intel_ringbuffer.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. /*
  35. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  36. * over cache flushing.
  37. */
  38. struct pipe_control {
  39. struct drm_i915_gem_object *obj;
  40. volatile u32 *cpu_page;
  41. u32 gtt_offset;
  42. };
  43. static inline int ring_space(struct intel_ring_buffer *ring)
  44. {
  45. int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
  46. if (space < 0)
  47. space += ring->size;
  48. return space;
  49. }
  50. static int
  51. gen2_render_ring_flush(struct intel_ring_buffer *ring,
  52. u32 invalidate_domains,
  53. u32 flush_domains)
  54. {
  55. u32 cmd;
  56. int ret;
  57. cmd = MI_FLUSH;
  58. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  59. cmd |= MI_NO_WRITE_FLUSH;
  60. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  61. cmd |= MI_READ_FLUSH;
  62. ret = intel_ring_begin(ring, 2);
  63. if (ret)
  64. return ret;
  65. intel_ring_emit(ring, cmd);
  66. intel_ring_emit(ring, MI_NOOP);
  67. intel_ring_advance(ring);
  68. return 0;
  69. }
  70. static int
  71. gen4_render_ring_flush(struct intel_ring_buffer *ring,
  72. u32 invalidate_domains,
  73. u32 flush_domains)
  74. {
  75. struct drm_device *dev = ring->dev;
  76. u32 cmd;
  77. int ret;
  78. /*
  79. * read/write caches:
  80. *
  81. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  82. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  83. * also flushed at 2d versus 3d pipeline switches.
  84. *
  85. * read-only caches:
  86. *
  87. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  88. * MI_READ_FLUSH is set, and is always flushed on 965.
  89. *
  90. * I915_GEM_DOMAIN_COMMAND may not exist?
  91. *
  92. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  93. * invalidated when MI_EXE_FLUSH is set.
  94. *
  95. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  96. * invalidated with every MI_FLUSH.
  97. *
  98. * TLBs:
  99. *
  100. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  101. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  102. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  103. * are flushed at any MI_FLUSH.
  104. */
  105. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  106. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  107. cmd &= ~MI_NO_WRITE_FLUSH;
  108. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  109. cmd |= MI_EXE_FLUSH;
  110. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  111. (IS_G4X(dev) || IS_GEN5(dev)))
  112. cmd |= MI_INVALIDATE_ISP;
  113. ret = intel_ring_begin(ring, 2);
  114. if (ret)
  115. return ret;
  116. intel_ring_emit(ring, cmd);
  117. intel_ring_emit(ring, MI_NOOP);
  118. intel_ring_advance(ring);
  119. return 0;
  120. }
  121. /**
  122. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  123. * implementing two workarounds on gen6. From section 1.4.7.1
  124. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  125. *
  126. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  127. * produced by non-pipelined state commands), software needs to first
  128. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  129. * 0.
  130. *
  131. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  132. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  133. *
  134. * And the workaround for these two requires this workaround first:
  135. *
  136. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  137. * BEFORE the pipe-control with a post-sync op and no write-cache
  138. * flushes.
  139. *
  140. * And this last workaround is tricky because of the requirements on
  141. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  142. * volume 2 part 1:
  143. *
  144. * "1 of the following must also be set:
  145. * - Render Target Cache Flush Enable ([12] of DW1)
  146. * - Depth Cache Flush Enable ([0] of DW1)
  147. * - Stall at Pixel Scoreboard ([1] of DW1)
  148. * - Depth Stall ([13] of DW1)
  149. * - Post-Sync Operation ([13] of DW1)
  150. * - Notify Enable ([8] of DW1)"
  151. *
  152. * The cache flushes require the workaround flush that triggered this
  153. * one, so we can't use it. Depth stall would trigger the same.
  154. * Post-sync nonzero is what triggered this second workaround, so we
  155. * can't use that one either. Notify enable is IRQs, which aren't
  156. * really our business. That leaves only stall at scoreboard.
  157. */
  158. static int
  159. intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
  160. {
  161. struct pipe_control *pc = ring->private;
  162. u32 scratch_addr = pc->gtt_offset + 128;
  163. int ret;
  164. ret = intel_ring_begin(ring, 6);
  165. if (ret)
  166. return ret;
  167. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  168. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  169. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  170. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  171. intel_ring_emit(ring, 0); /* low dword */
  172. intel_ring_emit(ring, 0); /* high dword */
  173. intel_ring_emit(ring, MI_NOOP);
  174. intel_ring_advance(ring);
  175. ret = intel_ring_begin(ring, 6);
  176. if (ret)
  177. return ret;
  178. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  179. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  180. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  181. intel_ring_emit(ring, 0);
  182. intel_ring_emit(ring, 0);
  183. intel_ring_emit(ring, MI_NOOP);
  184. intel_ring_advance(ring);
  185. return 0;
  186. }
  187. static int
  188. gen6_render_ring_flush(struct intel_ring_buffer *ring,
  189. u32 invalidate_domains, u32 flush_domains)
  190. {
  191. u32 flags = 0;
  192. struct pipe_control *pc = ring->private;
  193. u32 scratch_addr = pc->gtt_offset + 128;
  194. int ret;
  195. /* Force SNB workarounds for PIPE_CONTROL flushes */
  196. ret = intel_emit_post_sync_nonzero_flush(ring);
  197. if (ret)
  198. return ret;
  199. /* Just flush everything. Experiments have shown that reducing the
  200. * number of bits based on the write domains has little performance
  201. * impact.
  202. */
  203. if (flush_domains) {
  204. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  205. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  206. /*
  207. * Ensure that any following seqno writes only happen
  208. * when the render cache is indeed flushed.
  209. */
  210. flags |= PIPE_CONTROL_CS_STALL;
  211. }
  212. if (invalidate_domains) {
  213. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  214. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  215. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  216. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  217. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  218. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  219. /*
  220. * TLB invalidate requires a post-sync write.
  221. */
  222. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  223. }
  224. ret = intel_ring_begin(ring, 4);
  225. if (ret)
  226. return ret;
  227. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  228. intel_ring_emit(ring, flags);
  229. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  230. intel_ring_emit(ring, 0);
  231. intel_ring_advance(ring);
  232. return 0;
  233. }
  234. static int
  235. gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
  236. {
  237. int ret;
  238. ret = intel_ring_begin(ring, 4);
  239. if (ret)
  240. return ret;
  241. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  242. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  243. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  244. intel_ring_emit(ring, 0);
  245. intel_ring_emit(ring, 0);
  246. intel_ring_advance(ring);
  247. return 0;
  248. }
  249. static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
  250. {
  251. int ret;
  252. if (!ring->fbc_dirty)
  253. return 0;
  254. ret = intel_ring_begin(ring, 4);
  255. if (ret)
  256. return ret;
  257. intel_ring_emit(ring, MI_NOOP);
  258. /* WaFbcNukeOn3DBlt:ivb/hsw */
  259. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  260. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  261. intel_ring_emit(ring, value);
  262. intel_ring_advance(ring);
  263. ring->fbc_dirty = false;
  264. return 0;
  265. }
  266. static int
  267. gen7_render_ring_flush(struct intel_ring_buffer *ring,
  268. u32 invalidate_domains, u32 flush_domains)
  269. {
  270. u32 flags = 0;
  271. struct pipe_control *pc = ring->private;
  272. u32 scratch_addr = pc->gtt_offset + 128;
  273. int ret;
  274. /*
  275. * Ensure that any following seqno writes only happen when the render
  276. * cache is indeed flushed.
