fec.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731
  1. /*
  2. * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
  3. * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
  4. *
  5. * Right now, I am very wasteful with the buffers. I allocate memory
  6. * pages and then divide them into 2K frame buffers. This way I know I
  7. * have buffers large enough to hold one frame within one buffer descriptor.
  8. * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  9. * will be much more memory efficient and will easily handle lots of
  10. * small packets.
  11. *
  12. * Much better multiple PHY support by Magnus Damm.
  13. * Copyright (c) 2000 Ericsson Radio Systems AB.
  14. *
  15. * Support for FEC controller of ColdFire processors.
  16. * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  17. *
  18. * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  19. * Copyright (c) 2004-2006 Macq Electronique SA.
  20. *
  21. * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  22. */
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/string.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/errno.h>
  28. #include <linux/ioport.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/pci.h>
  32. #include <linux/init.h>
  33. #include <linux/delay.h>
  34. #include <linux/netdevice.h>
  35. #include <linux/etherdevice.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/spinlock.h>
  38. #include <linux/workqueue.h>
  39. #include <linux/bitops.h>
  40. #include <linux/io.h>
  41. #include <linux/irq.h>
  42. #include <linux/clk.h>
  43. #include <linux/platform_device.h>
  44. #include <linux/phy.h>
  45. #include <linux/fec.h>
  46. #include <linux/of.h>
  47. #include <linux/of_device.h>
  48. #include <linux/of_gpio.h>
  49. #include <linux/of_net.h>
  50. #include <asm/cacheflush.h>
  51. #ifndef CONFIG_ARM
  52. #include <asm/coldfire.h>
  53. #include <asm/mcfsim.h>
  54. #endif
  55. #include "fec.h"
  56. #if defined(CONFIG_ARM)
  57. #define FEC_ALIGNMENT 0xf
  58. #else
  59. #define FEC_ALIGNMENT 0x3
  60. #endif
  61. #define DRIVER_NAME "fec"
  62. /* Controller is ENET-MAC */
  63. #define FEC_QUIRK_ENET_MAC (1 << 0)
  64. /* Controller needs driver to swap frame */
  65. #define FEC_QUIRK_SWAP_FRAME (1 << 1)
  66. /* Controller uses gasket */
  67. #define FEC_QUIRK_USE_GASKET (1 << 2)
  68. /* Controller has GBIT support */
  69. #define FEC_QUIRK_HAS_GBIT (1 << 3)
  70. static struct platform_device_id fec_devtype[] = {
  71. {
  72. /* keep it for coldfire */
  73. .name = DRIVER_NAME,
  74. .driver_data = 0,
  75. }, {
  76. .name = "imx25-fec",
  77. .driver_data = FEC_QUIRK_USE_GASKET,
  78. }, {
  79. .name = "imx27-fec",
  80. .driver_data = 0,
  81. }, {
  82. .name = "imx28-fec",
  83. .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
  84. }, {
  85. .name = "imx6q-fec",
  86. .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT,
  87. }, {
  88. /* sentinel */
  89. }
  90. };
  91. MODULE_DEVICE_TABLE(platform, fec_devtype);
  92. enum imx_fec_type {
  93. IMX25_FEC = 1, /* runs on i.mx25/50/53 */
  94. IMX27_FEC, /* runs on i.mx27/35/51 */
  95. IMX28_FEC,
  96. IMX6Q_FEC,
  97. };
  98. static const struct of_device_id fec_dt_ids[] = {
  99. { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
  100. { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
  101. { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
  102. { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
  103. { /* sentinel */ }
  104. };
  105. MODULE_DEVICE_TABLE(of, fec_dt_ids);
  106. static unsigned char macaddr[ETH_ALEN];
  107. module_param_array(macaddr, byte, NULL, 0);
  108. MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
  109. #if defined(CONFIG_M5272)
  110. /*
  111. * Some hardware gets it MAC address out of local flash memory.
  112. * if this is non-zero then assume it is the address to get MAC from.
