of_device.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880
  1. #include <linux/string.h>
  2. #include <linux/kernel.h>
  3. #include <linux/of.h>
  4. #include <linux/init.h>
  5. #include <linux/module.h>
  6. #include <linux/mod_devicetable.h>
  7. #include <linux/slab.h>
  8. #include <linux/errno.h>
  9. #include <linux/irq.h>
  10. #include <linux/of_device.h>
  11. #include <linux/of_platform.h>
  12. void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
  13. {
  14. unsigned long ret = res->start + offset;
  15. struct resource *r;
  16. if (res->flags & IORESOURCE_MEM)
  17. r = request_mem_region(ret, size, name);
  18. else
  19. r = request_region(ret, size, name);
  20. if (!r)
  21. ret = 0;
  22. return (void __iomem *) ret;
  23. }
  24. EXPORT_SYMBOL(of_ioremap);
  25. void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
  26. {
  27. if (res->flags & IORESOURCE_MEM)
  28. release_mem_region((unsigned long) base, size);
  29. else
  30. release_region((unsigned long) base, size);
  31. }
  32. EXPORT_SYMBOL(of_iounmap);
  33. static int node_match(struct device *dev, void *data)
  34. {
  35. struct of_device *op = to_of_device(dev);
  36. struct device_node *dp = data;
  37. return (op->node == dp);
  38. }
  39. struct of_device *of_find_device_by_node(struct device_node *dp)
  40. {
  41. struct device *dev = bus_find_device(&of_platform_bus_type, NULL,
  42. dp, node_match);
  43. if (dev)
  44. return to_of_device(dev);
  45. return NULL;
  46. }
  47. EXPORT_SYMBOL(of_find_device_by_node);
  48. int irq_of_parse_and_map(struct device_node *node, int index)
  49. {
  50. struct of_device *op = of_find_device_by_node(node);
  51. if (!op || index >= op->num_irqs)
  52. return 0xffffffff;
  53. return op->irqs[index];
  54. }
  55. EXPORT_SYMBOL(irq_of_parse_and_map);
  56. #ifdef CONFIG_PCI
  57. struct bus_type ebus_bus_type;
  58. EXPORT_SYMBOL(ebus_bus_type);
  59. #endif
  60. #ifdef CONFIG_SBUS
  61. struct bus_type sbus_bus_type;
  62. EXPORT_SYMBOL(sbus_bus_type);
  63. #endif
  64. struct bus_type of_platform_bus_type;
  65. EXPORT_SYMBOL(of_platform_bus_type);
  66. static inline u64 of_read_addr(const u32 *cell, int size)
  67. {
  68. u64 r = 0;
  69. while (size--)
  70. r = (r << 32) | *(cell++);
  71. return r;
  72. }
  73. static void __init get_cells(struct device_node *dp,
  74. int *addrc, int *sizec)
  75. {
  76. if (addrc)
  77. *addrc = of_n_addr_cells(dp);
  78. if (sizec)
  79. *sizec = of_n_size_cells(dp);
  80. }
  81. /* Max address size we deal with */
  82. #define OF_MAX_ADDR_CELLS 4
  83. struct of_bus {
  84. const char *name;
  85. const char *addr_prop_name;
  86. int (*match)(struct device_node *parent);
  87. void (*count_cells)(struct device_node *child,
  88. int *addrc, int *sizec);
  89. int (*map)(u32 *addr, const u32 *range,
  90. int na, int ns, int pna);
  91. unsigned int (*get_flags)(const u32 *addr);
  92. };
  93. /*
  94. * Default translator (generic bus)
  95. */
  96. static void of_bus_default_count_cells(struct device_node *dev,
  97. int *addrc, int *sizec)
  98. {
  99. get_cells(dev, addrc, sizec);
  100. }
  101. /* Make sure the least significant 64-bits are in-range. Even
  102. * for 3 or 4 cell values it is a good enough approximation.
