siena.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2010 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/pci.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/random.h>
  16. #include "net_driver.h"
  17. #include "bitfield.h"
  18. #include "efx.h"
  19. #include "nic.h"
  20. #include "spi.h"
  21. #include "regs.h"
  22. #include "io.h"
  23. #include "phy.h"
  24. #include "workarounds.h"
  25. #include "mcdi.h"
  26. #include "mcdi_pcol.h"
  27. #include "selftest.h"
  28. /* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
  29. static void siena_init_wol(struct efx_nic *efx);
  30. static void siena_push_irq_moderation(struct efx_channel *channel)
  31. {
  32. efx_dword_t timer_cmd;
  33. if (channel->irq_moderation)
  34. EFX_POPULATE_DWORD_2(timer_cmd,
  35. FRF_CZ_TC_TIMER_MODE,
  36. FFE_CZ_TIMER_MODE_INT_HLDOFF,
  37. FRF_CZ_TC_TIMER_VAL,
  38. channel->irq_moderation - 1);
  39. else
  40. EFX_POPULATE_DWORD_2(timer_cmd,
  41. FRF_CZ_TC_TIMER_MODE,
  42. FFE_CZ_TIMER_MODE_DIS,
  43. FRF_CZ_TC_TIMER_VAL, 0);
  44. efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
  45. channel->channel);
  46. }
  47. void siena_prepare_flush(struct efx_nic *efx)
  48. {
  49. if (efx->fc_disable++ == 0)
  50. efx_mcdi_set_mac(efx);
  51. }
  52. void siena_finish_flush(struct efx_nic *efx)
  53. {
  54. if (--efx->fc_disable == 0)
  55. efx_mcdi_set_mac(efx);
  56. }
  57. static const struct efx_nic_register_test siena_register_tests[] = {
  58. { FR_AZ_ADR_REGION,
  59. EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
  60. { FR_CZ_USR_EV_CFG,
  61. EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
  62. { FR_AZ_RX_CFG,
  63. EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
  64. { FR_AZ_TX_CFG,
  65. EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
  66. { FR_AZ_TX_RESERVED,
  67. EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
  68. { FR_AZ_SRM_TX_DC_CFG,
  69. EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
  70. { FR_AZ_RX_DC_CFG,
  71. EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
  72. { FR_AZ_RX_DC_PF_WM,
  73. EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
  74. { FR_BZ_DP_CTRL,
  75. EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
  76. { FR_BZ_RX_RSS_TKEY,
  77. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  78. { FR_CZ_RX_RSS_IPV6_REG1,
  79. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  80. { FR_CZ_RX_RSS_IPV6_REG2,
  81. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  82. { FR_CZ_RX_RSS_IPV6_REG3,
  83. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
  84. };
  85. static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
  86. {
  87. enum reset_type reset_method = RESET_TYPE_ALL;
  88. int rc, rc2;
  89. efx_reset_down(efx, reset_method);
  90. /* Reset the chip immediately so that it is completely
  91. * quiescent regardless of what any VF driver does.
  92. */
  93. rc = efx_mcdi_reset(efx, reset_method);
  94. if (rc)
  95. goto out;
  96. tests->registers =
  97. efx_nic_test_registers(efx, siena_register_tests,
  98. ARRAY_SIZE(siena_register_tests))
  99. ? -1 : 1;
  100. rc = efx_mcdi_reset(efx, reset_method);
  101. out:
  102. rc2 = efx_reset_up(efx, reset_method, rc == 0);
  103. return rc ? rc : rc2;
  104. }
  105. /**************************************************************************
  106. *
  107. * Device reset
  108. *
  109. **************************************************************************
  110. */
  111. static int siena_map_reset_flags(u32 *flags)
  112. {
  113. enum {
  114. SIENA_RESET_PORT = (ETH_RESET_DMA | ETH_RESET_FILTER |
  115. ETH_RESET_OFFLOAD | ETH_RESET_MAC |
  116. ETH_RESET_PHY),
  117. SIENA_RESET_MC = (SIENA_RESET_PORT |
  118. ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT),
  119. };
  120. if ((*flags & SIENA_RESET_MC) == SIENA_RESET_MC) {
  121. *flags &= ~SIENA_RESET_MC;
  122. return RESET_TYPE_WORLD;
  123. }
  124. if ((*flags & SIENA_RESET_PORT) == SIENA_RESET_PORT) {
  125. *flags &= ~SIENA_RESET_PORT;
  126. return RESET_TYPE_ALL;
  127. }
  128. /* no invisible reset implemented */
  129. return -EINVAL;
  130. }
  131. #ifdef CONFIG_EEH
  132. /* When a PCI device is isolated from the bus, a subsequent MMIO read is
  133. * required for the kernel EEH mechanisms to notice. As the Solarflare driver
  134. * was written to minimise MMIO read (for latency) then a periodic call to check
  135. * the EEH status of the device is required so that device recovery can happen
  136. * in a timely fashion.