  113. */
  114. #if defined(CONFIG_NETtel)
  115. #define FEC_FLASHMAC 0xf0006006
  116. #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
  117. #define FEC_FLASHMAC 0xf0006000
  118. #elif defined(CONFIG_CANCam)
  119. #define FEC_FLASHMAC 0xf0020000
  120. #elif defined (CONFIG_M5272C3)
  121. #define FEC_FLASHMAC (0xffe04000 + 4)
  122. #elif defined(CONFIG_MOD5272)
  123. #define FEC_FLASHMAC 0xffc0406b
  124. #else
  125. #define FEC_FLASHMAC 0
  126. #endif
  127. #endif /* CONFIG_M5272 */
  128. /* The number of Tx and Rx buffers. These are allocated from the page
  129. * pool. The code may assume these are power of two, so it it best
  130. * to keep them that size.
  131. * We don't need to allocate pages for the transmitter. We just use
  132. * the skbuffer directly.
  133. */
  134. #define FEC_ENET_RX_PAGES 8
  135. #define FEC_ENET_RX_FRSIZE 2048
  136. #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
  137. #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
  138. #define FEC_ENET_TX_FRSIZE 2048
  139. #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
  140. #define TX_RING_SIZE 16 /* Must be power of two */
  141. #define TX_RING_MOD_MASK 15 /* for this to work */
  142. #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
  143. #error "FEC: descriptor ring size constants too large"
  144. #endif
  145. /* Interrupt events/masks. */
  146. #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
  147. #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
  148. #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
  149. #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
  150. #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
  151. #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
  152. #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
  153. #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
  154. #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
  155. #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
  156. #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
  157. /* The FEC stores dest/src/type, data, and checksum for receive packets.
  158. */
  159. #define PKT_MAXBUF_SIZE 1518
  160. #define PKT_MINBUF_SIZE 64
  161. #define PKT_MAXBLR_SIZE 1520
  162. /* This device has up to three irqs on some platforms */
  163. #define FEC_IRQ_NUM 3
  164. /*
  165. * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
  166. * size bits. Other FEC hardware does not, so we need to take that into
  167. * account when setting it.
  168. */
  169. #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
  170. defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
  171. #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
  172. #else
  173. #define OPT_FRAME_SIZE 0
  174. #endif
  175. /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
  176. * tx_bd_base always point to the base of the buffer descriptors. The
  177. * cur_rx and cur_tx point to the currently available buffer.
  178. * The dirty_tx tracks the current buffer that is being sent by the
  179. * controller. The cur_tx and dirty_tx are equal under both completely
  180. * empty and completely full conditions. The empty/ready indicator in
  181. * the buffer descriptor determines the actual condition.
  182. */
  183. struct fec_enet_private {
  184. /* Hardware registers of the FEC device */
  185. void __iomem *hwp;
  186. struct net_device *netdev;
  187. struct clk *clk;
  188. /* The saved address of a sent-in-place packet/buffer, for skfree(). */
  189. unsigned char *tx_bounce[TX_RING_SIZE];
  190. struct sk_buff* tx_skbuff[TX_RING_SIZE];
  191. struct sk_buff* rx_skbuff[RX_RING_SIZE];
  192. ushort skb_cur;
  193. ushort skb_dirty;
  194. /* CPM dual port RAM relative addresses */
  195. dma_addr_t bd_dma;
  196. /* Address of Rx and Tx buffers */
  197. struct bufdesc *rx_bd_base;
  198. struct bufdesc *tx_bd_base;
  199. /* The next free ring entry */
  200. struct bufdesc *cur_rx, *cur_tx;
  201. /* The ring entries to be free()ed */
  202. struct bufdesc *dirty_tx;
  203. uint tx_full;
  204. /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
  205. spinlock_t hw_lock;
  206. struct platform_device *pdev;
  207. int opened;
