writeback.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452
  1. /*
  2. * background writeback - scan btree for dirty data and write it to the backing
  3. * device
  4. *
  5. * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6. * Copyright 2012 Google, Inc.
  7. */
  8. #include "bcache.h"
  9. #include "btree.h"
  10. #include "debug.h"
  11. #include <trace/events/bcache.h>
  12. static struct workqueue_struct *dirty_wq;
  13. static void read_dirty(struct closure *);
  14. struct dirty_io {
  15. struct closure cl;
  16. struct cached_dev *dc;
  17. struct bio bio;
  18. };
  19. /* Rate limiting */
  20. static void __update_writeback_rate(struct cached_dev *dc)
  21. {
  22. struct cache_set *c = dc->disk.c;
  23. uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
  24. uint64_t cache_dirty_target =
  25. div_u64(cache_sectors * dc->writeback_percent, 100);
  26. int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
  27. c->cached_dev_sectors);
  28. /* PD controller */
  29. int change = 0;
  30. int64_t error;
  31. int64_t dirty = atomic_long_read(&dc->disk.sectors_dirty);
  32. int64_t derivative = dirty - dc->disk.sectors_dirty_last;
  33. dc->disk.sectors_dirty_last = dirty;
  34. derivative *= dc->writeback_rate_d_term;
  35. derivative = clamp(derivative, -dirty, dirty);
  36. derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
  37. dc->writeback_rate_d_smooth, 0);
  38. /* Avoid divide by zero */
  39. if (!target)
  40. goto out;
  41. error = div64_s64((dirty + derivative - target) << 8, target);
  42. change = div_s64((dc->writeback_rate.rate * error) >> 8,
  43. dc->writeback_rate_p_term_inverse);
  44. /* Don't increase writeback rate if the device isn't keeping up */
  45. if (change > 0 &&
  46. time_after64(local_clock(),
  47. dc->writeback_rate.next + 10 * NSEC_PER_MSEC))
  48. change = 0;
  49. dc->writeback_rate.rate =
  50. clamp_t(int64_t, dc->writeback_rate.rate + change,
  51. 1, NSEC_PER_MSEC);
  52. out:
  53. dc->writeback_rate_derivative = derivative;
  54. dc->writeback_rate_change = change;
  55. dc->writeback_rate_target = target;
  56. schedule_delayed_work(&dc->writeback_rate_update,
  57. dc->writeback_rate_update_seconds * HZ);
  58. }
  59. static void update_writeback_rate(struct work_struct *work)
  60. {
  61. struct cached_dev *dc = container_of(to_delayed_work(work),
  62. struct cached_dev,
  63. writeback_rate_update);
  64. down_read(&dc->writeback_lock);
  65. if (atomic_read(&dc->has_dirty) &&
  66. dc->writeback_percent)
  67. __update_writeback_rate(dc);
  68. up_read(&dc->writeback_lock);
  69. }
  70. static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
  71. {
  72. if (atomic_read(&dc->disk.detaching) ||
  73. !dc->writeback_percent)
  74. return 0;
  75. return bch_next_delay(&dc->writeback_rate, sectors * 10000000ULL);
  76. }
  77. /* Background writeback */
  78. static bool dirty_pred(struct keybuf *buf, struct bkey *k)
  79. {
  80. return KEY_DIRTY(k);
  81. }
  82. static void dirty_init(struct keybuf_key *w)
  83. {
  84. struct dirty_io *io = w->private;
  85. struct bio *bio = &io->bio;
  86. bio_init(bio);
  87. if (!io->dc->writeback_percent)
  88. bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
  89. bio->bi_size = KEY_SIZE(&w->key) << 9;
  90. bio->bi_max_vecs = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
  91. bio->bi_private = w;
  92. bio->bi_io_vec = bio->bi_inline_vecs;
  93. bch_bio_map(bio, NULL);
  94. }
  95. static void refill_dirty(struct closure *cl)
  96. {
  97. struct cached_dev *dc = container_of(cl, struct cached_dev,
  98. writeback.cl);
  99. struct keybuf *buf = &dc->writeback_keys;
  100. bool searched_from_start = false;
  101. struct bkey end = MAX_KEY;
  102. SET_KEY_INODE(&end, dc->disk.id);
  103. if (!atomic_read(&dc->disk.detaching) &&
  104. !dc->writeback_running)
  105. closure_return(cl);
  106. down_write(&dc->writeback_lock);
  107. if (!atomic_read(&dc->has_dirty)) {
  108. SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
  109. bch_write_bdev_super(dc, NULL);
  110. up_write(&dc->writeback_lock);
  111. closure_return(cl);
  112. }
  113. if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
  114. buf->last_scanned = KEY(dc->disk.id, 0, 0);
  115. searched_from_start = true;
  116. }
  117. bch_refill_keybuf(dc->disk.c, buf, &end);
  118. if (bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start) {
  119. /* Searched the entire btree - delay awhile */
