perf_event.h 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857
  1. /*
  2. * Performance events:
  3. *
  4. * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
  7. *
  8. * Data type definitions, declarations, prototypes.
  9. *
  10. * Started by: Thomas Gleixner and Ingo Molnar
  11. *
  12. * For licencing details see kernel-base/COPYING
  13. */
  14. #ifndef _LINUX_PERF_EVENT_H
  15. #define _LINUX_PERF_EVENT_H
  16. #include <uapi/linux/perf_event.h>
  17. /*
  18. * Kernel-internal data types and definitions:
  19. */
  20. #ifdef CONFIG_PERF_EVENTS
  21. # include <asm/perf_event.h>
  22. # include <asm/local64.h>
  23. #endif
  24. struct perf_guest_info_callbacks {
  25. int (*is_in_guest)(void);
  26. int (*is_user_mode)(void);
  27. unsigned long (*get_guest_ip)(void);
  28. };
  29. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  30. #include <asm/hw_breakpoint.h>
  31. #endif
  32. #include <linux/list.h>
  33. #include <linux/mutex.h>
  34. #include <linux/rculist.h>
  35. #include <linux/rcupdate.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/hrtimer.h>
  38. #include <linux/fs.h>
  39. #include <linux/pid_namespace.h>
  40. #include <linux/workqueue.h>
  41. #include <linux/ftrace.h>
  42. #include <linux/cpu.h>
  43. #include <linux/irq_work.h>
  44. #include <linux/static_key.h>
  45. #include <linux/atomic.h>
  46. #include <linux/sysfs.h>
  47. #include <linux/perf_regs.h>
  48. #include <asm/local.h>
  49. struct perf_callchain_entry {
  50. __u64 nr;
  51. __u64 ip[PERF_MAX_STACK_DEPTH];
  52. };
  53. struct perf_raw_record {
  54. u32 size;
  55. void *data;
  56. };
  57. /*
  58. * single taken branch record layout:
  59. *
  60. * from: source instruction (may not always be a branch insn)
  61. * to: branch target
  62. * mispred: branch target was mispredicted
  63. * predicted: branch target was predicted
  64. *
  65. * support for mispred, predicted is optional. In case it
  66. * is not supported mispred = predicted = 0.
  67. */
  68. struct perf_branch_entry {
  69. __u64 from;
  70. __u64 to;
  71. __u64 mispred:1, /* target mispredicted */
  72. predicted:1,/* target predicted */
  73. reserved:62;
  74. };
  75. /*
  76. * branch stack layout:
  77. * nr: number of taken branches stored in entries[]
  78. *
  79. * Note that nr can vary from sample to sample
  80. * branches (to, from) are stored from most recent
  81. * to least recent, i.e., entries[0] contains the most
  82. * recent branch.
  83. */
  84. struct perf_branch_stack {
  85. __u64 nr;
  86. struct perf_branch_entry entries[0];
  87. };
  88. struct perf_regs_user {
  89. __u64 abi;
  90. struct pt_regs *regs;
  91. };
  92. struct task_struct;
  93. /*
  94. * extra PMU register associated with an event
  95. */
  96. struct hw_perf_event_extra {
  97. u64 config; /* register value */
  98. unsigned int reg; /* register address or index */
  99. int alloc; /* extra register already allocated */
  100. int idx; /* index in shared_regs->regs[] */
  101. };
  102. struct event_constraint;
  103. /**
  104. * struct hw_perf_event - performance event hardware details:
  105. */
  106. struct hw_perf_event {
  107. #ifdef CONFIG_PERF_EVENTS
  108. union {
  109. struct { /* hardware */
  110. u64 config;
  111. u64 last_tag;
  112. unsigned long config_base;
  113. unsigned long event_base;
  114. int event_base_rdpmc;
  115. int idx;
  116. int last_cpu;
  117. int flags;
  118. struct hw_perf_event_extra extra_reg;
  119. struct hw_perf_event_extra branch_reg;
  120. struct event_constraint *constraint;
  121. };
  122. struct { /* software */
  123. struct hrtimer hrtimer;
  124. };
  125. struct { /* tracepoint */
  126. struct task_struct *tp_target;
  127. /* for tp_event->class */
  128. struct list_head tp_list;
  129. };
  130. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  131. struct { /* breakpoint */
  132. /*
  133. * Crufty hack to avoid the chicken and egg
  134. * problem hw_breakpoint has with context
  135. * creation and event initalization.