  208. int dev_id;
  209. /* Phylib and MDIO interface */
  210. struct mii_bus *mii_bus;
  211. struct phy_device *phy_dev;
  212. int mii_timeout;
  213. uint phy_speed;
  214. phy_interface_t phy_interface;
  215. int link;
  216. int full_duplex;
  217. struct completion mdio_done;
  218. int irq[FEC_IRQ_NUM];
  219. };
  220. /* FEC MII MMFR bits definition */
  221. #define FEC_MMFR_ST (1 << 30)
  222. #define FEC_MMFR_OP_READ (2 << 28)
  223. #define FEC_MMFR_OP_WRITE (1 << 28)
  224. #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
  225. #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
  226. #define FEC_MMFR_TA (2 << 16)
  227. #define FEC_MMFR_DATA(v) (v & 0xffff)
  228. #define FEC_MII_TIMEOUT 1000 /* us */
  229. /* Transmitter timeout */
  230. #define TX_TIMEOUT (2 * HZ)
  231. static void *swap_buffer(void *bufaddr, int len)
  232. {
  233. int i;
  234. unsigned int *buf = bufaddr;
  235. for (i = 0; i < (len + 3) / 4; i++, buf++)
  236. *buf = cpu_to_be32(*buf);
  237. return bufaddr;
  238. }
  239. static netdev_tx_t
  240. fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  241. {
  242. struct fec_enet_private *fep = netdev_priv(ndev);
  243. const struct platform_device_id *id_entry =
  244. platform_get_device_id(fep->pdev);
  245. struct bufdesc *bdp;
  246. void *bufaddr;
  247. unsigned short status;
  248. unsigned long flags;
  249. if (!fep->link) {
  250. /* Link is down or autonegotiation is in progress. */
  251. return NETDEV_TX_BUSY;
  252. }
  253. spin_lock_irqsave(&fep->hw_lock, flags);
  254. /* Fill in a Tx ring entry */
  255. bdp = fep->cur_tx;
  256. status = bdp->cbd_sc;
  257. if (status & BD_ENET_TX_READY) {
  258. /* Ooops. All transmit buffers are full. Bail out.
  259. * This should not happen, since ndev->tbusy should be set.
  260. */
  261. printk("%s: tx queue full!.\n", ndev->name);
  262. spin_unlock_irqrestore(&fep->hw_lock, flags);
  263. return NETDEV_TX_BUSY;
  264. }
  265. /* Clear all of the status flags */
  266. status &= ~BD_ENET_TX_STATS;
  267. /* Set buffer length and buffer pointer */
  268. bufaddr = skb->data;
  269. bdp->cbd_datlen = skb->len;
  270. /*
  271. * On some FEC implementations data must be aligned on
  272. * 4-byte boundaries. Use bounce buffers to copy data
  273. * and get it aligned. Ugh.
  274. */
  275. if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
  276. unsigned int index;
  277. index = bdp - fep->tx_bd_base;
  278. memcpy(fep->tx_bounce[index], skb->data, skb->len);
  279. bufaddr = fep->tx_bounce[index];
  280. }
  281. /*
  282. * Some design made an incorrect assumption on endian mode of
  283. * the system that it's running on. As the result, driver has to
  284. * swap every frame going to and coming from the controller.
  285. */
  286. if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
  287. swap_buffer(bufaddr, skb->len);
  288. /* Save skb pointer */
  289. fep->tx_skbuff[fep->skb_cur] = skb;
  290. ndev->stats.tx_bytes += skb->len;
  291. fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
  292. /* Push the data cache so the CPM does not get stale memory
  293. * data.
  294. */
  295. bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
  296. FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
  297. /* Send it on its way. Tell FEC it's ready, interrupt when done,
  298. * it's the last BD of the frame, and to put the CRC on the end.
  299. */
  300. status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
  301. | BD_ENET_TX_LAST | BD_ENET_TX_TC);
  302. bdp->cbd_sc = status;
  303. /* Trigger transmission start */
  304. writel(0, fep->hwp + FEC_X_DES_ACTIVE);
  305. /* If this was the last BD in the ring, start at the beginning again. */
  306. if (status & BD_ENET_TX_WRAP)
  307. bdp = fep->tx_bd_base;
  308. else
  309. bdp++;
  310. if (bdp == fep->dirty_tx) {
  311. fep->tx_full = 1;
  312. netif_stop_queue(ndev);
  313. }
  314. fep->cur_tx = bdp;
  315. skb_tx_timestamp(skb);
  316. spin_unlock_irqrestore(&fep->hw_lock, flags);
  317. return NETDEV_TX_OK;
  318. }
  319. /* This function is called to start or restart the FEC during a link
  320. * change. This only happens when switching between half and full
  321. * duplex.
