base),
  602. FIELD(GUEST_DS_BASE, guest_ds_base),
  603. FIELD(GUEST_FS_BASE, guest_fs_base),
  604. FIELD(GUEST_GS_BASE, guest_gs_base),
  605. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  606. FIELD(GUEST_TR_BASE, guest_tr_base),
  607. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  608. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  609. FIELD(GUEST_DR7, guest_dr7),
  610. FIELD(GUEST_RSP, guest_rsp),
  611. FIELD(GUEST_RIP, guest_rip),
  612. FIELD(GUEST_RFLAGS, guest_rflags),
  613. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  614. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  615. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  616. FIELD(HOST_CR0, host_cr0),
  617. FIELD(HOST_CR3, host_cr3),
  618. FIELD(HOST_CR4, host_cr4),
  619. FIELD(HOST_FS_BASE, host_fs_base),
  620. FIELD(HOST_GS_BASE, host_gs_base),
  621. FIELD(HOST_TR_BASE, host_tr_base),
  622. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  623. FIELD(HOST_IDTR_BASE, host_idtr_base),
  624. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  625. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  626. FIELD(HOST_RSP, host_rsp),
  627. FIELD(HOST_RIP, host_rip),
  628. };
  629. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  630. static inline short vmcs_field_to_offset(unsigned long field)
  631. {
  632. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  633. return -1;
  634. return vmcs_field_to_offset_table[field];
  635. }
  636. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  637. {
  638. return to_vmx(vcpu)->nested.current_vmcs12;
  639. }
  640. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  641. {
  642. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  643. if (is_error_page(page))
  644. return NULL;
  645. return page;
  646. }
  647. static void nested_release_page(struct page *page)
  648. {
  649. kvm_release_page_dirty(page);
  650. }
  651. static void nested_release_page_clean(struct page *page)
  652. {
  653. kvm_release_page_clean(page);
  654. }
  655. static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
  656. static u64 construct_eptp(unsigned long root_hpa);
  657. static void kvm_cpu_vmxon(u64 addr);
  658. static void kvm_cpu_vmxoff(void);
  659. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  660. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  661. struct kvm_segment *var, int seg);
  662. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  663. struct kvm_segment *var, int seg);
  664. static bool guest_state_valid(struct kvm_vcpu *vcpu);
  665. static u32 vmx_segment_access_rights(struct kvm_segment *var);
  666. static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
  667. static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
  668. static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
  669. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  670. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  671. /*
  672. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  673. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  674. */
  675. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  676. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  677. static unsigned long *vmx_io_bitmap_a;
  678. static unsigned long *vmx_io_bitmap_b;
  679. static unsigned long *vmx_msr_bitmap_legacy;
  680. static unsigned long *vmx_msr_bitmap_longmode;
  681. static unsigned long *vmx_msr_bitmap_legacy_x2apic;
  682. static unsigned long *vmx_msr_bitmap_longmode_x2apic;
  683. static unsigned long *vmx_vmread_bitmap;
  684. static unsigned long *vmx_vmwrite_bitmap;
  685. static bool cpu_has_load_ia32_efer;
  686. static bool cpu_has_load_perf_global_ctrl;
  687. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  688. static DEFINE_SPINLOCK(vmx_vpid_lock);
  689. static struct vmcs_config {
  690. int size;
  691. int order;
  692. u32 revision_id;
  693. u32 pin_based_exec_ctrl;
  694. u32 cpu_based_exec_ctrl;
  695. u32 cpu_based_2nd_exec_ctrl;
  696. u32 vmexit_ctrl;
  697. u32 vmentry_ctrl;
  698. } vmcs_config;
  699. static struct vmx_capability {
  700. u32 ept;
  701. u32 vpid;
  702. } vmx_capability;
  703. #define VMX_SEGMENT_FIELD(seg) \
  704. [VCPU_SREG_##seg] = { \
  705. .selector = GUEST_##seg##_SELECTOR, \
  706. .base = GUEST_##seg##_BASE, \
  707. .limit = GUEST_##seg##_LIMIT, \
  708. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  709. }
  710. static const struct kvm_vmx_segment_field {
  711. unsigned selector;
  712. unsigned base;
  713. unsigned limit;
  714. unsigned ar_bytes;
  715. } kvm_vmx_segment_fields[] = {
  716. VMX_SEGMENT_FIELD(CS),
  717. VMX_SEGMENT_FIELD(DS),
  718. VMX_SEGMENT_FIELD(ES),
  719. VMX_SEGMENT_FIELD(FS),
  720. VMX_SEGMENT_FIELD(GS),
  721. VMX_SEGMENT_FIELD(SS),
  722. VMX_SEGMENT_FIELD(TR),
  723. VMX_SEGMENT_FIELD(LDTR),
  724. };
  725. static u64 host_efer;
  726. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  727. /*
  728. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  729. * away by decrementing the array size.
  730. */
  731. static const u32 vmx_msr_index[] = {
  732. #ifdef CONFIG_X86_64
  733. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  734. #endif
  735. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  736. };
  737. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  738. static inline bool is_page_fault(u32 intr_info)
  739. {
  740. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  741. INTR_INFO_VALID_MASK)) ==
  742. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  743. }
  744. static inline bool is_no_device(u32 intr_info)
  745. {
  746. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  747. INTR_INFO_VALID_MASK)) ==
  748. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  749. }
  750. static inline bool is_invalid_opcode(u32 intr_info)
  751. {
  752. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  753. INTR_INFO_VALID_MASK)) ==
  754. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  755. }
  756. static inline bool is_external_interrupt(u32 intr_info)
  757. {
  758. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  759. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  760. }
  761. static inline bool is_machine_check(u32 intr_info)
  762. {
  763. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  764. INTR_INFO_VALID_MASK)) ==
  765. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  766. }
  767. static inline bool cpu_has_vmx_msr_bitmap(void)
  768. {
  769. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  770. }
  771. static inline bool cpu_has_vmx_tpr_shadow(void)
  772. {
  773. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  774. }
  775. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  776. {
  777. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  778. }
  779. static inline bool cpu_has_secondary_exec_ctrls(void)
  780. {
  781. return vmcs_config.cpu_based_exec_ctrl &
  782. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  783. }
  784. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  785. {
  786. return vmcs_config.cpu_based_2nd_exec_ctrl &
  787. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  788. }
  789. static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
  790. {
  791. return vmcs_config.cpu_based_2nd_exec_ctrl &
  792. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  793. }
  794. static inline bool cpu_has_vmx_apic_register_virt(void)
  795. {
  796. return vmcs_config.cpu_based_2nd_exec_ctrl &
  797. SECONDARY_EXEC_APIC_REGISTER_VIRT;
  798. }
  799. static inline bool cpu_has_vmx_virtual_intr_delivery(void)
  800. {
  801. return vmcs_config.cpu_based_2nd_exec_ctrl &
  802. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
  803. }
  804. static inline bool cpu_has_vmx_posted_intr(void)
  805. {
  806. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
  807. }
  808. static inline bool cpu_has_vmx_apicv(void)
  809. {
  810. return cpu_has_vmx_apic_register_virt() &&
  811. cpu_has_vmx_virtual_intr_delivery() &&
  812. cpu_has_vmx_posted_intr();
  813. }
  814. static inline bool cpu_has_vmx_flexpriority(void)
  815. {
  816. return cpu_has_vmx_tpr_shadow() &&
  817. cpu_has_vmx_virtualize_apic_accesses();
  818. }
  819. static inline bool cpu_has_vmx_ept_execute_only(void)
  820. {
  821. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  822. }
  823. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  824. {
  825. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  826. }
  827. static inline bool cpu_has_vmx_eptp_writeback(void)
  828. {
  829. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  830. }
  831. static inline bool cpu_has_vmx_ept_2m_page(void)
  832. {
  833. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  834. }
  835. static inline bool cpu_has_vmx_ept_1g_page(void)
  836. {
  837. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  838. }
  839. static inline bool cpu_has_vmx_ept_4levels(void)
  840. {
  841. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  842. }
  843. static inline bool cpu_has_vmx_ept_ad_bits(void)
  844. {
  845. return vmx_capability.ept & VMX_EPT_AD_BIT;
  846. }
  847. static inline bool cpu_has_vmx_invept_context(void)
  848. {
  849. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  850. }
  851. static inline bool cpu_has_vmx_invept_global(void)
  852. {
  853. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  854. }
  855. static inline bool cpu_has_vmx_invvpid_single(void)
  856. {
  857. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  858. }
  859. static inline bool cpu_has_vmx_invvpid_global(void)
  860. {
  861. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  862. }
  863. static inline bool cpu_has_vmx_ept(void)
  864. {
  865. return vmcs_config.cpu_based_2nd_exec_ctrl &
  866. SECONDARY_EXEC_ENABLE_EPT;
  867. }
  868. static inline bool cpu_has_vmx_unrestricted_guest(void)
  869. {
  870. return vmcs_config.cpu_based_2nd_exec_ctrl &
  871. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  872. }
  873. static inline bool cpu_has_vmx_ple(void)
  874. {
  875. return vmcs_config.cpu_based_2nd_exec_ctrl &
  876. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  877. }
  878. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  879. {
  880. return flexpriority_enabled && irqchip_in_kernel(kvm);
  881. }
  882. static inline bool cpu_has_vmx_vpid(void)
  883. {
  884. return vmcs_config.cpu_based_2nd_exec_ctrl &
  885. SECONDARY_EXEC_ENABLE_VPID;
  886. }
  887. static inline bool cpu_has_vmx_rdtscp(void)
  888. {
  889. return vmcs_config.cpu_based_2nd_exec_ctrl &
  890. SECONDARY_EXEC_RDTSCP;
  891. }
  892. static inline bool cpu_has_vmx_invpcid(void)
  893. {
  894. return vmcs_config.cpu_based_2nd_exec_ctrl &
  895. SECONDARY_EXEC_ENABLE_INVPCID;
  896. }
  897. static inline bool cpu_has_virtual_nmis(void)
  898. {
  899. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  900. }
  901. static inline bool cpu_has_vmx_wbinvd_exit(void)
  902. {
  903. return vmcs_config.cpu_based_2nd_exec_ctrl &
  904. SECONDARY_EXEC_WBINVD_EXITING;
  905. }
  906. static inline bool cpu_has_vmx_shadow_vmcs(void)
  907. {
  908. u64 vmx_msr;
  909. rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
  910. /* check if the cpu supports writing r/o exit information fields */
  911. if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
  912. return false;
  913. return vmcs_config.cpu_based_2nd_exec_ctrl &
  914. SECONDARY_EXEC_SHADOW_VMCS;
  915. }
  916. static inline bool report_flexpriority(void)
  917. {
  918. return flexpriority_enabled;
  919. }
  920. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  921. {
  922. return vmcs12->cpu_based_vm_exec_control & bit;
  923. }
  924. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  925. {
  926. return (vmcs12->cpu_based_vm_exec_control &
  927. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  928. (vmcs12->secondary_vm_exec_control & bit);
  929. }
  930. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
  931. {
  932. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  933. }
  934. static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
  935. {
  936. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
  937. }
  938. static inline bool is_exception(u32 intr_info)
  939. {
  940. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  941. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  942. }
  943. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  944. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  945. struct vmcs12 *vmcs12,
  946. u32 reason, unsigned long qualification);
  947. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  948. {
  949. int i;
  950. for (i = 0; i < vmx->nmsrs; ++i)
  951. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  952. return i;
  953. return -1;
  954. }
  955. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  956. {
  957. struct {
  958. u64 vpid : 16;
  959. u64 rsvd : 48;
  960. u64 gva;
  961. } operand = { vpid, 0, gva };
  962. asm volatile (__ex(ASM_VMX_INVVPID)
  963. /* CF==1 or ZF==1 --> rc = -1 */
  964. "; ja 1f ; ud2 ; 1:"
  965. : : "a"(&operand), "c"(ext) : "cc", "memory");
  966. }
  967. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  968. {
  969. struct {
  970. u64 eptp, gpa;
  971. } operand = {eptp, gpa};
  972. asm volatile (__ex(ASM_VMX_INVEPT)
  973. /* CF==1 or ZF==1 --> rc = -1 */
  974. "; ja 1f ; ud2 ; 1:\n"
  975. : : "a" (&operand), "c" (ext) : "cc", "memory");
  976. }
  977. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  978. {
  979. int i;
  980. i = __find_msr_index(vmx, msr);
  981. if (i >= 0)
  982. return &vmx->guest_msrs[i];
  983. return NULL;
  984. }
  985. static void vmcs_clear(struct vmcs *vmcs)
  986. {
  987. u64 phys_addr = __pa(vmcs);
  988. u8 error;
  989. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  990. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  991. : "cc", "memory");
  992. if (error)
  993. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  994. vmcs, phys_addr);
  995. }
  996. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  997. {
  998. vmcs_clear(loaded_vmcs->vmcs);
  999. loaded_vmcs->cpu = -1;
  1000. loaded_vmcs->launched = 0;
  1001. }
  1002. static void vmcs_load(struct vmcs *vmcs)
  1003. {
  1004. u64 phys_addr = __pa(vmcs);
  1005. u8 error;
  1006. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  1007. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  1008. : "cc", "memory");
  1009. if (error)
  1010. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  1011. vmcs, phys_addr);
  1012. }
  1013. #ifdef CONFIG_KEXEC
  1014. /*
  1015. * This bitmap is used to indicate whether the vmclear
  1016. * operation is enabled on all cpus. All disabled by
  1017. * default.
  1018. */
  1019. static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
  1020. static inline void crash_enable_local_vmclear(int cpu)
  1021. {
  1022. cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
  1023. }
  1024. static inline void crash_disable_local_vmclear(int cpu)
  1025. {
  1026. cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
  1027. }
  1028. static inline int crash_local_vmclear_enabled(int cpu)
  1029. {
  1030. return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
  1031. }
  1032. static void crash_vmclear_local_loaded_vmcss(void)
  1033. {
  1034. int cpu = raw_smp_processor_id();
  1035. struct loaded_vmcs *v;
  1036. if (!crash_local_vmclear_enabled(cpu))
  1037. return;
  1038. list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
  1039. loaded_vmcss_on_cpu_link)
  1040. vmcs_clear(v->vmcs);
  1041. }
  1042. #else
  1043. static inline void crash_enable_local_vmclear(int cpu) { }
  1044. static inline void crash_disable_local_vmclear(int cpu) { }
  1045. #endif /* CONFIG_KEXEC */
  1046. static void __loaded_vmcs_clear(void *arg)
  1047. {
  1048. struct loaded_vmcs *loaded_vmcs = arg;
  1049. int cpu = raw_smp_processor_id();
  1050. if (loaded_vmcs->cpu != cpu)
  1051. return; /* vcpu migration can race with cpu offline */
  1052. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  1053. per_cpu(current_vmcs, cpu) = NULL;
  1054. crash_disable_local_vmclear(cpu);
  1055. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  1056. /*
  1057. * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
  1058. * is before setting loaded_vmcs->vcpu to -1 which is done in
  1059. * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
  1060. * then adds the vmcs into percpu list before it is deleted.
  1061. */
  1062. smp_wmb();
  1063. loaded_vmcs_init(loaded_vmcs);
  1064. crash_enable_local_vmclear(cpu);
  1065. }
  1066. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  1067. {
  1068. int cpu = loaded_vmcs->cpu;
  1069. if (cpu != -1)
  1070. smp_call_function_single(cpu,
  1071. __loaded_vmcs_clear, loaded_vmcs, 1);
  1072. }
  1073. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  1074. {
  1075. if (vmx->vpid == 0)
  1076. return;
  1077. if (cpu_has_vmx_invvpid_single())
  1078. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  1079. }
  1080. static inline void vpid_sync_vcpu_global(void)
  1081. {
  1082. if (cpu_has_vmx_invvpid_global())
  1083. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  1084. }
  1085. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  1086. {
  1087. if (cpu_has_vmx_invvpid_single())
  1088. vpid_sync_vcpu_single(vmx);
  1089. else
  1090. vpid_sync_vcpu_global();
  1091. }
  1092. static inline void ept_sync_global(void)
  1093. {
  1094. if (cpu_has_vmx_invept_global())
  1095. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  1096. }
  1097. static inline void ept_sync_context(u64 eptp)
  1098. {
  1099. if (enable_ept) {
  1100. if (cpu_has_vmx_invept_context())
  1101. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  1102. else
  1103. ept_sync_global();
  1104. }
  1105. }
  1106. static __always_inline unsigned long vmcs_readl(unsigned long field)
  1107. {
  1108. unsigned long value;
  1109. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  1110. : "=a"(value) : "d"(field) : "cc");
  1111. return value;
  1112. }
  1113. static __always_inline u16 vmcs_read16(unsigned long field)
  1114. {
  1115. return vmcs_readl(field);
  1116. }
  1117. static __always_inline u32 vmcs_read32(unsigned long field)
  1118. {
  1119. return vmcs_readl(field);
  1120. }
  1121. static __always_inline u64 vmcs_read64(unsigned long field)
  1122. {
  1123. #ifdef CONFIG_X86_64
  1124. return vmcs_readl(field);
  1125. #else
  1126. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  1127. #endif
  1128. }
  1129. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  1130. {
  1131. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  1132. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  1133. dump_stack();
  1134. }
  1135. static void vmcs_writel(unsigned long field, unsigned long value)
  1136. {
  1137. u8 error;
  1138. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  1139. : "=q"(error) : "a"(value), "d"(field) : "cc");
  1140. if (unlikely(error))
  1141. vmwrite_error(field, value);
  1142. }
  1143. static void vmcs_write16(unsigned long field, u16 value)
  1144. {
  1145. vmcs_writel(field, value);
  1146. }
  1147. static void vmcs_write32(unsigned long field, u32 value)
  1148. {
  1149. vmcs_writel(field, value);
  1150. }
  1151. static void vmcs_write64(unsigned long field, u64 value)
  1152. {
  1153. vmcs_writel(field, value);
  1154. #ifndef CONFIG_X86_64
  1155. asm volatile ("");
  1156. vmcs_writel(field+1, value >> 32);
  1157. #endif
  1158. }
  1159. static void vmcs_clear_bits(unsigned long field, u32 mask)
  1160. {
  1161. vmcs_writel(field, vmcs_readl(field) & ~mask);
  1162. }
  1163. static void vmcs_set_bits(unsigned long field, u32 mask)
  1164. {
  1165. vmcs_writel(field, vmcs_readl(field) | mask);
  1166. }
  1167. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  1168. {
  1169. vmx->segment_cache.bitmask = 0;
  1170. }
  1171. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  1172. unsigned field)
  1173. {
  1174. bool ret;
  1175. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  1176. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  1177. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  1178. vmx->segment_cache.bitmask = 0;
  1179. }
  1180. ret = vmx->segment_cache.bitmask & mask;
  1181. vmx->segment_cache.bitmask |= mask;
  1182. return ret;
  1183. }
  1184. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  1185. {
  1186. u16 *p = &vmx->segment_cache.seg[seg].selector;
  1187. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  1188. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1189. return *p;
  1190. }
  1191. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1192. {
  1193. ulong *p = &vmx->segment_cache.seg[seg].base;
  1194. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1195. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1196. return *p;
  1197. }
  1198. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1199. {
  1200. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1201. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1202. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1203. return *p;
  1204. }
  1205. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1206. {
  1207. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1208. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1209. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1210. return *p;
  1211. }
  1212. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1213. {
  1214. u32 eb;
  1215. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1216. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1217. if ((vcpu->guest_debug &
  1218. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1219. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1220. eb |= 1u << BP_VECTOR;
  1221. if (to_vmx(vcpu)->rmode.vm86_active)
  1222. eb = ~0;
  1223. if (enable_ept)
  1224. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1225. if (vcpu->fpu_active)
  1226. eb &= ~(1u << NM_VECTOR);
  1227. /* When we are running a nested L2 guest and L1 specified for it a
  1228. * certain exception bitmap, we must trap the same exceptions and pass
  1229. * them to L1. When running L2, we will only handle the exceptions
  1230. * specified above if L1 did not want them.
  1231. */
  1232. if (is_guest_mode(vcpu))
  1233. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1234. vmcs_write32(EXCEPTION_BITMAP, eb);
  1235. }
  1236. static void clear_atomic_switch_msr_special(unsigned long entry,
  1237. unsigned long exit)
  1238. {
  1239. vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
  1240. vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
  1241. }
  1242. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1243. {
  1244. unsigned i;
  1245. struct msr_autoload *m = &vmx->msr_autoload;
  1246. switch (msr) {
  1247. case MSR_EFER:
  1248. if (cpu_has_load_ia32_efer) {
  1249. clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1250. VM_EXIT_LOAD_IA32_EFER);
  1251. return;
  1252. }
  1253. break;
  1254. case MSR_CORE_PERF_GLOBAL_CTRL:
  1255. if (cpu_has_load_perf_global_ctrl) {
  1256. clear_atomic_switch_msr_special(
  1257. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1258. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  1259. return;
  1260. }
  1261. break;
  1262. }
  1263. for (i = 0; i < m->nr; ++i)
  1264. if (m->guest[i].index == msr)
  1265. break;
  1266. if (i == m->nr)
  1267. return;
  1268. --m->nr;
  1269. m->guest[i] = m->guest[m->nr];
  1270. m->host[i] = m->host[m->nr];
  1271. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1272. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1273. }
  1274. static void add_atomic_switch_msr_special(unsigned long entry,
  1275. unsigned long exit, unsigned long guest_val_vmcs,
  1276. unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
  1277. {
  1278. vmcs_write64(guest_val_vmcs, guest_val);
  1279. vmcs_write64(host_val_vmcs, host_val);
  1280. vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
  1281. vmcs_set_bits(VM_EXIT_CONTROLS, exit);
  1282. }
  1283. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1284. u64 guest_val, u64 host_val)
  1285. {
  1286. unsigned i;
  1287. struct msr_autoload *m = &vmx->msr_autoload;
  1288. switch (msr) {
  1289. case MSR_EFER:
  1290. if (cpu_has_load_ia32_efer) {
  1291. add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1292. VM_EXIT_LOAD_IA32_EFER,
  1293. GUEST_IA32_EFER,
  1294. HOST_IA32_EFER,
  1295. guest_val, host_val);
  1296. return;
  1297. }
  1298. break;
  1299. case MSR_CORE_PERF_GLOBAL_CTRL:
  1300. if (cpu_has_load_perf_global_ctrl) {
  1301. add_atomic_switch_msr_special(
  1302. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1303. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
  1304. GUEST_IA32_PERF_GLOBAL_CTRL,
  1305. HOST_IA32_PERF_GLOBAL_CTRL,
  1306. guest_val, host_val);
  1307. return;
  1308. }
  1309. break;
  1310. }
  1311. for (i = 0; i < m->nr; ++i)
  1312. if (m->guest[i].index == msr)
  1313. break;
  1314. if (i == NR_AUTOLOAD_MSRS) {
  1315. printk_once(KERN_WARNING"Not enough mst switch entries. "
  1316. "Can't add msr %x\n", msr);
  1317. return;
  1318. } else if (i == m->nr) {
  1319. ++m->nr;
  1320. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1321. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1322. }
  1323. m->guest[i].index = msr;
  1324. m->guest[i].value = guest_val;
  1325. m->host[i].index = msr;
  1326. m->host[i].value = host_val;
  1327. }
  1328. static void reload_tss(void)
  1329. {
  1330. /*
  1331. * VT restores TR but not its size. Useless.
  1332. */
  1333. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1334. struct desc_struct *descs;
  1335. descs = (void *)gdt->address;
  1336. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1337. load_TR_desc();
  1338. }
  1339. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1340. {
  1341. u64 guest_efer;
  1342. u64 ignore_bits;
  1343. guest_efer = vmx->vcpu.arch.efer;
  1344. /*
  1345. * NX is emulated; LMA and LME handled by hardware; SCE meaningless
  1346. * outside long mode
  1347. */
  1348. ignore_bits = EFER_NX | EFER_SCE;
  1349. #ifdef CONFIG_X86_64
  1350. ignore_bits |= EFER_LMA | EFER_LME;
  1351. /* SCE is meaningful only in long mode on Intel */
  1352. if (guest_efer & EFER_LMA)
  1353. ignore_bits &= ~(u64)EFER_SCE;
  1354. #endif
  1355. guest_efer &= ~ignore_bits;
  1356. guest_efer |= host_efer & ignore_bits;
  1357. vmx->guest_msrs[efer_offset].data = guest_efer;
  1358. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1359. clear_atomic_switch_msr(vmx, MSR_EFER);
  1360. /* On ept, can't emulate nx, and must switch nx atomically */
  1361. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1362. guest_efer = vmx->vcpu.arch.efer;
  1363. if (!(guest_efer & EFER_LMA))
  1364. guest_efer &= ~EFER_LME;
  1365. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1366. return false;
  1367. }
  1368. return true;
  1369. }
  1370. static unsigned long segment_base(u16 selector)
  1371. {
  1372. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1373. struct desc_struct *d;
  1374. unsigned long table_base;
  1375. unsigned long v;
  1376. if (!(selector & ~3))
  1377. return 0;
  1378. table_base = gdt->address;
  1379. if (selector & 4) { /* from ldt */
  1380. u16 ldt_selector = kvm_read_ldt();
  1381. if (!(ldt_selector & ~3))
  1382. return 0;
  1383. table_base = segment_base(ldt_selector);
  1384. }
  1385. d = (struct desc_struct *)(table_base + (selector & ~7));
  1386. v = get_desc_base(d);
  1387. #ifdef CONFIG_X86_64
  1388. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1389. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1390. #endif
  1391. return v;
  1392. }
  1393. static inline unsigned long kvm_read_tr_base(void)
  1394. {
  1395. u16 tr;
  1396. asm("str %0" : "=g"(tr));
  1397. return segment_base(tr);
  1398. }
  1399. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1400. {
  1401. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1402. int i;
  1403. if (vmx->host_state.loaded)
  1404. return;
  1405. vmx->host_state.loaded = 1;
  1406. /*
  1407. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1408. * allow segment selectors with cpl > 0 or ti == 1.
  1409. */
  1410. vmx->host_state.ldt_sel = kvm_read_ldt();
  1411. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1412. savesegment(fs, vmx->host_state.fs_sel);
  1413. if (!(vmx->host_state.fs_sel & 7)) {
  1414. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1415. vmx->host_state.fs_reload_needed = 0;
  1416. } else {
  1417. vmcs_write16(HOST_FS_SELECTOR, 0);
  1418. vmx->host_state.fs_reload_needed = 1;
  1419. }
  1420. savesegment(gs, vmx->host_state.gs_sel);
  1421. if (!(vmx->host_state.gs_sel & 7))
  1422. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1423. else {
  1424. vmcs_write16(HOST_GS_SELECTOR, 0);
  1425. vmx->host_state.gs_ldt_reload_needed = 1;
  1426. }
  1427. #ifdef CONFIG_X86_64
  1428. savesegment(ds, vmx->host_state.ds_sel);
  1429. savesegment(es, vmx->host_state.es_sel);
  1430. #endif
  1431. #ifdef CONFIG_X86_64
  1432. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1433. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1434. #else
  1435. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1436. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1437. #endif
  1438. #ifdef CONFIG_X86_64
  1439. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1440. if (is_long_mode(&vmx->vcpu))
  1441. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1442. #endif
  1443. for (i = 0; i < vmx->save_nmsrs; ++i)
  1444. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1445. vmx->guest_msrs[i].data,
  1446. vmx->guest_msrs[i].mask);
  1447. }
  1448. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1449. {
  1450. if (!vmx->host_state.loaded)
  1451. return;
  1452. ++vmx->vcpu.stat.host_state_reload;
  1453. vmx->host_state.loaded = 0;
  1454. #ifdef CONFIG_X86_64
  1455. if (is_long_mode(&vmx->vcpu))
  1456. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1457. #endif
  1458. if (vmx->host_state.gs_ldt_reload_needed) {
  1459. kvm_load_ldt(vmx->host_state.ldt_sel);
  1460. #ifdef CONFIG_X86_64
  1461. load_gs_index(vmx->host_state.gs_sel);
  1462. #else
  1463. loadsegment(gs, vmx->host_state.gs_sel);
  1464. #endif
  1465. }
  1466. if (vmx->host_state.fs_reload_needed)
  1467. loadsegment(fs, vmx->host_state.fs_sel);
  1468. #ifdef CONFIG_X86_64
  1469. if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
  1470. loadsegment(ds, vmx->host_state.ds_sel);
  1471. loadsegment(es, vmx->host_state.es_sel);
  1472. }
  1473. #endif
  1474. reload_tss();
  1475. #ifdef CONFIG_X86_64
  1476. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1477. #endif
  1478. /*
  1479. * If the FPU is not active (through the host task or
  1480. * the guest vcpu), then restore the cr0.TS bit.