  277. *
  278. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  279. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  280. * don't try to be clever and just set it unconditionally.
  281. */
  282. flags |= PIPE_CONTROL_CS_STALL;
  283. /* Just flush everything. Experiments have shown that reducing the
  284. * number of bits based on the write domains has little performance
  285. * impact.
  286. */
  287. if (flush_domains) {
  288. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  289. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  290. }
  291. if (invalidate_domains) {
  292. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  293. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  294. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  295. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  296. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  297. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  298. /*
  299. * TLB invalidate requires a post-sync write.
  300. */
  301. flags |= PIPE_CONTROL_QW_WRITE;
  302. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  303. /* Workaround: we must issue a pipe_control with CS-stall bit
  304. * set before a pipe_control command that has the state cache
  305. * invalidate bit set. */
  306. gen7_render_ring_cs_stall_wa(ring);
  307. }
  308. ret = intel_ring_begin(ring, 4);
  309. if (ret)
  310. return ret;
  311. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  312. intel_ring_emit(ring, flags);
  313. intel_ring_emit(ring, scratch_addr);
  314. intel_ring_emit(ring, 0);
  315. intel_ring_advance(ring);
  316. if (flush_domains)
  317. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  318. return 0;
  319. }
  320. static void ring_write_tail(struct intel_ring_buffer *ring,
  321. u32 value)
  322. {
  323. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  324. I915_WRITE_TAIL(ring, value);
  325. }
  326. u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
  327. {
  328. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  329. u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
  330. RING_ACTHD(ring->mmio_base) : ACTHD;
  331. return I915_READ(acthd_reg);
  332. }
  333. static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
  334. {
  335. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  336. u32 addr;
  337. addr = dev_priv->status_page_dmah->busaddr;
  338. if (INTEL_INFO(ring->dev)->gen >= 4)
  339. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  340. I915_WRITE(HWS_PGA, addr);
  341. }
  342. static int init_ring_common(struct intel_ring_buffer *ring)
  343. {
  344. struct drm_device *dev = ring->dev;
  345. drm_i915_private_t *dev_priv = dev->dev_private;
  346. struct drm_i915_gem_object *obj = ring->obj;
  347. int ret = 0;
  348. u32 head;
  349. if (HAS_FORCE_WAKE(dev))
  350. gen6_gt_force_wake_get(dev_priv);
  351. if (I915_NEED_GFX_HWS(dev))
  352. intel_ring_setup_status_page(ring);
  353. else
  354. ring_setup_phys_status_page(ring);
  355. /* Stop the ring if it's running. */
  356. I915_WRITE_CTL(ring, 0);
  357. I915_WRITE_HEAD(ring, 0);
  358. ring->write_tail(ring, 0);
  359. head = I915_READ_HEAD(ring) & HEAD_ADDR;
  360. /* G45 ring initialization fails to reset head to zero */
  361. if (head != 0) {
  362. DRM_DEBUG_KMS("%s head not reset to zero "
  363. "ctl %08x head %08x tail %08x start %08x\n",
  364. ring->name,
  365. I915_READ_CTL(ring),
  366. I915_READ_HEAD(ring),
  367. I915_READ_TAIL(ring),
  368. I915_READ_START(ring));
  369. I915_WRITE_HEAD(ring, 0);
  370. if (I915_READ_HEAD(ring) & HEAD_ADDR) {
  371. DRM_ERROR("failed to set %s head to zero "
  372. "ctl %08x head %08x tail %08x start %08x\n",
  373. ring->name,
  374. I915_READ_CTL(ring),
  375. I915_READ_HEAD(ring),
  376. I915_READ_TAIL(ring),
  377. I915_READ_START(ring));
  378. }
  379. }
  380. /* Initialize the ring. This must happen _after_ we've cleared the ring
  381. * registers with the above sequence (the readback of the HEAD registers
  382. * also enforces ordering), otherwise the hw might lose the new ring
  383. * register values. */
  384. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  385. I915_WRITE_CTL(ring,
  386. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  387. | RING_VALID);
  388. /* If the head is still not zero, the ring is dead */
  389. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  390. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  391. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  392. DRM_ERROR("%s initialization failed "
  393. "ctl %08x head %08x tail %08x start %08x\n",
  394. ring->name,
  395. I915_READ_CTL(ring),
  396. I915_READ_HEAD(ring),
  397. I915_READ_TAIL(ring),
  398. I915_READ_START(ring));
  399. ret = -EIO;
  400. goto out;
  401. }
  402. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  403. i915_kernel_lost_context(ring->dev);
  404. else {
  405. ring->head = I915_READ_HEAD(ring);
  406. ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  407. ring->space = ring_space(ring);
  408. ring->last_retired_head = -1;
  409. }
  410. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  411. out:
  412. if (HAS_FORCE_WAKE(dev))
  413. gen6_gt_force_wake_put(dev_priv);
  414. return ret;
  415. }
  416. static int
  417. init_pipe_control(struct intel_ring_buffer *ring)
  418. {
  419. struct pipe_control *pc;
  420. struct drm_i915_gem_object *obj;
  421. int ret;
  422. if (ring->private)
  423. return 0;
  424. pc = kmalloc(sizeof(*pc), GFP_KERNEL);
  425. if (!pc)
  426. return -ENOMEM;
  427. obj = i915_gem_alloc_object(ring->dev, 4096);
  428. if (obj == NULL) {
  429. DRM_ERROR("Failed to allocate seqno page\n");
  430. ret = -ENOMEM;
  431. goto err;
  432. }
  433. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  434. ret = i915_gem_obj_ggtt_pin(obj, 4096, true, false);
  435. if (ret)
  436. goto err_unref;
  437. pc->gtt_offset = i915_gem_obj_ggtt_offset(obj);
  438. pc->cpu_page = kmap(sg_page(obj->pages->sgl));
  439. if (pc->cpu_page == NULL) {
  440. ret = -ENOMEM;
  441. goto err_unpin;
  442. }
  443. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  444. ring->name, pc->gtt_offset);
  445. pc->obj = obj;
  446. ring->private = pc;
  447. return 0;
  448. err_unpin:
  449. i915_gem_object_unpin(obj);
  450. err_unref:
  451. drm_gem_object_unreference(&obj->base);
  452. err:
  453. kfree(pc);
  454. return ret;
  455. }
  456. static void
  457. cleanup_pipe_control(struct intel_ring_buffer *ring)
  458. {
  459. struct pipe_control *pc = ring->private;
  460. struct drm_i915_gem_object *obj;
  461. obj = pc->obj;
  462. kunmap(sg_page(obj->pages->sgl));
  463. i915_gem_object_unpin(obj);
  464. drm_gem_object_unreference(&obj->base);
  465. kfree(pc);
  466. }
  467. static int init_render_ring(struct intel_ring_buffer *ring)
  468. {
  469. struct drm_device *dev = ring->dev;
  470. struct drm_i915_private *dev_priv = dev->dev_private;
  471. int ret = init_ring_common(ring);
  472. if (INTEL_INFO(dev)->gen > 3)
  473. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  474. /* We need to disable the AsyncFlip performance optimisations in order
  475. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  476. * programmed to '1' on all products.
  477. *
  478. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  479. */
  480. if (INTEL_INFO(dev)->gen >= 6)
  481. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  482. /* Required for the hardware to program scanline values for waiting */
  483. if (INTEL_INFO(dev)->gen == 6)
  484. I915_WRITE(GFX_MODE,
  485. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
  486. if (IS_GEN7(dev))
  487. I915_WRITE(GFX_MODE_GEN7,
  488. _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
  489. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  490. if (INTEL_INFO(dev)->gen >= 5) {
  491. ret = init_pipe_control(ring);
  492. if (ret)
  493. return ret;
  494. }
  495. if (IS_GEN6(dev)) {
  496. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  497. * "If this bit is set, STCunit will have LRA as replacement
  498. * policy. [...] This bit must be reset. LRA replacement
  499. * policy is not supported."