  322. */
  323. static void
  324. fec_restart(struct net_device *ndev, int duplex)
  325. {
  326. struct fec_enet_private *fep = netdev_priv(ndev);
  327. const struct platform_device_id *id_entry =
  328. platform_get_device_id(fep->pdev);
  329. int i;
  330. u32 temp_mac[2];
  331. u32 rcntl = OPT_FRAME_SIZE | 0x04;
  332. u32 ecntl = 0x2; /* ETHEREN */
  333. /* Whack a reset. We should wait for this. */
  334. writel(1, fep->hwp + FEC_ECNTRL);
  335. udelay(10);
  336. /*
  337. * enet-mac reset will reset mac address registers too,
  338. * so need to reconfigure it.
  339. */
  340. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
  341. memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
  342. writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
  343. writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
  344. }
  345. /* Clear any outstanding interrupt. */
  346. writel(0xffc00000, fep->hwp + FEC_IEVENT);
  347. /* Reset all multicast. */
  348. writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  349. writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  350. #ifndef CONFIG_M5272
  351. writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
  352. writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
  353. #endif
  354. /* Set maximum receive buffer size. */
  355. writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
  356. /* Set receive and transmit descriptor base. */
  357. writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
  358. writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
  359. fep->hwp + FEC_X_DES_START);
  360. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  361. fep->cur_rx = fep->rx_bd_base;
  362. /* Reset SKB transmit buffers. */
  363. fep->skb_cur = fep->skb_dirty = 0;
  364. for (i = 0; i <= TX_RING_MOD_MASK; i++) {
  365. if (fep->tx_skbuff[i]) {
  366. dev_kfree_skb_any(fep->tx_skbuff[i]);
  367. fep->tx_skbuff[i] = NULL;
  368. }
  369. }
  370. /* Enable MII mode */
  371. if (duplex) {
  372. /* FD enable */
  373. writel(0x04, fep->hwp + FEC_X_CNTRL);
  374. } else {
  375. /* No Rcv on Xmit */
  376. rcntl |= 0x02;
  377. writel(0x0, fep->hwp + FEC_X_CNTRL);
  378. }
  379. fep->full_duplex = duplex;
  380. /* Set MII speed */
  381. writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
  382. /*
  383. * The phy interface and speed need to get configured
  384. * differently on enet-mac.
  385. */
  386. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
  387. /* Enable flow control and length check */
  388. rcntl |= 0x40000000 | 0x00000020;
  389. /* RGMII, RMII or MII */
  390. if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
  391. rcntl |= (1 << 6);
  392. else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
  393. rcntl |= (1 << 8);
  394. else
  395. rcntl &= ~(1 << 8);
  396. /* 1G, 100M or 10M */
  397. if (fep->phy_dev) {
  398. if (fep->phy_dev->speed == SPEED_1000)
  399. ecntl |= (1 << 5);
  400. else if (fep->phy_dev->speed == SPEED_100)
  401. rcntl &= ~(1 << 9);
  402. else
  403. rcntl |= (1 << 9);
  404. }
  405. } else {
  406. #ifdef FEC_MIIGSK_ENR
  407. if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
  408. /* disable the gasket and wait */
  409. writel(0, fep->hwp + FEC_MIIGSK_ENR);
  410. while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
  411. udelay(1);
  412. /*
  413. * configure the gasket:
  414. * RMII, 50 MHz, no loopback, no echo
  415. * MII, 25 MHz, no loopback, no echo
  416. */
  417. writel((fep->phy_interface == PHY_INTERFACE_MODE_RMII) ?