  103. */
  104. static int of_out_of_range(const u32 *addr, const u32 *base,
  105. const u32 *size, int na, int ns)
  106. {
  107. u64 a = of_read_addr(addr, na);
  108. u64 b = of_read_addr(base, na);
  109. if (a < b)
  110. return 1;
  111. b += of_read_addr(size, ns);
  112. if (a >= b)
  113. return 1;
  114. return 0;
  115. }
  116. static int of_bus_default_map(u32 *addr, const u32 *range,
  117. int na, int ns, int pna)
  118. {
  119. u32 result[OF_MAX_ADDR_CELLS];
  120. int i;
  121. if (ns > 2) {
  122. printk("of_device: Cannot handle size cells (%d) > 2.", ns);
  123. return -EINVAL;
  124. }
  125. if (of_out_of_range(addr, range, range + na + pna, na, ns))
  126. return -EINVAL;
  127. /* Start with the parent range base. */
  128. memcpy(result, range + na, pna * 4);
  129. /* Add in the child address offset. */
  130. for (i = 0; i < na; i++)
  131. result[pna - 1 - i] +=
  132. (addr[na - 1 - i] -
  133. range[na - 1 - i]);
  134. memcpy(addr, result, pna * 4);
  135. return 0;
  136. }
  137. static unsigned int of_bus_default_get_flags(const u32 *addr)
  138. {
  139. return IORESOURCE_MEM;
  140. }
  141. /*
  142. * PCI bus specific translator
  143. */
  144. static int of_bus_pci_match(struct device_node *np)
  145. {
  146. if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
  147. const char *model = of_get_property(np, "model", NULL);
  148. if (model && !strcmp(model, "SUNW,simba"))
  149. return 0;
  150. /* Do not do PCI specific frobbing if the
  151. * PCI bridge lacks a ranges property. We
  152. * want to pass it through up to the next
  153. * parent as-is, not with the PCI translate
  154. * method which chops off the top address cell.
  155. */
  156. if (!of_find_property(np, "ranges", NULL))
  157. return 0;
  158. return 1;
  159. }
  160. return 0;
  161. }
  162. static int of_bus_simba_match(struct device_node *np)
  163. {
  164. const char *model = of_get_property(np, "model", NULL);
  165. if (model && !strcmp(model, "SUNW,simba"))
  166. return 1;
  167. /* Treat PCI busses lacking ranges property just like
  168. * simba.
  169. */
  170. if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
  171. if (!of_find_property(np, "ranges", NULL))
  172. return 1;
  173. }
  174. return 0;
  175. }
  176. static int of_bus_simba_map(u32 *addr, const u32 *range,
  177. int na, int ns, int pna)
  178. {
  179. return 0;
  180. }
  181. static void of_bus_pci_count_cells(struct device_node *np,
  182. int *addrc, int *sizec)
  183. {
  184. if (addrc)
  185. *addrc = 3;
  186. if (sizec)
  187. *sizec = 2;
  188. }
  189. static int of_bus_pci_map(u32 *addr, const u32 *range,
  190. int na, int ns, int pna)
  191. {
  192. u32 result[OF_MAX_ADDR_CELLS];
  193. int i;
  194. /* Check address type match */
  195. if ((addr[0] ^ range[0]) & 0x03000000)
  196. return -EINVAL;
  197. if (of_out_of_range(addr + 1, range + 1, range + na + pna,
  198. na - 1, ns))
  199. return -EINVAL;
  200. /* Start with the parent range base. */
  201. memcpy(result, range + na, pna * 4);
  202. /* Add in the child address offset, skipping high cell. */
  203. for (i = 0; i < na - 1; i++)
  204. result[pna - 1 - i] +=
  205. (addr[na - 1 - i] -
  206. range[na - 1 - i]);
  207. memcpy(addr, result, pna * 4);
  208. return 0;
  209. }
  210. static unsigned int of_bus_pci_get_flags(const u32 *addr)
  211. {
  212. unsigned int flags = 0;
  213. u32 w = addr[0];
  214. switch((w >> 24) & 0x03) {
  215. case 0x01:
  216. flags |= IORESOURCE_IO;
  217. case 0x02: /* 32 bits */
  218. case 0x03: /* 64 bits */
  219. flags |= IORESOURCE_MEM;
  220. }
  221. if (w & 0x40000000)
  222. flags |= IORESOURCE_PREFETCH;
  223. return flags;
  224. }
  225. /*
  226. * SBUS bus specific translator
  227. */
  228. static int of_bus_sbus_match(struct device_node *np)
  229. {
  230. return !strcmp(np->name, "sbus") ||
  231. !strcmp(np->name, "sbi");
  232. }
  233. static void of_bus_sbus_count_cells(struct device_node *child,
  234. int *addrc, int *sizec)
  235. {
  236. if (addrc)
  237. *addrc = 2;
  238. if (sizec)
  239. *sizec = 1;
  240. }
  241. /*
  242. * FHC/Central bus specific translator.