  500. */
  501. I915_WRITE(CACHE_MODE_0,
  502. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  503. /* This is not explicitly set for GEN6, so read the register.
  504. * see intel_ring_mi_set_context() for why we care.
  505. * TODO: consider explicitly setting the bit for GEN5
  506. */
  507. ring->itlb_before_ctx_switch =
  508. !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
  509. }
  510. if (INTEL_INFO(dev)->gen >= 6)
  511. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  512. if (HAS_L3_GPU_CACHE(dev))
  513. I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  514. return ret;
  515. }
  516. static void render_ring_cleanup(struct intel_ring_buffer *ring)
  517. {
  518. struct drm_device *dev = ring->dev;
  519. if (!ring->private)
  520. return;
  521. if (HAS_BROKEN_CS_TLB(dev))
  522. drm_gem_object_unreference(to_gem_object(ring->private));
  523. if (INTEL_INFO(dev)->gen >= 5)
  524. cleanup_pipe_control(ring);
  525. ring->private = NULL;
  526. }
  527. static void
  528. update_mboxes(struct intel_ring_buffer *ring,
  529. u32 mmio_offset)
  530. {
  531. /* NB: In order to be able to do semaphore MBOX updates for varying number
  532. * of rings, it's easiest if we round up each individual update to a
  533. * multiple of 2 (since ring updates must always be a multiple of 2)
  534. * even though the actual update only requires 3 dwords.
  535. */
  536. #define MBOX_UPDATE_DWORDS 4
  537. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  538. intel_ring_emit(ring, mmio_offset);
  539. intel_ring_emit(ring, ring->outstanding_lazy_request);
  540. intel_ring_emit(ring, MI_NOOP);
  541. }
  542. /**
  543. * gen6_add_request - Update the semaphore mailbox registers
  544. *
  545. * @ring - ring that is adding a request
  546. * @seqno - return seqno stuck into the ring
  547. *
  548. * Update the mailbox registers in the *other* rings with the current seqno.
  549. * This acts like a signal in the canonical semaphore.
  550. */
  551. static int
  552. gen6_add_request(struct intel_ring_buffer *ring)
  553. {
  554. struct drm_device *dev = ring->dev;
  555. struct drm_i915_private *dev_priv = dev->dev_private;
  556. struct intel_ring_buffer *useless;
  557. int i, ret;
  558. ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
  559. MBOX_UPDATE_DWORDS) +
  560. 4);
  561. if (ret)
  562. return ret;
  563. #undef MBOX_UPDATE_DWORDS
  564. for_each_ring(useless, dev_priv, i) {
  565. u32 mbox_reg = ring->signal_mbox[i];
  566. if (mbox_reg != GEN6_NOSYNC)
  567. update_mboxes(ring, mbox_reg);
  568. }
  569. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  570. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  571. intel_ring_emit(ring, ring->outstanding_lazy_request);
  572. intel_ring_emit(ring, MI_USER_INTERRUPT);
  573. intel_ring_advance(ring);
  574. return 0;
  575. }
  576. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  577. u32 seqno)
  578. {
  579. struct drm_i915_private *dev_priv = dev->dev_private;
  580. return dev_priv->last_seqno < seqno;
  581. }
  582. /**
  583. * intel_ring_sync - sync the waiter to the signaller on seqno
  584. *
  585. * @waiter - ring that is waiting
  586. * @signaller - ring which has, or will signal
  587. * @seqno - seqno which the waiter will block on
  588. */
  589. static int
  590. gen6_ring_sync(struct intel_ring_buffer *waiter,
  591. struct intel_ring_buffer *signaller,
  592. u32 seqno)
  593. {
  594. int ret;
  595. u32 dw1 = MI_SEMAPHORE_MBOX |
  596. MI_SEMAPHORE_COMPARE |
  597. MI_SEMAPHORE_REGISTER;
  598. /* Throughout all of the GEM code, seqno passed implies our current
  599. * seqno is >= the last seqno executed. However for hardware the
  600. * comparison is strictly greater than.
  601. */
  602. seqno -= 1;
  603. WARN_ON(signaller->semaphore_register[waiter->id] ==
  604. MI_SEMAPHORE_SYNC_INVALID);
  605. ret = intel_ring_begin(waiter, 4);
  606. if (ret)
  607. return ret;
  608. /* If seqno wrap happened, omit the wait with no-ops */
  609. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  610. intel_ring_emit(waiter,
  611. dw1 |
  612. signaller->semaphore_register[waiter->id]);
  613. intel_ring_emit(waiter, seqno);
  614. intel_ring_emit(waiter, 0);
  615. intel_ring_emit(waiter, MI_NOOP);
  616. } else {
  617. intel_ring_emit(waiter, MI_NOOP);
  618. intel_ring_emit(waiter, MI_NOOP);
  619. intel_ring_emit(waiter, MI_NOOP);
  620. intel_ring_emit(waiter, MI_NOOP);
  621. }
  622. intel_ring_advance(waiter);
  623. return 0;
  624. }
  625. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  626. do { \
  627. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  628. PIPE_CONTROL_DEPTH_STALL); \
  629. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  630. intel_ring_emit(ring__, 0); \
  631. intel_ring_emit(ring__, 0); \
  632. } while (0)
  633. static int
  634. pc_render_add_request(struct intel_ring_buffer *ring)
  635. {
  636. struct pipe_control *pc = ring->private;
  637. u32 scratch_addr = pc->gtt_offset + 128;
  638. int ret;
  639. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  640. * incoherent with writes to memory, i.e. completely fubar,
  641. * so we need to use PIPE_NOTIFY instead.
  642. *
  643. * However, we also need to workaround the qword write
  644. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  645. * memory before requesting an interrupt.