  137. */
  138. static void siena_monitor(struct efx_nic *efx)
  139. {
  140. struct eeh_dev *eehdev =
  141. of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
  142. eeh_dev_check_failure(eehdev);
  143. }
  144. #endif
  145. static int siena_probe_nvconfig(struct efx_nic *efx)
  146. {
  147. u32 caps = 0;
  148. int rc;
  149. rc = efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL, &caps);
  150. efx->timer_quantum_ns =
  151. (caps & (1 << MC_CMD_CAPABILITIES_TURBO_ACTIVE_LBN)) ?
  152. 3072 : 6144; /* 768 cycles */
  153. return rc;
  154. }
  155. static void siena_dimension_resources(struct efx_nic *efx)
  156. {
  157. /* Each port has a small block of internal SRAM dedicated to
  158. * the buffer table and descriptor caches. In theory we can
  159. * map both blocks to one port, but we don't.
  160. */
  161. efx_nic_dimension_resources(efx, FR_CZ_BUF_FULL_TBL_ROWS / 2);
  162. }
  163. static int siena_probe_nic(struct efx_nic *efx)
  164. {
  165. struct siena_nic_data *nic_data;
  166. bool already_attached = false;
  167. efx_oword_t reg;
  168. int rc;
  169. /* Allocate storage for hardware specific data */
  170. nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
  171. if (!nic_data)
  172. return -ENOMEM;
  173. efx->nic_data = nic_data;
  174. if (efx_nic_fpga_ver(efx) != 0) {
  175. netif_err(efx, probe, efx->net_dev,
  176. "Siena FPGA not supported\n");
  177. rc = -ENODEV;
  178. goto fail1;
  179. }
  180. efx_reado(efx, &reg, FR_AZ_CS_DEBUG);
  181. efx->port_num = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
  182. efx_mcdi_init(efx);
  183. /* Recover from a failed assertion before probing */
  184. rc = efx_mcdi_handle_assertion(efx);
  185. if (rc)
  186. goto fail1;
  187. /* Let the BMC know that the driver is now in charge of link and
  188. * filter settings. We must do this before we reset the NIC */
  189. rc = efx_mcdi_drv_attach(efx, true, &already_attached);
  190. if (rc) {
  191. netif_err(efx, probe, efx->net_dev,
  192. "Unable to register driver with MCPU\n");
  193. goto fail2;
  194. }
  195. if (already_attached)
  196. /* Not a fatal error */
  197. netif_err(efx, probe, efx->net_dev,
  198. "Host already registered with MCPU\n");
  199. /* Now we can reset the NIC */
  200. rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
  201. if (rc) {
  202. netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
  203. goto fail3;
  204. }
  205. siena_init_wol(efx);
  206. /* Allocate memory for INT_KER */
  207. rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
  208. if (rc)
  209. goto fail4;
  210. BUG_ON(efx->irq_status.dma_addr & 0x0f);
  211. netif_dbg(efx, probe, efx->net_dev,
  212. "INT_KER at %llx (virt %p phys %llx)\n",
  213. (unsigned long long)efx->irq_status.dma_addr,
  214. efx->irq_status.addr,
  215. (unsigned long long)virt_to_phys(efx->irq_status.addr));
  216. /* Read in the non-volatile configuration */
  217. rc = siena_probe_nvconfig(efx);
  218. if (rc == -EINVAL) {
  219. netif_err(efx, probe, efx->net_dev,
  220. "NVRAM is invalid therefore using defaults\n");
  221. efx->phy_type = PHY_TYPE_NONE;
  222. efx->mdio.prtad = MDIO_PRTAD_NONE;
  223. } else if (rc) {
  224. goto fail5;
  225. }
  226. rc = efx_mcdi_mon_probe(efx);
  227. if (rc)
  228. goto fail5;
  229. efx_sriov_probe(efx);
  230. efx_ptp_probe(efx);
  231. return 0;
  232. fail5:
  233. efx_nic_free_buffer(efx, &efx->irq_status);
  234. fail4:
  235. fail3:
  236. efx_mcdi_drv_attach(efx, false, NULL);
  237. fail2:
  238. fail1:
  239. kfree(efx->nic_data);
  240. return rc;
  241. }
  242. /* This call performs hardware-specific global initialisation, such as
  243. * defining the descriptor cache sizes and number of RSS channels.