  136. */
  137. struct task_struct *bp_target;
  138. struct arch_hw_breakpoint info;
  139. struct list_head bp_list;
  140. };
  141. #endif
  142. };
  143. int state;
  144. local64_t prev_count;
  145. u64 sample_period;
  146. u64 last_period;
  147. local64_t period_left;
  148. u64 interrupts_seq;
  149. u64 interrupts;
  150. u64 freq_time_stamp;
  151. u64 freq_count_stamp;
  152. #endif
  153. };
  154. /*
  155. * hw_perf_event::state flags
  156. */
  157. #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
  158. #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
  159. #define PERF_HES_ARCH 0x04
  160. struct perf_event;
  161. /*
  162. * Common implementation detail of pmu::{start,commit,cancel}_txn
  163. */
  164. #define PERF_EVENT_TXN 0x1
  165. /**
  166. * struct pmu - generic performance monitoring unit
  167. */
  168. struct pmu {
  169. struct list_head entry;
  170. struct device *dev;
  171. const struct attribute_group **attr_groups;
  172. const char *name;
  173. int type;
  174. int * __percpu pmu_disable_count;
  175. struct perf_cpu_context * __percpu pmu_cpu_context;
  176. int task_ctx_nr;
  177. int hrtimer_interval_ms;
  178. /*
  179. * Fully disable/enable this PMU, can be used to protect from the PMI
  180. * as well as for lazy/batch writing of the MSRs.
  181. */
  182. void (*pmu_enable) (struct pmu *pmu); /* optional */
  183. void (*pmu_disable) (struct pmu *pmu); /* optional */
  184. /*
  185. * Try and initialize the event for this PMU.
  186. * Should return -ENOENT when the @event doesn't match this PMU.
  187. */
  188. int (*event_init) (struct perf_event *event);
  189. #define PERF_EF_START 0x01 /* start the counter when adding */
  190. #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
  191. #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
  192. /*
  193. * Adds/Removes a counter to/from the PMU, can be done inside
  194. * a transaction, see the ->*_txn() methods.
  195. */
  196. int (*add) (struct perf_event *event, int flags);
  197. void (*del) (struct perf_event *event, int flags);
  198. /*
  199. * Starts/Stops a counter present on the PMU. The PMI handler
  200. * should stop the counter when perf_event_overflow() returns
  201. * !0. ->start() will be used to continue.
  202. */
  203. void (*start) (struct perf_event *event, int flags);
  204. void (*stop) (struct perf_event *event, int flags);
  205. /*
  206. * Updates the counter value of the event.
  207. */
  208. void (*read) (struct perf_event *event);
  209. /*
  210. * Group events scheduling is treated as a transaction, add
  211. * group events as a whole and perform one schedulability test.
  212. * If the test fails, roll back the whole group
  213. *
  214. * Start the transaction, after this ->add() doesn't need to
  215. * do schedulability tests.
  216. */
  217. void (*start_txn) (struct pmu *pmu); /* optional */
  218. /*
  219. * If ->start_txn() disabled the ->add() schedulability test
  220. * then ->commit_txn() is required to perform one. On success
  221. * the transaction is closed. On error the transaction is kept
  222. * open until ->cancel_txn() is called.
  223. */
  224. int (*commit_txn) (struct pmu *pmu); /* optional */
  225. /*
  226. * Will cancel the transaction, assumes ->del() is called
  227. * for each successful ->add() during the transaction.
  228. */
  229. void (*cancel_txn) (struct pmu *pmu); /* optional */
  230. /*
  231. * Will return the value for perf_event_mmap_page::index for this event,
  232. * if no implementation is provided it will default to: event->hw.idx + 1.