  646. */
  647. ret = intel_ring_begin(ring, 32);
  648. if (ret)
  649. return ret;
  650. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  651. PIPE_CONTROL_WRITE_FLUSH |
  652. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  653. intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  654. intel_ring_emit(ring, ring->outstanding_lazy_request);
  655. intel_ring_emit(ring, 0);
  656. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  657. scratch_addr += 128; /* write to separate cachelines */
  658. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  659. scratch_addr += 128;
  660. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  661. scratch_addr += 128;
  662. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  663. scratch_addr += 128;
  664. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  665. scratch_addr += 128;
  666. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  667. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  668. PIPE_CONTROL_WRITE_FLUSH |
  669. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  670. PIPE_CONTROL_NOTIFY);
  671. intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  672. intel_ring_emit(ring, ring->outstanding_lazy_request);
  673. intel_ring_emit(ring, 0);
  674. intel_ring_advance(ring);
  675. return 0;
  676. }
  677. static u32
  678. gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  679. {
  680. /* Workaround to force correct ordering between irq and seqno writes on
  681. * ivb (and maybe also on snb) by reading from a CS register (like
  682. * ACTHD) before reading the status page. */
  683. if (!lazy_coherency)
  684. intel_ring_get_active_head(ring);
  685. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  686. }
  687. static u32
  688. ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  689. {
  690. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  691. }
  692. static void
  693. ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  694. {
  695. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  696. }
  697. static u32
  698. pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  699. {
  700. struct pipe_control *pc = ring->private;
  701. return pc->cpu_page[0];
  702. }
  703. static void
  704. pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  705. {
  706. struct pipe_control *pc = ring->private;
  707. pc->cpu_page[0] = seqno;
  708. }
  709. static bool
  710. gen5_ring_get_irq(struct intel_ring_buffer *ring)
  711. {
  712. struct drm_device *dev = ring->dev;
  713. drm_i915_private_t *dev_priv = dev->dev_private;
  714. unsigned long flags;
  715. if (!dev->irq_enabled)
  716. return false;
  717. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  718. if (ring->irq_refcount++ == 0)
  719. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  720. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  721. return true;
  722. }
  723. static void
  724. gen5_ring_put_irq(struct intel_ring_buffer *ring)
  725. {
  726. struct drm_device *dev = ring->dev;
  727. drm_i915_private_t *dev_priv = dev->dev_private;
  728. unsigned long flags;
  729. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  730. if (--ring->irq_refcount == 0)
  731. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  732. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  733. }
  734. static bool
  735. i9xx_ring_get_irq(struct intel_ring_buffer *ring)
  736. {
  737. struct drm_device *dev = ring->dev;
  738. drm_i915_private_t *dev_priv = dev->dev_private;
  739. unsigned long flags;
  740. if (!dev->irq_enabled)
  741. return false;
  742. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  743. if (ring->irq_refcount++ == 0) {
  744. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  745. I915_WRITE(IMR, dev_priv->irq_mask);
  746. POSTING_READ(IMR);
  747. }
  748. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  749. return true;
  750. }
  751. static void
  752. i9xx_ring_put_irq(struct intel_ring_buffer *ring)
  753. {
  754. struct drm_device *dev = ring->dev;
  755. drm_i915_private_t *dev_priv = dev->dev_private;
  756. unsigned long flags;
  757. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  758. if (--ring->irq_refcount == 0) {
  759. dev_priv->irq_mask |= ring->irq_enable_mask;
  760. I915_WRITE(IMR, dev_priv->irq_mask);
  761. POSTING_READ(IMR);
  762. }
  763. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  764. }
  765. static bool
  766. i8xx_ring_get_irq(struct intel_ring_buffer *ring)
  767. {
  768. struct drm_device *dev = ring->dev;
  769. drm_i915_private_t *dev_priv = dev->dev_private;
  770. unsigned long flags;
  771. if (!dev->irq_enabled)
  772. return false;
  773. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  774. if (ring->irq_refcount++ == 0) {
  775. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  776. I915_WRITE16(IMR, dev_priv->irq_mask);
  777. POSTING_READ16(IMR);
  778. }
  779. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  780. return true;
  781. }
  782. static void
  783. i8xx_ring_put_irq(struct intel_ring_buffer *ring)
  784. {
  785. struct drm_device *dev = ring->dev;
  786. drm_i915_private_t *dev_priv = dev->dev_private;
  787. unsigned long flags;
  788. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  789. if (--ring->irq_refcount == 0) {
  790. dev_priv->irq_mask |= ring->irq_enable_mask;
  791. I915_WRITE16(IMR, dev_priv->irq_mask);
  792. POSTING_READ16(IMR);
  793. }
  794. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  795. }
  796. void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
  797. {
  798. struct drm_device *dev = ring->dev;
  799. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  800. u32 mmio = 0;
  801. /* The ring status page addresses are no longer next to the rest of
  802. * the ring registers as of gen7.
  803. */
  804. if (IS_GEN7(dev)) {
  805. switch (ring->id) {
  806. case RCS:
  807. mmio = RENDER_HWS_PGA_GEN7;
  808. break;
  809. case BCS:
  810. mmio = BLT_HWS_PGA_GEN7;
  811. break;
  812. case VCS:
  813. mmio = BSD_HWS_PGA_GEN7;
  814. break;
  815. case VECS:
  816. mmio = VEBOX_HWS_PGA_GEN7;
  817. break;
  818. }
  819. } else if (IS_GEN6(ring->dev)) {
  820. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  821. } else {
  822. mmio = RING_HWS_PGA(ring->mmio_base);
  823. }
  824. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  825. POSTING_READ(mmio);
  826. }
  827. static int
  828. bsd_ring_flush(struct intel_ring_buffer *ring,
  829. u32 invalidate_domains,
  830. u32 flush_domains)
  831. {
  832. int ret;
  833. ret = intel_ring_begin(ring, 2);
  834. if (ret)
  835. return ret;
  836. intel_ring_emit(ring, MI_FLUSH);
  837. intel_ring_emit(ring, MI_NOOP);
  838. intel_ring_advance(ring);
  839. return 0;
  840. }
  841. static int
  842. i9xx_add_request(struct intel_ring_buffer *ring)
  843. {
  844. int ret;
  845. ret = intel_ring_begin(ring, 4);
  846. if (ret)
  847. return ret;
  848. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  849. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  850. intel_ring_emit(ring, ring->outstanding_lazy_request);
  851. intel_ring_emit(ring, MI_USER_INTERRUPT);
  852. intel_ring_advance(ring);
  853. return 0;
  854. }
  855. static bool
  856. gen6_ring_get_irq(struct intel_ring_buffer *ring)
  857. {
  858. struct drm_device *dev = ring->dev;
  859. drm_i915_private_t *dev_priv = dev->dev_private;
  860. unsigned long flags;
  861. if (!dev->irq_enabled)
  862. return false;
  863. /* It looks like we need to prevent the gt from suspending while waiting
  864. * for an notifiy irq, otherwise irqs seem to get lost on at least the
  865. * blt/bsd rings on ivb. */
  866. gen6_gt_force_wake_get(dev_priv);
  867. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  868. if (ring->irq_refcount++ == 0) {
  869. if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
  870. I915_WRITE_IMR(ring,
  871. ~(ring->irq_enable_mask |
  872. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  873. else
  874. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  875. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  876. }
  877. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  878. return true;
  879. }
  880. static void
  881. gen6_ring_put_irq(struct intel_ring_buffer *ring)