  243. *
  244. * This is just needed to hard-code the address and size cell
  245. * counts. 'fhc' and 'central' nodes lack the #address-cells and
  246. * #size-cells properties, and if you walk to the root on such
  247. * Enterprise boxes all you'll get is a #size-cells of 2 which is
  248. * not what we want to use.
  249. */
  250. static int of_bus_fhc_match(struct device_node *np)
  251. {
  252. return !strcmp(np->name, "fhc") ||
  253. !strcmp(np->name, "central");
  254. }
  255. #define of_bus_fhc_count_cells of_bus_sbus_count_cells
  256. /*
  257. * Array of bus specific translators
  258. */
  259. static struct of_bus of_busses[] = {
  260. /* PCI */
  261. {
  262. .name = "pci",
  263. .addr_prop_name = "assigned-addresses",
  264. .match = of_bus_pci_match,
  265. .count_cells = of_bus_pci_count_cells,
  266. .map = of_bus_pci_map,
  267. .get_flags = of_bus_pci_get_flags,
  268. },
  269. /* SIMBA */
  270. {
  271. .name = "simba",
  272. .addr_prop_name = "assigned-addresses",
  273. .match = of_bus_simba_match,
  274. .count_cells = of_bus_pci_count_cells,
  275. .map = of_bus_simba_map,
  276. .get_flags = of_bus_pci_get_flags,
  277. },
  278. /* SBUS */
  279. {
  280. .name = "sbus",
  281. .addr_prop_name = "reg",
  282. .match = of_bus_sbus_match,
  283. .count_cells = of_bus_sbus_count_cells,
  284. .map = of_bus_default_map,
  285. .get_flags = of_bus_default_get_flags,
  286. },
  287. /* FHC */
  288. {
  289. .name = "fhc",
  290. .addr_prop_name = "reg",
  291. .match = of_bus_fhc_match,
  292. .count_cells = of_bus_fhc_count_cells,
  293. .map = of_bus_default_map,
  294. .get_flags = of_bus_default_get_flags,
  295. },
  296. /* Default */
  297. {
  298. .name = "default",
  299. .addr_prop_name = "reg",
  300. .match = NULL,
  301. .count_cells = of_bus_default_count_cells,
  302. .map = of_bus_default_map,
  303. .get_flags = of_bus_default_get_flags,
  304. },
  305. };
  306. static struct of_bus *of_match_bus(struct device_node *np)
  307. {
  308. int i;
  309. for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
  310. if (!of_busses[i].match || of_busses[i].match(np))
  311. return &of_busses[i];
  312. BUG();
  313. return NULL;
  314. }
  315. static int __init build_one_resource(struct device_node *parent,
  316. struct of_bus *bus,
  317. struct of_bus *pbus,
  318. u32 *addr,
  319. int na, int ns, int pna)
  320. {
  321. const u32 *ranges;
  322. unsigned int rlen;
  323. int rone;
  324. ranges = of_get_property(parent, "ranges", &rlen);
  325. if (ranges == NULL || rlen == 0) {
  326. u32 result[OF_MAX_ADDR_CELLS];
  327. int i;
  328. memset(result, 0, pna * 4);
  329. for (i = 0; i < na; i++)
  330. result[pna - 1 - i] =
  331. addr[na - 1 - i];
  332. memcpy(addr, result, pna * 4);
  333. return 0;
  334. }
  335. /* Now walk through the ranges */
  336. rlen /= 4;
  337. rone = na + pna + ns;
  338. for (; rlen >= rone; rlen -= rone, ranges += rone) {
  339. if (!bus->map(addr, ranges, na, ns, pna))
  340. return 0;
  341. }
  342. /* When we miss an I/O space match on PCI, just pass it up
  343. * to the next PCI bridge and/or controller.
  344. */
  345. if (!strcmp(bus->name, "pci") &&
  346. (addr[0] & 0x03000000) == 0x01000000)
  347. return 0;
  348. return 1;
  349. }
  350. static int __init use_1to1_mapping(struct device_node *pp)
  351. {
  352. /* If we have a ranges property in the parent, use it. */
  353. if (of_find_property(pp, "ranges", NULL) != NULL)
  354. return 0;
  355. /* If the parent is the dma node of an ISA bus, pass
  356. * the translation up to the root.
  357. */
  358. if (!strcmp(pp->name, "dma"))
  359. return 0;
  360. /* Similarly for all PCI bridges, if we get this far
  361. * it lacks a ranges property, and this will include
  362. * cases like Simba.