  233. */
  234. int (*event_idx) (struct perf_event *event); /*optional */
  235. /*
  236. * flush branch stack on context-switches (needed in cpu-wide mode)
  237. */
  238. void (*flush_branch_stack) (void);
  239. };
  240. /**
  241. * enum perf_event_active_state - the states of a event
  242. */
  243. enum perf_event_active_state {
  244. PERF_EVENT_STATE_ERROR = -2,
  245. PERF_EVENT_STATE_OFF = -1,
  246. PERF_EVENT_STATE_INACTIVE = 0,
  247. PERF_EVENT_STATE_ACTIVE = 1,
  248. };
  249. struct file;
  250. struct perf_sample_data;
  251. typedef void (*perf_overflow_handler_t)(struct perf_event *,
  252. struct perf_sample_data *,
  253. struct pt_regs *regs);
  254. enum perf_group_flag {
  255. PERF_GROUP_SOFTWARE = 0x1,
  256. };
  257. #define SWEVENT_HLIST_BITS 8
  258. #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
  259. struct swevent_hlist {
  260. struct hlist_head heads[SWEVENT_HLIST_SIZE];
  261. struct rcu_head rcu_head;
  262. };
  263. #define PERF_ATTACH_CONTEXT 0x01
  264. #define PERF_ATTACH_GROUP 0x02
  265. #define PERF_ATTACH_TASK 0x04
  266. struct perf_cgroup;
  267. struct ring_buffer;
  268. /**
  269. * struct perf_event - performance event kernel representation:
  270. */
  271. struct perf_event {
  272. #ifdef CONFIG_PERF_EVENTS
  273. struct list_head group_entry;
  274. struct list_head event_entry;
  275. struct list_head sibling_list;
  276. struct hlist_node hlist_entry;
  277. int nr_siblings;
  278. int group_flags;
  279. struct perf_event *group_leader;
  280. struct pmu *pmu;
  281. enum perf_event_active_state state;
  282. unsigned int attach_state;
  283. local64_t count;
  284. atomic64_t child_count;
  285. /*
  286. * These are the total time in nanoseconds that the event
  287. * has been enabled (i.e. eligible to run, and the task has
  288. * been scheduled in, if this is a per-task event)
  289. * and running (scheduled onto the CPU), respectively.
  290. *
  291. * They are computed from tstamp_enabled, tstamp_running and
  292. * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
  293. */
  294. u64 total_time_enabled;
  295. u64 total_time_running;
  296. /*
  297. * These are timestamps used for computing total_time_enabled
  298. * and total_time_running when the event is in INACTIVE or
  299. * ACTIVE state, measured in nanoseconds from an arbitrary point
  300. * in time.
  301. * tstamp_enabled: the notional time when the event was enabled
  302. * tstamp_running: the notional time when the event was scheduled on
  303. * tstamp_stopped: in INACTIVE state, the notional time when the
  304. * event was scheduled off.
  305. */
  306. u64 tstamp_enabled;
  307. u64 tstamp_running;
  308. u64 tstamp_stopped;
  309. /*
  310. * timestamp shadows the actual context timing but it can
  311. * be safely used in NMI interrupt context. It reflects the
  312. * context time as it was when the event was last scheduled in.
  313. *
  314. * ctx_time already accounts for ctx->timestamp. Therefore to
  315. * compute ctx_time for a sample, simply add perf_clock().
  316. */
  317. u64 shadow_ctx_time;
  318. struct perf_event_attr attr;
  319. u16 header_size;
  320. u16 id_header_size;
  321. u16 read_size;
  322. struct hw_perf_event hw;
  323. struct perf_event_context *ctx;
  324. atomic_long_t refcount;
  325. /*
  326. * These accumulate total time (in nanoseconds) that children
  327. * events have been enabled and running, respectively.