  120. if (RB_EMPTY_ROOT(&buf->keys)) {
  121. atomic_set(&dc->has_dirty, 0);
  122. cached_dev_put(dc);
  123. }
  124. if (!atomic_read(&dc->disk.detaching))
  125. closure_delay(&dc->writeback, dc->writeback_delay * HZ);
  126. }
  127. up_write(&dc->writeback_lock);
  128. ratelimit_reset(&dc->writeback_rate);
  129. /* Punt to workqueue only so we don't recurse and blow the stack */
  130. continue_at(cl, read_dirty, dirty_wq);
  131. }
  132. void bch_writeback_queue(struct cached_dev *dc)
  133. {
  134. if (closure_trylock(&dc->writeback.cl, &dc->disk.cl)) {
  135. if (!atomic_read(&dc->disk.detaching))
  136. closure_delay(&dc->writeback, dc->writeback_delay * HZ);
  137. continue_at(&dc->writeback.cl, refill_dirty, dirty_wq);
  138. }
  139. }
  140. void bch_writeback_add(struct cached_dev *dc, unsigned sectors)
  141. {
  142. atomic_long_add(sectors, &dc->disk.sectors_dirty);
  143. if (!atomic_read(&dc->has_dirty) &&
  144. !atomic_xchg(&dc->has_dirty, 1)) {
  145. atomic_inc(&dc->count);
  146. if (BDEV_STATE(&dc->sb) != BDEV_STATE_DIRTY) {
  147. SET_BDEV_STATE(&dc->sb, BDEV_STATE_DIRTY);
  148. /* XXX: should do this synchronously */
  149. bch_write_bdev_super(dc, NULL);
  150. }
  151. bch_writeback_queue(dc);
  152. if (dc->writeback_percent)
  153. schedule_delayed_work(&dc->writeback_rate_update,
  154. dc->writeback_rate_update_seconds * HZ);
  155. }
  156. }
  157. /* Background writeback - IO loop */
  158. static void dirty_io_destructor(struct closure *cl)
  159. {
  160. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  161. kfree(io);
  162. }
  163. static void write_dirty_finish(struct closure *cl)
  164. {
  165. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  166. struct keybuf_key *w = io->bio.bi_private;
  167. struct cached_dev *dc = io->dc;
  168. struct bio_vec *bv = bio_iovec_idx(&io->bio, io->bio.bi_vcnt);
  169. while (bv-- != io->bio.bi_io_vec)
  170. __free_page(bv->bv_page);
  171. /* This is kind of a dumb way of signalling errors. */
  172. if (KEY_DIRTY(&w->key)) {
  173. unsigned i;
  174. struct btree_op op;
  175. bch_btree_op_init_stack(&op);
  176. op.type = BTREE_REPLACE;
  177. bkey_copy(&op.replace, &w->key);
  178. SET_KEY_DIRTY(&w->key, false);
  179. bch_keylist_add(&op.keys, &w->key);
  180. for (i = 0; i < KEY_PTRS(&w->key); i++)
  181. atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
  182. bch_btree_insert(&op, dc->disk.c);
  183. closure_sync(&op.cl);
  184. if (op.insert_collision)
  185. trace_bcache_writeback_collision(&w->key);
  186. atomic_long_inc(op.insert_collision
  187. ? &dc->disk.c->writeback_keys_failed
  188. : &dc->disk.c->writeback_keys_done);
  189. }
  190. bch_keybuf_del(&dc->writeback_keys, w);
  191. atomic_dec_bug(&dc->in_flight);
  192. closure_wake_up(&dc->writeback_wait);
  193. closure_return_with_destructor(cl, dirty_io_destructor);
  194. }
  195. static void dirty_endio(struct bio *bio, int error)
  196. {
  197. struct keybuf_key *w = bio->bi_private;
  198. struct dirty_io *io = w->private;
  199. if (error)
  200. SET_KEY_DIRTY(&w->key, false);
  201. closure_put(&io->cl);
  202. }
  203. static void write_dirty(struct closure *cl)
  204. {
  205. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  206. struct keybuf_key *w = io->bio.bi_private;
  207. dirty_init(w);
  208. io->bio.bi_rw = WRITE;
  209. io->bio.bi_sector = KEY_START(&w->key);
  210. io->bio.bi_bdev = io->dc->bdev;
  211. io->bio.bi_end_io = dirty_endio;
  212. closure_bio_submit(&io->bio, cl, &io->dc->disk);
  213. continue_at(cl, write_dirty_finish, dirty_wq);
  214. }
  215. static void read_dirty_endio(struct bio *bio, int error)
  216. {
  217. struct keybuf_key *w = bio->bi_private;
  218. struct dirty_io *io = w->private;
  219. bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
  220. error, "reading dirty data from cache");
  221. dirty_endio(bio, error);
  222. }
  223. static void read_dirty_submit(struct closure *cl)
  224. {
  225. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  226. closure_bio_submit(&io->bio, cl, &io->dc->disk);
  227. continue_at(cl, write_dirty, dirty_wq);
  228. }
  229. static void read_dirty(struct closure *cl)
  230. {
  231. struct cached_dev *dc = container_of(cl, struct cached_dev,
  232. writeback.cl);
  233. unsigned delay = writeback_delay(dc, 0);
  234. struct keybuf_key *w;
  235. struct dirty_io *io;
  236. /*
  237. * XXX: if we error, background writeback just spins. Should use some
  238. * mempools.