  882. {
  883. struct drm_device *dev = ring->dev;
  884. drm_i915_private_t *dev_priv = dev->dev_private;
  885. unsigned long flags;
  886. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  887. if (--ring->irq_refcount == 0) {
  888. if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
  889. I915_WRITE_IMR(ring,
  890. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  891. else
  892. I915_WRITE_IMR(ring, ~0);
  893. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  894. }
  895. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  896. gen6_gt_force_wake_put(dev_priv);
  897. }
  898. static bool
  899. hsw_vebox_get_irq(struct intel_ring_buffer *ring)
  900. {
  901. struct drm_device *dev = ring->dev;
  902. struct drm_i915_private *dev_priv = dev->dev_private;
  903. unsigned long flags;
  904. if (!dev->irq_enabled)
  905. return false;
  906. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  907. if (ring->irq_refcount++ == 0) {
  908. u32 pm_imr = I915_READ(GEN6_PMIMR);
  909. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  910. I915_WRITE(GEN6_PMIMR, pm_imr & ~ring->irq_enable_mask);
  911. POSTING_READ(GEN6_PMIMR);
  912. }
  913. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  914. return true;
  915. }
  916. static void
  917. hsw_vebox_put_irq(struct intel_ring_buffer *ring)
  918. {
  919. struct drm_device *dev = ring->dev;
  920. struct drm_i915_private *dev_priv = dev->dev_private;
  921. unsigned long flags;
  922. if (!dev->irq_enabled)
  923. return;
  924. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  925. if (--ring->irq_refcount == 0) {
  926. u32 pm_imr = I915_READ(GEN6_PMIMR);
  927. I915_WRITE_IMR(ring, ~0);
  928. I915_WRITE(GEN6_PMIMR, pm_imr | ring->irq_enable_mask);
  929. POSTING_READ(GEN6_PMIMR);
  930. }
  931. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  932. }
  933. static int
  934. i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
  935. u32 offset, u32 length,
  936. unsigned flags)
  937. {
  938. int ret;
  939. ret = intel_ring_begin(ring, 2);
  940. if (ret)
  941. return ret;
  942. intel_ring_emit(ring,
  943. MI_BATCH_BUFFER_START |
  944. MI_BATCH_GTT |
  945. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  946. intel_ring_emit(ring, offset);
  947. intel_ring_advance(ring);
  948. return 0;
  949. }
  950. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  951. #define I830_BATCH_LIMIT (256*1024)
  952. static int
  953. i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
  954. u32 offset, u32 len,
  955. unsigned flags)
  956. {
  957. int ret;
  958. if (flags & I915_DISPATCH_PINNED) {
  959. ret = intel_ring_begin(ring, 4);
  960. if (ret)
  961. return ret;
  962. intel_ring_emit(ring, MI_BATCH_BUFFER);
  963. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  964. intel_ring_emit(ring, offset + len - 8);
  965. intel_ring_emit(ring, MI_NOOP);
  966. intel_ring_advance(ring);
  967. } else {
  968. struct drm_i915_gem_object *obj = ring->private;
  969. u32 cs_offset = i915_gem_obj_ggtt_offset(obj);
  970. if (len > I830_BATCH_LIMIT)
  971. return -ENOSPC;
  972. ret = intel_ring_begin(ring, 9+3);
  973. if (ret)
  974. return ret;
  975. /* Blit the batch (which has now all relocs applied) to the stable batch
  976. * scratch bo area (so that the CS never stumbles over its tlb
  977. * invalidation bug) ... */
  978. intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
  979. XY_SRC_COPY_BLT_WRITE_ALPHA |
  980. XY_SRC_COPY_BLT_WRITE_RGB);
  981. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
  982. intel_ring_emit(ring, 0);
  983. intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
  984. intel_ring_emit(ring, cs_offset);
  985. intel_ring_emit(ring, 0);
  986. intel_ring_emit(ring, 4096);
  987. intel_ring_emit(ring, offset);
  988. intel_ring_emit(ring, MI_FLUSH);
  989. /* ... and execute it. */
  990. intel_ring_emit(ring, MI_BATCH_BUFFER);
  991. intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  992. intel_ring_emit(ring, cs_offset + len - 8);
  993. intel_ring_advance(ring);
  994. }
  995. return 0;
  996. }
  997. static int
  998. i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
  999. u32 offset, u32 len,
  1000. unsigned flags)
  1001. {
  1002. int ret;
  1003. ret = intel_ring_begin(ring, 2);
  1004. if (ret)
  1005. return ret;
  1006. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1007. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1008. intel_ring_advance(ring);
  1009. return 0;
  1010. }
  1011. static void cleanup_status_page(struct intel_ring_buffer *ring)
  1012. {
  1013. struct drm_i915_gem_object *obj;
  1014. obj = ring->status_page.obj;
  1015. if (obj == NULL)
  1016. return;
  1017. kunmap(sg_page(obj->pages->sgl));
  1018. i915_gem_object_unpin(obj);
  1019. drm_gem_object_unreference(&obj->base);
  1020. ring->status_page.obj = NULL;
  1021. }
  1022. static int init_status_page(struct intel_ring_buffer *ring)
  1023. {
  1024. struct drm_device *dev = ring->dev;
  1025. struct drm_i915_gem_object *obj;
  1026. int ret;
  1027. obj = i915_gem_alloc_object(dev, 4096);
  1028. if (obj == NULL) {
  1029. DRM_ERROR("Failed to allocate status page\n");
  1030. ret = -ENOMEM;
  1031. goto err;
  1032. }
  1033. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1034. ret = i915_gem_obj_ggtt_pin(obj, 4096, true, false);
  1035. if (ret != 0) {
  1036. goto err_unref;
  1037. }
  1038. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1039. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1040. if (ring->status_page.page_addr == NULL) {
  1041. ret = -ENOMEM;
  1042. goto err_unpin;
  1043. }
  1044. ring->status_page.obj = obj;
  1045. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1046. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1047. ring->name, ring->status_page.gfx_addr);
  1048. return 0;
  1049. err_unpin:
  1050. i915_gem_object_unpin(obj);
  1051. err_unref:
  1052. drm_gem_object_unreference(&obj->base);
  1053. err:
  1054. return ret;
  1055. }
  1056. static int init_phys_status_page(struct intel_ring_buffer *ring)
  1057. {
  1058. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1059. if (!dev_priv->status_page_dmah) {
  1060. dev_priv->status_page_dmah =
  1061. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1062. if (!dev_priv->status_page_dmah)
  1063. return -ENOMEM;
  1064. }
  1065. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1066. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1067. return 0;
  1068. }
  1069. static int intel_init_ring_buffer(struct drm_device *dev,
  1070. struct intel_ring_buffer *ring)
  1071. {
  1072. struct drm_i915_gem_object *obj;
  1073. struct drm_i915_private *dev_priv = dev->dev_private;
  1074. int ret;
  1075. ring->dev = dev;
  1076. INIT_LIST_HEAD(&ring->active_list);
  1077. INIT_LIST_HEAD(&ring->request_list);
  1078. ring->size = 32 * PAGE_SIZE;
  1079. memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
  1080. init_waitqueue_head(&ring->irq_queue);
  1081. if (I915_NEED_GFX_HWS(dev)) {
  1082. ret = init_status_page(ring);
  1083. if (ret)
  1084. return ret;
  1085. } else {
  1086. BUG_ON(ring->id != RCS);
  1087. ret = init_phys_status_page(ring);
  1088. if (ret)
  1089. return ret;
  1090. }
  1091. obj = NULL;
  1092. if (!HAS_LLC(dev))
  1093. obj = i915_gem_object_create_stolen(dev, ring->size);
  1094. if (obj == NULL)
  1095. obj = i915_gem_alloc_object(dev, ring->size);
  1096. if (obj == NULL) {
  1097. DRM_ERROR("Failed to allocate ringbuffer\n");
  1098. ret = -ENOMEM;
  1099. goto err_hws;
  1100. }
  1101. ring->obj = obj;
  1102. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, true, false);
  1103. if (ret)
  1104. goto err_unref;
  1105. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1106. if (ret)
  1107. goto err_unpin;
  1108. ring->virtual_start =
  1109. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1110. ring->size);
  1111. if (ring->virtual_start == NULL) {
  1112. DRM_ERROR("Failed to map ringbuffer.\n");
  1113. ret = -EINVAL;
  1114. goto err_unpin;
  1115. }
  1116. ret = ring->init(ring);
  1117. if (ret)
  1118. goto err_unmap;
  1119. /* Workaround an erratum on the i830 which causes a hang if
  1120. * the TAIL pointer points to within the last 2 cachelines
  1121. * of the buffer.