  244. * It does not set up any buffers, descriptor rings or event queues.
  245. */
  246. static int siena_init_nic(struct efx_nic *efx)
  247. {
  248. efx_oword_t temp;
  249. int rc;
  250. /* Recover from a failed assertion post-reset */
  251. rc = efx_mcdi_handle_assertion(efx);
  252. if (rc)
  253. return rc;
  254. /* Squash TX of packets of 16 bytes or less */
  255. efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
  256. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
  257. efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
  258. /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
  259. * descriptors (which is bad).
  260. */
  261. efx_reado(efx, &temp, FR_AZ_TX_CFG);
  262. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
  263. EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
  264. efx_writeo(efx, &temp, FR_AZ_TX_CFG);
  265. efx_reado(efx, &temp, FR_AZ_RX_CFG);
  266. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
  267. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
  268. /* Enable hash insertion. This is broken for the 'Falcon' hash
  269. * if IPv6 hashing is also enabled, so also select Toeplitz
  270. * TCP/IPv4 and IPv4 hashes. */
  271. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1);
  272. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1);
  273. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1);
  274. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_USR_BUF_SIZE,
  275. EFX_RX_USR_BUF_SIZE >> 5);
  276. efx_writeo(efx, &temp, FR_AZ_RX_CFG);
  277. /* Set hash key for IPv4 */
  278. memcpy(&temp, efx->rx_hash_key, sizeof(temp));
  279. efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
  280. /* Enable IPv6 RSS */
  281. BUILD_BUG_ON(sizeof(efx->rx_hash_key) <
  282. 2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 ||
  283. FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0);
  284. memcpy(&temp, efx->rx_hash_key, sizeof(temp));
  285. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
  286. memcpy(&temp, efx->rx_hash_key + sizeof(temp), sizeof(temp));
  287. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
  288. EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1,
  289. FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1);
  290. memcpy(&temp, efx->rx_hash_key + 2 * sizeof(temp),
  291. FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
  292. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);
  293. /* Enable event logging */
  294. rc = efx_mcdi_log_ctrl(efx, true, false, 0);
  295. if (rc)
  296. return rc;
  297. /* Set destination of both TX and RX Flush events */
  298. EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
  299. efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
  300. EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
  301. efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
  302. efx_nic_init_common(efx);
  303. return 0;
  304. }
  305. static void siena_remove_nic(struct efx_nic *efx)
  306. {
  307. efx_mcdi_mon_remove(efx);
  308. efx_nic_free_buffer(efx, &efx->irq_status);
  309. efx_mcdi_reset(efx, RESET_TYPE_ALL);
  310. /* Relinquish the device back to the BMC */
  311. efx_mcdi_drv_attach(efx, false, NULL);
  312. /* Tear down the private nic state */
  313. kfree(efx->nic_data);
  314. efx->nic_data = NULL;
  315. }
  316. static int siena_try_update_nic_stats(struct efx_nic *efx)
  317. {
  318. __le64 *dma_stats;
  319. struct efx_mac_stats *mac_stats;
  320. __le64 generation_start, generation_end;
  321. mac_stats = &efx->mac_stats;
  322. dma_stats = efx->stats_buffer.addr;
  323. generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
  324. if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
  325. return 0;
  326. rmb();
  327. #define MAC_STAT(M, D) \
  328. mac_stats->M = le64_to_cpu(dma_stats[MC_CMD_MAC_ ## D])
  329. MAC_STAT(tx_bytes, TX_BYTES);
  330. MAC_STAT(tx_bad_bytes, TX_BAD_BYTES);
  331. efx_update_diff_stat(&mac_stats->tx_good_bytes,
  332. mac_stats->tx_bytes - mac_stats->tx_bad_bytes);
  333. MAC_STAT(tx_packets, TX_PKTS);
  334. MAC_STAT(tx_bad, TX_BAD_FCS_PKTS);
  335. MAC_STAT(tx_pause, TX_PAUSE_PKTS);
  336. MAC_STAT(tx_control, TX_CONTROL_PKTS);
  337. MAC_STAT(tx_unicast, TX_UNICAST_PKTS);
  338. MAC_STAT(tx_multicast, TX_MULTICAST_PKTS);
  339. MAC_STAT(tx_broadcast, TX_BROADCAST_PKTS);