  363. */
  364. if (!strcmp(pp->type, "pci") || !strcmp(pp->type, "pciex"))
  365. return 0;
  366. return 1;
  367. }
  368. static int of_resource_verbose;
  369. static void __init build_device_resources(struct of_device *op,
  370. struct device *parent)
  371. {
  372. struct of_device *p_op;
  373. struct of_bus *bus;
  374. int na, ns;
  375. int index, num_reg;
  376. const void *preg;
  377. if (!parent)
  378. return;
  379. p_op = to_of_device(parent);
  380. bus = of_match_bus(p_op->node);
  381. bus->count_cells(op->node, &na, &ns);
  382. preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
  383. if (!preg || num_reg == 0)
  384. return;
  385. /* Convert to num-cells. */
  386. num_reg /= 4;
  387. /* Convert to num-entries. */
  388. num_reg /= na + ns;
  389. /* Prevent overrunning the op->resources[] array. */
  390. if (num_reg > PROMREG_MAX) {
  391. printk(KERN_WARNING "%s: Too many regs (%d), "
  392. "limiting to %d.\n",
  393. op->node->full_name, num_reg, PROMREG_MAX);
  394. num_reg = PROMREG_MAX;
  395. }
  396. for (index = 0; index < num_reg; index++) {
  397. struct resource *r = &op->resource[index];
  398. u32 addr[OF_MAX_ADDR_CELLS];
  399. const u32 *reg = (preg + (index * ((na + ns) * 4)));
  400. struct device_node *dp = op->node;
  401. struct device_node *pp = p_op->node;
  402. struct of_bus *pbus, *dbus;
  403. u64 size, result = OF_BAD_ADDR;
  404. unsigned long flags;
  405. int dna, dns;
  406. int pna, pns;
  407. size = of_read_addr(reg + na, ns);
  408. flags = bus->get_flags(reg);
  409. memcpy(addr, reg, na * 4);
  410. if (use_1to1_mapping(pp)) {
  411. result = of_read_addr(addr, na);
  412. goto build_res;
  413. }
  414. dna = na;
  415. dns = ns;
  416. dbus = bus;
  417. while (1) {
  418. dp = pp;
  419. pp = dp->parent;
  420. if (!pp) {
  421. result = of_read_addr(addr, dna);
  422. break;
  423. }
  424. pbus = of_match_bus(pp);
  425. pbus->count_cells(dp, &pna, &pns);
  426. if (build_one_resource(dp, dbus, pbus, addr,
  427. dna, dns, pna))
  428. break;
  429. dna = pna;
  430. dns = pns;
  431. dbus = pbus;
  432. }
  433. build_res:
  434. memset(r, 0, sizeof(*r));
  435. if (of_resource_verbose)
  436. printk("%s reg[%d] -> %lx\n",
  437. op->node->full_name, index,
  438. result);
  439. if (result != OF_BAD_ADDR) {
  440. if (tlb_type == hypervisor)
  441. result &= 0x0fffffffffffffffUL;
  442. r->start = result;
  443. r->end = result + size - 1;
  444. r->flags = flags;
  445. }
  446. r->name = op->node->name;
  447. }
  448. }
  449. static struct device_node * __init
  450. apply_interrupt_map(struct device_node *dp, struct device_node *pp,
  451. const u32 *imap, int imlen, const u32 *imask,
  452. unsigned int *irq_p)
  453. {
  454. struct device_node *cp;
  455. unsigned int irq = *irq_p;
  456. struct of_bus *bus;
  457. phandle handle;
  458. const u32 *reg;
  459. int na, num_reg, i;
  460. bus = of_match_bus(pp);
  461. bus->count_cells(dp, &na, NULL);
  462. reg = of_get_property(dp, "reg", &num_reg);
  463. if (!reg || !num_reg)
  464. return NULL;
  465. imlen /= ((na + 3) * 4);
  466. handle = 0;
  467. for (i = 0; i < imlen; i++) {
  468. int j;
  469. for (j = 0; j < na; j++) {
  470. if ((reg[j] & imask[j]) != imap[j])
  471. goto next;
  472. }
  473. if (imap[na] == irq) {
  474. handle = imap[na + 1];
  475. irq = imap[na + 2];
  476. break;
  477. }
  478. next:
  479. imap += (na + 3);
  480. }
  481. if (i == imlen) {
  482. /* Psycho and Sabre PCI controllers can have 'interrupt-map'
  483. * properties that do not include the on-board device
  484. * interrupts. Instead, the device's 'interrupts' property
  485. * is already a fully specified INO value.