  328. */
  329. atomic64_t child_total_time_enabled;
  330. atomic64_t child_total_time_running;
  331. /*
  332. * Protect attach/detach and child_list:
  333. */
  334. struct mutex child_mutex;
  335. struct list_head child_list;
  336. struct perf_event *parent;
  337. int oncpu;
  338. int cpu;
  339. struct list_head owner_entry;
  340. struct task_struct *owner;
  341. /* mmap bits */
  342. struct mutex mmap_mutex;
  343. atomic_t mmap_count;
  344. struct ring_buffer *rb;
  345. struct list_head rb_entry;
  346. /* poll related */
  347. wait_queue_head_t waitq;
  348. struct fasync_struct *fasync;
  349. /* delayed work for NMIs and such */
  350. int pending_wakeup;
  351. int pending_kill;
  352. int pending_disable;
  353. struct irq_work pending;
  354. atomic_t event_limit;
  355. void (*destroy)(struct perf_event *);
  356. struct rcu_head rcu_head;
  357. struct pid_namespace *ns;
  358. u64 id;
  359. perf_overflow_handler_t overflow_handler;
  360. void *overflow_handler_context;
  361. #ifdef CONFIG_EVENT_TRACING
  362. struct ftrace_event_call *tp_event;
  363. struct event_filter *filter;
  364. #ifdef CONFIG_FUNCTION_TRACER
  365. struct ftrace_ops ftrace_ops;
  366. #endif
  367. #endif
  368. #ifdef CONFIG_CGROUP_PERF
  369. struct perf_cgroup *cgrp; /* cgroup event is attach to */
  370. int cgrp_defer_enabled;
  371. #endif
  372. #endif /* CONFIG_PERF_EVENTS */
  373. };
  374. enum perf_event_context_type {
  375. task_context,
  376. cpu_context,
  377. };
  378. /**
  379. * struct perf_event_context - event context structure
  380. *
  381. * Used as a container for task events and CPU events as well:
  382. */
  383. struct perf_event_context {
  384. struct pmu *pmu;
  385. enum perf_event_context_type type;
  386. /*
  387. * Protect the states of the events in the list,
  388. * nr_active, and the list:
  389. */
  390. raw_spinlock_t lock;
  391. /*
  392. * Protect the list of events. Locking either mutex or lock
  393. * is sufficient to ensure the list doesn't change; to change
  394. * the list you need to lock both the mutex and the spinlock.
  395. */
  396. struct mutex mutex;
  397. struct list_head pinned_groups;
  398. struct list_head flexible_groups;
  399. struct list_head event_list;
  400. int nr_events;
  401. int nr_active;
  402. int is_active;
  403. int nr_stat;
  404. int nr_freq;
  405. int rotate_disable;
  406. atomic_t refcount;
  407. struct task_struct *task;
  408. /*
  409. * Context clock, runs when context enabled.
  410. */
  411. u64 time;
  412. u64 timestamp;
  413. /*
  414. * These fields let us detect when two contexts have both
  415. * been cloned (inherited) from a common ancestor.
  416. */
  417. struct perf_event_context *parent_ctx;
  418. u64 parent_gen;
  419. u64 generation;
  420. int pin_count;
  421. int nr_cgroups; /* cgroup evts */
  422. int nr_branch_stack; /* branch_stack evt */
  423. struct rcu_head rcu_head;
  424. };
  425. /*
  426. * Number of contexts where an event can trigger:
  427. * task, softirq, hardirq, nmi.