  1481. */
  1482. if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
  1483. stts();
  1484. load_gdt(&__get_cpu_var(host_gdt));
  1485. }
  1486. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1487. {
  1488. preempt_disable();
  1489. __vmx_load_host_state(vmx);
  1490. preempt_enable();
  1491. }
  1492. /*
  1493. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1494. * vcpu mutex is already taken.
  1495. */
  1496. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1497. {
  1498. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1499. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1500. if (!vmm_exclusive)
  1501. kvm_cpu_vmxon(phys_addr);
  1502. else if (vmx->loaded_vmcs->cpu != cpu)
  1503. loaded_vmcs_clear(vmx->loaded_vmcs);
  1504. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1505. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1506. vmcs_load(vmx->loaded_vmcs->vmcs);
  1507. }
  1508. if (vmx->loaded_vmcs->cpu != cpu) {
  1509. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1510. unsigned long sysenter_esp;
  1511. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1512. local_irq_disable();
  1513. crash_disable_local_vmclear(cpu);
  1514. /*
  1515. * Read loaded_vmcs->cpu should be before fetching
  1516. * loaded_vmcs->loaded_vmcss_on_cpu_link.
  1517. * See the comments in __loaded_vmcs_clear().
  1518. */
  1519. smp_rmb();
  1520. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1521. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1522. crash_enable_local_vmclear(cpu);
  1523. local_irq_enable();
  1524. /*
  1525. * Linux uses per-cpu TSS and GDT, so set these when switching
  1526. * processors.
  1527. */
  1528. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1529. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1530. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1531. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1532. vmx->loaded_vmcs->cpu = cpu;
  1533. }
  1534. }
  1535. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1536. {
  1537. __vmx_load_host_state(to_vmx(vcpu));
  1538. if (!vmm_exclusive) {
  1539. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1540. vcpu->cpu = -1;
  1541. kvm_cpu_vmxoff();
  1542. }
  1543. }
  1544. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1545. {
  1546. ulong cr0;
  1547. if (vcpu->fpu_active)
  1548. return;
  1549. vcpu->fpu_active = 1;
  1550. cr0 = vmcs_readl(GUEST_CR0);
  1551. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1552. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1553. vmcs_writel(GUEST_CR0, cr0);
  1554. update_exception_bitmap(vcpu);
  1555. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1556. if (is_guest_mode(vcpu))
  1557. vcpu->arch.cr0_guest_owned_bits &=
  1558. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1559. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1560. }
  1561. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1562. /*
  1563. * Return the cr0 value that a nested guest would read. This is a combination
  1564. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1565. * its hypervisor (cr0_read_shadow).
  1566. */
  1567. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1568. {
  1569. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1570. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1571. }
  1572. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1573. {
  1574. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1575. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1576. }
  1577. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1578. {
  1579. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1580. * set this *before* calling this function.
  1581. */
  1582. vmx_decache_cr0_guest_bits(vcpu);
  1583. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1584. update_exception_bitmap(vcpu);
  1585. vcpu->arch.cr0_guest_owned_bits = 0;
  1586. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1587. if (is_guest_mode(vcpu)) {
  1588. /*
  1589. * L1's specified read shadow might not contain the TS bit,
  1590. * so now that we turned on shadowing of this bit, we need to
  1591. * set this bit of the shadow. Like in nested_vmx_run we need
  1592. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1593. * up-to-date here because we just decached cr0.TS (and we'll
  1594. * only update vmcs12->guest_cr0 on nested exit).
  1595. */
  1596. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1597. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1598. (vcpu->arch.cr0 & X86_CR0_TS);
  1599. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1600. } else
  1601. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1602. }
  1603. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1604. {
  1605. unsigned long rflags, save_rflags;
  1606. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1607. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1608. rflags = vmcs_readl(GUEST_RFLAGS);
  1609. if (to_vmx(vcpu)->rmode.vm86_active) {
  1610. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1611. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1612. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1613. }
  1614. to_vmx(vcpu)->rflags = rflags;
  1615. }
  1616. return to_vmx(vcpu)->rflags;
  1617. }
  1618. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1619. {
  1620. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1621. to_vmx(vcpu)->rflags = rflags;
  1622. if (to_vmx(vcpu)->rmode.vm86_active) {
  1623. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1624. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1625. }
  1626. vmcs_writel(GUEST_RFLAGS, rflags);
  1627. }
  1628. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1629. {
  1630. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1631. int ret = 0;
  1632. if (interruptibility & GUEST_INTR_STATE_STI)
  1633. ret |= KVM_X86_SHADOW_INT_STI;
  1634. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1635. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1636. return ret & mask;
  1637. }
  1638. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1639. {
  1640. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1641. u32 interruptibility = interruptibility_old;
  1642. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1643. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1644. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1645. else if (mask & KVM_X86_SHADOW_INT_STI)
  1646. interruptibility |= GUEST_INTR_STATE_STI;
  1647. if ((interruptibility != interruptibility_old))
  1648. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1649. }
  1650. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1651. {
  1652. unsigned long rip;
  1653. rip = kvm_rip_read(vcpu);
  1654. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1655. kvm_rip_write(vcpu, rip);
  1656. /* skipping an emulated instruction also counts */
  1657. vmx_set_interrupt_shadow(vcpu, 0);
  1658. }
  1659. /*
  1660. * KVM wants to inject page-faults which it got to the guest. This function
  1661. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1662. * This function assumes it is called with the exit reason in vmcs02 being
  1663. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1664. * is running).
  1665. */
  1666. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1667. {
  1668. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1669. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1670. if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
  1671. return 0;
  1672. nested_vmx_vmexit(vcpu);
  1673. return 1;
  1674. }
  1675. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1676. bool has_error_code, u32 error_code,
  1677. bool reinject)
  1678. {
  1679. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1680. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1681. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1682. !vmx->nested.nested_run_pending && nested_pf_handled(vcpu))
  1683. return;
  1684. if (has_error_code) {
  1685. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1686. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1687. }
  1688. if (vmx->rmode.vm86_active) {
  1689. int inc_eip = 0;
  1690. if (kvm_exception_is_soft(nr))
  1691. inc_eip = vcpu->arch.event_exit_inst_len;
  1692. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1693. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1694. return;
  1695. }
  1696. if (kvm_exception_is_soft(nr)) {
  1697. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1698. vmx->vcpu.arch.event_exit_inst_len);
  1699. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1700. } else
  1701. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1702. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1703. }
  1704. static bool vmx_rdtscp_supported(void)
  1705. {
  1706. return cpu_has_vmx_rdtscp();
  1707. }
  1708. static bool vmx_invpcid_supported(void)
  1709. {
  1710. return cpu_has_vmx_invpcid() && enable_ept;
  1711. }
  1712. /*
  1713. * Swap MSR entry in host/guest MSR entry array.
  1714. */
  1715. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1716. {
  1717. struct shared_msr_entry tmp;
  1718. tmp = vmx->guest_msrs[to];
  1719. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1720. vmx->guest_msrs[from] = tmp;
  1721. }
  1722. static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
  1723. {
  1724. unsigned long *msr_bitmap;
  1725. if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
  1726. if (is_long_mode(vcpu))
  1727. msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
  1728. else
  1729. msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
  1730. } else {
  1731. if (is_long_mode(vcpu))
  1732. msr_bitmap = vmx_msr_bitmap_longmode;
  1733. else
  1734. msr_bitmap = vmx_msr_bitmap_legacy;
  1735. }
  1736. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1737. }
  1738. /*
  1739. * Set up the vmcs to automatically save and restore system
  1740. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1741. * mode, as fiddling with msrs is very expensive.
  1742. */
  1743. static void setup_msrs(struct vcpu_vmx *vmx)
  1744. {
  1745. int save_nmsrs, index;
  1746. save_nmsrs = 0;
  1747. #ifdef CONFIG_X86_64
  1748. if (is_long_mode(&vmx->vcpu)) {
  1749. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1750. if (index >= 0)
  1751. move_msr_up(vmx, index, save_nmsrs++);
  1752. index = __find_msr_index(vmx, MSR_LSTAR);
  1753. if (index >= 0)
  1754. move_msr_up(vmx, index, save_nmsrs++);
  1755. index = __find_msr_index(vmx, MSR_CSTAR);
  1756. if (index >= 0)
  1757. move_msr_up(vmx, index, save_nmsrs++);
  1758. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1759. if (index >= 0 && vmx->rdtscp_enabled)
  1760. move_msr_up(vmx, index, save_nmsrs++);
  1761. /*
  1762. * MSR_STAR is only needed on long mode guests, and only
  1763. * if efer.sce is enabled.
  1764. */
  1765. index = __find_msr_index(vmx, MSR_STAR);
  1766. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1767. move_msr_up(vmx, index, save_nmsrs++);
  1768. }
  1769. #endif
  1770. index = __find_msr_index(vmx, MSR_EFER);
  1771. if (index >= 0 && update_transition_efer(vmx, index))
  1772. move_msr_up(vmx, index, save_nmsrs++);
  1773. vmx->save_nmsrs = save_nmsrs;
  1774. if (cpu_has_vmx_msr_bitmap())
  1775. vmx_set_msr_bitmap(&vmx->vcpu);
  1776. }
  1777. /*
  1778. * reads and returns guest's timestamp counter "register"
  1779. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1780. */
  1781. static u64 guest_read_tsc(void)
  1782. {
  1783. u64 host_tsc, tsc_offset;
  1784. rdtscll(host_tsc);
  1785. tsc_offset = vmcs_read64(TSC_OFFSET);
  1786. return host_tsc + tsc_offset;
  1787. }
  1788. /*
  1789. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1790. * counter, even if a nested guest (L2) is currently running.
  1791. */
  1792. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
  1793. {
  1794. u64 tsc_offset;
  1795. tsc_offset = is_guest_mode(vcpu) ?
  1796. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1797. vmcs_read64(TSC_OFFSET);
  1798. return host_tsc + tsc_offset;
  1799. }
  1800. /*
  1801. * Engage any workarounds for mis-matched TSC rates. Currently limited to
  1802. * software catchup for faster rates on slower CPUs.
  1803. */
  1804. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
  1805. {
  1806. if (!scale)
  1807. return;
  1808. if (user_tsc_khz > tsc_khz) {
  1809. vcpu->arch.tsc_catchup = 1;
  1810. vcpu->arch.tsc_always_catchup = 1;
  1811. } else
  1812. WARN(1, "user requested TSC rate below hardware speed\n");
  1813. }
  1814. static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
  1815. {
  1816. return vmcs_read64(TSC_OFFSET);
  1817. }
  1818. /*
  1819. * writes 'offset' into guest's timestamp counter offset register
  1820. */
  1821. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1822. {
  1823. if (is_guest_mode(vcpu)) {
  1824. /*
  1825. * We're here if L1 chose not to trap WRMSR to TSC. According
  1826. * to the spec, this should set L1's TSC; The offset that L1
  1827. * set for L2 remains unchanged, and still needs to be added
  1828. * to the newly set TSC to get L2's TSC.
  1829. */
  1830. struct vmcs12 *vmcs12;
  1831. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1832. /* recalculate vmcs02.TSC_OFFSET: */
  1833. vmcs12 = get_vmcs12(vcpu);
  1834. vmcs_write64(TSC_OFFSET, offset +
  1835. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1836. vmcs12->tsc_offset : 0));
  1837. } else {
  1838. trace_kvm_write_tsc_offset(vcpu->vcpu_id,
  1839. vmcs_read64(TSC_OFFSET), offset);
  1840. vmcs_write64(TSC_OFFSET, offset);
  1841. }
  1842. }
  1843. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
  1844. {
  1845. u64 offset = vmcs_read64(TSC_OFFSET);
  1846. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1847. if (is_guest_mode(vcpu)) {
  1848. /* Even when running L2, the adjustment needs to apply to L1 */
  1849. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1850. } else
  1851. trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
  1852. offset + adjustment);
  1853. }
  1854. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1855. {
  1856. return target_tsc - native_read_tsc();
  1857. }
  1858. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1859. {
  1860. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1861. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1862. }
  1863. /*
  1864. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1865. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1866. * all guests if the "nested" module option is off, and can also be disabled
  1867. * for a single guest by disabling its VMX cpuid bit.
  1868. */
  1869. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1870. {
  1871. return nested && guest_cpuid_has_vmx(vcpu);
  1872. }
  1873. /*
  1874. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1875. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1876. * The same values should also be used to verify that vmcs12 control fields are
  1877. * valid during nested entry from L1 to L2.
  1878. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1879. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1880. * bit in the high half is on if the corresponding bit in the control field
  1881. * may be on. See also vmx_control_verify().
  1882. * TODO: allow these variables to be modified (downgraded) by module options
  1883. * or other means.
  1884. */
  1885. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1886. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1887. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1888. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1889. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1890. static u32 nested_vmx_misc_low, nested_vmx_misc_high;
  1891. static u32 nested_vmx_ept_caps;
  1892. static __init void nested_vmx_setup_ctls_msrs(void)
  1893. {
  1894. /*
  1895. * Note that as a general rule, the high half of the MSRs (bits in
  1896. * the control fields which may be 1) should be initialized by the
  1897. * intersection of the underlying hardware's MSR (i.e., features which
  1898. * can be supported) and the list of features we want to expose -
  1899. * because they are known to be properly supported in our code.
  1900. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1901. * be set to 0, meaning that L1 may turn off any of these bits. The
  1902. * reason is that if one of these bits is necessary, it will appear
  1903. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1904. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1905. * nested_vmx_exit_handled() will not pass related exits to L1.
  1906. * These rules have exceptions below.
  1907. */
  1908. /* pin-based controls */
  1909. rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
  1910. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
  1911. /*
  1912. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1913. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1914. */
  1915. nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
  1916. nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
  1917. PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
  1918. PIN_BASED_VMX_PREEMPTION_TIMER;
  1919. nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
  1920. /*
  1921. * Exit controls
  1922. * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
  1923. * 17 must be 1.
  1924. */
  1925. nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
  1926. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1927. #ifdef CONFIG_X86_64
  1928. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1929. #else
  1930. nested_vmx_exit_ctls_high = 0;
  1931. #endif
  1932. nested_vmx_exit_ctls_high |= (VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
  1933. VM_EXIT_LOAD_IA32_EFER);
  1934. /* entry controls */
  1935. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1936. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1937. /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
  1938. nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
  1939. nested_vmx_entry_ctls_high &=
  1940. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1941. nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
  1942. VM_ENTRY_LOAD_IA32_EFER);
  1943. /* cpu-based controls */
  1944. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1945. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1946. nested_vmx_procbased_ctls_low = 0;
  1947. nested_vmx_procbased_ctls_high &=
  1948. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1949. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1950. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1951. CPU_BASED_CR3_STORE_EXITING |
  1952. #ifdef CONFIG_X86_64
  1953. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1954. #endif
  1955. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1956. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1957. CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
  1958. CPU_BASED_PAUSE_EXITING |
  1959. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1960. /*
  1961. * We can allow some features even when not supported by the
  1962. * hardware. For example, L1 can specify an MSR bitmap - and we
  1963. * can use it to avoid exits to L1 - even when L0 runs L2
  1964. * without MSR bitmaps.
  1965. */
  1966. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1967. /* secondary cpu-based controls */
  1968. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1969. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1970. nested_vmx_secondary_ctls_low = 0;
  1971. nested_vmx_secondary_ctls_high &=
  1972. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1973. SECONDARY_EXEC_WBINVD_EXITING;
  1974. if (enable_ept) {
  1975. /* nested EPT: emulate EPT also to L1 */
  1976. nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
  1977. nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT;
  1978. nested_vmx_ept_caps |= VMX_EPT_INVEPT_BIT;
  1979. nested_vmx_ept_caps &= vmx_capability.ept;
  1980. /*
  1981. * Since invept is completely emulated we support both global
  1982. * and context invalidation independent of what host cpu
  1983. * supports
  1984. */
  1985. nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
  1986. VMX_EPT_EXTENT_CONTEXT_BIT;
  1987. } else
  1988. nested_vmx_ept_caps = 0;
  1989. /* miscellaneous data */
  1990. rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
  1991. nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
  1992. VMX_MISC_SAVE_EFER_LMA;
  1993. nested_vmx_misc_high = 0;
  1994. }
  1995. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1996. {
  1997. /*
  1998. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1999. */
  2000. return ((control & high) | low) == control;
  2001. }
  2002. static inline u64 vmx_control_msr(u32 low, u32 high)
  2003. {
  2004. return low | ((u64)high << 32);
  2005. }
  2006. /*
  2007. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  2008. * also let it use VMX-specific MSRs.
  2009. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  2010. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  2011. * like all other MSRs).
  2012. */
  2013. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  2014. {
  2015. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  2016. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  2017. /*
  2018. * According to the spec, processors which do not support VMX
  2019. * should throw a #GP(0) when VMX capability MSRs are read.
  2020. */
  2021. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  2022. return 1;
  2023. }
  2024. switch (msr_index) {
  2025. case MSR_IA32_FEATURE_CONTROL:
  2026. if (nested_vmx_allowed(vcpu)) {
  2027. *pdata = to_vmx(vcpu)->nested.msr_ia32_feature_control;
  2028. break;
  2029. }
  2030. return 0;
  2031. case MSR_IA32_VMX_BASIC:
  2032. /*
  2033. * This MSR reports some information about VMX support. We
  2034. * should return information about the VMX we emulate for the
  2035. * guest, and the VMCS structure we give it - not about the
  2036. * VMX support of the underlying hardware.
  2037. */
  2038. *pdata = VMCS12_REVISION |
  2039. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  2040. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  2041. break;
  2042. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  2043. case MSR_IA32_VMX_PINBASED_CTLS:
  2044. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  2045. nested_vmx_pinbased_ctls_high);
  2046. break;
  2047. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  2048. case MSR_IA32_VMX_PROCBASED_CTLS:
  2049. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  2050. nested_vmx_procbased_ctls_high);
  2051. break;
  2052. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  2053. case MSR_IA32_VMX_EXIT_CTLS:
  2054. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  2055. nested_vmx_exit_ctls_high);
  2056. break;
  2057. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  2058. case MSR_IA32_VMX_ENTRY_CTLS:
  2059. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  2060. nested_vmx_entry_ctls_high);
  2061. break;
  2062. case MSR_IA32_VMX_MISC:
  2063. *pdata = vmx_control_msr(nested_vmx_misc_low,
  2064. nested_vmx_misc_high);
  2065. break;
  2066. /*
  2067. * These MSRs specify bits which the guest must keep fixed (on or off)
  2068. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  2069. * We picked the standard core2 setting.
  2070. */
  2071. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  2072. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  2073. case MSR_IA32_VMX_CR0_FIXED0:
  2074. *pdata = VMXON_CR0_ALWAYSON;
  2075. break;
  2076. case MSR_IA32_VMX_CR0_FIXED1:
  2077. *pdata = -1ULL;
  2078. break;
  2079. case MSR_IA32_VMX_CR4_FIXED0:
  2080. *pdata = VMXON_CR4_ALWAYSON;
  2081. break;
  2082. case MSR_IA32_VMX_CR4_FIXED1:
  2083. *pdata = -1ULL;
  2084. break;
  2085. case MSR_IA32_VMX_VMCS_ENUM:
  2086. *pdata = 0x1f;
  2087. break;
  2088. case MSR_IA32_VMX_PROCBASED_CTLS2:
  2089. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  2090. nested_vmx_secondary_ctls_high);
  2091. break;
  2092. case MSR_IA32_VMX_EPT_VPID_CAP:
  2093. /* Currently, no nested vpid support */
  2094. *pdata = nested_vmx_ept_caps;
  2095. break;
  2096. default:
  2097. return 0;
  2098. }
  2099. return 1;
  2100. }
  2101. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
  2102. {
  2103. u32 msr_index = msr_info->index;
  2104. u64 data = msr_info->data;
  2105. bool host_initialized = msr_info->host_initiated;
  2106. if (!nested_vmx_allowed(vcpu))
  2107. return 0;
  2108. if (msr_index == MSR_IA32_FEATURE_CONTROL) {
  2109. if (!host_initialized &&
  2110. to_vmx(vcpu)->nested.msr_ia32_feature_control
  2111. & FEATURE_CONTROL_LOCKED)
  2112. return 0;
  2113. to_vmx(vcpu)->nested.msr_ia32_feature_control = data;
  2114. return 1;
  2115. }
  2116. /*
  2117. * No need to treat VMX capability MSRs specially: If we don't handle
  2118. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  2119. */
  2120. return 0;
  2121. }
  2122. /*
  2123. * Reads an msr value (of 'msr_index') into 'pdata'.
  2124. * Returns 0 on success, non-0 otherwise.
  2125. * Assumes vcpu_load() was already called.
  2126. */
  2127. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  2128. {
  2129. u64 data;
  2130. struct shared_msr_entry *msr;
  2131. if (!pdata) {
  2132. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  2133. return -EINVAL;
  2134. }
  2135. switch (msr_index) {
  2136. #ifdef CONFIG_X86_64
  2137. case MSR_FS_BASE:
  2138. data = vmcs_readl(GUEST_FS_BASE);
  2139. break;
  2140. case MSR_GS_BASE:
  2141. data = vmcs_readl(GUEST_GS_BASE);
  2142. break;
  2143. case MSR_KERNEL_GS_BASE:
  2144. vmx_load_host_state(to_vmx(vcpu));
  2145. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  2146. break;
  2147. #endif
  2148. case MSR_EFER:
  2149. return kvm_get_msr_common(vcpu, msr_index, pdata);
  2150. case MSR_IA32_TSC:
  2151. data = guest_read_tsc();
  2152. break;
  2153. case MSR_IA32_SYSENTER_CS:
  2154. data = vmcs_read32(GUEST_SYSENTER_CS);
  2155. break;
  2156. case MSR_IA32_SYSENTER_EIP:
  2157. data = vmcs_readl(GUEST_SYSENTER_EIP);
  2158. break;
  2159. case MSR_IA32_SYSENTER_ESP:
  2160. data = vmcs_readl(GUEST_SYSENTER_ESP);
  2161. break;
  2162. case MSR_TSC_AUX:
  2163. if (!to_vmx(vcpu)->rdtscp_enabled)
  2164. return 1;
  2165. /* Otherwise falls through */
  2166. default:
  2167. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  2168. return 0;
  2169. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  2170. if (msr) {
  2171. data = msr->data;
  2172. break;
  2173. }
  2174. return kvm_get_msr_common(vcpu, msr_index, pdata);
  2175. }
  2176. *pdata = data;
  2177. return 0;
  2178. }
  2179. /*
  2180. * Writes msr value into into the appropriate "register".
  2181. * Returns 0 on success, non-0 otherwise.
  2182. * Assumes vcpu_load() was already called.
  2183. */
  2184. static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
  2185. {
  2186. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2187. struct shared_msr_entry *msr;
  2188. int ret = 0;
  2189. u32 msr_index = msr_info->index;
  2190. u64 data = msr_info->data;
  2191. switch (msr_index) {
  2192. case MSR_EFER:
  2193. ret = kvm_set_msr_common(vcpu, msr_info);
  2194. break;
  2195. #ifdef CONFIG_X86_64
  2196. case MSR_FS_BASE:
  2197. vmx_segment_cache_clear(vmx);
  2198. vmcs_writel(GUEST_FS_BASE, data);
  2199. break;
  2200. case MSR_GS_BASE:
  2201. vmx_segment_cache_clear(vmx);
  2202. vmcs_writel(GUEST_GS_BASE, data);
  2203. break;
  2204. case MSR_KERNEL_GS_BASE:
  2205. vmx_load_host_state(vmx);
  2206. vmx->msr_guest_kernel_gs_base = data;
  2207. break;
  2208. #endif
  2209. case MSR_IA32_SYSENTER_CS:
  2210. vmcs_write32(GUEST_SYSENTER_CS, data);
  2211. break;
  2212. case MSR_IA32_SYSENTER_EIP:
  2213. vmcs_writel(GUEST_SYSENTER_EIP, data);
  2214. break;
  2215. case MSR_IA32_SYSENTER_ESP:
  2216. vmcs_writel(GUEST_SYSENTER_ESP, data);
  2217. break;
  2218. case MSR_IA32_TSC:
  2219. kvm_write_tsc(vcpu, msr_info);
  2220. break;
  2221. case MSR_IA32_CR_PAT:
  2222. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2223. vmcs_write64(GUEST_IA32_PAT, data);
  2224. vcpu->arch.pat = data;
  2225. break;
  2226. }
  2227. ret = kvm_set_msr_common(vcpu, msr_info);
  2228. break;
  2229. case MSR_IA32_TSC_ADJUST:
  2230. ret = kvm_set_msr_common(vcpu, msr_info);
  2231. break;
  2232. case MSR_TSC_AUX:
  2233. if (!vmx->rdtscp_enabled)
  2234. return 1;
  2235. /* Check reserved bit, higher 32 bits should be zero */
  2236. if ((data >> 32) != 0)
  2237. return 1;
  2238. /* Otherwise falls through */
  2239. default:
  2240. if (vmx_set_vmx_msr(vcpu, msr_info))
  2241. break;
  2242. msr = find_msr_entry(vmx, msr_index);
  2243. if (msr) {
  2244. msr->data = data;
  2245. if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
  2246. preempt_disable();
  2247. kvm_set_shared_msr(msr->index, msr->data,
  2248. msr->mask);
  2249. preempt_enable();
  2250. }
  2251. break;
  2252. }
  2253. ret = kvm_set_msr_common(vcpu, msr_info);
  2254. }
  2255. return ret;
  2256. }
  2257. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  2258. {
  2259. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  2260. switch (reg) {
  2261. case VCPU_REGS_RSP:
  2262. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  2263. break;
  2264. case VCPU_REGS_RIP:
  2265. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  2266. break;
  2267. case VCPU_EXREG_PDPTR:
  2268. if (enable_ept)
  2269. ept_save_pdptrs(vcpu);
  2270. break;
  2271. default:
  2272. break;
  2273. }
  2274. }
  2275. static __init int cpu_has_kvm_support(void)
  2276. {
  2277. return cpu_has_vmx();
  2278. }
  2279. static __init int vmx_disabled_by_bios(void)
  2280. {
  2281. u64 msr;
  2282. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  2283. if (msr & FEATURE_CONTROL_LOCKED) {
  2284. /* launched w/ TXT and VMX disabled */
  2285. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2286. && tboot_enabled())
  2287. return 1;
  2288. /* launched w/o TXT and VMX only enabled w/ TXT */
  2289. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2290. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2291. && !tboot_enabled()) {
  2292. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  2293. "activate TXT before enabling KVM\n");
  2294. return 1;
  2295. }
  2296. /* launched w/o TXT and VMX disabled */
  2297. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2298. && !tboot_enabled())
  2299. return 1;
  2300. }
  2301. return 0;
  2302. }
  2303. static void kvm_cpu_vmxon(u64 addr)
  2304. {
  2305. asm volatile (ASM_VMX_VMXON_RAX
  2306. : : "a"(&addr), "m"(addr)
  2307. : "memory", "cc");
  2308. }
  2309. static int hardware_enable(void *garbage)
  2310. {
  2311. int cpu = raw_smp_processor_id();
  2312. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  2313. u64 old, test_bits;
  2314. if (read_cr4() & X86_CR4_VMXE)
  2315. return -EBUSY;
  2316. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  2317. /*
  2318. * Now we can enable the vmclear operation in kdump
  2319. * since the loaded_vmcss_on_cpu list on this cpu
  2320. * has been initialized.
  2321. *
  2322. * Though the cpu is not in VMX operation now, there
  2323. * is no problem to enable the vmclear operation
  2324. * for the loaded_vmcss_on_cpu list is empty!
  2325. */
  2326. crash_enable_local_vmclear(cpu);
  2327. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  2328. test_bits = FEATURE_CONTROL_LOCKED;
  2329. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2330. if (tboot_enabled())
  2331. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2332. if ((old & test_bits) != test_bits) {
  2333. /* enable and lock */
  2334. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2335. }
  2336. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2337. if (vmm_exclusive) {
  2338. kvm_cpu_vmxon(phys_addr);
  2339. ept_sync_global();
  2340. }
  2341. native_store_gdt(&__get_cpu_var(host_gdt));
  2342. return 0;
  2343. }
  2344. static void vmclear_local_loaded_vmcss(void)
  2345. {
  2346. int cpu = raw_smp_processor_id();
  2347. struct loaded_vmcs *v, *n;
  2348. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2349. loaded_vmcss_on_cpu_link)
  2350. __loaded_vmcs_clear(v);
  2351. }
  2352. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2353. * tricks.