  239. */
  240. while (1) {
  241. w = bch_keybuf_next(&dc->writeback_keys);
  242. if (!w)
  243. break;
  244. BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
  245. if (delay > 0 &&
  246. (KEY_START(&w->key) != dc->last_read ||
  247. jiffies_to_msecs(delay) > 50)) {
  248. w->private = NULL;
  249. closure_delay(&dc->writeback, delay);
  250. continue_at(cl, read_dirty, dirty_wq);
  251. }
  252. dc->last_read = KEY_OFFSET(&w->key);
  253. io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
  254. * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
  255. GFP_KERNEL);
  256. if (!io)
  257. goto err;
  258. w->private = io;
  259. io->dc = dc;
  260. dirty_init(w);
  261. io->bio.bi_sector = PTR_OFFSET(&w->key, 0);
  262. io->bio.bi_bdev = PTR_CACHE(dc->disk.c,
  263. &w->key, 0)->bdev;
  264. io->bio.bi_rw = READ;
  265. io->bio.bi_end_io = read_dirty_endio;
  266. if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
  267. goto err_free;
  268. trace_bcache_writeback(&w->key);
  269. closure_call(&io->cl, read_dirty_submit, NULL, &dc->disk.cl);
  270. delay = writeback_delay(dc, KEY_SIZE(&w->key));
  271. atomic_inc(&dc->in_flight);
  272. if (!closure_wait_event(&dc->writeback_wait, cl,
  273. atomic_read(&dc->in_flight) < 64))
  274. continue_at(cl, read_dirty, dirty_wq);
  275. }
  276. if (0) {
  277. err_free:
  278. kfree(w->private);
  279. err:
  280. bch_keybuf_del(&dc->writeback_keys, w);
  281. }
  282. refill_dirty(cl);
  283. }
  284. /* Init */
  285. static int bch_btree_sectors_dirty_init(struct btree *b, struct btree_op *op,
  286. struct cached_dev *dc)
  287. {
  288. struct bkey *k;
  289. struct btree_iter iter;
  290. bch_btree_iter_init(b, &iter, &KEY(dc->disk.id, 0, 0));
  291. while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad)))
  292. if (!b->level) {
  293. if (KEY_INODE(k) > dc->disk.id)
  294. break;
  295. if (KEY_DIRTY(k))
  296. atomic_long_add(KEY_SIZE(k),
  297. &dc->disk.sectors_dirty);
  298. } else {
  299. btree(sectors_dirty_init, k, b, op, dc);
  300. if (KEY_INODE(k) > dc->disk.id)
  301. break;
  302. cond_resched();
  303. }
  304. return 0;
  305. }
  306. void bch_sectors_dirty_init(struct cached_dev *dc)
  307. {
  308. struct btree_op op;
  309. bch_btree_op_init_stack(&op);
  310. btree_root(sectors_dirty_init, dc->disk.c, &op, dc);
  311. }
  312. void bch_cached_dev_writeback_init(struct cached_dev *dc)
  313. {
  314. closure_init_unlocked(&dc->writeback);
  315. init_rwsem(&dc->writeback_lock);
  316. bch_keybuf_init(&dc->writeback_keys, dirty_pred);
  317. dc->writeback_metadata = true;
  318. dc->writeback_running = true;
  319. dc->writeback_percent = 10;
  320. dc->writeback_delay = 30;
  321. dc->writeback_rate.rate = 1024;
  322. dc->writeback_rate_update_seconds = 30;
  323. dc->writeback_rate_d_term = 16;
  324. dc->writeback_rate_p_term_inverse = 64;
  325. dc->writeback_rate_d_smooth = 8;
  326. INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
  327. schedule_delayed_work(&dc->writeback_rate_update,
  328. dc->writeback_rate_update_seconds * HZ);
  329. }
  330. void bch_writeback_exit(void)
  331. {
  332. if (dirty_wq)
  333. destroy_workqueue(dirty_wq);
  334. }
  335. int __init bch_writeback_init(void)
  336. {
  337. dirty_wq = create_singlethread_workqueue("bcache_writeback");
  338. if (!dirty_wq)
  339. return -ENOMEM;
  340. return 0;
  341. }