  418. 1 : 0, fep->hwp + FEC_MIIGSK_CFGR);
  419. /* re-enable the gasket */
  420. writel(2, fep->hwp + FEC_MIIGSK_ENR);
  421. }
  422. #endif
  423. }
  424. writel(rcntl, fep->hwp + FEC_R_CNTRL);
  425. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
  426. /* enable ENET endian swap */
  427. ecntl |= (1 << 8);
  428. /* enable ENET store and forward mode */
  429. writel(1 << 8, fep->hwp + FEC_X_WMRK);
  430. }
  431. /* And last, enable the transmit and receive processing */
  432. writel(ecntl, fep->hwp + FEC_ECNTRL);
  433. writel(0, fep->hwp + FEC_R_DES_ACTIVE);
  434. /* Enable interrupts we wish to service */
  435. writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
  436. }
  437. static void
  438. fec_stop(struct net_device *ndev)
  439. {
  440. struct fec_enet_private *fep = netdev_priv(ndev);
  441. const struct platform_device_id *id_entry =
  442. platform_get_device_id(fep->pdev);
  443. /* We cannot expect a graceful transmit stop without link !!! */
  444. if (fep->link) {
  445. writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
  446. udelay(10);
  447. if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
  448. printk("fec_stop : Graceful transmit stop did not complete !\n");
  449. }
  450. /* Whack a reset. We should wait for this. */
  451. writel(1, fep->hwp + FEC_ECNTRL);
  452. udelay(10);
  453. writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
  454. writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
  455. /* We have to keep ENET enabled to have MII interrupt stay working */
  456. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
  457. writel(2, fep->hwp + FEC_ECNTRL);
  458. }
  459. static void
  460. fec_timeout(struct net_device *ndev)
  461. {
  462. struct fec_enet_private *fep = netdev_priv(ndev);
  463. ndev->stats.tx_errors++;
  464. fec_restart(ndev, fep->full_duplex);
  465. netif_wake_queue(ndev);
  466. }
  467. static void
  468. fec_enet_tx(struct net_device *ndev)
  469. {
  470. struct fec_enet_private *fep;
  471. struct bufdesc *bdp;
  472. unsigned short status;
  473. struct sk_buff *skb;
  474. fep = netdev_priv(ndev);
  475. spin_lock(&fep->hw_lock);
  476. bdp = fep->dirty_tx;
  477. while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
  478. if (bdp == fep->cur_tx && fep->tx_full == 0)
  479. break;
  480. dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
  481. FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
  482. bdp->cbd_bufaddr = 0;
  483. skb = fep->tx_skbuff[fep->skb_dirty];
  484. /* Check for errors. */
  485. if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  486. BD_ENET_TX_RL | BD_ENET_TX_UN |
  487. BD_ENET_TX_CSL)) {
  488. ndev->stats.tx_errors++;
  489. if (status & BD_ENET_TX_HB) /* No heartbeat */
  490. ndev->stats.tx_heartbeat_errors++;
  491. if (status & BD_ENET_TX_LC) /* Late collision */
  492. ndev->stats.tx_window_errors++;
  493. if (status & BD_ENET_TX_RL) /* Retrans limit */
  494. ndev->stats.tx_aborted_errors++;
  495. if (status & BD_ENET_TX_UN) /* Underrun */
  496. ndev->stats.tx_fifo_errors++;
  497. if (status & BD_ENET_TX_CSL) /* Carrier lost */
  498. ndev->stats.tx_carrier_errors++;
  499. } else {
  500. ndev->stats.tx_packets++;
  501. }
  502. if (status & BD_ENET_TX_READY)
  503. printk("HEY! Enet xmit interrupt and TX_READY.\n");
  504. /* Deferred means some collisions occurred during transmit,
  505. * but we eventually sent the packet OK.
  506. */
  507. if (status & BD_ENET_TX_DEF)
  508. ndev->stats.collisions++;
  509. /* Free the sk buffer associated with this last transmit */
  510. dev_kfree_skb_any(skb);
  511. fep->tx_skbuff[fep->skb_dirty] = NULL;
  512. fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
  513. /* Update pointer to next buffer descriptor to be transmitted */
  514. if (status & BD_ENET_TX_WRAP)
  515. bdp = fep->tx_bd_base;
  516. else
  517. bdp++;
  518. /* Since we have freed up a buffer, the ring is no longer full
  519. */
  520. if (fep->tx_full) {
  521. fep->tx_full = 0;
  522. if (netif_queue_stopped(ndev))
  523. netif_wake_queue(ndev);
  524. }
  525. }
  526. fep->dirty_tx = bdp;
  527. spin_unlock(&fep->hw_lock);
  528. }
  529. /* During a receive, the cur_rx points to the current incoming buffer.
  530. * When we update through the ring, if the next incoming buffer has
  531. * not been given to the system, we just set the empty indicator,
  532. * effectively tossing the packet.
  533. */
  534. static void
  535. fec_enet_rx(struct net_device *ndev)
  536. {
  537. struct fec_enet_private *fep = netdev_priv(ndev);
  538. const struct platform_device_id *id_entry =
  539. platform_get_device_id(fep->pdev);
  540. struct bufdesc *bdp;
  541. unsigned short status;
  542. struct sk_buff *skb;
  543. ushort pkt_len;
  544. __u8 *data;
  545. #ifdef CONFIG_M532x
  546. flush_cache_all();
  547. #endif
  548. spin_lock(&fep->hw_lock);
  549. /* First, grab all of the stats for the incoming packet.