  2354. */
  2355. static void kvm_cpu_vmxoff(void)
  2356. {
  2357. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2358. }
  2359. static void hardware_disable(void *garbage)
  2360. {
  2361. if (vmm_exclusive) {
  2362. vmclear_local_loaded_vmcss();
  2363. kvm_cpu_vmxoff();
  2364. }
  2365. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2366. }
  2367. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2368. u32 msr, u32 *result)
  2369. {
  2370. u32 vmx_msr_low, vmx_msr_high;
  2371. u32 ctl = ctl_min | ctl_opt;
  2372. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2373. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2374. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2375. /* Ensure minimum (required) set of control bits are supported. */
  2376. if (ctl_min & ~ctl)
  2377. return -EIO;
  2378. *result = ctl;
  2379. return 0;
  2380. }
  2381. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2382. {
  2383. u32 vmx_msr_low, vmx_msr_high;
  2384. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2385. return vmx_msr_high & ctl;
  2386. }
  2387. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2388. {
  2389. u32 vmx_msr_low, vmx_msr_high;
  2390. u32 min, opt, min2, opt2;
  2391. u32 _pin_based_exec_control = 0;
  2392. u32 _cpu_based_exec_control = 0;
  2393. u32 _cpu_based_2nd_exec_control = 0;
  2394. u32 _vmexit_control = 0;
  2395. u32 _vmentry_control = 0;
  2396. min = CPU_BASED_HLT_EXITING |
  2397. #ifdef CONFIG_X86_64
  2398. CPU_BASED_CR8_LOAD_EXITING |
  2399. CPU_BASED_CR8_STORE_EXITING |
  2400. #endif
  2401. CPU_BASED_CR3_LOAD_EXITING |
  2402. CPU_BASED_CR3_STORE_EXITING |
  2403. CPU_BASED_USE_IO_BITMAPS |
  2404. CPU_BASED_MOV_DR_EXITING |
  2405. CPU_BASED_USE_TSC_OFFSETING |
  2406. CPU_BASED_MWAIT_EXITING |
  2407. CPU_BASED_MONITOR_EXITING |
  2408. CPU_BASED_INVLPG_EXITING |
  2409. CPU_BASED_RDPMC_EXITING;
  2410. opt = CPU_BASED_TPR_SHADOW |
  2411. CPU_BASED_USE_MSR_BITMAPS |
  2412. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2413. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2414. &_cpu_based_exec_control) < 0)
  2415. return -EIO;
  2416. #ifdef CONFIG_X86_64
  2417. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2418. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2419. ~CPU_BASED_CR8_STORE_EXITING;
  2420. #endif
  2421. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2422. min2 = 0;
  2423. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2424. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
  2425. SECONDARY_EXEC_WBINVD_EXITING |
  2426. SECONDARY_EXEC_ENABLE_VPID |
  2427. SECONDARY_EXEC_ENABLE_EPT |
  2428. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2429. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2430. SECONDARY_EXEC_RDTSCP |
  2431. SECONDARY_EXEC_ENABLE_INVPCID |
  2432. SECONDARY_EXEC_APIC_REGISTER_VIRT |
  2433. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
  2434. SECONDARY_EXEC_SHADOW_VMCS;
  2435. if (adjust_vmx_controls(min2, opt2,
  2436. MSR_IA32_VMX_PROCBASED_CTLS2,
  2437. &_cpu_based_2nd_exec_control) < 0)
  2438. return -EIO;
  2439. }
  2440. #ifndef CONFIG_X86_64
  2441. if (!(_cpu_based_2nd_exec_control &
  2442. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2443. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2444. #endif
  2445. if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2446. _cpu_based_2nd_exec_control &= ~(
  2447. SECONDARY_EXEC_APIC_REGISTER_VIRT |
  2448. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
  2449. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
  2450. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2451. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2452. enabled */
  2453. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2454. CPU_BASED_CR3_STORE_EXITING |
  2455. CPU_BASED_INVLPG_EXITING);
  2456. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2457. vmx_capability.ept, vmx_capability.vpid);
  2458. }
  2459. min = 0;
  2460. #ifdef CONFIG_X86_64
  2461. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2462. #endif
  2463. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
  2464. VM_EXIT_ACK_INTR_ON_EXIT;
  2465. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2466. &_vmexit_control) < 0)
  2467. return -EIO;
  2468. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2469. opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
  2470. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2471. &_pin_based_exec_control) < 0)
  2472. return -EIO;
  2473. if (!(_cpu_based_2nd_exec_control &
  2474. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
  2475. !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
  2476. _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
  2477. min = 0;
  2478. opt = VM_ENTRY_LOAD_IA32_PAT;
  2479. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2480. &_vmentry_control) < 0)
  2481. return -EIO;
  2482. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2483. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2484. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2485. return -EIO;
  2486. #ifdef CONFIG_X86_64
  2487. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2488. if (vmx_msr_high & (1u<<16))
  2489. return -EIO;
  2490. #endif
  2491. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2492. if (((vmx_msr_high >> 18) & 15) != 6)
  2493. return -EIO;
  2494. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2495. vmcs_conf->order = get_order(vmcs_config.size);
  2496. vmcs_conf->revision_id = vmx_msr_low;
  2497. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2498. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2499. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2500. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2501. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2502. cpu_has_load_ia32_efer =
  2503. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2504. VM_ENTRY_LOAD_IA32_EFER)
  2505. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2506. VM_EXIT_LOAD_IA32_EFER);
  2507. cpu_has_load_perf_global_ctrl =
  2508. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2509. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
  2510. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2511. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  2512. /*
  2513. * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
  2514. * but due to arrata below it can't be used. Workaround is to use
  2515. * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
  2516. *
  2517. * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
  2518. *
  2519. * AAK155 (model 26)
  2520. * AAP115 (model 30)
  2521. * AAT100 (model 37)
  2522. * BC86,AAY89,BD102 (model 44)
  2523. * BA97 (model 46)
  2524. *
  2525. */
  2526. if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
  2527. switch (boot_cpu_data.x86_model) {
  2528. case 26:
  2529. case 30:
  2530. case 37:
  2531. case 44:
  2532. case 46:
  2533. cpu_has_load_perf_global_ctrl = false;
  2534. printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
  2535. "does not work properly. Using workaround\n");
  2536. break;
  2537. default:
  2538. break;
  2539. }
  2540. }
  2541. return 0;
  2542. }
  2543. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2544. {
  2545. int node = cpu_to_node(cpu);
  2546. struct page *pages;
  2547. struct vmcs *vmcs;
  2548. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2549. if (!pages)
  2550. return NULL;
  2551. vmcs = page_address(pages);
  2552. memset(vmcs, 0, vmcs_config.size);
  2553. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2554. return vmcs;
  2555. }
  2556. static struct vmcs *alloc_vmcs(void)
  2557. {
  2558. return alloc_vmcs_cpu(raw_smp_processor_id());
  2559. }
  2560. static void free_vmcs(struct vmcs *vmcs)
  2561. {
  2562. free_pages((unsigned long)vmcs, vmcs_config.order);
  2563. }
  2564. /*
  2565. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2566. */
  2567. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2568. {
  2569. if (!loaded_vmcs->vmcs)
  2570. return;
  2571. loaded_vmcs_clear(loaded_vmcs);
  2572. free_vmcs(loaded_vmcs->vmcs);
  2573. loaded_vmcs->vmcs = NULL;
  2574. }
  2575. static void free_kvm_area(void)
  2576. {
  2577. int cpu;
  2578. for_each_possible_cpu(cpu) {
  2579. free_vmcs(per_cpu(vmxarea, cpu));
  2580. per_cpu(vmxarea, cpu) = NULL;
  2581. }
  2582. }
  2583. static __init int alloc_kvm_area(void)
  2584. {
  2585. int cpu;
  2586. for_each_possible_cpu(cpu) {
  2587. struct vmcs *vmcs;
  2588. vmcs = alloc_vmcs_cpu(cpu);
  2589. if (!vmcs) {
  2590. free_kvm_area();
  2591. return -ENOMEM;
  2592. }
  2593. per_cpu(vmxarea, cpu) = vmcs;
  2594. }
  2595. return 0;
  2596. }
  2597. static __init int hardware_setup(void)
  2598. {
  2599. if (setup_vmcs_config(&vmcs_config) < 0)
  2600. return -EIO;
  2601. if (boot_cpu_has(X86_FEATURE_NX))
  2602. kvm_enable_efer_bits(EFER_NX);
  2603. if (!cpu_has_vmx_vpid())
  2604. enable_vpid = 0;
  2605. if (!cpu_has_vmx_shadow_vmcs())
  2606. enable_shadow_vmcs = 0;
  2607. if (!cpu_has_vmx_ept() ||
  2608. !cpu_has_vmx_ept_4levels()) {
  2609. enable_ept = 0;
  2610. enable_unrestricted_guest = 0;
  2611. enable_ept_ad_bits = 0;
  2612. }
  2613. if (!cpu_has_vmx_ept_ad_bits())
  2614. enable_ept_ad_bits = 0;
  2615. if (!cpu_has_vmx_unrestricted_guest())
  2616. enable_unrestricted_guest = 0;
  2617. if (!cpu_has_vmx_flexpriority())
  2618. flexpriority_enabled = 0;
  2619. if (!cpu_has_vmx_tpr_shadow())
  2620. kvm_x86_ops->update_cr8_intercept = NULL;
  2621. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2622. kvm_disable_largepages();
  2623. if (!cpu_has_vmx_ple())
  2624. ple_gap = 0;
  2625. if (!cpu_has_vmx_apicv())
  2626. enable_apicv = 0;
  2627. if (enable_apicv)
  2628. kvm_x86_ops->update_cr8_intercept = NULL;
  2629. else {
  2630. kvm_x86_ops->hwapic_irr_update = NULL;
  2631. kvm_x86_ops->deliver_posted_interrupt = NULL;
  2632. kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
  2633. }
  2634. if (nested)
  2635. nested_vmx_setup_ctls_msrs();
  2636. return alloc_kvm_area();
  2637. }
  2638. static __exit void hardware_unsetup(void)
  2639. {
  2640. free_kvm_area();
  2641. }
  2642. static bool emulation_required(struct kvm_vcpu *vcpu)
  2643. {
  2644. return emulate_invalid_guest_state && !guest_state_valid(vcpu);
  2645. }
  2646. static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
  2647. struct kvm_segment *save)
  2648. {
  2649. if (!emulate_invalid_guest_state) {
  2650. /*
  2651. * CS and SS RPL should be equal during guest entry according
  2652. * to VMX spec, but in reality it is not always so. Since vcpu
  2653. * is in the middle of the transition from real mode to
  2654. * protected mode it is safe to assume that RPL 0 is a good
  2655. * default value.
  2656. */
  2657. if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
  2658. save->selector &= ~SELECTOR_RPL_MASK;
  2659. save->dpl = save->selector & SELECTOR_RPL_MASK;
  2660. save->s = 1;
  2661. }
  2662. vmx_set_segment(vcpu, save, seg);
  2663. }
  2664. static void enter_pmode(struct kvm_vcpu *vcpu)
  2665. {
  2666. unsigned long flags;
  2667. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2668. /*
  2669. * Update real mode segment cache. It may be not up-to-date if sement
  2670. * register was written while vcpu was in a guest mode.
  2671. */
  2672. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2673. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2674. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2675. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2676. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2677. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2678. vmx->rmode.vm86_active = 0;
  2679. vmx_segment_cache_clear(vmx);
  2680. vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2681. flags = vmcs_readl(GUEST_RFLAGS);
  2682. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2683. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2684. vmcs_writel(GUEST_RFLAGS, flags);
  2685. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2686. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2687. update_exception_bitmap(vcpu);
  2688. fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
  2689. fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
  2690. fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2691. fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2692. fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2693. fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2694. /* CPL is always 0 when CPU enters protected mode */
  2695. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2696. vmx->cpl = 0;
  2697. }
  2698. static void fix_rmode_seg(int seg, struct kvm_segment *save)
  2699. {
  2700. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2701. struct kvm_segment var = *save;
  2702. var.dpl = 0x3;
  2703. if (seg == VCPU_SREG_CS)
  2704. var.type = 0x3;
  2705. if (!emulate_invalid_guest_state) {
  2706. var.selector = var.base >> 4;
  2707. var.base = var.base & 0xffff0;
  2708. var.limit = 0xffff;
  2709. var.g = 0;
  2710. var.db = 0;
  2711. var.present = 1;
  2712. var.s = 1;
  2713. var.l = 0;
  2714. var.unusable = 0;
  2715. var.type = 0x3;
  2716. var.avl = 0;
  2717. if (save->base & 0xf)
  2718. printk_once(KERN_WARNING "kvm: segment base is not "
  2719. "paragraph aligned when entering "
  2720. "protected mode (seg=%d)", seg);
  2721. }
  2722. vmcs_write16(sf->selector, var.selector);
  2723. vmcs_write32(sf->base, var.base);
  2724. vmcs_write32(sf->limit, var.limit);
  2725. vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
  2726. }
  2727. static void enter_rmode(struct kvm_vcpu *vcpu)
  2728. {
  2729. unsigned long flags;
  2730. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2731. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2732. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2733. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2734. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2735. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2736. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2737. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2738. vmx->rmode.vm86_active = 1;
  2739. /*
  2740. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2741. * vcpu. Warn the user that an update is overdue.
  2742. */
  2743. if (!vcpu->kvm->arch.tss_addr)
  2744. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2745. "called before entering vcpu\n");
  2746. vmx_segment_cache_clear(vmx);
  2747. vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
  2748. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2749. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2750. flags = vmcs_readl(GUEST_RFLAGS);
  2751. vmx->rmode.save_rflags = flags;
  2752. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2753. vmcs_writel(GUEST_RFLAGS, flags);
  2754. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2755. update_exception_bitmap(vcpu);
  2756. fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
  2757. fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
  2758. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2759. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2760. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2761. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2762. kvm_mmu_reset_context(vcpu);
  2763. }
  2764. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2765. {
  2766. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2767. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2768. if (!msr)
  2769. return;
  2770. /*
  2771. * Force kernel_gs_base reloading before EFER changes, as control
  2772. * of this msr depends on is_long_mode().
  2773. */
  2774. vmx_load_host_state(to_vmx(vcpu));
  2775. vcpu->arch.efer = efer;
  2776. if (efer & EFER_LMA) {
  2777. vmcs_write32(VM_ENTRY_CONTROLS,
  2778. vmcs_read32(VM_ENTRY_CONTROLS) |
  2779. VM_ENTRY_IA32E_MODE);
  2780. msr->data = efer;
  2781. } else {
  2782. vmcs_write32(VM_ENTRY_CONTROLS,
  2783. vmcs_read32(VM_ENTRY_CONTROLS) &
  2784. ~VM_ENTRY_IA32E_MODE);
  2785. msr->data = efer & ~EFER_LME;
  2786. }
  2787. setup_msrs(vmx);
  2788. }
  2789. #ifdef CONFIG_X86_64
  2790. static void enter_lmode(struct kvm_vcpu *vcpu)
  2791. {
  2792. u32 guest_tr_ar;
  2793. vmx_segment_cache_clear(to_vmx(vcpu));
  2794. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2795. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2796. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2797. __func__);
  2798. vmcs_write32(GUEST_TR_AR_BYTES,
  2799. (guest_tr_ar & ~AR_TYPE_MASK)
  2800. | AR_TYPE_BUSY_64_TSS);
  2801. }
  2802. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2803. }
  2804. static void exit_lmode(struct kvm_vcpu *vcpu)
  2805. {
  2806. vmcs_write32(VM_ENTRY_CONTROLS,
  2807. vmcs_read32(VM_ENTRY_CONTROLS)
  2808. & ~VM_ENTRY_IA32E_MODE);
  2809. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2810. }
  2811. #endif
  2812. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2813. {
  2814. vpid_sync_context(to_vmx(vcpu));
  2815. if (enable_ept) {
  2816. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2817. return;
  2818. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2819. }
  2820. }
  2821. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2822. {
  2823. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2824. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2825. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2826. }
  2827. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2828. {
  2829. if (enable_ept && is_paging(vcpu))
  2830. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2831. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2832. }
  2833. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2834. {
  2835. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2836. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2837. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2838. }
  2839. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2840. {
  2841. if (!test_bit(VCPU_EXREG_PDPTR,
  2842. (unsigned long *)&vcpu->arch.regs_dirty))
  2843. return;
  2844. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2845. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2846. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2847. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2848. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2849. }
  2850. }
  2851. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2852. {
  2853. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2854. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2855. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2856. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2857. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2858. }
  2859. __set_bit(VCPU_EXREG_PDPTR,
  2860. (unsigned long *)&vcpu->arch.regs_avail);
  2861. __set_bit(VCPU_EXREG_PDPTR,
  2862. (unsigned long *)&vcpu->arch.regs_dirty);
  2863. }
  2864. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2865. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2866. unsigned long cr0,
  2867. struct kvm_vcpu *vcpu)
  2868. {
  2869. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2870. vmx_decache_cr3(vcpu);
  2871. if (!(cr0 & X86_CR0_PG)) {
  2872. /* From paging/starting to nonpaging */
  2873. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2874. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2875. (CPU_BASED_CR3_LOAD_EXITING |
  2876. CPU_BASED_CR3_STORE_EXITING));
  2877. vcpu->arch.cr0 = cr0;
  2878. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2879. } else if (!is_paging(vcpu)) {
  2880. /* From nonpaging to paging */
  2881. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2882. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2883. ~(CPU_BASED_CR3_LOAD_EXITING |
  2884. CPU_BASED_CR3_STORE_EXITING));
  2885. vcpu->arch.cr0 = cr0;
  2886. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2887. }
  2888. if (!(cr0 & X86_CR0_WP))
  2889. *hw_cr0 &= ~X86_CR0_WP;
  2890. }
  2891. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2892. {
  2893. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2894. unsigned long hw_cr0;
  2895. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
  2896. if (enable_unrestricted_guest)
  2897. hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2898. else {
  2899. hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
  2900. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2901. enter_pmode(vcpu);
  2902. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2903. enter_rmode(vcpu);
  2904. }
  2905. #ifdef CONFIG_X86_64
  2906. if (vcpu->arch.efer & EFER_LME) {
  2907. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2908. enter_lmode(vcpu);
  2909. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2910. exit_lmode(vcpu);
  2911. }
  2912. #endif
  2913. if (enable_ept)
  2914. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2915. if (!vcpu->fpu_active)
  2916. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2917. vmcs_writel(CR0_READ_SHADOW, cr0);
  2918. vmcs_writel(GUEST_CR0, hw_cr0);
  2919. vcpu->arch.cr0 = cr0;
  2920. /* depends on vcpu->arch.cr0 to be set to a new value */
  2921. vmx->emulation_required = emulation_required(vcpu);
  2922. }
  2923. static u64 construct_eptp(unsigned long root_hpa)
  2924. {
  2925. u64 eptp;
  2926. /* TODO write the value reading from MSR */
  2927. eptp = VMX_EPT_DEFAULT_MT |
  2928. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2929. if (enable_ept_ad_bits)
  2930. eptp |= VMX_EPT_AD_ENABLE_BIT;
  2931. eptp |= (root_hpa & PAGE_MASK);
  2932. return eptp;
  2933. }
  2934. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2935. {
  2936. unsigned long guest_cr3;
  2937. u64 eptp;
  2938. guest_cr3 = cr3;
  2939. if (enable_ept) {
  2940. eptp = construct_eptp(cr3);
  2941. vmcs_write64(EPT_POINTER, eptp);
  2942. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2943. vcpu->kvm->arch.ept_identity_map_addr;
  2944. ept_load_pdptrs(vcpu);
  2945. }
  2946. vmx_flush_tlb(vcpu);
  2947. vmcs_writel(GUEST_CR3, guest_cr3);
  2948. }
  2949. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2950. {
  2951. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2952. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2953. if (cr4 & X86_CR4_VMXE) {
  2954. /*
  2955. * To use VMXON (and later other VMX instructions), a guest
  2956. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2957. * So basically the check on whether to allow nested VMX
  2958. * is here.
  2959. */
  2960. if (!nested_vmx_allowed(vcpu))
  2961. return 1;
  2962. }
  2963. if (to_vmx(vcpu)->nested.vmxon &&
  2964. ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
  2965. return 1;
  2966. vcpu->arch.cr4 = cr4;
  2967. if (enable_ept) {
  2968. if (!is_paging(vcpu)) {
  2969. hw_cr4 &= ~X86_CR4_PAE;
  2970. hw_cr4 |= X86_CR4_PSE;
  2971. /*
  2972. * SMEP is disabled if CPU is in non-paging mode in
  2973. * hardware. However KVM always uses paging mode to
  2974. * emulate guest non-paging mode with TDP.
  2975. * To emulate this behavior, SMEP needs to be manually
  2976. * disabled when guest switches to non-paging mode.
  2977. */
  2978. hw_cr4 &= ~X86_CR4_SMEP;
  2979. } else if (!(cr4 & X86_CR4_PAE)) {
  2980. hw_cr4 &= ~X86_CR4_PAE;
  2981. }
  2982. }
  2983. vmcs_writel(CR4_READ_SHADOW, cr4);
  2984. vmcs_writel(GUEST_CR4, hw_cr4);
  2985. return 0;
  2986. }
  2987. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2988. struct kvm_segment *var, int seg)
  2989. {
  2990. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2991. u32 ar;
  2992. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  2993. *var = vmx->rmode.segs[seg];
  2994. if (seg == VCPU_SREG_TR
  2995. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2996. return;
  2997. var->base = vmx_read_guest_seg_base(vmx, seg);
  2998. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2999. return;
  3000. }
  3001. var->base = vmx_read_guest_seg_base(vmx, seg);
  3002. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  3003. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  3004. ar = vmx_read_guest_seg_ar(vmx, seg);
  3005. var->unusable = (ar >> 16) & 1;
  3006. var->type = ar & 15;
  3007. var->s = (ar >> 4) & 1;
  3008. var->dpl = (ar >> 5) & 3;
  3009. /*
  3010. * Some userspaces do not preserve unusable property. Since usable
  3011. * segment has to be present according to VMX spec we can use present
  3012. * property to amend userspace bug by making unusable segment always
  3013. * nonpresent. vmx_segment_access_rights() already marks nonpresent
  3014. * segment as unusable.
  3015. */
  3016. var->present = !var->unusable;
  3017. var->avl = (ar >> 12) & 1;
  3018. var->l = (ar >> 13) & 1;
  3019. var->db = (ar >> 14) & 1;
  3020. var->g = (ar >> 15) & 1;
  3021. }
  3022. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3023. {
  3024. struct kvm_segment s;
  3025. if (to_vmx(vcpu)->rmode.vm86_active) {
  3026. vmx_get_segment(vcpu, &s, seg);
  3027. return s.base;
  3028. }
  3029. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  3030. }
  3031. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  3032. {
  3033. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3034. if (!is_protmode(vcpu))
  3035. return 0;
  3036. if (!is_long_mode(vcpu)
  3037. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  3038. return 3;
  3039. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  3040. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  3041. vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
  3042. }
  3043. return vmx->cpl;
  3044. }
  3045. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  3046. {
  3047. u32 ar;
  3048. if (var->unusable || !var->present)
  3049. ar = 1 << 16;
  3050. else {
  3051. ar = var->type & 15;
  3052. ar |= (var->s & 1) << 4;
  3053. ar |= (var->dpl & 3) << 5;
  3054. ar |= (var->present & 1) << 7;
  3055. ar |= (var->avl & 1) << 12;
  3056. ar |= (var->l & 1) << 13;
  3057. ar |= (var->db & 1) << 14;
  3058. ar |= (var->g & 1) << 15;
  3059. }
  3060. return ar;
  3061. }
  3062. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  3063. struct kvm_segment *var, int seg)
  3064. {
  3065. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3066. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3067. vmx_segment_cache_clear(vmx);
  3068. if (seg == VCPU_SREG_CS)
  3069. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  3070. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  3071. vmx->rmode.segs[seg] = *var;
  3072. if (seg == VCPU_SREG_TR)
  3073. vmcs_write16(sf->selector, var->selector);
  3074. else if (var->s)
  3075. fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
  3076. goto out;
  3077. }
  3078. vmcs_writel(sf->base, var->base);
  3079. vmcs_write32(sf->limit, var->limit);
  3080. vmcs_write16(sf->selector, var->selector);
  3081. /*
  3082. * Fix the "Accessed" bit in AR field of segment registers for older
  3083. * qemu binaries.
  3084. * IA32 arch specifies that at the time of processor reset the
  3085. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  3086. * is setting it to 0 in the userland code. This causes invalid guest
  3087. * state vmexit when "unrestricted guest" mode is turned on.
  3088. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  3089. * tree. Newer qemu binaries with that qemu fix would not need this
  3090. * kvm hack.
  3091. */
  3092. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  3093. var->type |= 0x1; /* Accessed */
  3094. vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
  3095. out:
  3096. vmx->emulation_required |= emulation_required(vcpu);
  3097. }
  3098. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3099. {
  3100. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  3101. *db = (ar >> 14) & 1;
  3102. *l = (ar >> 13) & 1;
  3103. }
  3104. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  3105. {
  3106. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  3107. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  3108. }
  3109. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  3110. {
  3111. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  3112. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  3113. }
  3114. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  3115. {
  3116. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  3117. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  3118. }
  3119. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  3120. {
  3121. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  3122. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  3123. }
  3124. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  3125. {
  3126. struct kvm_segment var;
  3127. u32 ar;
  3128. vmx_get_segment(vcpu, &var, seg);
  3129. var.dpl = 0x3;
  3130. if (seg == VCPU_SREG_CS)
  3131. var.type = 0x3;
  3132. ar = vmx_segment_access_rights(&var);
  3133. if (var.base != (var.selector << 4))
  3134. return false;
  3135. if (var.limit != 0xffff)
  3136. return false;
  3137. if (ar != 0xf3)
  3138. return false;
  3139. return true;
  3140. }
  3141. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  3142. {
  3143. struct kvm_segment cs;
  3144. unsigned int cs_rpl;
  3145. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3146. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  3147. if (cs.unusable)
  3148. return false;
  3149. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  3150. return false;
  3151. if (!cs.s)
  3152. return false;
  3153. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  3154. if (cs.dpl > cs_rpl)
  3155. return false;
  3156. } else {
  3157. if (cs.dpl != cs_rpl)
  3158. return false;
  3159. }
  3160. if (!cs.present)
  3161. return false;
  3162. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  3163. return true;
  3164. }
  3165. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  3166. {
  3167. struct kvm_segment ss;
  3168. unsigned int ss_rpl;
  3169. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3170. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  3171. if (ss.unusable)
  3172. return true;
  3173. if (ss.type != 3 && ss.type != 7)
  3174. return false;
  3175. if (!ss.s)
  3176. return false;
  3177. if (ss.dpl != ss_rpl) /* DPL != RPL */
  3178. return false;
  3179. if (!ss.present)
  3180. return false;
  3181. return true;
  3182. }
  3183. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  3184. {
  3185. struct kvm_segment var;
  3186. unsigned int rpl;
  3187. vmx_get_segment(vcpu, &var, seg);
  3188. rpl = var.selector & SELECTOR_RPL_MASK;
  3189. if (var.unusable)
  3190. return true;
  3191. if (!var.s)
  3192. return false;
  3193. if (!var.present)
  3194. return false;
  3195. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  3196. if (var.dpl < rpl) /* DPL < RPL */
  3197. return false;
  3198. }
  3199. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  3200. * rights flags
  3201. */
  3202. return true;
  3203. }
  3204. static bool tr_valid(struct kvm_vcpu *vcpu)
  3205. {
  3206. struct kvm_segment tr;
  3207. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  3208. if (tr.unusable)
  3209. return false;
  3210. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3211. return false;
  3212. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  3213. return false;
  3214. if (!tr.present)
  3215. return false;
  3216. return true;
  3217. }
  3218. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  3219. {
  3220. struct kvm_segment ldtr;
  3221. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  3222. if (ldtr.unusable)
  3223. return true;
  3224. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3225. return false;
  3226. if (ldtr.type != 2)
  3227. return false;
  3228. if (!ldtr.present)
  3229. return false;
  3230. return true;
  3231. }
  3232. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  3233. {
  3234. struct kvm_segment cs, ss;
  3235. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3236. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3237. return ((cs.selector & SELECTOR_RPL_MASK) ==
  3238. (ss.selector & SELECTOR_RPL_MASK));
  3239. }
  3240. /*
  3241. * Check if guest state is valid. Returns true if valid, false if
  3242. * not.