  428. */
  429. #define PERF_NR_CONTEXTS 4
  430. /**
  431. * struct perf_event_cpu_context - per cpu event context structure
  432. */
  433. struct perf_cpu_context {
  434. struct perf_event_context ctx;
  435. struct perf_event_context *task_ctx;
  436. int active_oncpu;
  437. int exclusive;
  438. struct hrtimer hrtimer;
  439. ktime_t hrtimer_interval;
  440. struct list_head rotation_list;
  441. struct pmu *unique_pmu;
  442. struct perf_cgroup *cgrp;
  443. };
  444. struct perf_output_handle {
  445. struct perf_event *event;
  446. struct ring_buffer *rb;
  447. unsigned long wakeup;
  448. unsigned long size;
  449. void *addr;
  450. int page;
  451. };
  452. #ifdef CONFIG_PERF_EVENTS
  453. extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
  454. extern void perf_pmu_unregister(struct pmu *pmu);
  455. extern int perf_num_counters(void);
  456. extern const char *perf_pmu_name(void);
  457. extern void __perf_event_task_sched_in(struct task_struct *prev,
  458. struct task_struct *task);
  459. extern void __perf_event_task_sched_out(struct task_struct *prev,
  460. struct task_struct *next);
  461. extern int perf_event_init_task(struct task_struct *child);
  462. extern void perf_event_exit_task(struct task_struct *child);
  463. extern void perf_event_free_task(struct task_struct *task);
  464. extern void perf_event_delayed_put(struct task_struct *task);
  465. extern void perf_event_print_debug(void);
  466. extern void perf_pmu_disable(struct pmu *pmu);
  467. extern void perf_pmu_enable(struct pmu *pmu);
  468. extern int perf_event_task_disable(void);
  469. extern int perf_event_task_enable(void);
  470. extern int perf_event_refresh(struct perf_event *event, int refresh);
  471. extern void perf_event_update_userpage(struct perf_event *event);
  472. extern int perf_event_release_kernel(struct perf_event *event);
  473. extern struct perf_event *
  474. perf_event_create_kernel_counter(struct perf_event_attr *attr,
  475. int cpu,
  476. struct task_struct *task,
  477. perf_overflow_handler_t callback,
  478. void *context);
  479. extern void perf_pmu_migrate_context(struct pmu *pmu,
  480. int src_cpu, int dst_cpu);
  481. extern u64 perf_event_read_value(struct perf_event *event,
  482. u64 *enabled, u64 *running);
  483. struct perf_sample_data {
  484. u64 type;
  485. u64 ip;
  486. struct {
  487. u32 pid;
  488. u32 tid;
  489. } tid_entry;
  490. u64 time;
  491. u64 addr;
  492. u64 id;
  493. u64 stream_id;
  494. struct {
  495. u32 cpu;
  496. u32 reserved;
  497. } cpu_entry;
  498. u64 period;
  499. union perf_mem_data_src data_src;
  500. struct perf_callchain_entry *callchain;
  501. struct perf_raw_record *raw;
  502. struct perf_branch_stack *br_stack;
  503. struct perf_regs_user regs_user;
  504. u64 stack_user_size;
  505. u64 weight;
  506. };
  507. static inline void perf_sample_data_init(struct perf_sample_data *data,
  508. u64 addr, u64 period)
  509. {
  510. /* remaining struct members initialized in perf_prepare_sample() */
  511. data->addr = addr;
  512. data->raw = NULL;
  513. data->br_stack = NULL;
  514. data->period = period;
  515. data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
  516. data->regs_user.regs = NULL;
  517. data->stack_user_size = 0;
  518. data->weight = 0;
  519. data->data_src.val = 0;
  520. }
  521. extern void perf_output_sample(struct perf_output_handle *handle,
  522. struct perf_event_header *header,
  523. struct perf_sample_data *data,
  524. struct perf_event *event);
  525. extern void perf_prepare_sample(struct perf_event_header *header,
  526. struct perf_sample_data *data,
  527. struct perf_event *event,
  528. struct pt_regs *regs);
  529. extern int perf_event_overflow(struct perf_event *event,
  530. struct perf_sample_data *data,
  531. struct pt_regs *regs);
  532. static inline bool is_sampling_event(struct perf_event *event)
  533. {
  534. return event->attr.sample_period != 0;
  535. }
  536. /*
  537. * Return 1 for a software event, 0 for a hardware event
  538. */
  539. static inline int is_software_event(struct perf_event *event)
  540. {
  541. return event->pmu->task_ctx_nr == perf_sw_context;
  542. }
  543. extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
  544. extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