  550. * These get messed up if we get called due to a busy condition.
  551. */
  552. bdp = fep->cur_rx;
  553. while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
  554. /* Since we have allocated space to hold a complete frame,
  555. * the last indicator should be set.
  556. */
  557. if ((status & BD_ENET_RX_LAST) == 0)
  558. printk("FEC ENET: rcv is not +last\n");
  559. if (!fep->opened)
  560. goto rx_processing_done;
  561. /* Check for errors. */
  562. if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
  563. BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  564. ndev->stats.rx_errors++;
  565. if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
  566. /* Frame too long or too short. */
  567. ndev->stats.rx_length_errors++;
  568. }
  569. if (status & BD_ENET_RX_NO) /* Frame alignment */
  570. ndev->stats.rx_frame_errors++;
  571. if (status & BD_ENET_RX_CR) /* CRC Error */
  572. ndev->stats.rx_crc_errors++;
  573. if (status & BD_ENET_RX_OV) /* FIFO overrun */
  574. ndev->stats.rx_fifo_errors++;
  575. }
  576. /* Report late collisions as a frame error.
  577. * On this error, the BD is closed, but we don't know what we
  578. * have in the buffer. So, just drop this frame on the floor.
  579. */
  580. if (status & BD_ENET_RX_CL) {
  581. ndev->stats.rx_errors++;
  582. ndev->stats.rx_frame_errors++;
  583. goto rx_processing_done;
  584. }
  585. /* Process the incoming frame. */
  586. ndev->stats.rx_packets++;
  587. pkt_len = bdp->cbd_datlen;
  588. ndev->stats.rx_bytes += pkt_len;
  589. data = (__u8*)__va(bdp->cbd_bufaddr);
  590. dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
  591. FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
  592. if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
  593. swap_buffer(data, pkt_len);
  594. /* This does 16 byte alignment, exactly what we need.
  595. * The packet length includes FCS, but we don't want to
  596. * include that when passing upstream as it messes up
  597. * bridging applications.
  598. */
  599. skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
  600. if (unlikely(!skb)) {
  601. printk("%s: Memory squeeze, dropping packet.\n",
  602. ndev->name);
  603. ndev->stats.rx_dropped++;
  604. } else {
  605. skb_reserve(skb, NET_IP_ALIGN);
  606. skb_put(skb, pkt_len - 4); /* Make room */
  607. skb_copy_to_linear_data(skb, data, pkt_len - 4);
  608. skb->protocol = eth_type_trans(skb, ndev);
  609. if (!skb_defer_rx_timestamp(skb))
  610. netif_rx(skb);
  611. }
  612. bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
  613. FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
  614. rx_processing_done:
  615. /* Clear the status flags for this buffer */
  616. status &= ~BD_ENET_RX_STATS;
  617. /* Mark the buffer empty */
  618. status |= BD_ENET_RX_EMPTY;
  619. bdp->cbd_sc = status;
  620. /* Update BD pointer to next entry */
  621. if (status & BD_ENET_RX_WRAP)
  622. bdp = fep->rx_bd_base;
  623. else
  624. bdp++;
  625. /* Doing this here will keep the FEC running while we process
  626. * incoming frames. On a heavily loaded network, we should be
  627. * able to keep up at the expense of system resources.
  628. */
  629. writel(0, fep->hwp + FEC_R_DES_ACTIVE);
  630. }
  631. fep->cur_rx = bdp;
  632. spin_unlock(&fep->hw_lock);
  633. }
  634. static irqreturn_t
  635. fec_enet_interrupt(int irq, void *dev_id)
  636. {
  637. struct net_device *ndev = dev_id;
  638. struct fec_enet_private *fep = netdev_priv(ndev);
  639. uint int_events;
  640. irqreturn_t ret = IRQ_NONE;
  641. do {
  642. int_events = readl(fep->hwp + FEC_IEVENT);
  643. writel(int_events, fep->hwp + FEC_IEVENT);
  644. if (int_events & FEC_ENET_RXF) {
  645. ret = IRQ_HANDLED;
  646. fec_enet_rx(ndev);
  647. }
  648. /* Transmit OK, or non-fatal error. Update the buffer
  649. * descriptors. FEC handles all errors, we just discover
  650. * them as part of the transmit process.