  3243. * We assume that registers are always usable
  3244. */
  3245. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  3246. {
  3247. if (enable_unrestricted_guest)
  3248. return true;
  3249. /* real mode guest state checks */
  3250. if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  3251. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  3252. return false;
  3253. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  3254. return false;
  3255. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  3256. return false;
  3257. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  3258. return false;
  3259. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  3260. return false;
  3261. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  3262. return false;
  3263. } else {
  3264. /* protected mode guest state checks */
  3265. if (!cs_ss_rpl_check(vcpu))
  3266. return false;
  3267. if (!code_segment_valid(vcpu))
  3268. return false;
  3269. if (!stack_segment_valid(vcpu))
  3270. return false;
  3271. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  3272. return false;
  3273. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  3274. return false;
  3275. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  3276. return false;
  3277. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  3278. return false;
  3279. if (!tr_valid(vcpu))
  3280. return false;
  3281. if (!ldtr_valid(vcpu))
  3282. return false;
  3283. }
  3284. /* TODO:
  3285. * - Add checks on RIP
  3286. * - Add checks on RFLAGS
  3287. */
  3288. return true;
  3289. }
  3290. static int init_rmode_tss(struct kvm *kvm)
  3291. {
  3292. gfn_t fn;
  3293. u16 data = 0;
  3294. int r, idx, ret = 0;
  3295. idx = srcu_read_lock(&kvm->srcu);
  3296. fn = kvm->arch.tss_addr >> PAGE_SHIFT;
  3297. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3298. if (r < 0)
  3299. goto out;
  3300. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  3301. r = kvm_write_guest_page(kvm, fn++, &data,
  3302. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  3303. if (r < 0)
  3304. goto out;
  3305. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  3306. if (r < 0)
  3307. goto out;
  3308. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3309. if (r < 0)
  3310. goto out;
  3311. data = ~0;
  3312. r = kvm_write_guest_page(kvm, fn, &data,
  3313. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  3314. sizeof(u8));
  3315. if (r < 0)
  3316. goto out;
  3317. ret = 1;
  3318. out:
  3319. srcu_read_unlock(&kvm->srcu, idx);
  3320. return ret;
  3321. }
  3322. static int init_rmode_identity_map(struct kvm *kvm)
  3323. {
  3324. int i, idx, r, ret;
  3325. pfn_t identity_map_pfn;
  3326. u32 tmp;
  3327. if (!enable_ept)
  3328. return 1;
  3329. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  3330. printk(KERN_ERR "EPT: identity-mapping pagetable "
  3331. "haven't been allocated!\n");
  3332. return 0;
  3333. }
  3334. if (likely(kvm->arch.ept_identity_pagetable_done))
  3335. return 1;
  3336. ret = 0;
  3337. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  3338. idx = srcu_read_lock(&kvm->srcu);
  3339. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  3340. if (r < 0)
  3341. goto out;
  3342. /* Set up identity-mapping pagetable for EPT in real mode */
  3343. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  3344. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  3345. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  3346. r = kvm_write_guest_page(kvm, identity_map_pfn,
  3347. &tmp, i * sizeof(tmp), sizeof(tmp));
  3348. if (r < 0)
  3349. goto out;
  3350. }
  3351. kvm->arch.ept_identity_pagetable_done = true;
  3352. ret = 1;
  3353. out:
  3354. srcu_read_unlock(&kvm->srcu, idx);
  3355. return ret;
  3356. }
  3357. static void seg_setup(int seg)
  3358. {
  3359. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3360. unsigned int ar;
  3361. vmcs_write16(sf->selector, 0);
  3362. vmcs_writel(sf->base, 0);
  3363. vmcs_write32(sf->limit, 0xffff);
  3364. ar = 0x93;
  3365. if (seg == VCPU_SREG_CS)
  3366. ar |= 0x08; /* code segment */
  3367. vmcs_write32(sf->ar_bytes, ar);
  3368. }
  3369. static int alloc_apic_access_page(struct kvm *kvm)
  3370. {
  3371. struct page *page;
  3372. struct kvm_userspace_memory_region kvm_userspace_mem;
  3373. int r = 0;
  3374. mutex_lock(&kvm->slots_lock);
  3375. if (kvm->arch.apic_access_page)
  3376. goto out;
  3377. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  3378. kvm_userspace_mem.flags = 0;
  3379. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  3380. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3381. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
  3382. if (r)
  3383. goto out;
  3384. page = gfn_to_page(kvm, 0xfee00);
  3385. if (is_error_page(page)) {
  3386. r = -EFAULT;
  3387. goto out;
  3388. }
  3389. kvm->arch.apic_access_page = page;
  3390. out:
  3391. mutex_unlock(&kvm->slots_lock);
  3392. return r;
  3393. }
  3394. static int alloc_identity_pagetable(struct kvm *kvm)
  3395. {
  3396. struct page *page;
  3397. struct kvm_userspace_memory_region kvm_userspace_mem;
  3398. int r = 0;
  3399. mutex_lock(&kvm->slots_lock);
  3400. if (kvm->arch.ept_identity_pagetable)
  3401. goto out;
  3402. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3403. kvm_userspace_mem.flags = 0;
  3404. kvm_userspace_mem.guest_phys_addr =
  3405. kvm->arch.ept_identity_map_addr;
  3406. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3407. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
  3408. if (r)
  3409. goto out;
  3410. page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3411. if (is_error_page(page)) {
  3412. r = -EFAULT;
  3413. goto out;
  3414. }
  3415. kvm->arch.ept_identity_pagetable = page;
  3416. out:
  3417. mutex_unlock(&kvm->slots_lock);
  3418. return r;
  3419. }
  3420. static void allocate_vpid(struct vcpu_vmx *vmx)
  3421. {
  3422. int vpid;
  3423. vmx->vpid = 0;
  3424. if (!enable_vpid)
  3425. return;
  3426. spin_lock(&vmx_vpid_lock);
  3427. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3428. if (vpid < VMX_NR_VPIDS) {
  3429. vmx->vpid = vpid;
  3430. __set_bit(vpid, vmx_vpid_bitmap);
  3431. }
  3432. spin_unlock(&vmx_vpid_lock);
  3433. }
  3434. static void free_vpid(struct vcpu_vmx *vmx)
  3435. {
  3436. if (!enable_vpid)
  3437. return;
  3438. spin_lock(&vmx_vpid_lock);
  3439. if (vmx->vpid != 0)
  3440. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3441. spin_unlock(&vmx_vpid_lock);
  3442. }
  3443. #define MSR_TYPE_R 1
  3444. #define MSR_TYPE_W 2
  3445. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
  3446. u32 msr, int type)
  3447. {
  3448. int f = sizeof(unsigned long);
  3449. if (!cpu_has_vmx_msr_bitmap())
  3450. return;
  3451. /*
  3452. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3453. * have the write-low and read-high bitmap offsets the wrong way round.
  3454. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3455. */
  3456. if (msr <= 0x1fff) {
  3457. if (type & MSR_TYPE_R)
  3458. /* read-low */
  3459. __clear_bit(msr, msr_bitmap + 0x000 / f);
  3460. if (type & MSR_TYPE_W)
  3461. /* write-low */
  3462. __clear_bit(msr, msr_bitmap + 0x800 / f);
  3463. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3464. msr &= 0x1fff;
  3465. if (type & MSR_TYPE_R)
  3466. /* read-high */
  3467. __clear_bit(msr, msr_bitmap + 0x400 / f);
  3468. if (type & MSR_TYPE_W)
  3469. /* write-high */
  3470. __clear_bit(msr, msr_bitmap + 0xc00 / f);
  3471. }
  3472. }
  3473. static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
  3474. u32 msr, int type)
  3475. {
  3476. int f = sizeof(unsigned long);
  3477. if (!cpu_has_vmx_msr_bitmap())
  3478. return;
  3479. /*
  3480. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3481. * have the write-low and read-high bitmap offsets the wrong way round.
  3482. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3483. */
  3484. if (msr <= 0x1fff) {
  3485. if (type & MSR_TYPE_R)
  3486. /* read-low */
  3487. __set_bit(msr, msr_bitmap + 0x000 / f);
  3488. if (type & MSR_TYPE_W)
  3489. /* write-low */
  3490. __set_bit(msr, msr_bitmap + 0x800 / f);
  3491. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3492. msr &= 0x1fff;
  3493. if (type & MSR_TYPE_R)
  3494. /* read-high */
  3495. __set_bit(msr, msr_bitmap + 0x400 / f);
  3496. if (type & MSR_TYPE_W)
  3497. /* write-high */
  3498. __set_bit(msr, msr_bitmap + 0xc00 / f);
  3499. }
  3500. }
  3501. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3502. {
  3503. if (!longmode_only)
  3504. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
  3505. msr, MSR_TYPE_R | MSR_TYPE_W);
  3506. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
  3507. msr, MSR_TYPE_R | MSR_TYPE_W);
  3508. }
  3509. static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
  3510. {
  3511. __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3512. msr, MSR_TYPE_R);
  3513. __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3514. msr, MSR_TYPE_R);
  3515. }
  3516. static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
  3517. {
  3518. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3519. msr, MSR_TYPE_R);
  3520. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3521. msr, MSR_TYPE_R);
  3522. }
  3523. static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
  3524. {
  3525. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3526. msr, MSR_TYPE_W);
  3527. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3528. msr, MSR_TYPE_W);
  3529. }
  3530. static int vmx_vm_has_apicv(struct kvm *kvm)
  3531. {
  3532. return enable_apicv && irqchip_in_kernel(kvm);
  3533. }
  3534. /*
  3535. * Send interrupt to vcpu via posted interrupt way.
  3536. * 1. If target vcpu is running(non-root mode), send posted interrupt
  3537. * notification to vcpu and hardware will sync PIR to vIRR atomically.
  3538. * 2. If target vcpu isn't running(root mode), kick it to pick up the
  3539. * interrupt from PIR in next vmentry.
  3540. */
  3541. static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
  3542. {
  3543. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3544. int r;
  3545. if (pi_test_and_set_pir(vector, &vmx->pi_desc))
  3546. return;
  3547. r = pi_test_and_set_on(&vmx->pi_desc);
  3548. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3549. #ifdef CONFIG_SMP
  3550. if (!r && (vcpu->mode == IN_GUEST_MODE))
  3551. apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
  3552. POSTED_INTR_VECTOR);
  3553. else
  3554. #endif
  3555. kvm_vcpu_kick(vcpu);
  3556. }
  3557. static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
  3558. {
  3559. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3560. if (!pi_test_and_clear_on(&vmx->pi_desc))
  3561. return;
  3562. kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
  3563. }
  3564. static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
  3565. {
  3566. return;
  3567. }
  3568. /*
  3569. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3570. * will not change in the lifetime of the guest.
  3571. * Note that host-state that does change is set elsewhere. E.g., host-state
  3572. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3573. */
  3574. static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
  3575. {
  3576. u32 low32, high32;
  3577. unsigned long tmpl;
  3578. struct desc_ptr dt;
  3579. vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
  3580. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3581. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3582. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3583. #ifdef CONFIG_X86_64
  3584. /*
  3585. * Load null selectors, so we can avoid reloading them in
  3586. * __vmx_load_host_state(), in case userspace uses the null selectors
  3587. * too (the expected case).
  3588. */
  3589. vmcs_write16(HOST_DS_SELECTOR, 0);
  3590. vmcs_write16(HOST_ES_SELECTOR, 0);
  3591. #else
  3592. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3593. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3594. #endif
  3595. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3596. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3597. native_store_idt(&dt);
  3598. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3599. vmx->host_idt_base = dt.address;
  3600. vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
  3601. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3602. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3603. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3604. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3605. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3606. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3607. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3608. }
  3609. }
  3610. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3611. {
  3612. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3613. if (enable_ept)
  3614. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3615. if (is_guest_mode(&vmx->vcpu))
  3616. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3617. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3618. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3619. }
  3620. static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
  3621. {
  3622. u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
  3623. if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
  3624. pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
  3625. return pin_based_exec_ctrl;
  3626. }
  3627. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3628. {
  3629. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3630. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3631. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3632. #ifdef CONFIG_X86_64
  3633. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3634. CPU_BASED_CR8_LOAD_EXITING;
  3635. #endif
  3636. }
  3637. if (!enable_ept)
  3638. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3639. CPU_BASED_CR3_LOAD_EXITING |
  3640. CPU_BASED_INVLPG_EXITING;
  3641. return exec_control;
  3642. }
  3643. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3644. {
  3645. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3646. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3647. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3648. if (vmx->vpid == 0)
  3649. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3650. if (!enable_ept) {
  3651. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3652. enable_unrestricted_guest = 0;
  3653. /* Enable INVPCID for non-ept guests may cause performance regression. */
  3654. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  3655. }
  3656. if (!enable_unrestricted_guest)
  3657. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3658. if (!ple_gap)
  3659. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3660. if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
  3661. exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
  3662. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
  3663. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  3664. /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
  3665. (handle_vmptrld).
  3666. We can NOT enable shadow_vmcs here because we don't have yet
  3667. a current VMCS12
  3668. */
  3669. exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
  3670. return exec_control;
  3671. }
  3672. static void ept_set_mmio_spte_mask(void)
  3673. {
  3674. /*
  3675. * EPT Misconfigurations can be generated if the value of bits 2:0
  3676. * of an EPT paging-structure entry is 110b (write/execute).
  3677. * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
  3678. * spte.
  3679. */
  3680. kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
  3681. }
  3682. /*
  3683. * Sets up the vmcs for emulated real mode.
  3684. */
  3685. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3686. {
  3687. #ifdef CONFIG_X86_64
  3688. unsigned long a;
  3689. #endif
  3690. int i;
  3691. /* I/O */
  3692. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3693. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3694. if (enable_shadow_vmcs) {
  3695. vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
  3696. vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
  3697. }
  3698. if (cpu_has_vmx_msr_bitmap())
  3699. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3700. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3701. /* Control */
  3702. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
  3703. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3704. if (cpu_has_secondary_exec_ctrls()) {
  3705. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3706. vmx_secondary_exec_control(vmx));
  3707. }
  3708. if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
  3709. vmcs_write64(EOI_EXIT_BITMAP0, 0);
  3710. vmcs_write64(EOI_EXIT_BITMAP1, 0);
  3711. vmcs_write64(EOI_EXIT_BITMAP2, 0);
  3712. vmcs_write64(EOI_EXIT_BITMAP3, 0);
  3713. vmcs_write16(GUEST_INTR_STATUS, 0);
  3714. vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
  3715. vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
  3716. }
  3717. if (ple_gap) {
  3718. vmcs_write32(PLE_GAP, ple_gap);
  3719. vmcs_write32(PLE_WINDOW, ple_window);
  3720. }
  3721. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3722. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3723. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3724. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3725. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3726. vmx_set_constant_host_state(vmx);
  3727. #ifdef CONFIG_X86_64
  3728. rdmsrl(MSR_FS_BASE, a);
  3729. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3730. rdmsrl(MSR_GS_BASE, a);
  3731. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3732. #else
  3733. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3734. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3735. #endif
  3736. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3737. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3738. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3739. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3740. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3741. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3742. u32 msr_low, msr_high;
  3743. u64 host_pat;
  3744. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3745. host_pat = msr_low | ((u64) msr_high << 32);
  3746. /* Write the default value follow host pat */
  3747. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3748. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3749. vmx->vcpu.arch.pat = host_pat;
  3750. }
  3751. for (i = 0; i < NR_VMX_MSR; ++i) {
  3752. u32 index = vmx_msr_index[i];
  3753. u32 data_low, data_high;
  3754. int j = vmx->nmsrs;
  3755. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3756. continue;
  3757. if (wrmsr_safe(index, data_low, data_high) < 0)
  3758. continue;
  3759. vmx->guest_msrs[j].index = i;
  3760. vmx->guest_msrs[j].data = 0;
  3761. vmx->guest_msrs[j].mask = -1ull;
  3762. ++vmx->nmsrs;
  3763. }
  3764. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3765. /* 22.2.1, 20.8.1 */
  3766. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3767. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3768. set_cr4_guest_host_mask(vmx);
  3769. return 0;
  3770. }
  3771. static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3772. {
  3773. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3774. u64 msr;
  3775. vmx->rmode.vm86_active = 0;
  3776. vmx->soft_vnmi_blocked = 0;
  3777. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3778. kvm_set_cr8(&vmx->vcpu, 0);
  3779. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3780. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3781. msr |= MSR_IA32_APICBASE_BSP;
  3782. kvm_set_apic_base(&vmx->vcpu, msr);
  3783. vmx_segment_cache_clear(vmx);
  3784. seg_setup(VCPU_SREG_CS);
  3785. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3786. vmcs_write32(GUEST_CS_BASE, 0xffff0000);
  3787. seg_setup(VCPU_SREG_DS);
  3788. seg_setup(VCPU_SREG_ES);
  3789. seg_setup(VCPU_SREG_FS);
  3790. seg_setup(VCPU_SREG_GS);
  3791. seg_setup(VCPU_SREG_SS);
  3792. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3793. vmcs_writel(GUEST_TR_BASE, 0);
  3794. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3795. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3796. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3797. vmcs_writel(GUEST_LDTR_BASE, 0);
  3798. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3799. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3800. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3801. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3802. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3803. vmcs_writel(GUEST_RFLAGS, 0x02);
  3804. kvm_rip_write(vcpu, 0xfff0);
  3805. vmcs_writel(GUEST_GDTR_BASE, 0);
  3806. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3807. vmcs_writel(GUEST_IDTR_BASE, 0);
  3808. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3809. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3810. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3811. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3812. /* Special registers */
  3813. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3814. setup_msrs(vmx);
  3815. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3816. if (cpu_has_vmx_tpr_shadow()) {
  3817. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3818. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3819. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3820. __pa(vmx->vcpu.arch.apic->regs));
  3821. vmcs_write32(TPR_THRESHOLD, 0);
  3822. }
  3823. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3824. vmcs_write64(APIC_ACCESS_ADDR,
  3825. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3826. if (vmx_vm_has_apicv(vcpu->kvm))
  3827. memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
  3828. if (vmx->vpid != 0)
  3829. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3830. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3831. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3832. vmx_set_cr4(&vmx->vcpu, 0);
  3833. vmx_set_efer(&vmx->vcpu, 0);
  3834. vmx_fpu_activate(&vmx->vcpu);
  3835. update_exception_bitmap(&vmx->vcpu);
  3836. vpid_sync_context(vmx);
  3837. }
  3838. /*
  3839. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3840. * For most existing hypervisors, this will always return true.
  3841. */
  3842. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3843. {
  3844. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3845. PIN_BASED_EXT_INTR_MASK;
  3846. }
  3847. static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
  3848. {
  3849. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3850. PIN_BASED_NMI_EXITING;
  3851. }
  3852. static int enable_irq_window(struct kvm_vcpu *vcpu)
  3853. {
  3854. u32 cpu_based_vm_exec_control;
  3855. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
  3856. /*
  3857. * We get here if vmx_interrupt_allowed() said we can't
  3858. * inject to L1 now because L2 must run. The caller will have
  3859. * to make L2 exit right after entry, so we can inject to L1
  3860. * more promptly.
  3861. */
  3862. return -EBUSY;
  3863. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3864. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3865. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3866. return 0;
  3867. }
  3868. static int enable_nmi_window(struct kvm_vcpu *vcpu)
  3869. {
  3870. u32 cpu_based_vm_exec_control;
  3871. if (!cpu_has_virtual_nmis())
  3872. return enable_irq_window(vcpu);
  3873. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
  3874. return enable_irq_window(vcpu);
  3875. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3876. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3877. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3878. return 0;
  3879. }
  3880. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3881. {
  3882. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3883. uint32_t intr;
  3884. int irq = vcpu->arch.interrupt.nr;
  3885. trace_kvm_inj_virq(irq);
  3886. ++vcpu->stat.irq_injections;
  3887. if (vmx->rmode.vm86_active) {
  3888. int inc_eip = 0;
  3889. if (vcpu->arch.interrupt.soft)
  3890. inc_eip = vcpu->arch.event_exit_inst_len;
  3891. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3892. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3893. return;
  3894. }
  3895. intr = irq | INTR_INFO_VALID_MASK;
  3896. if (vcpu->arch.interrupt.soft) {
  3897. intr |= INTR_TYPE_SOFT_INTR;
  3898. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3899. vmx->vcpu.arch.event_exit_inst_len);
  3900. } else
  3901. intr |= INTR_TYPE_EXT_INTR;
  3902. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3903. }
  3904. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3905. {
  3906. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3907. if (is_guest_mode(vcpu))
  3908. return;
  3909. if (!cpu_has_virtual_nmis()) {
  3910. /*
  3911. * Tracking the NMI-blocked state in software is built upon
  3912. * finding the next open IRQ window. This, in turn, depends on
  3913. * well-behaving guests: They have to keep IRQs disabled at
  3914. * least as long as the NMI handler runs. Otherwise we may
  3915. * cause NMI nesting, maybe breaking the guest. But as this is
  3916. * highly unlikely, we can live with the residual risk.
  3917. */
  3918. vmx->soft_vnmi_blocked = 1;
  3919. vmx->vnmi_blocked_time = 0;
  3920. }
  3921. ++vcpu->stat.nmi_injections;
  3922. vmx->nmi_known_unmasked = false;
  3923. if (vmx->rmode.vm86_active) {
  3924. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3925. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3926. return;
  3927. }
  3928. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3929. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3930. }
  3931. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3932. {
  3933. if (!cpu_has_virtual_nmis())
  3934. return to_vmx(vcpu)->soft_vnmi_blocked;
  3935. if (to_vmx(vcpu)->nmi_known_unmasked)
  3936. return false;
  3937. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3938. }
  3939. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3940. {
  3941. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3942. if (!cpu_has_virtual_nmis()) {
  3943. if (vmx->soft_vnmi_blocked != masked) {
  3944. vmx->soft_vnmi_blocked = masked;
  3945. vmx->vnmi_blocked_time = 0;
  3946. }
  3947. } else {
  3948. vmx->nmi_known_unmasked = !masked;
  3949. if (masked)
  3950. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3951. GUEST_INTR_STATE_NMI);
  3952. else
  3953. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3954. GUEST_INTR_STATE_NMI);
  3955. }
  3956. }
  3957. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3958. {
  3959. if (is_guest_mode(vcpu)) {
  3960. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3961. if (to_vmx(vcpu)->nested.nested_run_pending)
  3962. return 0;
  3963. if (nested_exit_on_nmi(vcpu)) {
  3964. nested_vmx_vmexit(vcpu);
  3965. vmcs12->vm_exit_reason = EXIT_REASON_EXCEPTION_NMI;
  3966. vmcs12->vm_exit_intr_info = NMI_VECTOR |
  3967. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK;
  3968. /*
  3969. * The NMI-triggered VM exit counts as injection:
  3970. * clear this one and block further NMIs.
  3971. */
  3972. vcpu->arch.nmi_pending = 0;
  3973. vmx_set_nmi_mask(vcpu, true);
  3974. return 0;
  3975. }
  3976. }
  3977. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3978. return 0;
  3979. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3980. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3981. | GUEST_INTR_STATE_NMI));
  3982. }
  3983. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3984. {
  3985. if (is_guest_mode(vcpu)) {
  3986. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3987. if (to_vmx(vcpu)->nested.nested_run_pending)
  3988. return 0;
  3989. if (nested_exit_on_intr(vcpu)) {
  3990. nested_vmx_vmexit(vcpu);
  3991. vmcs12->vm_exit_reason =
  3992. EXIT_REASON_EXTERNAL_INTERRUPT;
  3993. vmcs12->vm_exit_intr_info = 0;
  3994. /*
  3995. * fall through to normal code, but now in L1, not L2
  3996. */
  3997. }
  3998. }
  3999. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  4000. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  4001. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  4002. }
  4003. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  4004. {
  4005. int ret;
  4006. struct kvm_userspace_memory_region tss_mem = {
  4007. .slot = TSS_PRIVATE_MEMSLOT,
  4008. .guest_phys_addr = addr,
  4009. .memory_size = PAGE_SIZE * 3,
  4010. .flags = 0,
  4011. };
  4012. ret = kvm_set_memory_region(kvm, &tss_mem);
  4013. if (ret)
  4014. return ret;
  4015. kvm->arch.tss_addr = addr;
  4016. if (!init_rmode_tss(kvm))
  4017. return -ENOMEM;
  4018. return 0;
  4019. }
  4020. static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
  4021. {
  4022. switch (vec) {
  4023. case BP_VECTOR:
  4024. /*
  4025. * Update instruction length as we may reinject the exception
  4026. * from user space while in guest debugging mode.
  4027. */
  4028. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  4029. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  4030. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  4031. return false;
  4032. /* fall through */
  4033. case DB_VECTOR:
  4034. if (vcpu->guest_debug &
  4035. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  4036. return false;
  4037. /* fall through */
  4038. case DE_VECTOR:
  4039. case OF_VECTOR:
  4040. case BR_VECTOR:
  4041. case UD_VECTOR:
  4042. case DF_VECTOR:
  4043. case SS_VECTOR:
  4044. case GP_VECTOR:
  4045. case MF_VECTOR:
  4046. return true;
  4047. break;
  4048. }
  4049. return false;
  4050. }
  4051. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  4052. int vec, u32 err_code)
  4053. {
  4054. /*
  4055. * Instruction with address size override prefix opcode 0x67
  4056. * Cause the #SS fault with 0 error code in VM86 mode.
  4057. */
  4058. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
  4059. if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
  4060. if (vcpu->arch.halt_request) {
  4061. vcpu->arch.halt_request = 0;
  4062. return kvm_emulate_halt(vcpu);
  4063. }
  4064. return 1;
  4065. }
  4066. return 0;
  4067. }
  4068. /*
  4069. * Forward all other exceptions that are valid in real mode.
  4070. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  4071. * the required debugging infrastructure rework.
  4072. */
  4073. kvm_queue_exception(vcpu, vec);
  4074. return 1;
  4075. }
  4076. /*
  4077. * Trigger machine check on the host. We assume all the MSRs are already set up
  4078. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  4079. * We pass a fake environment to the machine check handler because we want
  4080. * the guest to be always treated like user space, no matter what context
  4081. * it used internally.
  4082. */
  4083. static void kvm_machine_check(void)
  4084. {
  4085. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  4086. struct pt_regs regs = {
  4087. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  4088. .flags = X86_EFLAGS_IF,
  4089. };
  4090. do_machine_check(&regs, 0);
  4091. #endif
  4092. }
  4093. static int handle_machine_check(struct kvm_vcpu *vcpu)
  4094. {
  4095. /* already handled by vcpu_run */
  4096. return 1;
  4097. }
  4098. static int handle_exception(struct kvm_vcpu *vcpu)
  4099. {
  4100. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4101. struct kvm_run *kvm_run = vcpu->run;
  4102. u32 intr_info, ex_no, error_code;
  4103. unsigned long cr2, rip, dr6;
  4104. u32 vect_info;
  4105. enum emulation_result er;
  4106. vect_info = vmx->idt_vectoring_info;
  4107. intr_info = vmx->exit_intr_info;
  4108. if (is_machine_check(intr_info))
  4109. return handle_machine_check(vcpu);
  4110. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  4111. return 1; /* already handled by vmx_vcpu_run() */
  4112. if (is_no_device(intr_info)) {
  4113. vmx_fpu_activate(vcpu);
  4114. return 1;
  4115. }
  4116. if (is_invalid_opcode(intr_info)) {
  4117. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  4118. if (er != EMULATE_DONE)
  4119. kvm_queue_exception(vcpu, UD_VECTOR);
  4120. return 1;
  4121. }
  4122. error_code = 0;
  4123. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  4124. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  4125. /*
  4126. * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
  4127. * MMIO, it is better to report an internal error.
  4128. * See the comments in vmx_handle_exit.