  340. MAC_STAT(tx_lt64, TX_LT64_PKTS);
  341. MAC_STAT(tx_64, TX_64_PKTS);
  342. MAC_STAT(tx_65_to_127, TX_65_TO_127_PKTS);
  343. MAC_STAT(tx_128_to_255, TX_128_TO_255_PKTS);
  344. MAC_STAT(tx_256_to_511, TX_256_TO_511_PKTS);
  345. MAC_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS);
  346. MAC_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS);
  347. MAC_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS);
  348. MAC_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS);
  349. mac_stats->tx_collision = 0;
  350. MAC_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS);
  351. MAC_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS);
  352. MAC_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS);
  353. MAC_STAT(tx_deferred, TX_DEFERRED_PKTS);
  354. MAC_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS);
  355. mac_stats->tx_collision = (mac_stats->tx_single_collision +
  356. mac_stats->tx_multiple_collision +
  357. mac_stats->tx_excessive_collision +
  358. mac_stats->tx_late_collision);
  359. MAC_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS);
  360. MAC_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS);
  361. MAC_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS);
  362. MAC_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS);
  363. MAC_STAT(rx_bytes, RX_BYTES);
  364. MAC_STAT(rx_bad_bytes, RX_BAD_BYTES);
  365. efx_update_diff_stat(&mac_stats->rx_good_bytes,
  366. mac_stats->rx_bytes - mac_stats->rx_bad_bytes);
  367. MAC_STAT(rx_packets, RX_PKTS);
  368. MAC_STAT(rx_good, RX_GOOD_PKTS);
  369. MAC_STAT(rx_bad, RX_BAD_FCS_PKTS);
  370. MAC_STAT(rx_pause, RX_PAUSE_PKTS);
  371. MAC_STAT(rx_control, RX_CONTROL_PKTS);
  372. MAC_STAT(rx_unicast, RX_UNICAST_PKTS);
  373. MAC_STAT(rx_multicast, RX_MULTICAST_PKTS);
  374. MAC_STAT(rx_broadcast, RX_BROADCAST_PKTS);
  375. MAC_STAT(rx_lt64, RX_UNDERSIZE_PKTS);
  376. MAC_STAT(rx_64, RX_64_PKTS);
  377. MAC_STAT(rx_65_to_127, RX_65_TO_127_PKTS);
  378. MAC_STAT(rx_128_to_255, RX_128_TO_255_PKTS);
  379. MAC_STAT(rx_256_to_511, RX_256_TO_511_PKTS);
  380. MAC_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS);
  381. MAC_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS);
  382. MAC_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS);
  383. MAC_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS);
  384. mac_stats->rx_bad_lt64 = 0;
  385. mac_stats->rx_bad_64_to_15xx = 0;
  386. mac_stats->rx_bad_15xx_to_jumbo = 0;
  387. MAC_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS);
  388. MAC_STAT(rx_overflow, RX_OVERFLOW_PKTS);
  389. mac_stats->rx_missed = 0;
  390. MAC_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS);
  391. MAC_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS);
  392. MAC_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS);
  393. MAC_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS);
  394. MAC_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS);
  395. mac_stats->rx_good_lt64 = 0;
  396. efx->n_rx_nodesc_drop_cnt =
  397. le64_to_cpu(dma_stats[MC_CMD_MAC_RX_NODESC_DROPS]);
  398. #undef MAC_STAT
  399. rmb();
  400. generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
  401. if (generation_end != generation_start)
  402. return -EAGAIN;
  403. return 0;
  404. }
  405. static void siena_update_nic_stats(struct efx_nic *efx)
  406. {
  407. int retry;
  408. /* If we're unlucky enough to read statistics wduring the DMA, wait
  409. * up to 10ms for it to finish (typically takes <500us) */
  410. for (retry = 0; retry < 100; ++retry) {
  411. if (siena_try_update_nic_stats(efx) == 0)
  412. return;
  413. udelay(100);
  414. }
  415. /* Use the old values instead */
  416. }
  417. static int siena_mac_reconfigure(struct efx_nic *efx)
  418. {
  419. MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_MCAST_HASH_IN_LEN);
  420. int rc;
  421. BUILD_BUG_ON(MC_CMD_SET_MCAST_HASH_IN_LEN !=
  422. MC_CMD_SET_MCAST_HASH_IN_HASH0_OFST +
  423. sizeof(efx->multicast_hash));
  424. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  425. rc = efx_mcdi_set_mac(efx);
  426. if (rc != 0)
  427. return rc;
  428. memcpy(MCDI_PTR(inbuf, SET_MCAST_HASH_IN_HASH0),
  429. efx->multicast_hash.byte, sizeof(efx->multicast_hash));
  430. return efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
  431. inbuf, sizeof(inbuf), NULL, 0, NULL);
  432. }