  545. #ifndef perf_arch_fetch_caller_regs
  546. static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
  547. #endif
  548. /*
  549. * Take a snapshot of the regs. Skip ip and frame pointer to
  550. * the nth caller. We only need a few of the regs:
  551. * - ip for PERF_SAMPLE_IP
  552. * - cs for user_mode() tests
  553. * - bp for callchains
  554. * - eflags, for future purposes, just in case
  555. */
  556. static inline void perf_fetch_caller_regs(struct pt_regs *regs)
  557. {
  558. memset(regs, 0, sizeof(*regs));
  559. perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
  560. }
  561. static __always_inline void
  562. perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
  563. {
  564. struct pt_regs hot_regs;
  565. if (static_key_false(&perf_swevent_enabled[event_id])) {
  566. if (!regs) {
  567. perf_fetch_caller_regs(&hot_regs);
  568. regs = &hot_regs;
  569. }
  570. __perf_sw_event(event_id, nr, regs, addr);
  571. }
  572. }
  573. extern struct static_key_deferred perf_sched_events;
  574. static inline void perf_event_task_sched_in(struct task_struct *prev,
  575. struct task_struct *task)
  576. {
  577. if (static_key_false(&perf_sched_events.key))
  578. __perf_event_task_sched_in(prev, task);
  579. }
  580. static inline void perf_event_task_sched_out(struct task_struct *prev,
  581. struct task_struct *next)
  582. {
  583. perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
  584. if (static_key_false(&perf_sched_events.key))
  585. __perf_event_task_sched_out(prev, next);
  586. }
  587. extern void perf_event_mmap(struct vm_area_struct *vma);
  588. extern struct perf_guest_info_callbacks *perf_guest_cbs;
  589. extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
  590. extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
  591. extern void perf_event_comm(struct task_struct *tsk);
  592. extern void perf_event_fork(struct task_struct *tsk);
  593. /* Callchains */
  594. DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
  595. extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
  596. extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
  597. static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
  598. {
  599. if (entry->nr < PERF_MAX_STACK_DEPTH)
  600. entry->ip[entry->nr++] = ip;
  601. }
  602. extern int sysctl_perf_event_paranoid;
  603. extern int sysctl_perf_event_mlock;
  604. extern int sysctl_perf_event_sample_rate;
  605. extern int perf_proc_update_handler(struct ctl_table *table, int write,
  606. void __user *buffer, size_t *lenp,
  607. loff_t *ppos);
  608. static inline bool perf_paranoid_tracepoint_raw(void)
  609. {
  610. return sysctl_perf_event_paranoid > -1;
  611. }
  612. static inline bool perf_paranoid_cpu(void)
  613. {
  614. return sysctl_perf_event_paranoid > 0;
  615. }
  616. static inline bool perf_paranoid_kernel(void)
  617. {
  618. return sysctl_perf_event_paranoid > 1;
  619. }
  620. extern void perf_event_init(void);
  621. extern void perf_tp_event(u64 addr, u64 count, void *record,
  622. int entry_size, struct pt_regs *regs,
  623. struct hlist_head *head, int rctx,
  624. struct task_struct *task);
  625. extern void perf_bp_event(struct perf_event *event, void *data);
  626. #ifndef perf_misc_flags
  627. # define perf_misc_flags(regs) \
  628. (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
  629. # define perf_instruction_pointer(regs) instruction_pointer(regs)
  630. #endif
  631. static inline bool has_branch_stack(struct perf_event *event)
  632. {
  633. return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
  634. }
  635. extern int perf_output_begin(struct perf_output_handle *handle,
  636. struct perf_event *event, unsigned int size);
  637. extern void perf_output_end(struct perf_output_handle *handle);
  638. extern unsigned int perf_output_copy(struct perf_output_handle *handle,
  639. const void *buf, unsigned int len);
  640. extern unsigned int perf_output_skip(struct perf_output_handle *handle,
  641. unsigned int len);
  642. extern int perf_swevent_get_recursion_context(void);
  643. extern void perf_swevent_put_recursion_context(int rctx);
  644. extern u64 perf_swevent_set_period(struct perf_event *event);
  645. extern void perf_event_enable(struct perf_event *event);