  4129. */
  4130. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  4131. !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
  4132. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4133. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  4134. vcpu->run->internal.ndata = 2;
  4135. vcpu->run->internal.data[0] = vect_info;
  4136. vcpu->run->internal.data[1] = intr_info;
  4137. return 0;
  4138. }
  4139. if (is_page_fault(intr_info)) {
  4140. /* EPT won't cause page fault directly */
  4141. BUG_ON(enable_ept);
  4142. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  4143. trace_kvm_page_fault(cr2, error_code);
  4144. if (kvm_event_needs_reinjection(vcpu))
  4145. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  4146. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  4147. }
  4148. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  4149. if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
  4150. return handle_rmode_exception(vcpu, ex_no, error_code);
  4151. switch (ex_no) {
  4152. case DB_VECTOR:
  4153. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  4154. if (!(vcpu->guest_debug &
  4155. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  4156. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  4157. kvm_queue_exception(vcpu, DB_VECTOR);
  4158. return 1;
  4159. }
  4160. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  4161. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  4162. /* fall through */
  4163. case BP_VECTOR:
  4164. /*
  4165. * Update instruction length as we may reinject #BP from
  4166. * user space while in guest debugging mode. Reading it for
  4167. * #DB as well causes no harm, it is not used in that case.
  4168. */
  4169. vmx->vcpu.arch.event_exit_inst_len =
  4170. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  4171. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  4172. rip = kvm_rip_read(vcpu);
  4173. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  4174. kvm_run->debug.arch.exception = ex_no;
  4175. break;
  4176. default:
  4177. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  4178. kvm_run->ex.exception = ex_no;
  4179. kvm_run->ex.error_code = error_code;
  4180. break;
  4181. }
  4182. return 0;
  4183. }
  4184. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  4185. {
  4186. ++vcpu->stat.irq_exits;
  4187. return 1;
  4188. }
  4189. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  4190. {
  4191. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4192. return 0;
  4193. }
  4194. static int handle_io(struct kvm_vcpu *vcpu)
  4195. {
  4196. unsigned long exit_qualification;
  4197. int size, in, string;
  4198. unsigned port;
  4199. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4200. string = (exit_qualification & 16) != 0;
  4201. in = (exit_qualification & 8) != 0;
  4202. ++vcpu->stat.io_exits;
  4203. if (string || in)
  4204. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4205. port = exit_qualification >> 16;
  4206. size = (exit_qualification & 7) + 1;
  4207. skip_emulated_instruction(vcpu);
  4208. return kvm_fast_pio_out(vcpu, size, port);
  4209. }
  4210. static void
  4211. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  4212. {
  4213. /*
  4214. * Patch in the VMCALL instruction:
  4215. */
  4216. hypercall[0] = 0x0f;
  4217. hypercall[1] = 0x01;
  4218. hypercall[2] = 0xc1;
  4219. }
  4220. /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
  4221. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  4222. {
  4223. if (is_guest_mode(vcpu)) {
  4224. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  4225. unsigned long orig_val = val;
  4226. /*
  4227. * We get here when L2 changed cr0 in a way that did not change
  4228. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  4229. * but did change L0 shadowed bits. So we first calculate the
  4230. * effective cr0 value that L1 would like to write into the
  4231. * hardware. It consists of the L2-owned bits from the new
  4232. * value combined with the L1-owned bits from L1's guest_cr0.
  4233. */
  4234. val = (val & ~vmcs12->cr0_guest_host_mask) |
  4235. (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
  4236. /* TODO: will have to take unrestricted guest mode into
  4237. * account */
  4238. if ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)
  4239. return 1;
  4240. if (kvm_set_cr0(vcpu, val))
  4241. return 1;
  4242. vmcs_writel(CR0_READ_SHADOW, orig_val);
  4243. return 0;
  4244. } else {
  4245. if (to_vmx(vcpu)->nested.vmxon &&
  4246. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  4247. return 1;
  4248. return kvm_set_cr0(vcpu, val);
  4249. }
  4250. }
  4251. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  4252. {
  4253. if (is_guest_mode(vcpu)) {
  4254. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  4255. unsigned long orig_val = val;
  4256. /* analogously to handle_set_cr0 */
  4257. val = (val & ~vmcs12->cr4_guest_host_mask) |
  4258. (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
  4259. if (kvm_set_cr4(vcpu, val))
  4260. return 1;
  4261. vmcs_writel(CR4_READ_SHADOW, orig_val);
  4262. return 0;
  4263. } else
  4264. return kvm_set_cr4(vcpu, val);
  4265. }
  4266. /* called to set cr0 as approriate for clts instruction exit. */
  4267. static void handle_clts(struct kvm_vcpu *vcpu)
  4268. {
  4269. if (is_guest_mode(vcpu)) {
  4270. /*
  4271. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  4272. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  4273. * just pretend it's off (also in arch.cr0 for fpu_activate).
  4274. */
  4275. vmcs_writel(CR0_READ_SHADOW,
  4276. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  4277. vcpu->arch.cr0 &= ~X86_CR0_TS;
  4278. } else
  4279. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  4280. }
  4281. static int handle_cr(struct kvm_vcpu *vcpu)
  4282. {
  4283. unsigned long exit_qualification, val;
  4284. int cr;
  4285. int reg;
  4286. int err;
  4287. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4288. cr = exit_qualification & 15;
  4289. reg = (exit_qualification >> 8) & 15;
  4290. switch ((exit_qualification >> 4) & 3) {
  4291. case 0: /* mov to cr */
  4292. val = kvm_register_read(vcpu, reg);
  4293. trace_kvm_cr_write(cr, val);
  4294. switch (cr) {
  4295. case 0:
  4296. err = handle_set_cr0(vcpu, val);
  4297. kvm_complete_insn_gp(vcpu, err);
  4298. return 1;
  4299. case 3:
  4300. err = kvm_set_cr3(vcpu, val);
  4301. kvm_complete_insn_gp(vcpu, err);
  4302. return 1;
  4303. case 4:
  4304. err = handle_set_cr4(vcpu, val);
  4305. kvm_complete_insn_gp(vcpu, err);
  4306. return 1;
  4307. case 8: {
  4308. u8 cr8_prev = kvm_get_cr8(vcpu);
  4309. u8 cr8 = kvm_register_read(vcpu, reg);
  4310. err = kvm_set_cr8(vcpu, cr8);
  4311. kvm_complete_insn_gp(vcpu, err);
  4312. if (irqchip_in_kernel(vcpu->kvm))
  4313. return 1;
  4314. if (cr8_prev <= cr8)
  4315. return 1;
  4316. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  4317. return 0;
  4318. }
  4319. }
  4320. break;
  4321. case 2: /* clts */
  4322. handle_clts(vcpu);
  4323. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  4324. skip_emulated_instruction(vcpu);
  4325. vmx_fpu_activate(vcpu);
  4326. return 1;
  4327. case 1: /*mov from cr*/
  4328. switch (cr) {
  4329. case 3:
  4330. val = kvm_read_cr3(vcpu);
  4331. kvm_register_write(vcpu, reg, val);
  4332. trace_kvm_cr_read(cr, val);
  4333. skip_emulated_instruction(vcpu);
  4334. return 1;
  4335. case 8:
  4336. val = kvm_get_cr8(vcpu);
  4337. kvm_register_write(vcpu, reg, val);
  4338. trace_kvm_cr_read(cr, val);
  4339. skip_emulated_instruction(vcpu);
  4340. return 1;
  4341. }
  4342. break;
  4343. case 3: /* lmsw */
  4344. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  4345. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  4346. kvm_lmsw(vcpu, val);
  4347. skip_emulated_instruction(vcpu);
  4348. return 1;
  4349. default:
  4350. break;
  4351. }
  4352. vcpu->run->exit_reason = 0;
  4353. vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  4354. (int)(exit_qualification >> 4) & 3, cr);
  4355. return 0;
  4356. }
  4357. static int handle_dr(struct kvm_vcpu *vcpu)
  4358. {
  4359. unsigned long exit_qualification;
  4360. int dr, reg;
  4361. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  4362. if (!kvm_require_cpl(vcpu, 0))
  4363. return 1;
  4364. dr = vmcs_readl(GUEST_DR7);
  4365. if (dr & DR7_GD) {
  4366. /*
  4367. * As the vm-exit takes precedence over the debug trap, we
  4368. * need to emulate the latter, either for the host or the
  4369. * guest debugging itself.
  4370. */
  4371. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4372. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  4373. vcpu->run->debug.arch.dr7 = dr;
  4374. vcpu->run->debug.arch.pc =
  4375. vmcs_readl(GUEST_CS_BASE) +
  4376. vmcs_readl(GUEST_RIP);
  4377. vcpu->run->debug.arch.exception = DB_VECTOR;
  4378. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  4379. return 0;
  4380. } else {
  4381. vcpu->arch.dr7 &= ~DR7_GD;
  4382. vcpu->arch.dr6 |= DR6_BD;
  4383. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  4384. kvm_queue_exception(vcpu, DB_VECTOR);
  4385. return 1;
  4386. }
  4387. }
  4388. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4389. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  4390. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  4391. if (exit_qualification & TYPE_MOV_FROM_DR) {
  4392. unsigned long val;
  4393. if (!kvm_get_dr(vcpu, dr, &val))
  4394. kvm_register_write(vcpu, reg, val);
  4395. } else
  4396. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  4397. skip_emulated_instruction(vcpu);
  4398. return 1;
  4399. }
  4400. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  4401. {
  4402. vmcs_writel(GUEST_DR7, val);
  4403. }
  4404. static int handle_cpuid(struct kvm_vcpu *vcpu)
  4405. {
  4406. kvm_emulate_cpuid(vcpu);
  4407. return 1;
  4408. }
  4409. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  4410. {
  4411. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4412. u64 data;
  4413. if (vmx_get_msr(vcpu, ecx, &data)) {
  4414. trace_kvm_msr_read_ex(ecx);
  4415. kvm_inject_gp(vcpu, 0);
  4416. return 1;
  4417. }
  4418. trace_kvm_msr_read(ecx, data);
  4419. /* FIXME: handling of bits 32:63 of rax, rdx */
  4420. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  4421. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  4422. skip_emulated_instruction(vcpu);
  4423. return 1;
  4424. }
  4425. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  4426. {
  4427. struct msr_data msr;
  4428. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4429. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  4430. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  4431. msr.data = data;
  4432. msr.index = ecx;
  4433. msr.host_initiated = false;
  4434. if (vmx_set_msr(vcpu, &msr) != 0) {
  4435. trace_kvm_msr_write_ex(ecx, data);
  4436. kvm_inject_gp(vcpu, 0);
  4437. return 1;
  4438. }
  4439. trace_kvm_msr_write(ecx, data);
  4440. skip_emulated_instruction(vcpu);
  4441. return 1;
  4442. }
  4443. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  4444. {
  4445. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4446. return 1;
  4447. }
  4448. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  4449. {
  4450. u32 cpu_based_vm_exec_control;
  4451. /* clear pending irq */
  4452. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4453. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  4454. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4455. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4456. ++vcpu->stat.irq_window_exits;
  4457. /*
  4458. * If the user space waits to inject interrupts, exit as soon as
  4459. * possible
  4460. */
  4461. if (!irqchip_in_kernel(vcpu->kvm) &&
  4462. vcpu->run->request_interrupt_window &&
  4463. !kvm_cpu_has_interrupt(vcpu)) {
  4464. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  4465. return 0;
  4466. }
  4467. return 1;
  4468. }
  4469. static int handle_halt(struct kvm_vcpu *vcpu)
  4470. {
  4471. skip_emulated_instruction(vcpu);
  4472. return kvm_emulate_halt(vcpu);
  4473. }
  4474. static int handle_vmcall(struct kvm_vcpu *vcpu)
  4475. {
  4476. skip_emulated_instruction(vcpu);
  4477. kvm_emulate_hypercall(vcpu);
  4478. return 1;
  4479. }
  4480. static int handle_invd(struct kvm_vcpu *vcpu)
  4481. {
  4482. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4483. }
  4484. static int handle_invlpg(struct kvm_vcpu *vcpu)
  4485. {
  4486. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4487. kvm_mmu_invlpg(vcpu, exit_qualification);
  4488. skip_emulated_instruction(vcpu);
  4489. return 1;
  4490. }
  4491. static int handle_rdpmc(struct kvm_vcpu *vcpu)
  4492. {
  4493. int err;
  4494. err = kvm_rdpmc(vcpu);
  4495. kvm_complete_insn_gp(vcpu, err);
  4496. return 1;
  4497. }
  4498. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  4499. {
  4500. skip_emulated_instruction(vcpu);
  4501. kvm_emulate_wbinvd(vcpu);
  4502. return 1;
  4503. }
  4504. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  4505. {
  4506. u64 new_bv = kvm_read_edx_eax(vcpu);
  4507. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4508. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  4509. skip_emulated_instruction(vcpu);
  4510. return 1;
  4511. }
  4512. static int handle_apic_access(struct kvm_vcpu *vcpu)
  4513. {
  4514. if (likely(fasteoi)) {
  4515. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4516. int access_type, offset;
  4517. access_type = exit_qualification & APIC_ACCESS_TYPE;
  4518. offset = exit_qualification & APIC_ACCESS_OFFSET;
  4519. /*
  4520. * Sane guest uses MOV to write EOI, with written value
  4521. * not cared. So make a short-circuit here by avoiding
  4522. * heavy instruction emulation.
  4523. */
  4524. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  4525. (offset == APIC_EOI)) {
  4526. kvm_lapic_set_eoi(vcpu);
  4527. skip_emulated_instruction(vcpu);
  4528. return 1;
  4529. }
  4530. }
  4531. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4532. }
  4533. static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
  4534. {
  4535. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4536. int vector = exit_qualification & 0xff;
  4537. /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
  4538. kvm_apic_set_eoi_accelerated(vcpu, vector);
  4539. return 1;
  4540. }
  4541. static int handle_apic_write(struct kvm_vcpu *vcpu)
  4542. {
  4543. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4544. u32 offset = exit_qualification & 0xfff;
  4545. /* APIC-write VM exit is trap-like and thus no need to adjust IP */
  4546. kvm_apic_write_nodecode(vcpu, offset);
  4547. return 1;
  4548. }
  4549. static int handle_task_switch(struct kvm_vcpu *vcpu)
  4550. {
  4551. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4552. unsigned long exit_qualification;
  4553. bool has_error_code = false;
  4554. u32 error_code = 0;
  4555. u16 tss_selector;
  4556. int reason, type, idt_v, idt_index;
  4557. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  4558. idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
  4559. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  4560. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4561. reason = (u32)exit_qualification >> 30;
  4562. if (reason == TASK_SWITCH_GATE && idt_v) {
  4563. switch (type) {
  4564. case INTR_TYPE_NMI_INTR:
  4565. vcpu->arch.nmi_injected = false;
  4566. vmx_set_nmi_mask(vcpu, true);
  4567. break;
  4568. case INTR_TYPE_EXT_INTR:
  4569. case INTR_TYPE_SOFT_INTR:
  4570. kvm_clear_interrupt_queue(vcpu);
  4571. break;
  4572. case INTR_TYPE_HARD_EXCEPTION:
  4573. if (vmx->idt_vectoring_info &
  4574. VECTORING_INFO_DELIVER_CODE_MASK) {
  4575. has_error_code = true;
  4576. error_code =
  4577. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  4578. }
  4579. /* fall through */
  4580. case INTR_TYPE_SOFT_EXCEPTION:
  4581. kvm_clear_exception_queue(vcpu);
  4582. break;
  4583. default:
  4584. break;
  4585. }
  4586. }
  4587. tss_selector = exit_qualification;
  4588. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4589. type != INTR_TYPE_EXT_INTR &&
  4590. type != INTR_TYPE_NMI_INTR))
  4591. skip_emulated_instruction(vcpu);
  4592. if (kvm_task_switch(vcpu, tss_selector,
  4593. type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
  4594. has_error_code, error_code) == EMULATE_FAIL) {
  4595. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4596. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4597. vcpu->run->internal.ndata = 0;
  4598. return 0;
  4599. }
  4600. /* clear all local breakpoint enable flags */
  4601. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4602. /*
  4603. * TODO: What about debug traps on tss switch?
  4604. * Are we supposed to inject them and update dr6?
  4605. */
  4606. return 1;
  4607. }
  4608. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4609. {
  4610. unsigned long exit_qualification;
  4611. gpa_t gpa;
  4612. u32 error_code;
  4613. int gla_validity;
  4614. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4615. gla_validity = (exit_qualification >> 7) & 0x3;
  4616. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4617. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4618. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4619. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4620. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4621. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4622. (long unsigned int)exit_qualification);
  4623. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4624. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4625. return 0;
  4626. }
  4627. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4628. trace_kvm_page_fault(gpa, exit_qualification);
  4629. /* It is a write fault? */
  4630. error_code = exit_qualification & (1U << 1);
  4631. /* It is a fetch fault? */
  4632. error_code |= (exit_qualification & (1U << 2)) << 2;
  4633. /* ept page table is present? */
  4634. error_code |= (exit_qualification >> 3) & 0x1;
  4635. vcpu->arch.exit_qualification = exit_qualification;
  4636. return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
  4637. }
  4638. static u64 ept_rsvd_mask(u64 spte, int level)
  4639. {
  4640. int i;
  4641. u64 mask = 0;
  4642. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4643. mask |= (1ULL << i);
  4644. if (level > 2)
  4645. /* bits 7:3 reserved */
  4646. mask |= 0xf8;
  4647. else if (level == 2) {
  4648. if (spte & (1ULL << 7))
  4649. /* 2MB ref, bits 20:12 reserved */
  4650. mask |= 0x1ff000;
  4651. else
  4652. /* bits 6:3 reserved */
  4653. mask |= 0x78;
  4654. }
  4655. return mask;
  4656. }
  4657. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4658. int level)
  4659. {
  4660. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4661. /* 010b (write-only) */
  4662. WARN_ON((spte & 0x7) == 0x2);
  4663. /* 110b (write/execute) */
  4664. WARN_ON((spte & 0x7) == 0x6);
  4665. /* 100b (execute-only) and value not supported by logical processor */
  4666. if (!cpu_has_vmx_ept_execute_only())
  4667. WARN_ON((spte & 0x7) == 0x4);
  4668. /* not 000b */
  4669. if ((spte & 0x7)) {
  4670. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4671. if (rsvd_bits != 0) {
  4672. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4673. __func__, rsvd_bits);
  4674. WARN_ON(1);
  4675. }
  4676. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4677. u64 ept_mem_type = (spte & 0x38) >> 3;
  4678. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4679. ept_mem_type == 7) {
  4680. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4681. __func__, ept_mem_type);
  4682. WARN_ON(1);
  4683. }
  4684. }
  4685. }
  4686. }
  4687. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4688. {
  4689. u64 sptes[4];
  4690. int nr_sptes, i, ret;
  4691. gpa_t gpa;
  4692. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4693. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4694. if (likely(ret == RET_MMIO_PF_EMULATE))
  4695. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4696. EMULATE_DONE;
  4697. if (unlikely(ret == RET_MMIO_PF_INVALID))
  4698. return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
  4699. if (unlikely(ret == RET_MMIO_PF_RETRY))
  4700. return 1;
  4701. /* It is the real ept misconfig */
  4702. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4703. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4704. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4705. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4706. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4707. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4708. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4709. return 0;
  4710. }
  4711. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4712. {
  4713. u32 cpu_based_vm_exec_control;
  4714. /* clear pending NMI */
  4715. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4716. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4717. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4718. ++vcpu->stat.nmi_window_exits;
  4719. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4720. return 1;
  4721. }
  4722. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4723. {
  4724. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4725. enum emulation_result err = EMULATE_DONE;
  4726. int ret = 1;
  4727. u32 cpu_exec_ctrl;
  4728. bool intr_window_requested;
  4729. unsigned count = 130;
  4730. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4731. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4732. while (!guest_state_valid(vcpu) && count-- != 0) {
  4733. if (intr_window_requested && vmx_interrupt_allowed(vcpu))
  4734. return handle_interrupt_window(&vmx->vcpu);
  4735. if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
  4736. return 1;
  4737. err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
  4738. if (err == EMULATE_USER_EXIT) {
  4739. ret = 0;
  4740. goto out;
  4741. }
  4742. if (err != EMULATE_DONE) {
  4743. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4744. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4745. vcpu->run->internal.ndata = 0;
  4746. return 0;
  4747. }
  4748. if (vcpu->arch.halt_request) {
  4749. vcpu->arch.halt_request = 0;
  4750. ret = kvm_emulate_halt(vcpu);
  4751. goto out;
  4752. }
  4753. if (signal_pending(current))
  4754. goto out;
  4755. if (need_resched())
  4756. schedule();
  4757. }
  4758. vmx->emulation_required = emulation_required(vcpu);
  4759. out:
  4760. return ret;
  4761. }
  4762. /*
  4763. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4764. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4765. */
  4766. static int handle_pause(struct kvm_vcpu *vcpu)
  4767. {
  4768. skip_emulated_instruction(vcpu);
  4769. kvm_vcpu_on_spin(vcpu);
  4770. return 1;
  4771. }
  4772. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4773. {
  4774. kvm_queue_exception(vcpu, UD_VECTOR);
  4775. return 1;
  4776. }
  4777. /*
  4778. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4779. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4780. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4781. * allows keeping them loaded on the processor, and in the future will allow
  4782. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4783. * every entry if they never change.
  4784. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4785. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4786. *
  4787. * The following functions allocate and free a vmcs02 in this pool.
  4788. */
  4789. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4790. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4791. {
  4792. struct vmcs02_list *item;
  4793. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4794. if (item->vmptr == vmx->nested.current_vmptr) {
  4795. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4796. return &item->vmcs02;
  4797. }
  4798. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4799. /* Recycle the least recently used VMCS. */
  4800. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4801. struct vmcs02_list, list);
  4802. item->vmptr = vmx->nested.current_vmptr;
  4803. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4804. return &item->vmcs02;
  4805. }
  4806. /* Create a new VMCS */
  4807. item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4808. if (!item)
  4809. return NULL;
  4810. item->vmcs02.vmcs = alloc_vmcs();
  4811. if (!item->vmcs02.vmcs) {
  4812. kfree(item);
  4813. return NULL;
  4814. }
  4815. loaded_vmcs_init(&item->vmcs02);
  4816. item->vmptr = vmx->nested.current_vmptr;
  4817. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4818. vmx->nested.vmcs02_num++;
  4819. return &item->vmcs02;
  4820. }
  4821. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4822. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4823. {
  4824. struct vmcs02_list *item;
  4825. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4826. if (item->vmptr == vmptr) {
  4827. free_loaded_vmcs(&item->vmcs02);
  4828. list_del(&item->list);
  4829. kfree(item);
  4830. vmx->nested.vmcs02_num--;
  4831. return;
  4832. }
  4833. }
  4834. /*
  4835. * Free all VMCSs saved for this vcpu, except the one pointed by
  4836. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4837. * currently used, if running L2), and vmcs01 when running L2.
  4838. */
  4839. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4840. {
  4841. struct vmcs02_list *item, *n;
  4842. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4843. if (vmx->loaded_vmcs != &item->vmcs02)
  4844. free_loaded_vmcs(&item->vmcs02);
  4845. list_del(&item->list);
  4846. kfree(item);
  4847. }
  4848. vmx->nested.vmcs02_num = 0;
  4849. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4850. free_loaded_vmcs(&vmx->vmcs01);
  4851. }
  4852. /*
  4853. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4854. * set the success or error code of an emulated VMX instruction, as specified
  4855. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4856. */
  4857. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4858. {
  4859. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4860. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4861. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4862. }
  4863. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4864. {
  4865. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4866. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4867. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4868. | X86_EFLAGS_CF);
  4869. }
  4870. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4871. u32 vm_instruction_error)
  4872. {
  4873. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4874. /*
  4875. * failValid writes the error number to the current VMCS, which
  4876. * can't be done there isn't a current VMCS.
  4877. */
  4878. nested_vmx_failInvalid(vcpu);
  4879. return;
  4880. }
  4881. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4882. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4883. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4884. | X86_EFLAGS_ZF);
  4885. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4886. /*
  4887. * We don't need to force a shadow sync because
  4888. * VM_INSTRUCTION_ERROR is not shadowed
  4889. */
  4890. }
  4891. /*
  4892. * Emulate the VMXON instruction.
  4893. * Currently, we just remember that VMX is active, and do not save or even
  4894. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4895. * do not currently need to store anything in that guest-allocated memory
  4896. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4897. * argument is different from the VMXON pointer (which the spec says they do).
  4898. */
  4899. static int handle_vmon(struct kvm_vcpu *vcpu)
  4900. {
  4901. struct kvm_segment cs;
  4902. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4903. struct vmcs *shadow_vmcs;
  4904. const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
  4905. | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  4906. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4907. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4908. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4909. * Otherwise, we should fail with #UD. We test these now:
  4910. */
  4911. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4912. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4913. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4914. kvm_queue_exception(vcpu, UD_VECTOR);
  4915. return 1;
  4916. }
  4917. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4918. if (is_long_mode(vcpu) && !cs.l) {
  4919. kvm_queue_exception(vcpu, UD_VECTOR);
  4920. return 1;
  4921. }
  4922. if (vmx_get_cpl(vcpu)) {
  4923. kvm_inject_gp(vcpu, 0);
  4924. return 1;
  4925. }
  4926. if (vmx->nested.vmxon) {
  4927. nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
  4928. skip_emulated_instruction(vcpu);
  4929. return 1;
  4930. }
  4931. if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
  4932. != VMXON_NEEDED_FEATURES) {
  4933. kvm_inject_gp(vcpu, 0);
  4934. return 1;
  4935. }
  4936. if (enable_shadow_vmcs) {
  4937. shadow_vmcs = alloc_vmcs();
  4938. if (!shadow_vmcs)
  4939. return -ENOMEM;
  4940. /* mark vmcs as shadow */
  4941. shadow_vmcs->revision_id |= (1u << 31);
  4942. /* init shadow vmcs */
  4943. vmcs_clear(shadow_vmcs);
  4944. vmx->nested.current_shadow_vmcs = shadow_vmcs;
  4945. }
  4946. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4947. vmx->nested.vmcs02_num = 0;
  4948. vmx->nested.vmxon = true;
  4949. skip_emulated_instruction(vcpu);
  4950. nested_vmx_succeed(vcpu);
  4951. return 1;
  4952. }
  4953. /*
  4954. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4955. * for running VMX instructions (except VMXON, whose prerequisites are
  4956. * slightly different). It also specifies what exception to inject otherwise.
  4957. */
  4958. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4959. {
  4960. struct kvm_segment cs;
  4961. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4962. if (!vmx->nested.vmxon) {
  4963. kvm_queue_exception(vcpu, UD_VECTOR);
  4964. return 0;
  4965. }
  4966. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4967. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4968. (is_long_mode(vcpu) && !cs.l)) {
  4969. kvm_queue_exception(vcpu, UD_VECTOR);
  4970. return 0;
  4971. }
  4972. if (vmx_get_cpl(vcpu)) {
  4973. kvm_inject_gp(vcpu, 0);
  4974. return 0;
  4975. }
  4976. return 1;
  4977. }
  4978. static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
  4979. {
  4980. u32 exec_control;
  4981. if (enable_shadow_vmcs) {
  4982. if (vmx->nested.current_vmcs12 != NULL) {
  4983. /* copy to memory all shadowed fields in case
  4984. they were modified */
  4985. copy_shadow_to_vmcs12(vmx);
  4986. vmx->nested.sync_shadow_vmcs = false;
  4987. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  4988. exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
  4989. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  4990. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  4991. }
  4992. }
  4993. kunmap(vmx->nested.current_vmcs12_page);
  4994. nested_release_page(vmx->nested.current_vmcs12_page);
  4995. }
  4996. /*
  4997. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4998. * just stops using VMX.
  4999. */
  5000. static void free_nested(struct vcpu_vmx *vmx)
  5001. {
  5002. if (!vmx->nested.vmxon)
  5003. return;
  5004. vmx->nested.vmxon = false;
  5005. if (vmx->nested.current_vmptr != -1ull) {
  5006. nested_release_vmcs12(vmx);
  5007. vmx->nested.current_vmptr = -1ull;
  5008. vmx->nested.current_vmcs12 = NULL;
  5009. }
  5010. if (enable_shadow_vmcs)
  5011. free_vmcs(vmx->nested.current_shadow_vmcs);
  5012. /* Unpin physical memory we referred to in current vmcs02 */
  5013. if (vmx->nested.apic_access_page) {
  5014. nested_release_page(vmx->nested.apic_access_page);
  5015. vmx->nested.apic_access_page = 0;
  5016. }
  5017. nested_free_all_saved_vmcss(vmx);
  5018. }
  5019. /* Emulate the VMXOFF instruction */
  5020. static int handle_vmoff(struct kvm_vcpu *vcpu)
  5021. {
  5022. if (!nested_vmx_check_permission(vcpu))
  5023. return 1;
  5024. free_nested(to_vmx(vcpu));
  5025. skip_emulated_instruction(vcpu);
  5026. nested_vmx_succeed(vcpu);
  5027. return 1;
  5028. }
  5029. /*
  5030. * Decode the memory-address operand of a vmx instruction, as recorded on an
  5031. * exit caused by such an instruction (run by a guest hypervisor).