  433. /**************************************************************************
  434. *
  435. * Wake on LAN
  436. *
  437. **************************************************************************
  438. */
  439. static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
  440. {
  441. struct siena_nic_data *nic_data = efx->nic_data;
  442. wol->supported = WAKE_MAGIC;
  443. if (nic_data->wol_filter_id != -1)
  444. wol->wolopts = WAKE_MAGIC;
  445. else
  446. wol->wolopts = 0;
  447. memset(&wol->sopass, 0, sizeof(wol->sopass));
  448. }
  449. static int siena_set_wol(struct efx_nic *efx, u32 type)
  450. {
  451. struct siena_nic_data *nic_data = efx->nic_data;
  452. int rc;
  453. if (type & ~WAKE_MAGIC)
  454. return -EINVAL;
  455. if (type & WAKE_MAGIC) {
  456. if (nic_data->wol_filter_id != -1)
  457. efx_mcdi_wol_filter_remove(efx,
  458. nic_data->wol_filter_id);
  459. rc = efx_mcdi_wol_filter_set_magic(efx, efx->net_dev->dev_addr,
  460. &nic_data->wol_filter_id);
  461. if (rc)
  462. goto fail;
  463. pci_wake_from_d3(efx->pci_dev, true);
  464. } else {
  465. rc = efx_mcdi_wol_filter_reset(efx);
  466. nic_data->wol_filter_id = -1;
  467. pci_wake_from_d3(efx->pci_dev, false);
  468. if (rc)
  469. goto fail;
  470. }
  471. return 0;
  472. fail:
  473. netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n",
  474. __func__, type, rc);
  475. return rc;
  476. }
  477. static void siena_init_wol(struct efx_nic *efx)
  478. {
  479. struct siena_nic_data *nic_data = efx->nic_data;
  480. int rc;
  481. rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
  482. if (rc != 0) {
  483. /* If it failed, attempt to get into a synchronised
  484. * state with MC by resetting any set WoL filters */
  485. efx_mcdi_wol_filter_reset(efx);
  486. nic_data->wol_filter_id = -1;
  487. } else if (nic_data->wol_filter_id != -1) {
  488. pci_wake_from_d3(efx->pci_dev, true);
  489. }
  490. }
  491. /**************************************************************************
  492. *
  493. * Revision-dependent attributes used by efx.c and nic.c
  494. *
  495. **************************************************************************
  496. */
  497. const struct efx_nic_type siena_a0_nic_type = {
  498. .probe = siena_probe_nic,
  499. .remove = siena_remove_nic,
  500. .init = siena_init_nic,
  501. .dimension_resources = siena_dimension_resources,
  502. .fini = efx_port_dummy_op_void,
  503. #ifdef CONFIG_EEH
  504. .monitor = siena_monitor,
  505. #else
  506. .monitor = NULL,
  507. #endif
  508. .map_reset_reason = efx_mcdi_map_reset_reason,
  509. .map_reset_flags = siena_map_reset_flags,
  510. .reset = efx_mcdi_reset,
  511. .probe_port = efx_mcdi_port_probe,
  512. .remove_port = efx_mcdi_port_remove,
  513. .prepare_flush = siena_prepare_flush,
  514. .finish_flush = siena_finish_flush,
  515. .update_stats = siena_update_nic_stats,
  516. .start_stats = efx_mcdi_mac_start_stats,
  517. .stop_stats = efx_mcdi_mac_stop_stats,
  518. .set_id_led = efx_mcdi_set_id_led,
  519. .push_irq_moderation = siena_push_irq_moderation,
  520. .reconfigure_mac = siena_mac_reconfigure,
  521. .check_mac_fault = efx_mcdi_mac_check_fault,
  522. .reconfigure_port = efx_mcdi_port_reconfigure,
  523. .get_wol = siena_get_wol,
  524. .set_wol = siena_set_wol,
  525. .resume_wol = siena_init_wol,
  526. .test_chip = siena_test_chip,
  527. .test_nvram = efx_mcdi_nvram_test_all,
  528. .revision = EFX_REV_SIENA_A0,
  529. .mem_map_size = (FR_CZ_MC_TREG_SMEM +
  530. FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS),
  531. .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
  532. .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
  533. .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
  534. .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
  535. .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
  536. .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
  537. .rx_buffer_hash_size = 0x10,
  538. .rx_buffer_padding = 0,
  539. .can_rx_scatter = true,
  540. .max_interrupt_mode = EFX_INT_MODE_MSIX,
  541. .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
  542. * interrupt handler only supports 32
  543. * channels */
  544. .timer_period_max = 1 << FRF_CZ_TC_TIMER_VAL_WIDTH,
  545. .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  546. NETIF_F_RXHASH | NETIF_F_NTUPLE),
  547. };