  486. *
  487. * Handle this by deciding that, if we didn't get a
  488. * match in the parent's 'interrupt-map', and the
  489. * parent is an IRQ translater, then use the parent as
  490. * our IRQ controller.
  491. */
  492. if (pp->irq_trans)
  493. return pp;
  494. return NULL;
  495. }
  496. *irq_p = irq;
  497. cp = of_find_node_by_phandle(handle);
  498. return cp;
  499. }
  500. static unsigned int __init pci_irq_swizzle(struct device_node *dp,
  501. struct device_node *pp,
  502. unsigned int irq)
  503. {
  504. const struct linux_prom_pci_registers *regs;
  505. unsigned int bus, devfn, slot, ret;
  506. if (irq < 1 || irq > 4)
  507. return irq;
  508. regs = of_get_property(dp, "reg", NULL);
  509. if (!regs)
  510. return irq;
  511. bus = (regs->phys_hi >> 16) & 0xff;
  512. devfn = (regs->phys_hi >> 8) & 0xff;
  513. slot = (devfn >> 3) & 0x1f;
  514. if (pp->irq_trans) {
  515. /* Derived from Table 8-3, U2P User's Manual. This branch
  516. * is handling a PCI controller that lacks a proper set of
  517. * interrupt-map and interrupt-map-mask properties. The
  518. * Ultra-E450 is one example.
  519. *
  520. * The bit layout is BSSLL, where:
  521. * B: 0 on bus A, 1 on bus B
  522. * D: 2-bit slot number, derived from PCI device number as
  523. * (dev - 1) for bus A, or (dev - 2) for bus B
  524. * L: 2-bit line number
  525. */
  526. if (bus & 0x80) {
  527. /* PBM-A */
  528. bus = 0x00;
  529. slot = (slot - 1) << 2;
  530. } else {
  531. /* PBM-B */
  532. bus = 0x10;
  533. slot = (slot - 2) << 2;
  534. }
  535. irq -= 1;
  536. ret = (bus | slot | irq);
  537. } else {
  538. /* Going through a PCI-PCI bridge that lacks a set of
  539. * interrupt-map and interrupt-map-mask properties.
  540. */
  541. ret = ((irq - 1 + (slot & 3)) & 3) + 1;
  542. }
  543. return ret;
  544. }
  545. static int of_irq_verbose;
  546. static unsigned int __init build_one_device_irq(struct of_device *op,
  547. struct device *parent,
  548. unsigned int irq)
  549. {
  550. struct device_node *dp = op->node;
  551. struct device_node *pp, *ip;
  552. unsigned int orig_irq = irq;
  553. int nid;
  554. if (irq == 0xffffffff)
  555. return irq;
  556. if (dp->irq_trans) {
  557. irq = dp->irq_trans->irq_build(dp, irq,
  558. dp->irq_trans->data);
  559. if (of_irq_verbose)
  560. printk("%s: direct translate %x --> %x\n",
  561. dp->full_name, orig_irq, irq);
  562. goto out;
  563. }
  564. /* Something more complicated. Walk up to the root, applying
  565. * interrupt-map or bus specific translations, until we hit
  566. * an IRQ translator.
  567. *
  568. * If we hit a bus type or situation we cannot handle, we
  569. * stop and assume that the original IRQ number was in a
  570. * format which has special meaning to it's immediate parent.