  5032. * On success, returns 0. When the operand is invalid, returns 1 and throws
  5033. * #UD or #GP.
  5034. */
  5035. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  5036. unsigned long exit_qualification,
  5037. u32 vmx_instruction_info, gva_t *ret)
  5038. {
  5039. /*
  5040. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  5041. * Execution", on an exit, vmx_instruction_info holds most of the
  5042. * addressing components of the operand. Only the displacement part
  5043. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  5044. * For how an actual address is calculated from all these components,
  5045. * refer to Vol. 1, "Operand Addressing".
  5046. */
  5047. int scaling = vmx_instruction_info & 3;
  5048. int addr_size = (vmx_instruction_info >> 7) & 7;
  5049. bool is_reg = vmx_instruction_info & (1u << 10);
  5050. int seg_reg = (vmx_instruction_info >> 15) & 7;
  5051. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  5052. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  5053. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  5054. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  5055. if (is_reg) {
  5056. kvm_queue_exception(vcpu, UD_VECTOR);
  5057. return 1;
  5058. }
  5059. /* Addr = segment_base + offset */
  5060. /* offset = base + [index * scale] + displacement */
  5061. *ret = vmx_get_segment_base(vcpu, seg_reg);
  5062. if (base_is_valid)
  5063. *ret += kvm_register_read(vcpu, base_reg);
  5064. if (index_is_valid)
  5065. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  5066. *ret += exit_qualification; /* holds the displacement */
  5067. if (addr_size == 1) /* 32 bit */
  5068. *ret &= 0xffffffff;
  5069. /*
  5070. * TODO: throw #GP (and return 1) in various cases that the VM*
  5071. * instructions require it - e.g., offset beyond segment limit,
  5072. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  5073. * address, and so on. Currently these are not checked.
  5074. */
  5075. return 0;
  5076. }
  5077. /* Emulate the VMCLEAR instruction */
  5078. static int handle_vmclear(struct kvm_vcpu *vcpu)
  5079. {
  5080. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5081. gva_t gva;
  5082. gpa_t vmptr;
  5083. struct vmcs12 *vmcs12;
  5084. struct page *page;
  5085. struct x86_exception e;
  5086. if (!nested_vmx_check_permission(vcpu))
  5087. return 1;
  5088. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  5089. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  5090. return 1;
  5091. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  5092. sizeof(vmptr), &e)) {
  5093. kvm_inject_page_fault(vcpu, &e);
  5094. return 1;
  5095. }
  5096. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  5097. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  5098. skip_emulated_instruction(vcpu);
  5099. return 1;
  5100. }
  5101. if (vmptr == vmx->nested.current_vmptr) {
  5102. nested_release_vmcs12(vmx);
  5103. vmx->nested.current_vmptr = -1ull;
  5104. vmx->nested.current_vmcs12 = NULL;
  5105. }
  5106. page = nested_get_page(vcpu, vmptr);
  5107. if (page == NULL) {
  5108. /*
  5109. * For accurate processor emulation, VMCLEAR beyond available
  5110. * physical memory should do nothing at all. However, it is
  5111. * possible that a nested vmx bug, not a guest hypervisor bug,
  5112. * resulted in this case, so let's shut down before doing any
  5113. * more damage:
  5114. */
  5115. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  5116. return 1;
  5117. }
  5118. vmcs12 = kmap(page);
  5119. vmcs12->launch_state = 0;
  5120. kunmap(page);
  5121. nested_release_page(page);
  5122. nested_free_vmcs02(vmx, vmptr);
  5123. skip_emulated_instruction(vcpu);
  5124. nested_vmx_succeed(vcpu);
  5125. return 1;
  5126. }
  5127. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  5128. /* Emulate the VMLAUNCH instruction */
  5129. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  5130. {
  5131. return nested_vmx_run(vcpu, true);
  5132. }
  5133. /* Emulate the VMRESUME instruction */
  5134. static int handle_vmresume(struct kvm_vcpu *vcpu)
  5135. {
  5136. return nested_vmx_run(vcpu, false);
  5137. }
  5138. enum vmcs_field_type {
  5139. VMCS_FIELD_TYPE_U16 = 0,
  5140. VMCS_FIELD_TYPE_U64 = 1,
  5141. VMCS_FIELD_TYPE_U32 = 2,
  5142. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  5143. };
  5144. static inline int vmcs_field_type(unsigned long field)
  5145. {
  5146. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  5147. return VMCS_FIELD_TYPE_U32;
  5148. return (field >> 13) & 0x3 ;
  5149. }
  5150. static inline int vmcs_field_readonly(unsigned long field)
  5151. {
  5152. return (((field >> 10) & 0x3) == 1);
  5153. }
  5154. /*
  5155. * Read a vmcs12 field. Since these can have varying lengths and we return
  5156. * one type, we chose the biggest type (u64) and zero-extend the return value
  5157. * to that size. Note that the caller, handle_vmread, might need to use only
  5158. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  5159. * 64-bit fields are to be returned).
  5160. */
  5161. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  5162. unsigned long field, u64 *ret)
  5163. {
  5164. short offset = vmcs_field_to_offset(field);
  5165. char *p;
  5166. if (offset < 0)
  5167. return 0;
  5168. p = ((char *)(get_vmcs12(vcpu))) + offset;
  5169. switch (vmcs_field_type(field)) {
  5170. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  5171. *ret = *((natural_width *)p);
  5172. return 1;
  5173. case VMCS_FIELD_TYPE_U16:
  5174. *ret = *((u16 *)p);
  5175. return 1;
  5176. case VMCS_FIELD_TYPE_U32:
  5177. *ret = *((u32 *)p);
  5178. return 1;
  5179. case VMCS_FIELD_TYPE_U64:
  5180. *ret = *((u64 *)p);
  5181. return 1;
  5182. default:
  5183. return 0; /* can never happen. */
  5184. }
  5185. }
  5186. static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
  5187. unsigned long field, u64 field_value){
  5188. short offset = vmcs_field_to_offset(field);
  5189. char *p = ((char *) get_vmcs12(vcpu)) + offset;
  5190. if (offset < 0)
  5191. return false;
  5192. switch (vmcs_field_type(field)) {
  5193. case VMCS_FIELD_TYPE_U16:
  5194. *(u16 *)p = field_value;
  5195. return true;
  5196. case VMCS_FIELD_TYPE_U32:
  5197. *(u32 *)p = field_value;
  5198. return true;
  5199. case VMCS_FIELD_TYPE_U64:
  5200. *(u64 *)p = field_value;
  5201. return true;
  5202. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  5203. *(natural_width *)p = field_value;
  5204. return true;
  5205. default:
  5206. return false; /* can never happen. */
  5207. }
  5208. }
  5209. static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
  5210. {
  5211. int i;
  5212. unsigned long field;
  5213. u64 field_value;
  5214. struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
  5215. const unsigned long *fields = shadow_read_write_fields;
  5216. const int num_fields = max_shadow_read_write_fields;
  5217. vmcs_load(shadow_vmcs);
  5218. for (i = 0; i < num_fields; i++) {
  5219. field = fields[i];
  5220. switch (vmcs_field_type(field)) {
  5221. case VMCS_FIELD_TYPE_U16:
  5222. field_value = vmcs_read16(field);
  5223. break;
  5224. case VMCS_FIELD_TYPE_U32:
  5225. field_value = vmcs_read32(field);
  5226. break;
  5227. case VMCS_FIELD_TYPE_U64:
  5228. field_value = vmcs_read64(field);
  5229. break;
  5230. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  5231. field_value = vmcs_readl(field);
  5232. break;
  5233. }
  5234. vmcs12_write_any(&vmx->vcpu, field, field_value);
  5235. }
  5236. vmcs_clear(shadow_vmcs);
  5237. vmcs_load(vmx->loaded_vmcs->vmcs);
  5238. }
  5239. static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
  5240. {
  5241. const unsigned long *fields[] = {
  5242. shadow_read_write_fields,
  5243. shadow_read_only_fields
  5244. };
  5245. const int max_fields[] = {
  5246. max_shadow_read_write_fields,
  5247. max_shadow_read_only_fields
  5248. };
  5249. int i, q;
  5250. unsigned long field;
  5251. u64 field_value = 0;
  5252. struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
  5253. vmcs_load(shadow_vmcs);
  5254. for (q = 0; q < ARRAY_SIZE(fields); q++) {
  5255. for (i = 0; i < max_fields[q]; i++) {
  5256. field = fields[q][i];
  5257. vmcs12_read_any(&vmx->vcpu, field, &field_value);
  5258. switch (vmcs_field_type(field)) {
  5259. case VMCS_FIELD_TYPE_U16:
  5260. vmcs_write16(field, (u16)field_value);
  5261. break;
  5262. case VMCS_FIELD_TYPE_U32:
  5263. vmcs_write32(field, (u32)field_value);
  5264. break;
  5265. case VMCS_FIELD_TYPE_U64:
  5266. vmcs_write64(field, (u64)field_value);
  5267. break;
  5268. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  5269. vmcs_writel(field, (long)field_value);
  5270. break;
  5271. }
  5272. }
  5273. }
  5274. vmcs_clear(shadow_vmcs);
  5275. vmcs_load(vmx->loaded_vmcs->vmcs);
  5276. }
  5277. /*
  5278. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  5279. * used before) all generate the same failure when it is missing.
  5280. */
  5281. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  5282. {
  5283. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5284. if (vmx->nested.current_vmptr == -1ull) {
  5285. nested_vmx_failInvalid(vcpu);
  5286. skip_emulated_instruction(vcpu);
  5287. return 0;
  5288. }
  5289. return 1;
  5290. }
  5291. static int handle_vmread(struct kvm_vcpu *vcpu)
  5292. {
  5293. unsigned long field;
  5294. u64 field_value;
  5295. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5296. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5297. gva_t gva = 0;
  5298. if (!nested_vmx_check_permission(vcpu) ||
  5299. !nested_vmx_check_vmcs12(vcpu))
  5300. return 1;
  5301. /* Decode instruction info and find the field to read */
  5302. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  5303. /* Read the field, zero-extended to a u64 field_value */
  5304. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  5305. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  5306. skip_emulated_instruction(vcpu);
  5307. return 1;
  5308. }
  5309. /*
  5310. * Now copy part of this value to register or memory, as requested.
  5311. * Note that the number of bits actually copied is 32 or 64 depending
  5312. * on the guest's mode (32 or 64 bit), not on the given field's length.
  5313. */
  5314. if (vmx_instruction_info & (1u << 10)) {
  5315. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  5316. field_value);
  5317. } else {
  5318. if (get_vmx_mem_address(vcpu, exit_qualification,
  5319. vmx_instruction_info, &gva))
  5320. return 1;
  5321. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  5322. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  5323. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  5324. }
  5325. nested_vmx_succeed(vcpu);
  5326. skip_emulated_instruction(vcpu);
  5327. return 1;
  5328. }
  5329. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  5330. {
  5331. unsigned long field;
  5332. gva_t gva;
  5333. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5334. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5335. /* The value to write might be 32 or 64 bits, depending on L1's long
  5336. * mode, and eventually we need to write that into a field of several
  5337. * possible lengths. The code below first zero-extends the value to 64
  5338. * bit (field_value), and then copies only the approriate number of
  5339. * bits into the vmcs12 field.
  5340. */
  5341. u64 field_value = 0;
  5342. struct x86_exception e;
  5343. if (!nested_vmx_check_permission(vcpu) ||
  5344. !nested_vmx_check_vmcs12(vcpu))
  5345. return 1;
  5346. if (vmx_instruction_info & (1u << 10))
  5347. field_value = kvm_register_read(vcpu,
  5348. (((vmx_instruction_info) >> 3) & 0xf));
  5349. else {
  5350. if (get_vmx_mem_address(vcpu, exit_qualification,
  5351. vmx_instruction_info, &gva))
  5352. return 1;
  5353. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  5354. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  5355. kvm_inject_page_fault(vcpu, &e);
  5356. return 1;
  5357. }
  5358. }
  5359. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  5360. if (vmcs_field_readonly(field)) {
  5361. nested_vmx_failValid(vcpu,
  5362. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  5363. skip_emulated_instruction(vcpu);
  5364. return 1;
  5365. }
  5366. if (!vmcs12_write_any(vcpu, field, field_value)) {
  5367. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  5368. skip_emulated_instruction(vcpu);
  5369. return 1;
  5370. }
  5371. nested_vmx_succeed(vcpu);
  5372. skip_emulated_instruction(vcpu);
  5373. return 1;
  5374. }
  5375. /* Emulate the VMPTRLD instruction */
  5376. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  5377. {
  5378. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5379. gva_t gva;
  5380. gpa_t vmptr;
  5381. struct x86_exception e;
  5382. u32 exec_control;
  5383. if (!nested_vmx_check_permission(vcpu))
  5384. return 1;
  5385. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  5386. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  5387. return 1;
  5388. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  5389. sizeof(vmptr), &e)) {
  5390. kvm_inject_page_fault(vcpu, &e);
  5391. return 1;
  5392. }
  5393. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  5394. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  5395. skip_emulated_instruction(vcpu);
  5396. return 1;
  5397. }
  5398. if (vmx->nested.current_vmptr != vmptr) {
  5399. struct vmcs12 *new_vmcs12;
  5400. struct page *page;
  5401. page = nested_get_page(vcpu, vmptr);
  5402. if (page == NULL) {
  5403. nested_vmx_failInvalid(vcpu);
  5404. skip_emulated_instruction(vcpu);
  5405. return 1;
  5406. }
  5407. new_vmcs12 = kmap(page);
  5408. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  5409. kunmap(page);
  5410. nested_release_page_clean(page);
  5411. nested_vmx_failValid(vcpu,
  5412. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  5413. skip_emulated_instruction(vcpu);
  5414. return 1;
  5415. }
  5416. if (vmx->nested.current_vmptr != -1ull)
  5417. nested_release_vmcs12(vmx);
  5418. vmx->nested.current_vmptr = vmptr;
  5419. vmx->nested.current_vmcs12 = new_vmcs12;
  5420. vmx->nested.current_vmcs12_page = page;
  5421. if (enable_shadow_vmcs) {
  5422. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5423. exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
  5424. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5425. vmcs_write64(VMCS_LINK_POINTER,
  5426. __pa(vmx->nested.current_shadow_vmcs));
  5427. vmx->nested.sync_shadow_vmcs = true;
  5428. }
  5429. }
  5430. nested_vmx_succeed(vcpu);
  5431. skip_emulated_instruction(vcpu);
  5432. return 1;
  5433. }
  5434. /* Emulate the VMPTRST instruction */
  5435. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  5436. {
  5437. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5438. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5439. gva_t vmcs_gva;
  5440. struct x86_exception e;
  5441. if (!nested_vmx_check_permission(vcpu))
  5442. return 1;
  5443. if (get_vmx_mem_address(vcpu, exit_qualification,
  5444. vmx_instruction_info, &vmcs_gva))
  5445. return 1;
  5446. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  5447. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  5448. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  5449. sizeof(u64), &e)) {
  5450. kvm_inject_page_fault(vcpu, &e);
  5451. return 1;
  5452. }
  5453. nested_vmx_succeed(vcpu);
  5454. skip_emulated_instruction(vcpu);
  5455. return 1;
  5456. }
  5457. /* Emulate the INVEPT instruction */
  5458. static int handle_invept(struct kvm_vcpu *vcpu)
  5459. {
  5460. u32 vmx_instruction_info, types;
  5461. unsigned long type;
  5462. gva_t gva;
  5463. struct x86_exception e;
  5464. struct {
  5465. u64 eptp, gpa;
  5466. } operand;
  5467. u64 eptp_mask = ((1ull << 51) - 1) & PAGE_MASK;
  5468. if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
  5469. !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
  5470. kvm_queue_exception(vcpu, UD_VECTOR);
  5471. return 1;
  5472. }
  5473. if (!nested_vmx_check_permission(vcpu))
  5474. return 1;
  5475. if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
  5476. kvm_queue_exception(vcpu, UD_VECTOR);
  5477. return 1;
  5478. }
  5479. vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5480. type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
  5481. types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
  5482. if (!(types & (1UL << type))) {
  5483. nested_vmx_failValid(vcpu,
  5484. VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
  5485. return 1;
  5486. }
  5487. /* According to the Intel VMX instruction reference, the memory
  5488. * operand is read even if it isn't needed (e.g., for type==global)
  5489. */
  5490. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  5491. vmx_instruction_info, &gva))
  5492. return 1;
  5493. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
  5494. sizeof(operand), &e)) {
  5495. kvm_inject_page_fault(vcpu, &e);
  5496. return 1;
  5497. }
  5498. switch (type) {
  5499. case VMX_EPT_EXTENT_CONTEXT:
  5500. if ((operand.eptp & eptp_mask) !=
  5501. (nested_ept_get_cr3(vcpu) & eptp_mask))
  5502. break;
  5503. case VMX_EPT_EXTENT_GLOBAL:
  5504. kvm_mmu_sync_roots(vcpu);
  5505. kvm_mmu_flush_tlb(vcpu);
  5506. nested_vmx_succeed(vcpu);
  5507. break;
  5508. default:
  5509. BUG_ON(1);
  5510. break;
  5511. }
  5512. skip_emulated_instruction(vcpu);
  5513. return 1;
  5514. }
  5515. /*
  5516. * The exit handlers return 1 if the exit was handled fully and guest execution
  5517. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  5518. * to be done to userspace and return 0.
  5519. */
  5520. static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  5521. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  5522. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  5523. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  5524. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  5525. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  5526. [EXIT_REASON_CR_ACCESS] = handle_cr,
  5527. [EXIT_REASON_DR_ACCESS] = handle_dr,
  5528. [EXIT_REASON_CPUID] = handle_cpuid,
  5529. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  5530. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  5531. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  5532. [EXIT_REASON_HLT] = handle_halt,
  5533. [EXIT_REASON_INVD] = handle_invd,
  5534. [EXIT_REASON_INVLPG] = handle_invlpg,
  5535. [EXIT_REASON_RDPMC] = handle_rdpmc,
  5536. [EXIT_REASON_VMCALL] = handle_vmcall,
  5537. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  5538. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  5539. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  5540. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  5541. [EXIT_REASON_VMREAD] = handle_vmread,
  5542. [EXIT_REASON_VMRESUME] = handle_vmresume,
  5543. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  5544. [EXIT_REASON_VMOFF] = handle_vmoff,
  5545. [EXIT_REASON_VMON] = handle_vmon,
  5546. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  5547. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  5548. [EXIT_REASON_APIC_WRITE] = handle_apic_write,
  5549. [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
  5550. [EXIT_REASON_WBINVD] = handle_wbinvd,
  5551. [EXIT_REASON_XSETBV] = handle_xsetbv,
  5552. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  5553. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  5554. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  5555. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  5556. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  5557. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  5558. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  5559. [EXIT_REASON_INVEPT] = handle_invept,
  5560. };
  5561. static const int kvm_vmx_max_exit_handlers =
  5562. ARRAY_SIZE(kvm_vmx_exit_handlers);
  5563. static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
  5564. struct vmcs12 *vmcs12)
  5565. {
  5566. unsigned long exit_qualification;
  5567. gpa_t bitmap, last_bitmap;
  5568. unsigned int port;
  5569. int size;
  5570. u8 b;
  5571. if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
  5572. return 1;
  5573. if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
  5574. return 0;
  5575. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5576. port = exit_qualification >> 16;
  5577. size = (exit_qualification & 7) + 1;
  5578. last_bitmap = (gpa_t)-1;
  5579. b = -1;
  5580. while (size > 0) {
  5581. if (port < 0x8000)
  5582. bitmap = vmcs12->io_bitmap_a;
  5583. else if (port < 0x10000)
  5584. bitmap = vmcs12->io_bitmap_b;
  5585. else
  5586. return 1;
  5587. bitmap += (port & 0x7fff) / 8;
  5588. if (last_bitmap != bitmap)
  5589. if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
  5590. return 1;
  5591. if (b & (1 << (port & 7)))
  5592. return 1;
  5593. port++;
  5594. size--;
  5595. last_bitmap = bitmap;
  5596. }
  5597. return 0;
  5598. }
  5599. /*
  5600. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  5601. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  5602. * disinterest in the current event (read or write a specific MSR) by using an
  5603. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  5604. */
  5605. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  5606. struct vmcs12 *vmcs12, u32 exit_reason)
  5607. {
  5608. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  5609. gpa_t bitmap;
  5610. if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
  5611. return 1;
  5612. /*
  5613. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  5614. * for the four combinations of read/write and low/high MSR numbers.
  5615. * First we need to figure out which of the four to use:
  5616. */
  5617. bitmap = vmcs12->msr_bitmap;
  5618. if (exit_reason == EXIT_REASON_MSR_WRITE)
  5619. bitmap += 2048;
  5620. if (msr_index >= 0xc0000000) {
  5621. msr_index -= 0xc0000000;
  5622. bitmap += 1024;
  5623. }
  5624. /* Then read the msr_index'th bit from this bitmap: */
  5625. if (msr_index < 1024*8) {
  5626. unsigned char b;
  5627. if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
  5628. return 1;
  5629. return 1 & (b >> (msr_index & 7));
  5630. } else
  5631. return 1; /* let L1 handle the wrong parameter */
  5632. }
  5633. /*
  5634. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  5635. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  5636. * intercept (via guest_host_mask etc.) the current event.
  5637. */
  5638. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  5639. struct vmcs12 *vmcs12)
  5640. {
  5641. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5642. int cr = exit_qualification & 15;
  5643. int reg = (exit_qualification >> 8) & 15;
  5644. unsigned long val = kvm_register_read(vcpu, reg);
  5645. switch ((exit_qualification >> 4) & 3) {
  5646. case 0: /* mov to cr */
  5647. switch (cr) {
  5648. case 0:
  5649. if (vmcs12->cr0_guest_host_mask &
  5650. (val ^ vmcs12->cr0_read_shadow))
  5651. return 1;
  5652. break;
  5653. case 3:
  5654. if ((vmcs12->cr3_target_count >= 1 &&
  5655. vmcs12->cr3_target_value0 == val) ||
  5656. (vmcs12->cr3_target_count >= 2 &&
  5657. vmcs12->cr3_target_value1 == val) ||
  5658. (vmcs12->cr3_target_count >= 3 &&
  5659. vmcs12->cr3_target_value2 == val) ||
  5660. (vmcs12->cr3_target_count >= 4 &&
  5661. vmcs12->cr3_target_value3 == val))
  5662. return 0;
  5663. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  5664. return 1;
  5665. break;
  5666. case 4:
  5667. if (vmcs12->cr4_guest_host_mask &
  5668. (vmcs12->cr4_read_shadow ^ val))
  5669. return 1;
  5670. break;
  5671. case 8:
  5672. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  5673. return 1;
  5674. break;
  5675. }
  5676. break;
  5677. case 2: /* clts */
  5678. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  5679. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  5680. return 1;
  5681. break;
  5682. case 1: /* mov from cr */
  5683. switch (cr) {
  5684. case 3:
  5685. if (vmcs12->cpu_based_vm_exec_control &
  5686. CPU_BASED_CR3_STORE_EXITING)
  5687. return 1;
  5688. break;
  5689. case 8:
  5690. if (vmcs12->cpu_based_vm_exec_control &
  5691. CPU_BASED_CR8_STORE_EXITING)
  5692. return 1;
  5693. break;
  5694. }
  5695. break;
  5696. case 3: /* lmsw */
  5697. /*
  5698. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  5699. * cr0. Other attempted changes are ignored, with no exit.
  5700. */
  5701. if (vmcs12->cr0_guest_host_mask & 0xe &
  5702. (val ^ vmcs12->cr0_read_shadow))
  5703. return 1;
  5704. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  5705. !(vmcs12->cr0_read_shadow & 0x1) &&
  5706. (val & 0x1))
  5707. return 1;
  5708. break;
  5709. }
  5710. return 0;
  5711. }
  5712. /*
  5713. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  5714. * should handle it ourselves in L0 (and then continue L2). Only call this
  5715. * when in is_guest_mode (L2).
  5716. */
  5717. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  5718. {
  5719. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5720. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5721. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5722. u32 exit_reason = vmx->exit_reason;
  5723. if (vmx->nested.nested_run_pending)
  5724. return 0;
  5725. if (unlikely(vmx->fail)) {
  5726. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  5727. vmcs_read32(VM_INSTRUCTION_ERROR));
  5728. return 1;
  5729. }
  5730. switch (exit_reason) {
  5731. case EXIT_REASON_EXCEPTION_NMI:
  5732. if (!is_exception(intr_info))
  5733. return 0;
  5734. else if (is_page_fault(intr_info))
  5735. return enable_ept;
  5736. return vmcs12->exception_bitmap &
  5737. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  5738. case EXIT_REASON_EXTERNAL_INTERRUPT:
  5739. return 0;
  5740. case EXIT_REASON_TRIPLE_FAULT:
  5741. return 1;
  5742. case EXIT_REASON_PENDING_INTERRUPT:
  5743. return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
  5744. case EXIT_REASON_NMI_WINDOW:
  5745. return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
  5746. case EXIT_REASON_TASK_SWITCH:
  5747. return 1;
  5748. case EXIT_REASON_CPUID:
  5749. return 1;
  5750. case EXIT_REASON_HLT:
  5751. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  5752. case EXIT_REASON_INVD:
  5753. return 1;
  5754. case EXIT_REASON_INVLPG:
  5755. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  5756. case EXIT_REASON_RDPMC:
  5757. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  5758. case EXIT_REASON_RDTSC:
  5759. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  5760. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  5761. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  5762. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  5763. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  5764. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  5765. case EXIT_REASON_INVEPT:
  5766. /*
  5767. * VMX instructions trap unconditionally. This allows L1 to
  5768. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  5769. */
  5770. return 1;
  5771. case EXIT_REASON_CR_ACCESS:
  5772. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  5773. case EXIT_REASON_DR_ACCESS:
  5774. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  5775. case EXIT_REASON_IO_INSTRUCTION:
  5776. return nested_vmx_exit_handled_io(vcpu, vmcs12);
  5777. case EXIT_REASON_MSR_READ:
  5778. case EXIT_REASON_MSR_WRITE:
  5779. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  5780. case EXIT_REASON_INVALID_STATE:
  5781. return 1;
  5782. case EXIT_REASON_MWAIT_INSTRUCTION:
  5783. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  5784. case EXIT_REASON_MONITOR_INSTRUCTION:
  5785. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  5786. case EXIT_REASON_PAUSE_INSTRUCTION:
  5787. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  5788. nested_cpu_has2(vmcs12,
  5789. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  5790. case EXIT_REASON_MCE_DURING_VMENTRY:
  5791. return 0;
  5792. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  5793. return 1;
  5794. case EXIT_REASON_APIC_ACCESS:
  5795. return nested_cpu_has2(vmcs12,
  5796. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  5797. case EXIT_REASON_EPT_VIOLATION:
  5798. /*
  5799. * L0 always deals with the EPT violation. If nested EPT is
  5800. * used, and the nested mmu code discovers that the address is
  5801. * missing in the guest EPT table (EPT12), the EPT violation
  5802. * will be injected with nested_ept_inject_page_fault()
  5803. */
  5804. return 0;
  5805. case EXIT_REASON_EPT_MISCONFIG:
  5806. /*
  5807. * L2 never uses directly L1's EPT, but rather L0's own EPT
  5808. * table (shadow on EPT) or a merged EPT table that L0 built
  5809. * (EPT on EPT). So any problems with the structure of the
  5810. * table is L0's fault.
  5811. */
  5812. return 0;
  5813. case EXIT_REASON_PREEMPTION_TIMER:
  5814. return vmcs12->pin_based_vm_exec_control &
  5815. PIN_BASED_VMX_PREEMPTION_TIMER;
  5816. case EXIT_REASON_WBINVD:
  5817. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  5818. case EXIT_REASON_XSETBV:
  5819. return 1;
  5820. default:
  5821. return 1;
  5822. }
  5823. }
  5824. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  5825. {
  5826. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  5827. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  5828. }
  5829. /*
  5830. * The guest has exited. See if we can fix it or if we need userspace
  5831. * assistance.