  1122. */
  1123. ring->effective_size = ring->size;
  1124. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1125. ring->effective_size -= 128;
  1126. return 0;
  1127. err_unmap:
  1128. iounmap(ring->virtual_start);
  1129. err_unpin:
  1130. i915_gem_object_unpin(obj);
  1131. err_unref:
  1132. drm_gem_object_unreference(&obj->base);
  1133. ring->obj = NULL;
  1134. err_hws:
  1135. cleanup_status_page(ring);
  1136. return ret;
  1137. }
  1138. void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
  1139. {
  1140. struct drm_i915_private *dev_priv;
  1141. int ret;
  1142. if (ring->obj == NULL)
  1143. return;
  1144. /* Disable the ring buffer. The ring must be idle at this point */
  1145. dev_priv = ring->dev->dev_private;
  1146. ret = intel_ring_idle(ring);
  1147. if (ret)
  1148. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  1149. ring->name, ret);
  1150. I915_WRITE_CTL(ring, 0);
  1151. iounmap(ring->virtual_start);
  1152. i915_gem_object_unpin(ring->obj);
  1153. drm_gem_object_unreference(&ring->obj->base);
  1154. ring->obj = NULL;
  1155. if (ring->cleanup)
  1156. ring->cleanup(ring);
  1157. cleanup_status_page(ring);
  1158. }
  1159. static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1160. {
  1161. int ret;
  1162. ret = i915_wait_seqno(ring, seqno);
  1163. if (!ret)
  1164. i915_gem_retire_requests_ring(ring);
  1165. return ret;
  1166. }
  1167. static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
  1168. {
  1169. struct drm_i915_gem_request *request;
  1170. u32 seqno = 0;
  1171. int ret;
  1172. i915_gem_retire_requests_ring(ring);
  1173. if (ring->last_retired_head != -1) {
  1174. ring->head = ring->last_retired_head;
  1175. ring->last_retired_head = -1;
  1176. ring->space = ring_space(ring);
  1177. if (ring->space >= n)
  1178. return 0;
  1179. }
  1180. list_for_each_entry(request, &ring->request_list, list) {
  1181. int space;
  1182. if (request->tail == -1)
  1183. continue;
  1184. space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
  1185. if (space < 0)
  1186. space += ring->size;
  1187. if (space >= n) {
  1188. seqno = request->seqno;
  1189. break;
  1190. }
  1191. /* Consume this request in case we need more space than
  1192. * is available and so need to prevent a race between
  1193. * updating last_retired_head and direct reads of
  1194. * I915_RING_HEAD. It also provides a nice sanity check.
  1195. */
  1196. request->tail = -1;
  1197. }
  1198. if (seqno == 0)
  1199. return -ENOSPC;
  1200. ret = intel_ring_wait_seqno(ring, seqno);
  1201. if (ret)
  1202. return ret;
  1203. if (WARN_ON(ring->last_retired_head == -1))
  1204. return -ENOSPC;
  1205. ring->head = ring->last_retired_head;
  1206. ring->last_retired_head = -1;
  1207. ring->space = ring_space(ring);
  1208. if (WARN_ON(ring->space < n))
  1209. return -ENOSPC;
  1210. return 0;
  1211. }
  1212. static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
  1213. {
  1214. struct drm_device *dev = ring->dev;
  1215. struct drm_i915_private *dev_priv = dev->dev_private;
  1216. unsigned long end;
  1217. int ret;
  1218. ret = intel_ring_wait_request(ring, n);
  1219. if (ret != -ENOSPC)
  1220. return ret;
  1221. trace_i915_ring_wait_begin(ring);
  1222. /* With GEM the hangcheck timer should kick us out of the loop,
  1223. * leaving it early runs the risk of corrupting GEM state (due
  1224. * to running on almost untested codepaths). But on resume
  1225. * timers don't work yet, so prevent a complete hang in that
  1226. * case by choosing an insanely large timeout. */
  1227. end = jiffies + 60 * HZ;
  1228. do {
  1229. ring->head = I915_READ_HEAD(ring);
  1230. ring->space = ring_space(ring);
  1231. if (ring->space >= n) {
  1232. trace_i915_ring_wait_end(ring);
  1233. return 0;
  1234. }
  1235. if (dev->primary->master) {
  1236. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1237. if (master_priv->sarea_priv)
  1238. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1239. }
  1240. msleep(1);
  1241. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1242. dev_priv->mm.interruptible);
  1243. if (ret)
  1244. return ret;
  1245. } while (!time_after(jiffies, end));
  1246. trace_i915_ring_wait_end(ring);
  1247. return -EBUSY;
  1248. }
  1249. static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
  1250. {
  1251. uint32_t __iomem *virt;
  1252. int rem = ring->size - ring->tail;
  1253. if (ring->space < rem) {
  1254. int ret = ring_wait_for_space(ring, rem);
  1255. if (ret)
  1256. return ret;
  1257. }
  1258. virt = ring->virtual_start + ring->tail;
  1259. rem /= 4;
  1260. while (rem--)
  1261. iowrite32(MI_NOOP, virt++);
  1262. ring->tail = 0;
  1263. ring->space = ring_space(ring);
  1264. return 0;
  1265. }
  1266. int intel_ring_idle(struct intel_ring_buffer *ring)
  1267. {
  1268. u32 seqno;
  1269. int ret;
  1270. /* We need to add any requests required to flush the objects and ring */
  1271. if (ring->outstanding_lazy_request) {
  1272. ret = i915_add_request(ring, NULL);
  1273. if (ret)
  1274. return ret;
  1275. }
  1276. /* Wait upon the last request to be completed */
  1277. if (list_empty(&ring->request_list))
  1278. return 0;
  1279. seqno = list_entry(ring->request_list.prev,
  1280. struct drm_i915_gem_request,
  1281. list)->seqno;
  1282. return i915_wait_seqno(ring, seqno);
  1283. }
  1284. static int
  1285. intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
  1286. {
  1287. if (ring->outstanding_lazy_request)
  1288. return 0;
  1289. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
  1290. }
  1291. static int __intel_ring_begin(struct intel_ring_buffer *ring,
  1292. int bytes)
  1293. {
  1294. int ret;
  1295. if (unlikely(ring->tail + bytes > ring->effective_size)) {
  1296. ret = intel_wrap_ring_buffer(ring);
  1297. if (unlikely(ret))
  1298. return ret;
  1299. }
  1300. if (unlikely(ring->space < bytes)) {
  1301. ret = ring_wait_for_space(ring, bytes);
  1302. if (unlikely(ret))
  1303. return ret;
  1304. }
  1305. ring->space -= bytes;
  1306. return 0;
  1307. }
  1308. int intel_ring_begin(struct intel_ring_buffer *ring,
  1309. int num_dwords)
  1310. {
  1311. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1312. int ret;
  1313. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1314. dev_priv->mm.interruptible);
  1315. if (ret)
  1316. return ret;
  1317. /* Preallocate the olr before touching the ring */
  1318. ret = intel_ring_alloc_seqno(ring);
  1319. if (ret)
  1320. return ret;
  1321. return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
  1322. }
  1323. void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1324. {
  1325. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1326. BUG_ON(ring->outstanding_lazy_request);
  1327. if (INTEL_INFO(ring->dev)->gen >= 6) {
  1328. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1329. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1330. if (HAS_VEBOX(ring->dev))
  1331. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1332. }
  1333. ring->set_seqno(ring, seqno);
  1334. ring->hangcheck.seqno = seqno;
  1335. }
  1336. void intel_ring_advance(struct intel_ring_buffer *ring)
  1337. {
  1338. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1339. ring->tail &= ring->size - 1;
  1340. if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
  1341. return;
  1342. ring->write_tail(ring, ring->tail);
  1343. }
  1344. static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
  1345. u32 value)
  1346. {
  1347. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1348. /* Every tail move must follow the sequence below */
  1349. /* Disable notification that the ring is IDLE. The GT
  1350. * will then assume that it is busy and bring it out of rc6.