  651. */
  652. if (int_events & FEC_ENET_TXF) {
  653. ret = IRQ_HANDLED;
  654. fec_enet_tx(ndev);
  655. }
  656. if (int_events & FEC_ENET_MII) {
  657. ret = IRQ_HANDLED;
  658. complete(&fep->mdio_done);
  659. }
  660. } while (int_events);
  661. return ret;
  662. }
  663. /* ------------------------------------------------------------------------- */
  664. static void __inline__ fec_get_mac(struct net_device *ndev)
  665. {
  666. struct fec_enet_private *fep = netdev_priv(ndev);
  667. struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
  668. unsigned char *iap, tmpaddr[ETH_ALEN];
  669. /*
  670. * try to get mac address in following order:
  671. *
  672. * 1) module parameter via kernel command line in form
  673. * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
  674. */
  675. iap = macaddr;
  676. #ifdef CONFIG_OF
  677. /*
  678. * 2) from device tree data
  679. */
  680. if (!is_valid_ether_addr(iap)) {
  681. struct device_node *np = fep->pdev->dev.of_node;
  682. if (np) {
  683. const char *mac = of_get_mac_address(np);
  684. if (mac)
  685. iap = (unsigned char *) mac;
  686. }
  687. }
  688. #endif
  689. /*
  690. * 3) from flash or fuse (via platform data)
  691. */
  692. if (!is_valid_ether_addr(iap)) {
  693. #ifdef CONFIG_M5272
  694. if (FEC_FLASHMAC)
  695. iap = (unsigned char *)FEC_FLASHMAC;
  696. #else
  697. if (pdata)
  698. memcpy(iap, pdata->mac, ETH_ALEN);
  699. #endif
  700. }
  701. /*
  702. * 4) FEC mac registers set by bootloader
  703. */
  704. if (!is_valid_ether_addr(iap)) {
  705. *((unsigned long *) &tmpaddr[0]) =
  706. be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
  707. *((unsigned short *) &tmpaddr[4]) =
  708. be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
  709. iap = &tmpaddr[0];
  710. }
  711. memcpy(ndev->dev_addr, iap, ETH_ALEN);
  712. /* Adjust MAC if using macaddr */
  713. if (iap == macaddr)
  714. ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
  715. }
  716. /* ------------------------------------------------------------------------- */
  717. /*
  718. * Phy section
  719. */
  720. static void fec_enet_adjust_link(struct net_device *ndev)
  721. {
  722. struct fec_enet_private *fep = netdev_priv(ndev);
  723. struct phy_device *phy_dev = fep->phy_dev;
  724. unsigned long flags;
  725. int status_change = 0;
  726. spin_lock_irqsave(&fep->hw_lock, flags);
  727. /* Prevent a state halted on mii error */
  728. if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
  729. phy_dev->state = PHY_RESUMING;
  730. goto spin_unlock;
  731. }
  732. /* Duplex link change */
  733. if (phy_dev->link) {
  734. if (fep->full_duplex != phy_dev->duplex) {
  735. fec_restart(ndev, phy_dev->duplex);
  736. status_change = 1;
  737. }
  738. }
  739. /* Link on or off change */
  740. if (phy_dev->link != fep->link) {
  741. fep->link = phy_dev->link;
  742. if (phy_dev->link)
  743. fec_restart(ndev, phy_dev->duplex);
  744. else
  745. fec_stop(ndev);
  746. status_change = 1;
  747. }
  748. spin_unlock:
  749. spin_unlock_irqrestore(&fep->hw_lock, flags);
  750. if (status_change)
  751. phy_print_status(phy_dev);
  752. }
  753. static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
  754. {
  755. struct fec_enet_private *fep = bus->priv;
  756. unsigned long time_left;
  757. fep->mii_timeout = 0;
  758. init_completion(&fep->mdio_done);
  759. /* start a read op */
  760. writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
  761. FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
  762. FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
  763. /* wait for end of transfer */
  764. time_left = wait_for_completion_timeout(&fep->mdio_done,
  765. usecs_to_jiffies(FEC_MII_TIMEOUT));
  766. if (time_left == 0) {
  767. fep->mii_timeout = 1;
  768. printk(KERN_ERR "FEC: MDIO read timeout\n");
  769. return -ETIMEDOUT;
  770. }
  771. /* return value */
  772. return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
  773. }