  571. */
  572. pp = dp->parent;
  573. ip = NULL;
  574. while (pp) {
  575. const void *imap, *imsk;
  576. int imlen;
  577. imap = of_get_property(pp, "interrupt-map", &imlen);
  578. imsk = of_get_property(pp, "interrupt-map-mask", NULL);
  579. if (imap && imsk) {
  580. struct device_node *iret;
  581. int this_orig_irq = irq;
  582. iret = apply_interrupt_map(dp, pp,
  583. imap, imlen, imsk,
  584. &irq);
  585. if (of_irq_verbose)
  586. printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
  587. op->node->full_name,
  588. pp->full_name, this_orig_irq,
  589. (iret ? iret->full_name : "NULL"), irq);
  590. if (!iret)
  591. break;
  592. if (iret->irq_trans) {
  593. ip = iret;
  594. break;
  595. }
  596. } else {
  597. if (!strcmp(pp->type, "pci") ||
  598. !strcmp(pp->type, "pciex")) {
  599. unsigned int this_orig_irq = irq;
  600. irq = pci_irq_swizzle(dp, pp, irq);
  601. if (of_irq_verbose)
  602. printk("%s: PCI swizzle [%s] "
  603. "%x --> %x\n",
  604. op->node->full_name,
  605. pp->full_name, this_orig_irq,
  606. irq);
  607. }
  608. if (pp->irq_trans) {
  609. ip = pp;
  610. break;
  611. }
  612. }
  613. dp = pp;
  614. pp = pp->parent;
  615. }
  616. if (!ip)
  617. return orig_irq;
  618. irq = ip->irq_trans->irq_build(op->node, irq,
  619. ip->irq_trans->data);
  620. if (of_irq_verbose)
  621. printk("%s: Apply IRQ trans [%s] %x --> %x\n",
  622. op->node->full_name, ip->full_name, orig_irq, irq);
  623. out:
  624. nid = of_node_to_nid(dp);
  625. if (nid != -1) {
  626. cpumask_t numa_mask = node_to_cpumask(nid);
  627. irq_set_affinity(irq, numa_mask);
  628. }
  629. return irq;
  630. }
  631. static struct of_device * __init scan_one_device(struct device_node *dp,
  632. struct device *parent)
  633. {
  634. struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
  635. const unsigned int *irq;
  636. struct dev_archdata *sd;
  637. int len, i;
  638. if (!op)
  639. return NULL;
  640. sd = &op->dev.archdata;
  641. sd->prom_node = dp;
  642. sd->op = op;
  643. op->node = dp;
  644. op->clock_freq = of_getintprop_default(dp, "clock-frequency",
  645. (25*1000*1000));
  646. op->portid = of_getintprop_default(dp, "upa-portid", -1);
  647. if (op->portid == -1)
  648. op->portid = of_getintprop_default(dp, "portid", -1);
  649. irq = of_get_property(dp, "interrupts", &len);
  650. if (irq) {
  651. memcpy(op->irqs, irq, len);
  652. op->num_irqs = len / 4;
  653. } else {
  654. op->num_irqs = 0;
  655. }
  656. /* Prevent overrunning the op->irqs[] array. */
  657. if (op->num_irqs > PROMINTR_MAX) {
  658. printk(KERN_WARNING "%s: Too many irqs (%d), "
  659. "limiting to %d.\n",
  660. dp->full_name, op->num_irqs, PROMINTR_MAX);
  661. op->num_irqs = PROMINTR_MAX;
  662. }
  663. build_device_resources(op, parent);
  664. for (i = 0; i < op->num_irqs; i++)
  665. op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);
  666. op->dev.parent = parent;
  667. op->dev.bus = &of_platform_bus_type;
  668. if (!parent)
  669. dev_set_name(&op->dev, "root");
  670. else
  671. dev_set_name(&op->dev, "%08x", dp->node);
  672. if (of_device_register(op)) {
  673. printk("%s: Could not register of device.\n",
  674. dp->full_name);
  675. kfree(op);
  676. op = NULL;
  677. }
  678. return op;
  679. }
  680. static void __init scan_tree(struct device_node *dp, struct device *parent)
  681. {
  682. while (dp) {
  683. struct of_device *op = scan_one_device(dp, parent);
  684. if (op)
  685. scan_tree(dp->child, &op->dev);
  686. dp = dp->sibling;
  687. }
  688. }
  689. static void __init scan_of_devices(void)
  690. {
  691. struct device_node *root = of_find_node_by_path("/");
  692. struct of_device *parent;
  693. parent = scan_one_device(root, NULL);
  694. if (!parent)
  695. return;
  696. scan_tree(root->child, &parent->dev);
  697. }
  698. static int __init of_bus_driver_init(void)
  699. {
  700. int err;
  701. err = of_bus_type_init(&of_platform_bus_type, "of");
  702. #ifdef CONFIG_PCI
  703. if (!err)
  704. err = of_bus_type_init(&ebus_bus_type, "ebus");
  705. #endif
  706. #ifdef CONFIG_SBUS
  707. if (!err)
  708. err = of_bus_type_init(&sbus_bus_type, "sbus");
  709. #endif
  710. if (!err)
  711. scan_of_devices();
  712. return err;
  713. }
  714. postcore_initcall(of_bus_driver_init);
  715. static int __init of_debug(char *str)
  716. {
  717. int val = 0;
  718. get_option(&str, &val);
  719. if (val & 1)
  720. of_resource_verbose = 1;
  721. if (val & 2)
  722. of_irq_verbose = 1;
  723. return 1;
  724. }
  725. __setup("of_debug=", of_debug);