  646. extern void perf_event_disable(struct perf_event *event);
  647. extern int __perf_event_disable(void *info);
  648. extern void perf_event_task_tick(void);
  649. #else
  650. static inline void
  651. perf_event_task_sched_in(struct task_struct *prev,
  652. struct task_struct *task) { }
  653. static inline void
  654. perf_event_task_sched_out(struct task_struct *prev,
  655. struct task_struct *next) { }
  656. static inline int perf_event_init_task(struct task_struct *child) { return 0; }
  657. static inline void perf_event_exit_task(struct task_struct *child) { }
  658. static inline void perf_event_free_task(struct task_struct *task) { }
  659. static inline void perf_event_delayed_put(struct task_struct *task) { }
  660. static inline void perf_event_print_debug(void) { }
  661. static inline int perf_event_task_disable(void) { return -EINVAL; }
  662. static inline int perf_event_task_enable(void) { return -EINVAL; }
  663. static inline int perf_event_refresh(struct perf_event *event, int refresh)
  664. {
  665. return -EINVAL;
  666. }
  667. static inline void
  668. perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
  669. static inline void
  670. perf_bp_event(struct perf_event *event, void *data) { }
  671. static inline int perf_register_guest_info_callbacks
  672. (struct perf_guest_info_callbacks *callbacks) { return 0; }
  673. static inline int perf_unregister_guest_info_callbacks
  674. (struct perf_guest_info_callbacks *callbacks) { return 0; }
  675. static inline void perf_event_mmap(struct vm_area_struct *vma) { }
  676. static inline void perf_event_comm(struct task_struct *tsk) { }
  677. static inline void perf_event_fork(struct task_struct *tsk) { }
  678. static inline void perf_event_init(void) { }
  679. static inline int perf_swevent_get_recursion_context(void) { return -1; }
  680. static inline void perf_swevent_put_recursion_context(int rctx) { }
  681. static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
  682. static inline void perf_event_enable(struct perf_event *event) { }
  683. static inline void perf_event_disable(struct perf_event *event) { }
  684. static inline int __perf_event_disable(void *info) { return -1; }
  685. static inline void perf_event_task_tick(void) { }
  686. #endif
  687. #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
  688. extern bool perf_event_can_stop_tick(void);
  689. #else
  690. static inline bool perf_event_can_stop_tick(void) { return true; }
  691. #endif
  692. #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
  693. extern void perf_restore_debug_store(void);
  694. #else
  695. static inline void perf_restore_debug_store(void) { }
  696. #endif
  697. #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
  698. /*
  699. * This has to have a higher priority than migration_notifier in sched.c.
  700. */
  701. #define perf_cpu_notifier(fn) \
  702. do { \
  703. static struct notifier_block fn##_nb __cpuinitdata = \
  704. { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
  705. unsigned long cpu = smp_processor_id(); \
  706. unsigned long flags; \
  707. fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
  708. (void *)(unsigned long)cpu); \
  709. local_irq_save(flags); \
  710. fn(&fn##_nb, (unsigned long)CPU_STARTING, \
  711. (void *)(unsigned long)cpu); \
  712. local_irq_restore(flags); \
  713. fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
  714. (void *)(unsigned long)cpu); \
  715. register_cpu_notifier(&fn##_nb); \
  716. } while (0)
  717. struct perf_pmu_events_attr {
  718. struct device_attribute attr;
  719. u64 id;
  720. const char *event_str;
  721. };
  722. #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
  723. static struct perf_pmu_events_attr _var = { \
  724. .attr = __ATTR(_name, 0444, _show, NULL), \
  725. .id = _id, \
  726. };
  727. #define PMU_FORMAT_ATTR(_name, _format) \
  728. static ssize_t \
  729. _name##_show(struct device *dev, \
  730. struct device_attribute *attr, \
  731. char *page) \
  732. { \
  733. BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
  734. return sprintf(page, _format "\n"); \
  735. } \
  736. \
  737. static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
  738. #endif /* _LINUX_PERF_EVENT_H */