  1351. */
  1352. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1353. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1354. /* Clear the context id. Here be magic! */
  1355. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1356. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1357. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1358. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1359. 50))
  1360. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1361. /* Now that the ring is fully powered up, update the tail */
  1362. I915_WRITE_TAIL(ring, value);
  1363. POSTING_READ(RING_TAIL(ring->mmio_base));
  1364. /* Let the ring send IDLE messages to the GT again,
  1365. * and so let it sleep to conserve power when idle.
  1366. */
  1367. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1368. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1369. }
  1370. static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
  1371. u32 invalidate, u32 flush)
  1372. {
  1373. uint32_t cmd;
  1374. int ret;
  1375. ret = intel_ring_begin(ring, 4);
  1376. if (ret)
  1377. return ret;
  1378. cmd = MI_FLUSH_DW;
  1379. /*
  1380. * Bspec vol 1c.5 - video engine command streamer:
  1381. * "If ENABLED, all TLBs will be invalidated once the flush
  1382. * operation is complete. This bit is only valid when the
  1383. * Post-Sync Operation field is a value of 1h or 3h."
  1384. */
  1385. if (invalidate & I915_GEM_GPU_DOMAINS)
  1386. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1387. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1388. intel_ring_emit(ring, cmd);
  1389. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1390. intel_ring_emit(ring, 0);
  1391. intel_ring_emit(ring, MI_NOOP);
  1392. intel_ring_advance(ring);
  1393. return 0;
  1394. }
  1395. static int
  1396. hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1397. u32 offset, u32 len,
  1398. unsigned flags)
  1399. {
  1400. int ret;
  1401. ret = intel_ring_begin(ring, 2);
  1402. if (ret)
  1403. return ret;
  1404. intel_ring_emit(ring,
  1405. MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
  1406. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
  1407. /* bit0-7 is the length on GEN6+ */
  1408. intel_ring_emit(ring, offset);
  1409. intel_ring_advance(ring);
  1410. return 0;
  1411. }
  1412. static int
  1413. gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1414. u32 offset, u32 len,
  1415. unsigned flags)
  1416. {
  1417. int ret;
  1418. ret = intel_ring_begin(ring, 2);
  1419. if (ret)
  1420. return ret;
  1421. intel_ring_emit(ring,
  1422. MI_BATCH_BUFFER_START |
  1423. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1424. /* bit0-7 is the length on GEN6+ */
  1425. intel_ring_emit(ring, offset);
  1426. intel_ring_advance(ring);
  1427. return 0;
  1428. }
  1429. /* Blitter support (SandyBridge+) */
  1430. static int gen6_ring_flush(struct intel_ring_buffer *ring,
  1431. u32 invalidate, u32 flush)
  1432. {
  1433. struct drm_device *dev = ring->dev;
  1434. uint32_t cmd;
  1435. int ret;
  1436. ret = intel_ring_begin(ring, 4);
  1437. if (ret)
  1438. return ret;
  1439. cmd = MI_FLUSH_DW;
  1440. /*
  1441. * Bspec vol 1c.3 - blitter engine command streamer:
  1442. * "If ENABLED, all TLBs will be invalidated once the flush
  1443. * operation is complete. This bit is only valid when the
  1444. * Post-Sync Operation field is a value of 1h or 3h."
  1445. */
  1446. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1447. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1448. MI_FLUSH_DW_OP_STOREDW;
  1449. intel_ring_emit(ring, cmd);
  1450. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1451. intel_ring_emit(ring, 0);
  1452. intel_ring_emit(ring, MI_NOOP);
  1453. intel_ring_advance(ring);
  1454. if (IS_GEN7(dev) && flush)
  1455. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1456. return 0;
  1457. }
  1458. int intel_init_render_ring_buffer(struct drm_device *dev)
  1459. {
  1460. drm_i915_private_t *dev_priv = dev->dev_private;
  1461. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1462. ring->name = "render ring";
  1463. ring->id = RCS;
  1464. ring->mmio_base = RENDER_RING_BASE;
  1465. if (INTEL_INFO(dev)->gen >= 6) {
  1466. ring->add_request = gen6_add_request;
  1467. ring->flush = gen7_render_ring_flush;
  1468. if (INTEL_INFO(dev)->gen == 6)
  1469. ring->flush = gen6_render_ring_flush;
  1470. ring->irq_get = gen6_ring_get_irq;
  1471. ring->irq_put = gen6_ring_put_irq;
  1472. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1473. ring->get_seqno = gen6_ring_get_seqno;
  1474. ring->set_seqno = ring_set_seqno;
  1475. ring->sync_to = gen6_ring_sync;
  1476. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1477. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
  1478. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
  1479. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1480. ring->signal_mbox[RCS] = GEN6_NOSYNC;
  1481. ring->signal_mbox[VCS] = GEN6_VRSYNC;
  1482. ring->signal_mbox[BCS] = GEN6_BRSYNC;
  1483. ring->signal_mbox[VECS] = GEN6_VERSYNC;
  1484. } else if (IS_GEN5(dev)) {
  1485. ring->add_request = pc_render_add_request;
  1486. ring->flush = gen4_render_ring_flush;
  1487. ring->get_seqno = pc_render_get_seqno;
  1488. ring->set_seqno = pc_render_set_seqno;
  1489. ring->irq_get = gen5_ring_get_irq;
  1490. ring->irq_put = gen5_ring_put_irq;
  1491. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1492. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1493. } else {
  1494. ring->add_request = i9xx_add_request;
  1495. if (INTEL_INFO(dev)->gen < 4)
  1496. ring->flush = gen2_render_ring_flush;
  1497. else
  1498. ring->flush = gen4_render_ring_flush;
  1499. ring->get_seqno = ring_get_seqno;
  1500. ring->set_seqno = ring_set_seqno;
  1501. if (IS_GEN2(dev)) {
  1502. ring->irq_get = i8xx_ring_get_irq;
  1503. ring->irq_put = i8xx_ring_put_irq;
  1504. } else {
  1505. ring->irq_get = i9xx_ring_get_irq;
  1506. ring->irq_put = i9xx_ring_put_irq;
  1507. }
  1508. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1509. }
  1510. ring->write_tail = ring_write_tail;
  1511. if (IS_HASWELL(dev))
  1512. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  1513. else if (INTEL_INFO(dev)->gen >= 6)
  1514. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1515. else if (INTEL_INFO(dev)->gen >= 4)
  1516. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1517. else if (IS_I830(dev) || IS_845G(dev))
  1518. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1519. else
  1520. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1521. ring->init = init_render_ring;
  1522. ring->cleanup = render_ring_cleanup;
  1523. /* Workaround batchbuffer to combat CS tlb bug. */
  1524. if (HAS_BROKEN_CS_TLB(dev)) {
  1525. struct drm_i915_gem_object *obj;
  1526. int ret;
  1527. obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
  1528. if (obj == NULL) {
  1529. DRM_ERROR("Failed to allocate batch bo\n");
  1530. return -ENOMEM;
  1531. }
  1532. ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
  1533. if (ret != 0) {
  1534. drm_gem_object_unreference(&obj->base);
  1535. DRM_ERROR("Failed to ping batch bo\n");
  1536. return ret;
  1537. }
  1538. ring->private = obj;
  1539. }
  1540. return intel_init_ring_buffer(dev, ring);
  1541. }
  1542. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1543. {
  1544. drm_i915_private_t *dev_priv = dev->dev_private;
  1545. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1546. int ret;