  5832. */
  5833. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  5834. {
  5835. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5836. u32 exit_reason = vmx->exit_reason;
  5837. u32 vectoring_info = vmx->idt_vectoring_info;
  5838. /* If guest state is invalid, start emulating */
  5839. if (vmx->emulation_required)
  5840. return handle_invalid_guest_state(vcpu);
  5841. /*
  5842. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  5843. * we did not inject a still-pending event to L1 now because of
  5844. * nested_run_pending, we need to re-enable this bit.
  5845. */
  5846. if (vmx->nested.nested_run_pending)
  5847. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5848. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  5849. exit_reason == EXIT_REASON_VMRESUME))
  5850. vmx->nested.nested_run_pending = 1;
  5851. else
  5852. vmx->nested.nested_run_pending = 0;
  5853. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5854. nested_vmx_vmexit(vcpu);
  5855. return 1;
  5856. }
  5857. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5858. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5859. vcpu->run->fail_entry.hardware_entry_failure_reason
  5860. = exit_reason;
  5861. return 0;
  5862. }
  5863. if (unlikely(vmx->fail)) {
  5864. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5865. vcpu->run->fail_entry.hardware_entry_failure_reason
  5866. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5867. return 0;
  5868. }
  5869. /*
  5870. * Note:
  5871. * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
  5872. * delivery event since it indicates guest is accessing MMIO.
  5873. * The vm-exit can be triggered again after return to guest that
  5874. * will cause infinite loop.
  5875. */
  5876. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5877. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5878. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5879. exit_reason != EXIT_REASON_TASK_SWITCH)) {
  5880. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  5881. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
  5882. vcpu->run->internal.ndata = 2;
  5883. vcpu->run->internal.data[0] = vectoring_info;
  5884. vcpu->run->internal.data[1] = exit_reason;
  5885. return 0;
  5886. }
  5887. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5888. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5889. get_vmcs12(vcpu))))) {
  5890. if (vmx_interrupt_allowed(vcpu)) {
  5891. vmx->soft_vnmi_blocked = 0;
  5892. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5893. vcpu->arch.nmi_pending) {
  5894. /*
  5895. * This CPU don't support us in finding the end of an
  5896. * NMI-blocked window if the guest runs with IRQs
  5897. * disabled. So we pull the trigger after 1 s of
  5898. * futile waiting, but inform the user about this.
  5899. */
  5900. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5901. "state on VCPU %d after 1 s timeout\n",
  5902. __func__, vcpu->vcpu_id);
  5903. vmx->soft_vnmi_blocked = 0;
  5904. }
  5905. }
  5906. if (exit_reason < kvm_vmx_max_exit_handlers
  5907. && kvm_vmx_exit_handlers[exit_reason])
  5908. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5909. else {
  5910. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5911. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5912. }
  5913. return 0;
  5914. }
  5915. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5916. {
  5917. if (irr == -1 || tpr < irr) {
  5918. vmcs_write32(TPR_THRESHOLD, 0);
  5919. return;
  5920. }
  5921. vmcs_write32(TPR_THRESHOLD, irr);
  5922. }
  5923. static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
  5924. {
  5925. u32 sec_exec_control;
  5926. /*
  5927. * There is not point to enable virtualize x2apic without enable
  5928. * apicv
  5929. */
  5930. if (!cpu_has_vmx_virtualize_x2apic_mode() ||
  5931. !vmx_vm_has_apicv(vcpu->kvm))
  5932. return;
  5933. if (!vm_need_tpr_shadow(vcpu->kvm))
  5934. return;
  5935. sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5936. if (set) {
  5937. sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5938. sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  5939. } else {
  5940. sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  5941. sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5942. }
  5943. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
  5944. vmx_set_msr_bitmap(vcpu);
  5945. }
  5946. static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
  5947. {
  5948. u16 status;
  5949. u8 old;
  5950. if (!vmx_vm_has_apicv(kvm))
  5951. return;
  5952. if (isr == -1)
  5953. isr = 0;
  5954. status = vmcs_read16(GUEST_INTR_STATUS);
  5955. old = status >> 8;
  5956. if (isr != old) {
  5957. status &= 0xff;
  5958. status |= isr << 8;
  5959. vmcs_write16(GUEST_INTR_STATUS, status);
  5960. }
  5961. }
  5962. static void vmx_set_rvi(int vector)
  5963. {
  5964. u16 status;
  5965. u8 old;
  5966. status = vmcs_read16(GUEST_INTR_STATUS);
  5967. old = (u8)status & 0xff;
  5968. if ((u8)vector != old) {
  5969. status &= ~0xff;
  5970. status |= (u8)vector;
  5971. vmcs_write16(GUEST_INTR_STATUS, status);
  5972. }
  5973. }
  5974. static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
  5975. {
  5976. if (max_irr == -1)
  5977. return;
  5978. vmx_set_rvi(max_irr);
  5979. }
  5980. static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
  5981. {
  5982. if (!vmx_vm_has_apicv(vcpu->kvm))
  5983. return;
  5984. vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
  5985. vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
  5986. vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
  5987. vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
  5988. }
  5989. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5990. {
  5991. u32 exit_intr_info;
  5992. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5993. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5994. return;
  5995. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5996. exit_intr_info = vmx->exit_intr_info;
  5997. /* Handle machine checks before interrupts are enabled */
  5998. if (is_machine_check(exit_intr_info))
  5999. kvm_machine_check();
  6000. /* We need to handle NMIs before interrupts are enabled */
  6001. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  6002. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  6003. kvm_before_handle_nmi(&vmx->vcpu);
  6004. asm("int $2");
  6005. kvm_after_handle_nmi(&vmx->vcpu);
  6006. }
  6007. }
  6008. static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
  6009. {
  6010. u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6011. /*
  6012. * If external interrupt exists, IF bit is set in rflags/eflags on the
  6013. * interrupt stack frame, and interrupt will be enabled on a return
  6014. * from interrupt handler.
  6015. */
  6016. if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
  6017. == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
  6018. unsigned int vector;
  6019. unsigned long entry;
  6020. gate_desc *desc;
  6021. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6022. #ifdef CONFIG_X86_64
  6023. unsigned long tmp;
  6024. #endif
  6025. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  6026. desc = (gate_desc *)vmx->host_idt_base + vector;
  6027. entry = gate_offset(*desc);
  6028. asm volatile(
  6029. #ifdef CONFIG_X86_64
  6030. "mov %%" _ASM_SP ", %[sp]\n\t"
  6031. "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
  6032. "push $%c[ss]\n\t"
  6033. "push %[sp]\n\t"
  6034. #endif
  6035. "pushf\n\t"
  6036. "orl $0x200, (%%" _ASM_SP ")\n\t"
  6037. __ASM_SIZE(push) " $%c[cs]\n\t"
  6038. "call *%[entry]\n\t"
  6039. :
  6040. #ifdef CONFIG_X86_64
  6041. [sp]"=&r"(tmp)
  6042. #endif
  6043. :
  6044. [entry]"r"(entry),
  6045. [ss]"i"(__KERNEL_DS),
  6046. [cs]"i"(__KERNEL_CS)
  6047. );
  6048. } else
  6049. local_irq_enable();
  6050. }
  6051. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  6052. {
  6053. u32 exit_intr_info;
  6054. bool unblock_nmi;
  6055. u8 vector;
  6056. bool idtv_info_valid;
  6057. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  6058. if (cpu_has_virtual_nmis()) {
  6059. if (vmx->nmi_known_unmasked)
  6060. return;
  6061. /*
  6062. * Can't use vmx->exit_intr_info since we're not sure what
  6063. * the exit reason is.
  6064. */
  6065. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6066. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  6067. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  6068. /*
  6069. * SDM 3: 27.7.1.2 (September 2008)
  6070. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  6071. * a guest IRET fault.
  6072. * SDM 3: 23.2.2 (September 2008)
  6073. * Bit 12 is undefined in any of the following cases:
  6074. * If the VM exit sets the valid bit in the IDT-vectoring
  6075. * information field.
  6076. * If the VM exit is due to a double fault.
  6077. */
  6078. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  6079. vector != DF_VECTOR && !idtv_info_valid)
  6080. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  6081. GUEST_INTR_STATE_NMI);
  6082. else
  6083. vmx->nmi_known_unmasked =
  6084. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  6085. & GUEST_INTR_STATE_NMI);
  6086. } else if (unlikely(vmx->soft_vnmi_blocked))
  6087. vmx->vnmi_blocked_time +=
  6088. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  6089. }
  6090. static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
  6091. u32 idt_vectoring_info,
  6092. int instr_len_field,
  6093. int error_code_field)
  6094. {
  6095. u8 vector;
  6096. int type;
  6097. bool idtv_info_valid;
  6098. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  6099. vcpu->arch.nmi_injected = false;
  6100. kvm_clear_exception_queue(vcpu);
  6101. kvm_clear_interrupt_queue(vcpu);
  6102. if (!idtv_info_valid)
  6103. return;
  6104. kvm_make_request(KVM_REQ_EVENT, vcpu);
  6105. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  6106. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  6107. switch (type) {
  6108. case INTR_TYPE_NMI_INTR:
  6109. vcpu->arch.nmi_injected = true;
  6110. /*
  6111. * SDM 3: 27.7.1.2 (September 2008)
  6112. * Clear bit "block by NMI" before VM entry if a NMI
  6113. * delivery faulted.
  6114. */
  6115. vmx_set_nmi_mask(vcpu, false);
  6116. break;
  6117. case INTR_TYPE_SOFT_EXCEPTION:
  6118. vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
  6119. /* fall through */
  6120. case INTR_TYPE_HARD_EXCEPTION:
  6121. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  6122. u32 err = vmcs_read32(error_code_field);
  6123. kvm_queue_exception_e(vcpu, vector, err);
  6124. } else
  6125. kvm_queue_exception(vcpu, vector);
  6126. break;
  6127. case INTR_TYPE_SOFT_INTR:
  6128. vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
  6129. /* fall through */
  6130. case INTR_TYPE_EXT_INTR:
  6131. kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
  6132. break;
  6133. default:
  6134. break;
  6135. }
  6136. }
  6137. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  6138. {
  6139. __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
  6140. VM_EXIT_INSTRUCTION_LEN,
  6141. IDT_VECTORING_ERROR_CODE);
  6142. }
  6143. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  6144. {
  6145. __vmx_complete_interrupts(vcpu,
  6146. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  6147. VM_ENTRY_INSTRUCTION_LEN,
  6148. VM_ENTRY_EXCEPTION_ERROR_CODE);
  6149. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  6150. }
  6151. static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
  6152. {
  6153. int i, nr_msrs;
  6154. struct perf_guest_switch_msr *msrs;
  6155. msrs = perf_guest_get_msrs(&nr_msrs);
  6156. if (!msrs)
  6157. return;
  6158. for (i = 0; i < nr_msrs; i++)
  6159. if (msrs[i].host == msrs[i].guest)
  6160. clear_atomic_switch_msr(vmx, msrs[i].msr);
  6161. else
  6162. add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
  6163. msrs[i].host);
  6164. }
  6165. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  6166. {
  6167. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6168. unsigned long debugctlmsr;
  6169. /* Record the guest's net vcpu time for enforced NMI injections. */
  6170. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  6171. vmx->entry_time = ktime_get();
  6172. /* Don't enter VMX if guest state is invalid, let the exit handler
  6173. start emulation until we arrive back to a valid state */
  6174. if (vmx->emulation_required)
  6175. return;
  6176. if (vmx->nested.sync_shadow_vmcs) {
  6177. copy_vmcs12_to_shadow(vmx);
  6178. vmx->nested.sync_shadow_vmcs = false;
  6179. }
  6180. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  6181. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  6182. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  6183. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  6184. /* When single-stepping over STI and MOV SS, we must clear the
  6185. * corresponding interruptibility bits in the guest state. Otherwise
  6186. * vmentry fails as it then expects bit 14 (BS) in pending debug
  6187. * exceptions being set, but that's not correct for the guest debugging
  6188. * case. */
  6189. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  6190. vmx_set_interrupt_shadow(vcpu, 0);
  6191. atomic_switch_perf_msrs(vmx);
  6192. debugctlmsr = get_debugctlmsr();
  6193. vmx->__launched = vmx->loaded_vmcs->launched;
  6194. asm(
  6195. /* Store host registers */
  6196. "push %%" _ASM_DX "; push %%" _ASM_BP ";"
  6197. "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
  6198. "push %%" _ASM_CX " \n\t"
  6199. "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  6200. "je 1f \n\t"
  6201. "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  6202. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  6203. "1: \n\t"
  6204. /* Reload cr2 if changed */
  6205. "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
  6206. "mov %%cr2, %%" _ASM_DX " \n\t"
  6207. "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
  6208. "je 2f \n\t"
  6209. "mov %%" _ASM_AX", %%cr2 \n\t"
  6210. "2: \n\t"
  6211. /* Check if vmlaunch of vmresume is needed */
  6212. "cmpl $0, %c[launched](%0) \n\t"
  6213. /* Load guest registers. Don't clobber flags. */
  6214. "mov %c[rax](%0), %%" _ASM_AX " \n\t"
  6215. "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
  6216. "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
  6217. "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
  6218. "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
  6219. "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
  6220. #ifdef CONFIG_X86_64
  6221. "mov %c[r8](%0), %%r8 \n\t"
  6222. "mov %c[r9](%0), %%r9 \n\t"
  6223. "mov %c[r10](%0), %%r10 \n\t"
  6224. "mov %c[r11](%0), %%r11 \n\t"
  6225. "mov %c[r12](%0), %%r12 \n\t"
  6226. "mov %c[r13](%0), %%r13 \n\t"
  6227. "mov %c[r14](%0), %%r14 \n\t"
  6228. "mov %c[r15](%0), %%r15 \n\t"
  6229. #endif
  6230. "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
  6231. /* Enter guest mode */
  6232. "jne 1f \n\t"
  6233. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  6234. "jmp 2f \n\t"
  6235. "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
  6236. "2: "
  6237. /* Save guest registers, load host registers, keep flags */
  6238. "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
  6239. "pop %0 \n\t"
  6240. "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
  6241. "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
  6242. __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
  6243. "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
  6244. "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
  6245. "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
  6246. "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
  6247. #ifdef CONFIG_X86_64
  6248. "mov %%r8, %c[r8](%0) \n\t"
  6249. "mov %%r9, %c[r9](%0) \n\t"
  6250. "mov %%r10, %c[r10](%0) \n\t"
  6251. "mov %%r11, %c[r11](%0) \n\t"
  6252. "mov %%r12, %c[r12](%0) \n\t"
  6253. "mov %%r13, %c[r13](%0) \n\t"
  6254. "mov %%r14, %c[r14](%0) \n\t"
  6255. "mov %%r15, %c[r15](%0) \n\t"
  6256. #endif
  6257. "mov %%cr2, %%" _ASM_AX " \n\t"
  6258. "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
  6259. "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
  6260. "setbe %c[fail](%0) \n\t"
  6261. ".pushsection .rodata \n\t"
  6262. ".global vmx_return \n\t"
  6263. "vmx_return: " _ASM_PTR " 2b \n\t"
  6264. ".popsection"
  6265. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  6266. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  6267. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  6268. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  6269. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  6270. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  6271. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  6272. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  6273. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  6274. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  6275. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  6276. #ifdef CONFIG_X86_64
  6277. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  6278. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  6279. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  6280. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  6281. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  6282. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  6283. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  6284. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  6285. #endif
  6286. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  6287. [wordsize]"i"(sizeof(ulong))
  6288. : "cc", "memory"
  6289. #ifdef CONFIG_X86_64
  6290. , "rax", "rbx", "rdi", "rsi"
  6291. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  6292. #else
  6293. , "eax", "ebx", "edi", "esi"
  6294. #endif
  6295. );
  6296. /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
  6297. if (debugctlmsr)
  6298. update_debugctlmsr(debugctlmsr);
  6299. #ifndef CONFIG_X86_64
  6300. /*
  6301. * The sysexit path does not restore ds/es, so we must set them to
  6302. * a reasonable value ourselves.
  6303. *
  6304. * We can't defer this to vmx_load_host_state() since that function
  6305. * may be executed in interrupt context, which saves and restore segments
  6306. * around it, nullifying its effect.
  6307. */
  6308. loadsegment(ds, __USER_DS);
  6309. loadsegment(es, __USER_DS);
  6310. #endif
  6311. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  6312. | (1 << VCPU_EXREG_RFLAGS)
  6313. | (1 << VCPU_EXREG_CPL)
  6314. | (1 << VCPU_EXREG_PDPTR)
  6315. | (1 << VCPU_EXREG_SEGMENTS)
  6316. | (1 << VCPU_EXREG_CR3));
  6317. vcpu->arch.regs_dirty = 0;
  6318. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  6319. vmx->loaded_vmcs->launched = 1;
  6320. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  6321. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  6322. vmx_complete_atomic_exit(vmx);
  6323. vmx_recover_nmi_blocking(vmx);
  6324. vmx_complete_interrupts(vmx);
  6325. }
  6326. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  6327. {
  6328. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6329. free_vpid(vmx);
  6330. free_nested(vmx);
  6331. free_loaded_vmcs(vmx->loaded_vmcs);
  6332. kfree(vmx->guest_msrs);
  6333. kvm_vcpu_uninit(vcpu);
  6334. kmem_cache_free(kvm_vcpu_cache, vmx);
  6335. }
  6336. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  6337. {
  6338. int err;
  6339. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  6340. int cpu;
  6341. if (!vmx)
  6342. return ERR_PTR(-ENOMEM);
  6343. allocate_vpid(vmx);
  6344. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  6345. if (err)
  6346. goto free_vcpu;
  6347. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  6348. err = -ENOMEM;
  6349. if (!vmx->guest_msrs) {
  6350. goto uninit_vcpu;
  6351. }
  6352. vmx->loaded_vmcs = &vmx->vmcs01;
  6353. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  6354. if (!vmx->loaded_vmcs->vmcs)
  6355. goto free_msrs;
  6356. if (!vmm_exclusive)
  6357. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  6358. loaded_vmcs_init(vmx->loaded_vmcs);
  6359. if (!vmm_exclusive)
  6360. kvm_cpu_vmxoff();
  6361. cpu = get_cpu();
  6362. vmx_vcpu_load(&vmx->vcpu, cpu);
  6363. vmx->vcpu.cpu = cpu;
  6364. err = vmx_vcpu_setup(vmx);
  6365. vmx_vcpu_put(&vmx->vcpu);
  6366. put_cpu();
  6367. if (err)
  6368. goto free_vmcs;
  6369. if (vm_need_virtualize_apic_accesses(kvm)) {
  6370. err = alloc_apic_access_page(kvm);
  6371. if (err)
  6372. goto free_vmcs;
  6373. }
  6374. if (enable_ept) {
  6375. if (!kvm->arch.ept_identity_map_addr)
  6376. kvm->arch.ept_identity_map_addr =
  6377. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  6378. err = -ENOMEM;
  6379. if (alloc_identity_pagetable(kvm) != 0)
  6380. goto free_vmcs;
  6381. if (!init_rmode_identity_map(kvm))
  6382. goto free_vmcs;
  6383. }
  6384. vmx->nested.current_vmptr = -1ull;
  6385. vmx->nested.current_vmcs12 = NULL;
  6386. return &vmx->vcpu;
  6387. free_vmcs:
  6388. free_loaded_vmcs(vmx->loaded_vmcs);
  6389. free_msrs:
  6390. kfree(vmx->guest_msrs);
  6391. uninit_vcpu:
  6392. kvm_vcpu_uninit(&vmx->vcpu);
  6393. free_vcpu:
  6394. free_vpid(vmx);
  6395. kmem_cache_free(kvm_vcpu_cache, vmx);
  6396. return ERR_PTR(err);
  6397. }
  6398. static void __init vmx_check_processor_compat(void *rtn)
  6399. {
  6400. struct vmcs_config vmcs_conf;
  6401. *(int *)rtn = 0;
  6402. if (setup_vmcs_config(&vmcs_conf) < 0)
  6403. *(int *)rtn = -EIO;
  6404. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  6405. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  6406. smp_processor_id());
  6407. *(int *)rtn = -EIO;
  6408. }
  6409. }
  6410. static int get_ept_level(void)
  6411. {
  6412. return VMX_EPT_DEFAULT_GAW + 1;
  6413. }
  6414. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  6415. {
  6416. u64 ret;
  6417. /* For VT-d and EPT combination
  6418. * 1. MMIO: always map as UC
  6419. * 2. EPT with VT-d:
  6420. * a. VT-d without snooping control feature: can't guarantee the
  6421. * result, try to trust guest.
  6422. * b. VT-d with snooping control feature: snooping control feature of
  6423. * VT-d engine can guarantee the cache correctness. Just set it
  6424. * to WB to keep consistent with host. So the same as item 3.
  6425. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  6426. * consistent with host MTRR
  6427. */
  6428. if (is_mmio)
  6429. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  6430. else if (vcpu->kvm->arch.iommu_domain &&
  6431. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  6432. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  6433. VMX_EPT_MT_EPTE_SHIFT;
  6434. else
  6435. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  6436. | VMX_EPT_IPAT_BIT;
  6437. return ret;
  6438. }
  6439. static int vmx_get_lpage_level(void)
  6440. {
  6441. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  6442. return PT_DIRECTORY_LEVEL;
  6443. else
  6444. /* For shadow and EPT supported 1GB page */
  6445. return PT_PDPE_LEVEL;
  6446. }
  6447. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  6448. {
  6449. struct kvm_cpuid_entry2 *best;
  6450. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6451. u32 exec_control;
  6452. vmx->rdtscp_enabled = false;
  6453. if (vmx_rdtscp_supported()) {
  6454. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  6455. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  6456. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  6457. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  6458. vmx->rdtscp_enabled = true;
  6459. else {
  6460. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  6461. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  6462. exec_control);
  6463. }
  6464. }
  6465. }
  6466. /* Exposing INVPCID only when PCID is exposed */
  6467. best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
  6468. if (vmx_invpcid_supported() &&
  6469. best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
  6470. guest_cpuid_has_pcid(vcpu)) {
  6471. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  6472. exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
  6473. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  6474. exec_control);
  6475. } else {
  6476. if (cpu_has_secondary_exec_ctrls()) {
  6477. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  6478. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  6479. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  6480. exec_control);
  6481. }
  6482. if (best)
  6483. best->ebx &= ~bit(X86_FEATURE_INVPCID);
  6484. }
  6485. }
  6486. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  6487. {
  6488. if (func == 1 && nested)
  6489. entry->ecx |= bit(X86_FEATURE_VMX);
  6490. }
  6491. static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
  6492. struct x86_exception *fault)
  6493. {
  6494. struct vmcs12 *vmcs12;
  6495. nested_vmx_vmexit(vcpu);
  6496. vmcs12 = get_vmcs12(vcpu);
  6497. if (fault->error_code & PFERR_RSVD_MASK)
  6498. vmcs12->vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  6499. else
  6500. vmcs12->vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
  6501. vmcs12->exit_qualification = vcpu->arch.exit_qualification;
  6502. vmcs12->guest_physical_address = fault->address;
  6503. }
  6504. /* Callbacks for nested_ept_init_mmu_context: */
  6505. static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
  6506. {
  6507. /* return the page table to be shadowed - in our case, EPT12 */
  6508. return get_vmcs12(vcpu)->ept_pointer;
  6509. }
  6510. static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
  6511. {
  6512. int r = kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
  6513. nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
  6514. vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
  6515. vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
  6516. vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
  6517. vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
  6518. return r;
  6519. }
  6520. static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
  6521. {
  6522. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  6523. }
  6524. /*
  6525. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  6526. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  6527. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  6528. * guest in a way that will both be appropriate to L1's requests, and our
  6529. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  6530. * function also has additional necessary side-effects, like setting various
  6531. * vcpu->arch fields.
  6532. */
  6533. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6534. {
  6535. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6536. u32 exec_control;
  6537. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  6538. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  6539. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  6540. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  6541. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  6542. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  6543. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  6544. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  6545. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  6546. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  6547. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  6548. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  6549. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  6550. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  6551. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  6552. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  6553. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  6554. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  6555. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  6556. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  6557. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  6558. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  6559. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  6560. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  6561. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  6562. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  6563. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  6564. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  6565. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  6566. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  6567. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  6568. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  6569. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  6570. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  6571. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  6572. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  6573. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  6574. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  6575. vmcs12->vm_entry_intr_info_field);
  6576. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  6577. vmcs12->vm_entry_exception_error_code);
  6578. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  6579. vmcs12->vm_entry_instruction_len);
  6580. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  6581. vmcs12->guest_interruptibility_info);
  6582. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  6583. kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
  6584. vmx_set_rflags(vcpu, vmcs12->guest_rflags);
  6585. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  6586. vmcs12->guest_pending_dbg_exceptions);
  6587. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  6588. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  6589. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  6590. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  6591. (vmcs_config.pin_based_exec_ctrl |
  6592. vmcs12->pin_based_vm_exec_control));
  6593. if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
  6594. vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
  6595. vmcs12->vmx_preemption_timer_value);
  6596. /*
  6597. * Whether page-faults are trapped is determined by a combination of
  6598. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  6599. * If enable_ept, L0 doesn't care about page faults and we should
  6600. * set all of these to L1's desires. However, if !enable_ept, L0 does
  6601. * care about (at least some) page faults, and because it is not easy
  6602. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  6603. * to exit on each and every L2 page fault. This is done by setting
  6604. * MASK=MATCH=0 and (see below) EB.PF=1.
  6605. * Note that below we don't need special code to set EB.PF beyond the
  6606. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  6607. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  6608. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  6609. *
  6610. * A problem with this approach (when !enable_ept) is that L1 may be
  6611. * injected with more page faults than it asked for. This could have
  6612. * caused problems, but in practice existing hypervisors don't care.
  6613. * To fix this, we will need to emulate the PFEC checking (on the L1
  6614. * page tables), using walk_addr(), when injecting PFs to L1.
  6615. */
  6616. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  6617. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  6618. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  6619. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  6620. if (cpu_has_secondary_exec_ctrls()) {
  6621. u32 exec_control = vmx_secondary_exec_control(vmx);
  6622. if (!vmx->rdtscp_enabled)
  6623. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  6624. /* Take the following fields only from vmcs12 */
  6625. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  6626. if (nested_cpu_has(vmcs12,
  6627. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  6628. exec_control |= vmcs12->secondary_vm_exec_control;
  6629. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  6630. /*
  6631. * Translate L1 physical address to host physical
  6632. * address for vmcs02. Keep the page pinned, so this
  6633. * physical address remains valid. We keep a reference
  6634. * to it so we can release it later.
  6635. */
  6636. if (vmx->nested.apic_access_page) /* shouldn't happen */
  6637. nested_release_page(vmx->nested.apic_access_page);
  6638. vmx->nested.apic_access_page =
  6639. nested_get_page(vcpu, vmcs12->apic_access_addr);
  6640. /*
  6641. * If translation failed, no matter: This feature asks
  6642. * to exit when accessing the given address, and if it
  6643. * can never be accessed, this feature won't do
  6644. * anything anyway.
  6645. */
  6646. if (!vmx->nested.apic_access_page)
  6647. exec_control &=
  6648. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  6649. else
  6650. vmcs_write64(APIC_ACCESS_ADDR,
  6651. page_to_phys(vmx->nested.apic_access_page));
  6652. }
  6653. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  6654. }
  6655. /*
  6656. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  6657. * Some constant fields are set here by vmx_set_constant_host_state().
  6658. * Other fields are different per CPU, and will be set later when
  6659. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  6660. */
  6661. vmx_set_constant_host_state(vmx);
  6662. /*
  6663. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  6664. * entry, but only if the current (host) sp changed from the value
  6665. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  6666. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  6667. * here we just force the write to happen on entry.
  6668. */
  6669. vmx->host_rsp = 0;
  6670. exec_control = vmx_exec_control(vmx); /* L0's desires */
  6671. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  6672. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  6673. exec_control &= ~CPU_BASED_TPR_SHADOW;
  6674. exec_control |= vmcs12->cpu_based_vm_exec_control;
  6675. /*
  6676. * Merging of IO and MSR bitmaps not currently supported.
  6677. * Rather, exit every time.
  6678. */
  6679. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  6680. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  6681. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  6682. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  6683. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  6684. * bitwise-or of what L1 wants to trap for L2, and what we want to
  6685. * trap. Note that CR0.TS also needs updating - we do this later.