  1547. ring->name = "render ring";
  1548. ring->id = RCS;
  1549. ring->mmio_base = RENDER_RING_BASE;
  1550. if (INTEL_INFO(dev)->gen >= 6) {
  1551. /* non-kms not supported on gen6+ */
  1552. return -ENODEV;
  1553. }
  1554. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  1555. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  1556. * the special gen5 functions. */
  1557. ring->add_request = i9xx_add_request;
  1558. if (INTEL_INFO(dev)->gen < 4)
  1559. ring->flush = gen2_render_ring_flush;
  1560. else
  1561. ring->flush = gen4_render_ring_flush;
  1562. ring->get_seqno = ring_get_seqno;
  1563. ring->set_seqno = ring_set_seqno;
  1564. if (IS_GEN2(dev)) {
  1565. ring->irq_get = i8xx_ring_get_irq;
  1566. ring->irq_put = i8xx_ring_put_irq;
  1567. } else {
  1568. ring->irq_get = i9xx_ring_get_irq;
  1569. ring->irq_put = i9xx_ring_put_irq;
  1570. }
  1571. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1572. ring->write_tail = ring_write_tail;
  1573. if (INTEL_INFO(dev)->gen >= 4)
  1574. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1575. else if (IS_I830(dev) || IS_845G(dev))
  1576. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1577. else
  1578. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1579. ring->init = init_render_ring;
  1580. ring->cleanup = render_ring_cleanup;
  1581. ring->dev = dev;
  1582. INIT_LIST_HEAD(&ring->active_list);
  1583. INIT_LIST_HEAD(&ring->request_list);
  1584. ring->size = size;
  1585. ring->effective_size = ring->size;
  1586. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1587. ring->effective_size -= 128;
  1588. ring->virtual_start = ioremap_wc(start, size);
  1589. if (ring->virtual_start == NULL) {
  1590. DRM_ERROR("can not ioremap virtual address for"
  1591. " ring buffer\n");
  1592. return -ENOMEM;
  1593. }
  1594. if (!I915_NEED_GFX_HWS(dev)) {
  1595. ret = init_phys_status_page(ring);
  1596. if (ret)
  1597. return ret;
  1598. }
  1599. return 0;
  1600. }
  1601. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1602. {
  1603. drm_i915_private_t *dev_priv = dev->dev_private;
  1604. struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
  1605. ring->name = "bsd ring";
  1606. ring->id = VCS;
  1607. ring->write_tail = ring_write_tail;
  1608. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  1609. ring->mmio_base = GEN6_BSD_RING_BASE;
  1610. /* gen6 bsd needs a special wa for tail updates */
  1611. if (IS_GEN6(dev))
  1612. ring->write_tail = gen6_bsd_ring_write_tail;
  1613. ring->flush = gen6_bsd_ring_flush;
  1614. ring->add_request = gen6_add_request;
  1615. ring->get_seqno = gen6_ring_get_seqno;
  1616. ring->set_seqno = ring_set_seqno;
  1617. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  1618. ring->irq_get = gen6_ring_get_irq;
  1619. ring->irq_put = gen6_ring_put_irq;
  1620. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1621. ring->sync_to = gen6_ring_sync;
  1622. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
  1623. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  1624. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
  1625. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
  1626. ring->signal_mbox[RCS] = GEN6_RVSYNC;
  1627. ring->signal_mbox[VCS] = GEN6_NOSYNC;
  1628. ring->signal_mbox[BCS] = GEN6_BVSYNC;
  1629. ring->signal_mbox[VECS] = GEN6_VEVSYNC;
  1630. } else {
  1631. ring->mmio_base = BSD_RING_BASE;
  1632. ring->flush = bsd_ring_flush;
  1633. ring->add_request = i9xx_add_request;
  1634. ring->get_seqno = ring_get_seqno;
  1635. ring->set_seqno = ring_set_seqno;
  1636. if (IS_GEN5(dev)) {
  1637. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  1638. ring->irq_get = gen5_ring_get_irq;
  1639. ring->irq_put = gen5_ring_put_irq;
  1640. } else {
  1641. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  1642. ring->irq_get = i9xx_ring_get_irq;
  1643. ring->irq_put = i9xx_ring_put_irq;
  1644. }
  1645. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1646. }
  1647. ring->init = init_ring_common;
  1648. return intel_init_ring_buffer(dev, ring);
  1649. }
  1650. int intel_init_blt_ring_buffer(struct drm_device *dev)
  1651. {
  1652. drm_i915_private_t *dev_priv = dev->dev_private;
  1653. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  1654. ring->name = "blitter ring";
  1655. ring->id = BCS;
  1656. ring->mmio_base = BLT_RING_BASE;
  1657. ring->write_tail = ring_write_tail;
  1658. ring->flush = gen6_ring_flush;
  1659. ring->add_request = gen6_add_request;
  1660. ring->get_seqno = gen6_ring_get_seqno;
  1661. ring->set_seqno = ring_set_seqno;
  1662. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  1663. ring->irq_get = gen6_ring_get_irq;
  1664. ring->irq_put = gen6_ring_put_irq;
  1665. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1666. ring->sync_to = gen6_ring_sync;
  1667. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
  1668. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
  1669. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  1670. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
  1671. ring->signal_mbox[RCS] = GEN6_RBSYNC;
  1672. ring->signal_mbox[VCS] = GEN6_VBSYNC;
  1673. ring->signal_mbox[BCS] = GEN6_NOSYNC;
  1674. ring->signal_mbox[VECS] = GEN6_VEBSYNC;
  1675. ring->init = init_ring_common;
  1676. return intel_init_ring_buffer(dev, ring);
  1677. }
  1678. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  1679. {
  1680. drm_i915_private_t *dev_priv = dev->dev_private;
  1681. struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
  1682. ring->name = "video enhancement ring";
  1683. ring->id = VECS;
  1684. ring->mmio_base = VEBOX_RING_BASE;
  1685. ring->write_tail = ring_write_tail;
  1686. ring->flush = gen6_ring_flush;
  1687. ring->add_request = gen6_add_request;
  1688. ring->get_seqno = gen6_ring_get_seqno;
  1689. ring->set_seqno = ring_set_seqno;
  1690. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  1691. ring->irq_get = hsw_vebox_get_irq;
  1692. ring->irq_put = hsw_vebox_put_irq;
  1693. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1694. ring->sync_to = gen6_ring_sync;
  1695. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
  1696. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
  1697. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
  1698. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  1699. ring->signal_mbox[RCS] = GEN6_RVESYNC;
  1700. ring->signal_mbox[VCS] = GEN6_VVESYNC;
  1701. ring->signal_mbox[BCS] = GEN6_BVESYNC;
  1702. ring->signal_mbox[VECS] = GEN6_NOSYNC;
  1703. ring->init = init_ring_common;
  1704. return intel_init_ring_buffer(dev, ring);
  1705. }
  1706. int
  1707. intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
  1708. {
  1709. int ret;
  1710. if (!ring->gpu_caches_dirty)
  1711. return 0;
  1712. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1713. if (ret)
  1714. return ret;
  1715. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1716. ring->gpu_caches_dirty = false;
  1717. return 0;
  1718. }
  1719. int
  1720. intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
  1721. {
  1722. uint32_t flush_domains;
  1723. int ret;
  1724. flush_domains = 0;
  1725. if (ring->gpu_caches_dirty)
  1726. flush_domains = I915_GEM_GPU_DOMAINS;
  1727. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1728. if (ret)
  1729. return ret;
  1730. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1731. ring->gpu_caches_dirty = false;
  1732. return 0;
  1733. }