  6686. */
  6687. update_exception_bitmap(vcpu);
  6688. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  6689. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6690. /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
  6691. * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
  6692. * bits are further modified by vmx_set_efer() below.
  6693. */
  6694. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  6695. /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
  6696. * emulated by vmx_set_efer(), below.
  6697. */
  6698. vmcs_write32(VM_ENTRY_CONTROLS,
  6699. (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
  6700. ~VM_ENTRY_IA32E_MODE) |
  6701. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  6702. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
  6703. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  6704. vcpu->arch.pat = vmcs12->guest_ia32_pat;
  6705. } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  6706. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  6707. set_cr4_guest_host_mask(vmx);
  6708. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  6709. vmcs_write64(TSC_OFFSET,
  6710. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  6711. else
  6712. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6713. if (enable_vpid) {
  6714. /*
  6715. * Trivially support vpid by letting L2s share their parent
  6716. * L1's vpid. TODO: move to a more elaborate solution, giving
  6717. * each L2 its own vpid and exposing the vpid feature to L1.
  6718. */
  6719. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  6720. vmx_flush_tlb(vcpu);
  6721. }
  6722. if (nested_cpu_has_ept(vmcs12)) {
  6723. kvm_mmu_unload(vcpu);
  6724. nested_ept_init_mmu_context(vcpu);
  6725. }
  6726. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  6727. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  6728. else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  6729. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6730. else
  6731. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6732. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  6733. vmx_set_efer(vcpu, vcpu->arch.efer);
  6734. /*
  6735. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  6736. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  6737. * The CR0_READ_SHADOW is what L2 should have expected to read given
  6738. * the specifications by L1; It's not enough to take
  6739. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  6740. * have more bits than L1 expected.
  6741. */
  6742. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  6743. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  6744. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  6745. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  6746. /* shadow page tables on either EPT or shadow page tables */
  6747. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  6748. kvm_mmu_reset_context(vcpu);
  6749. /*
  6750. * L1 may access the L2's PDPTR, so save them to construct vmcs12
  6751. */
  6752. if (enable_ept) {
  6753. vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
  6754. vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
  6755. vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
  6756. vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
  6757. }
  6758. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  6759. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  6760. }
  6761. /*
  6762. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  6763. * for running an L2 nested guest.
  6764. */
  6765. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  6766. {
  6767. struct vmcs12 *vmcs12;
  6768. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6769. int cpu;
  6770. struct loaded_vmcs *vmcs02;
  6771. bool ia32e;
  6772. if (!nested_vmx_check_permission(vcpu) ||
  6773. !nested_vmx_check_vmcs12(vcpu))
  6774. return 1;
  6775. skip_emulated_instruction(vcpu);
  6776. vmcs12 = get_vmcs12(vcpu);
  6777. if (enable_shadow_vmcs)
  6778. copy_shadow_to_vmcs12(vmx);
  6779. /*
  6780. * The nested entry process starts with enforcing various prerequisites
  6781. * on vmcs12 as required by the Intel SDM, and act appropriately when
  6782. * they fail: As the SDM explains, some conditions should cause the
  6783. * instruction to fail, while others will cause the instruction to seem
  6784. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  6785. * To speed up the normal (success) code path, we should avoid checking
  6786. * for misconfigurations which will anyway be caught by the processor
  6787. * when using the merged vmcs02.
  6788. */
  6789. if (vmcs12->launch_state == launch) {
  6790. nested_vmx_failValid(vcpu,
  6791. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  6792. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  6793. return 1;
  6794. }
  6795. if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
  6796. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6797. return 1;
  6798. }
  6799. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  6800. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  6801. /*TODO: Also verify bits beyond physical address width are 0*/
  6802. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6803. return 1;
  6804. }
  6805. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  6806. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  6807. /*TODO: Also verify bits beyond physical address width are 0*/
  6808. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6809. return 1;
  6810. }
  6811. if (vmcs12->vm_entry_msr_load_count > 0 ||
  6812. vmcs12->vm_exit_msr_load_count > 0 ||
  6813. vmcs12->vm_exit_msr_store_count > 0) {
  6814. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  6815. __func__);
  6816. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6817. return 1;
  6818. }
  6819. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  6820. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  6821. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  6822. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  6823. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  6824. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  6825. !vmx_control_verify(vmcs12->vm_exit_controls,
  6826. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  6827. !vmx_control_verify(vmcs12->vm_entry_controls,
  6828. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  6829. {
  6830. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6831. return 1;
  6832. }
  6833. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6834. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6835. nested_vmx_failValid(vcpu,
  6836. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  6837. return 1;
  6838. }
  6839. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6840. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6841. nested_vmx_entry_failure(vcpu, vmcs12,
  6842. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6843. return 1;
  6844. }
  6845. if (vmcs12->vmcs_link_pointer != -1ull) {
  6846. nested_vmx_entry_failure(vcpu, vmcs12,
  6847. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  6848. return 1;
  6849. }
  6850. /*
  6851. * If the load IA32_EFER VM-entry control is 1, the following checks
  6852. * are performed on the field for the IA32_EFER MSR:
  6853. * - Bits reserved in the IA32_EFER MSR must be 0.
  6854. * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
  6855. * the IA-32e mode guest VM-exit control. It must also be identical
  6856. * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
  6857. * CR0.PG) is 1.
  6858. */
  6859. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
  6860. ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
  6861. if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
  6862. ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
  6863. ((vmcs12->guest_cr0 & X86_CR0_PG) &&
  6864. ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
  6865. nested_vmx_entry_failure(vcpu, vmcs12,
  6866. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6867. return 1;
  6868. }
  6869. }
  6870. /*
  6871. * If the load IA32_EFER VM-exit control is 1, bits reserved in the
  6872. * IA32_EFER MSR must be 0 in the field for that register. In addition,
  6873. * the values of the LMA and LME bits in the field must each be that of
  6874. * the host address-space size VM-exit control.
  6875. */
  6876. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
  6877. ia32e = (vmcs12->vm_exit_controls &
  6878. VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
  6879. if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
  6880. ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
  6881. ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
  6882. nested_vmx_entry_failure(vcpu, vmcs12,
  6883. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6884. return 1;
  6885. }
  6886. }
  6887. /*
  6888. * We're finally done with prerequisite checking, and can start with
  6889. * the nested entry.
  6890. */
  6891. vmcs02 = nested_get_current_vmcs02(vmx);
  6892. if (!vmcs02)
  6893. return -ENOMEM;
  6894. enter_guest_mode(vcpu);
  6895. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  6896. cpu = get_cpu();
  6897. vmx->loaded_vmcs = vmcs02;
  6898. vmx_vcpu_put(vcpu);
  6899. vmx_vcpu_load(vcpu, cpu);
  6900. vcpu->cpu = cpu;
  6901. put_cpu();
  6902. vmx_segment_cache_clear(vmx);
  6903. vmcs12->launch_state = 1;
  6904. prepare_vmcs02(vcpu, vmcs12);
  6905. /*
  6906. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  6907. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  6908. * returned as far as L1 is concerned. It will only return (and set
  6909. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  6910. */
  6911. return 1;
  6912. }
  6913. /*
  6914. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  6915. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  6916. * This function returns the new value we should put in vmcs12.guest_cr0.
  6917. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  6918. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  6919. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  6920. * didn't trap the bit, because if L1 did, so would L0).
  6921. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  6922. * been modified by L2, and L1 knows it. So just leave the old value of
  6923. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  6924. * isn't relevant, because if L0 traps this bit it can set it to anything.
  6925. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  6926. * changed these bits, and therefore they need to be updated, but L0
  6927. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  6928. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  6929. */
  6930. static inline unsigned long
  6931. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6932. {
  6933. return
  6934. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  6935. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  6936. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  6937. vcpu->arch.cr0_guest_owned_bits));
  6938. }
  6939. static inline unsigned long
  6940. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6941. {
  6942. return
  6943. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  6944. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  6945. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  6946. vcpu->arch.cr4_guest_owned_bits));
  6947. }
  6948. static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
  6949. struct vmcs12 *vmcs12)
  6950. {
  6951. u32 idt_vectoring;
  6952. unsigned int nr;
  6953. if (vcpu->arch.exception.pending) {
  6954. nr = vcpu->arch.exception.nr;
  6955. idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
  6956. if (kvm_exception_is_soft(nr)) {
  6957. vmcs12->vm_exit_instruction_len =
  6958. vcpu->arch.event_exit_inst_len;
  6959. idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
  6960. } else
  6961. idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
  6962. if (vcpu->arch.exception.has_error_code) {
  6963. idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
  6964. vmcs12->idt_vectoring_error_code =
  6965. vcpu->arch.exception.error_code;
  6966. }
  6967. vmcs12->idt_vectoring_info_field = idt_vectoring;
  6968. } else if (vcpu->arch.nmi_pending) {
  6969. vmcs12->idt_vectoring_info_field =
  6970. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
  6971. } else if (vcpu->arch.interrupt.pending) {
  6972. nr = vcpu->arch.interrupt.nr;
  6973. idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
  6974. if (vcpu->arch.interrupt.soft) {
  6975. idt_vectoring |= INTR_TYPE_SOFT_INTR;
  6976. vmcs12->vm_entry_instruction_len =
  6977. vcpu->arch.event_exit_inst_len;
  6978. } else
  6979. idt_vectoring |= INTR_TYPE_EXT_INTR;
  6980. vmcs12->idt_vectoring_info_field = idt_vectoring;
  6981. }
  6982. }
  6983. /*
  6984. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  6985. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  6986. * and this function updates it to reflect the changes to the guest state while
  6987. * L2 was running (and perhaps made some exits which were handled directly by L0
  6988. * without going back to L1), and to reflect the exit reason.
  6989. * Note that we do not have to copy here all VMCS fields, just those that
  6990. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  6991. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  6992. * which already writes to vmcs12 directly.
  6993. */
  6994. static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6995. {
  6996. /* update guest state fields: */
  6997. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  6998. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  6999. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  7000. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  7001. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  7002. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  7003. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  7004. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  7005. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  7006. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  7007. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  7008. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  7009. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  7010. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  7011. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  7012. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  7013. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  7014. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  7015. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  7016. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  7017. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  7018. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  7019. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  7020. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  7021. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  7022. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  7023. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  7024. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  7025. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  7026. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  7027. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  7028. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  7029. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  7030. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  7031. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  7032. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  7033. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  7034. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  7035. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  7036. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  7037. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  7038. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  7039. vmcs12->guest_interruptibility_info =
  7040. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  7041. vmcs12->guest_pending_dbg_exceptions =
  7042. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  7043. /*
  7044. * In some cases (usually, nested EPT), L2 is allowed to change its
  7045. * own CR3 without exiting. If it has changed it, we must keep it.
  7046. * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
  7047. * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
  7048. *
  7049. * Additionally, restore L2's PDPTR to vmcs12.
  7050. */
  7051. if (enable_ept) {
  7052. vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
  7053. vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
  7054. vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
  7055. vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
  7056. vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
  7057. }
  7058. vmcs12->vm_entry_controls =
  7059. (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
  7060. (vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
  7061. /* TODO: These cannot have changed unless we have MSR bitmaps and
  7062. * the relevant bit asks not to trap the change */
  7063. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  7064. if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
  7065. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  7066. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  7067. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  7068. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  7069. /* update exit information fields: */
  7070. vmcs12->vm_exit_reason = to_vmx(vcpu)->exit_reason;
  7071. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  7072. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  7073. if ((vmcs12->vm_exit_intr_info &
  7074. (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
  7075. (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
  7076. vmcs12->vm_exit_intr_error_code =
  7077. vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  7078. vmcs12->idt_vectoring_info_field = 0;
  7079. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  7080. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  7081. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
  7082. /* vm_entry_intr_info_field is cleared on exit. Emulate this
  7083. * instead of reading the real value. */
  7084. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  7085. /*
  7086. * Transfer the event that L0 or L1 may wanted to inject into
  7087. * L2 to IDT_VECTORING_INFO_FIELD.
  7088. */
  7089. vmcs12_save_pending_event(vcpu, vmcs12);
  7090. }
  7091. /*
  7092. * Drop what we picked up for L2 via vmx_complete_interrupts. It is
  7093. * preserved above and would only end up incorrectly in L1.
  7094. */
  7095. vcpu->arch.nmi_injected = false;
  7096. kvm_clear_exception_queue(vcpu);
  7097. kvm_clear_interrupt_queue(vcpu);
  7098. }
  7099. /*
  7100. * A part of what we need to when the nested L2 guest exits and we want to
  7101. * run its L1 parent, is to reset L1's guest state to the host state specified
  7102. * in vmcs12.
  7103. * This function is to be called not only on normal nested exit, but also on
  7104. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  7105. * Failures During or After Loading Guest State").
  7106. * This function should be called when the active VMCS is L1's (vmcs01).
  7107. */
  7108. static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
  7109. struct vmcs12 *vmcs12)
  7110. {
  7111. struct kvm_segment seg;
  7112. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  7113. vcpu->arch.efer = vmcs12->host_ia32_efer;
  7114. else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  7115. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  7116. else
  7117. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  7118. vmx_set_efer(vcpu, vcpu->arch.efer);
  7119. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  7120. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  7121. vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
  7122. /*
  7123. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  7124. * actually changed, because it depends on the current state of
  7125. * fpu_active (which may have changed).
  7126. * Note that vmx_set_cr0 refers to efer set above.
  7127. */
  7128. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  7129. /*
  7130. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  7131. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  7132. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  7133. */
  7134. update_exception_bitmap(vcpu);
  7135. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  7136. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  7137. /*
  7138. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  7139. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  7140. */
  7141. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  7142. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  7143. if (nested_cpu_has_ept(vmcs12))
  7144. nested_ept_uninit_mmu_context(vcpu);
  7145. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  7146. kvm_mmu_reset_context(vcpu);
  7147. if (enable_vpid) {
  7148. /*
  7149. * Trivially support vpid by letting L2s share their parent
  7150. * L1's vpid. TODO: move to a more elaborate solution, giving
  7151. * each L2 its own vpid and exposing the vpid feature to L1.
  7152. */
  7153. vmx_flush_tlb(vcpu);
  7154. }
  7155. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  7156. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  7157. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  7158. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  7159. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  7160. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
  7161. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  7162. vcpu->arch.pat = vmcs12->host_ia32_pat;
  7163. }
  7164. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  7165. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  7166. vmcs12->host_ia32_perf_global_ctrl);
  7167. /* Set L1 segment info according to Intel SDM
  7168. 27.5.2 Loading Host Segment and Descriptor-Table Registers */
  7169. seg = (struct kvm_segment) {
  7170. .base = 0,
  7171. .limit = 0xFFFFFFFF,
  7172. .selector = vmcs12->host_cs_selector,
  7173. .type = 11,
  7174. .present = 1,
  7175. .s = 1,
  7176. .g = 1
  7177. };
  7178. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  7179. seg.l = 1;
  7180. else
  7181. seg.db = 1;
  7182. vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
  7183. seg = (struct kvm_segment) {
  7184. .base = 0,
  7185. .limit = 0xFFFFFFFF,
  7186. .type = 3,
  7187. .present = 1,
  7188. .s = 1,
  7189. .db = 1,
  7190. .g = 1
  7191. };
  7192. seg.selector = vmcs12->host_ds_selector;
  7193. vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
  7194. seg.selector = vmcs12->host_es_selector;
  7195. vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
  7196. seg.selector = vmcs12->host_ss_selector;
  7197. vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
  7198. seg.selector = vmcs12->host_fs_selector;
  7199. seg.base = vmcs12->host_fs_base;
  7200. vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
  7201. seg.selector = vmcs12->host_gs_selector;
  7202. seg.base = vmcs12->host_gs_base;
  7203. vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
  7204. seg = (struct kvm_segment) {
  7205. .base = vmcs12->host_tr_base,
  7206. .limit = 0x67,
  7207. .selector = vmcs12->host_tr_selector,
  7208. .type = 11,
  7209. .present = 1
  7210. };
  7211. vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
  7212. kvm_set_dr(vcpu, 7, 0x400);
  7213. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  7214. }
  7215. /*
  7216. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  7217. * and modify vmcs12 to make it see what it would expect to see there if
  7218. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  7219. */
  7220. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  7221. {
  7222. struct vcpu_vmx *vmx = to_vmx(vcpu);
  7223. int cpu;
  7224. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  7225. /* trying to cancel vmlaunch/vmresume is a bug */
  7226. WARN_ON_ONCE(vmx->nested.nested_run_pending);
  7227. leave_guest_mode(vcpu);
  7228. prepare_vmcs12(vcpu, vmcs12);
  7229. cpu = get_cpu();
  7230. vmx->loaded_vmcs = &vmx->vmcs01;
  7231. vmx_vcpu_put(vcpu);
  7232. vmx_vcpu_load(vcpu, cpu);
  7233. vcpu->cpu = cpu;
  7234. put_cpu();
  7235. vmx_segment_cache_clear(vmx);
  7236. /* if no vmcs02 cache requested, remove the one we used */
  7237. if (VMCS02_POOL_SIZE == 0)
  7238. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  7239. load_vmcs12_host_state(vcpu, vmcs12);
  7240. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  7241. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  7242. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  7243. vmx->host_rsp = 0;
  7244. /* Unpin physical memory we referred to in vmcs02 */
  7245. if (vmx->nested.apic_access_page) {
  7246. nested_release_page(vmx->nested.apic_access_page);
  7247. vmx->nested.apic_access_page = 0;
  7248. }
  7249. /*
  7250. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  7251. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  7252. * success or failure flag accordingly.
  7253. */
  7254. if (unlikely(vmx->fail)) {
  7255. vmx->fail = 0;
  7256. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  7257. } else
  7258. nested_vmx_succeed(vcpu);
  7259. if (enable_shadow_vmcs)
  7260. vmx->nested.sync_shadow_vmcs = true;
  7261. }
  7262. /*
  7263. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  7264. * 23.7 "VM-entry failures during or after loading guest state" (this also
  7265. * lists the acceptable exit-reason and exit-qualification parameters).
  7266. * It should only be called before L2 actually succeeded to run, and when
  7267. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  7268. */
  7269. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  7270. struct vmcs12 *vmcs12,
  7271. u32 reason, unsigned long qualification)
  7272. {
  7273. load_vmcs12_host_state(vcpu, vmcs12);
  7274. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  7275. vmcs12->exit_qualification = qualification;
  7276. nested_vmx_succeed(vcpu);
  7277. if (enable_shadow_vmcs)
  7278. to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
  7279. }
  7280. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  7281. struct x86_instruction_info *info,
  7282. enum x86_intercept_stage stage)
  7283. {
  7284. return X86EMUL_CONTINUE;
  7285. }
  7286. static struct kvm_x86_ops vmx_x86_ops = {
  7287. .cpu_has_kvm_support = cpu_has_kvm_support,
  7288. .disabled_by_bios = vmx_disabled_by_bios,
  7289. .hardware_setup = hardware_setup,
  7290. .hardware_unsetup = hardware_unsetup,
  7291. .check_processor_compatibility = vmx_check_processor_compat,
  7292. .hardware_enable = hardware_enable,
  7293. .hardware_disable = hardware_disable,
  7294. .cpu_has_accelerated_tpr = report_flexpriority,
  7295. .vcpu_create = vmx_create_vcpu,
  7296. .vcpu_free = vmx_free_vcpu,
  7297. .vcpu_reset = vmx_vcpu_reset,
  7298. .prepare_guest_switch = vmx_save_host_state,
  7299. .vcpu_load = vmx_vcpu_load,
  7300. .vcpu_put = vmx_vcpu_put,
  7301. .update_db_bp_intercept = update_exception_bitmap,
  7302. .get_msr = vmx_get_msr,
  7303. .set_msr = vmx_set_msr,
  7304. .get_segment_base = vmx_get_segment_base,
  7305. .get_segment = vmx_get_segment,
  7306. .set_segment = vmx_set_segment,
  7307. .get_cpl = vmx_get_cpl,
  7308. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  7309. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  7310. .decache_cr3 = vmx_decache_cr3,
  7311. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  7312. .set_cr0 = vmx_set_cr0,
  7313. .set_cr3 = vmx_set_cr3,
  7314. .set_cr4 = vmx_set_cr4,
  7315. .set_efer = vmx_set_efer,
  7316. .get_idt = vmx_get_idt,
  7317. .set_idt = vmx_set_idt,
  7318. .get_gdt = vmx_get_gdt,
  7319. .set_gdt = vmx_set_gdt,
  7320. .set_dr7 = vmx_set_dr7,
  7321. .cache_reg = vmx_cache_reg,
  7322. .get_rflags = vmx_get_rflags,
  7323. .set_rflags = vmx_set_rflags,
  7324. .fpu_activate = vmx_fpu_activate,
  7325. .fpu_deactivate = vmx_fpu_deactivate,
  7326. .tlb_flush = vmx_flush_tlb,
  7327. .run = vmx_vcpu_run,
  7328. .handle_exit = vmx_handle_exit,
  7329. .skip_emulated_instruction = skip_emulated_instruction,
  7330. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  7331. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  7332. .patch_hypercall = vmx_patch_hypercall,
  7333. .set_irq = vmx_inject_irq,
  7334. .set_nmi = vmx_inject_nmi,
  7335. .queue_exception = vmx_queue_exception,
  7336. .cancel_injection = vmx_cancel_injection,
  7337. .interrupt_allowed = vmx_interrupt_allowed,
  7338. .nmi_allowed = vmx_nmi_allowed,
  7339. .get_nmi_mask = vmx_get_nmi_mask,
  7340. .set_nmi_mask = vmx_set_nmi_mask,
  7341. .enable_nmi_window = enable_nmi_window,
  7342. .enable_irq_window = enable_irq_window,
  7343. .update_cr8_intercept = update_cr8_intercept,
  7344. .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
  7345. .vm_has_apicv = vmx_vm_has_apicv,
  7346. .load_eoi_exitmap = vmx_load_eoi_exitmap,
  7347. .hwapic_irr_update = vmx_hwapic_irr_update,
  7348. .hwapic_isr_update = vmx_hwapic_isr_update,
  7349. .sync_pir_to_irr = vmx_sync_pir_to_irr,
  7350. .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
  7351. .set_tss_addr = vmx_set_tss_addr,
  7352. .get_tdp_level = get_ept_level,
  7353. .get_mt_mask = vmx_get_mt_mask,
  7354. .get_exit_info = vmx_get_exit_info,
  7355. .get_lpage_level = vmx_get_lpage_level,
  7356. .cpuid_update = vmx_cpuid_update,
  7357. .rdtscp_supported = vmx_rdtscp_supported,
  7358. .invpcid_supported = vmx_invpcid_supported,
  7359. .set_supported_cpuid = vmx_set_supported_cpuid,
  7360. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  7361. .set_tsc_khz = vmx_set_tsc_khz,
  7362. .read_tsc_offset = vmx_read_tsc_offset,
  7363. .write_tsc_offset = vmx_write_tsc_offset,
  7364. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  7365. .compute_tsc_offset = vmx_compute_tsc_offset,
  7366. .read_l1_tsc = vmx_read_l1_tsc,
  7367. .set_tdp_cr3 = vmx_set_cr3,
  7368. .check_intercept = vmx_check_intercept,
  7369. .handle_external_intr = vmx_handle_external_intr,
  7370. };
  7371. static int __init vmx_init(void)
  7372. {
  7373. int r, i, msr;
  7374. rdmsrl_safe(MSR_EFER, &host_efer);
  7375. for (i = 0; i < NR_VMX_MSR; ++i)
  7376. kvm_define_shared_msr(i, vmx_msr_index[i]);
  7377. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  7378. if (!vmx_io_bitmap_a)
  7379. return -ENOMEM;
  7380. r = -ENOMEM;
  7381. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  7382. if (!vmx_io_bitmap_b)
  7383. goto out;
  7384. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  7385. if (!vmx_msr_bitmap_legacy)
  7386. goto out1;
  7387. vmx_msr_bitmap_legacy_x2apic =
  7388. (unsigned long *)__get_free_page(GFP_KERNEL);
  7389. if (!vmx_msr_bitmap_legacy_x2apic)
  7390. goto out2;
  7391. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  7392. if (!vmx_msr_bitmap_longmode)
  7393. goto out3;
  7394. vmx_msr_bitmap_longmode_x2apic =
  7395. (unsigned long *)__get_free_page(GFP_KERNEL);
  7396. if (!vmx_msr_bitmap_longmode_x2apic)
  7397. goto out4;
  7398. vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
  7399. if (!vmx_vmread_bitmap)
  7400. goto out5;
  7401. vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
  7402. if (!vmx_vmwrite_bitmap)
  7403. goto out6;
  7404. memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
  7405. memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
  7406. /* shadowed read/write fields */
  7407. for (i = 0; i < max_shadow_read_write_fields; i++) {
  7408. clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
  7409. clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
  7410. }
  7411. /* shadowed read only fields */
  7412. for (i = 0; i < max_shadow_read_only_fields; i++)
  7413. clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
  7414. /*
  7415. * Allow direct access to the PC debug port (it is often used for I/O
  7416. * delays, but the vmexits simply slow things down).
  7417. */
  7418. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  7419. clear_bit(0x80, vmx_io_bitmap_a);
  7420. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  7421. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  7422. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  7423. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  7424. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  7425. __alignof__(struct vcpu_vmx), THIS_MODULE);
  7426. if (r)
  7427. goto out7;
  7428. #ifdef CONFIG_KEXEC
  7429. rcu_assign_pointer(crash_vmclear_loaded_vmcss,
  7430. crash_vmclear_local_loaded_vmcss);
  7431. #endif
  7432. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  7433. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  7434. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  7435. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  7436. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  7437. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  7438. memcpy(vmx_msr_bitmap_legacy_x2apic,
  7439. vmx_msr_bitmap_legacy, PAGE_SIZE);
  7440. memcpy(vmx_msr_bitmap_longmode_x2apic,
  7441. vmx_msr_bitmap_longmode, PAGE_SIZE);
  7442. if (enable_apicv) {
  7443. for (msr = 0x800; msr <= 0x8ff; msr++)
  7444. vmx_disable_intercept_msr_read_x2apic(msr);
  7445. /* According SDM, in x2apic mode, the whole id reg is used.
  7446. * But in KVM, it only use the highest eight bits. Need to
  7447. * intercept it */
  7448. vmx_enable_intercept_msr_read_x2apic(0x802);
  7449. /* TMCCT */
  7450. vmx_enable_intercept_msr_read_x2apic(0x839);
  7451. /* TPR */
  7452. vmx_disable_intercept_msr_write_x2apic(0x808);
  7453. /* EOI */
  7454. vmx_disable_intercept_msr_write_x2apic(0x80b);
  7455. /* SELF-IPI */
  7456. vmx_disable_intercept_msr_write_x2apic(0x83f);
  7457. }
  7458. if (enable_ept) {
  7459. kvm_mmu_set_mask_ptes(0ull,
  7460. (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
  7461. (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
  7462. 0ull, VMX_EPT_EXECUTABLE_MASK);
  7463. ept_set_mmio_spte_mask();
  7464. kvm_enable_tdp();
  7465. } else
  7466. kvm_disable_tdp();
  7467. return 0;
  7468. out7:
  7469. free_page((unsigned long)vmx_vmwrite_bitmap);
  7470. out6:
  7471. free_page((unsigned long)vmx_vmread_bitmap);
  7472. out5:
  7473. free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
  7474. out4:
  7475. free_page((unsigned long)vmx_msr_bitmap_longmode);
  7476. out3:
  7477. free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
  7478. out2:
  7479. free_page((unsigned long)vmx_msr_bitmap_legacy);
  7480. out1:
  7481. free_page((unsigned long)vmx_io_bitmap_b);
  7482. out:
  7483. free_page((unsigned long)vmx_io_bitmap_a);
  7484. return r;
  7485. }
  7486. static void __exit vmx_exit(void)
  7487. {
  7488. free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
  7489. free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
  7490. free_page((unsigned long)vmx_msr_bitmap_legacy);
  7491. free_page((unsigned long)vmx_msr_bitmap_longmode);
  7492. free_page((unsigned long)vmx_io_bitmap_b);
  7493. free_page((unsigned long)vmx_io_bitmap_a);
  7494. free_page((unsigned long)vmx_vmwrite_bitmap);
  7495. free_page((unsigned long)vmx_vmread_bitmap);
  7496. #ifdef CONFIG_KEXEC
  7497. rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
  7498. synchronize_rcu();
  7499. #endif
  7500. kvm_exit();
  7501. }
  7502. module_init(vmx_init)
  7503. module_exit(vmx_exit)