  774. static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
  775. u16 value)
  776. {
  777. struct fec_enet_private *fep = bus->priv;
  778. unsigned long time_left;
  779. fep->mii_timeout = 0;
  780. init_completion(&fep->mdio_done);
  781. /* start a write op */
  782. writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
  783. FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
  784. FEC_MMFR_TA | FEC_MMFR_DATA(value),
  785. fep->hwp + FEC_MII_DATA);
  786. /* wait for end of transfer */
  787. time_left = wait_for_completion_timeout(&fep->mdio_done,
  788. usecs_to_jiffies(FEC_MII_TIMEOUT));
  789. if (time_left == 0) {
  790. fep->mii_timeout = 1;
  791. printk(KERN_ERR "FEC: MDIO write timeout\n");
  792. return -ETIMEDOUT;
  793. }
  794. return 0;
  795. }
  796. static int fec_enet_mdio_reset(struct mii_bus *bus)
  797. {
  798. return 0;
  799. }
  800. static int fec_enet_mii_probe(struct net_device *ndev)
  801. {
  802. struct fec_enet_private *fep = netdev_priv(ndev);
  803. const struct platform_device_id *id_entry =
  804. platform_get_device_id(fep->pdev);
  805. struct phy_device *phy_dev = NULL;
  806. char mdio_bus_id[MII_BUS_ID_SIZE];
  807. char phy_name[MII_BUS_ID_SIZE + 3];
  808. int phy_id;
  809. int dev_id = fep->dev_id;
  810. fep->phy_dev = NULL;
  811. /* check for attached phy */
  812. for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
  813. if ((fep->mii_bus->phy_mask & (1 << phy_id)))
  814. continue;
  815. if (fep->mii_bus->phy_map[phy_id] == NULL)
  816. continue;
  817. if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
  818. continue;
  819. if (dev_id--)
  820. continue;
  821. strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
  822. break;
  823. }
  824. if (phy_id >= PHY_MAX_ADDR) {
  825. printk(KERN_INFO "%s: no PHY, assuming direct connection "
  826. "to switch\n", ndev->name);
  827. strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
  828. phy_id = 0;
  829. }
  830. snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
  831. phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
  832. fep->phy_interface);
  833. if (IS_ERR(phy_dev)) {
  834. printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
  835. return PTR_ERR(phy_dev);
  836. }
  837. /* mask with MAC supported features */
  838. if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT)
  839. phy_dev->supported &= PHY_GBIT_FEATURES;
  840. else
  841. phy_dev->supported &= PHY_BASIC_FEATURES;
  842. phy_dev->advertising = phy_dev->supported;
  843. fep->phy_dev = phy_dev;
  844. fep->link = 0;
  845. fep->full_duplex = 0;
  846. printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
  847. "(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name,
  848. fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
  849. fep->phy_dev->irq);
  850. return 0;
  851. }
  852. static int fec_enet_mii_init(struct platform_device *pdev)
  853. {
  854. static struct mii_bus *fec0_mii_bus;
  855. struct net_device *ndev = platform_get_drvdata(pdev);
  856. struct fec_enet_private *fep = netdev_priv(ndev);
  857. const struct platform_device_id *id_entry =
  858. platform_get_device_id(fep->pdev);
  859. int err = -ENXIO, i;
  860. /*
  861. * The dual fec interfaces are not equivalent with enet-mac.
  862. * Here are the differences:
  863. *
  864. * - fec0 supports MII & RMII modes while fec1 only supports RMII
  865. * - fec0 acts as the 1588 time master while fec1 is slave
  866. * - external phys can only be configured by fec0
  867. *
  868. * That is to say fec1 can not work independently. It only works
  869. * when fec0 is working. The reason behind this design is that the
  870. * second interface is added primarily for Switch mode.
  871. *
  872. * Because of the last point above, both phys are attached on fec0
  873. * mdio interface in board design, and need to be configured by
  874. * fec0 mii_bus.
  875. */
  876. if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
  877. /* fec1 uses fec0 mii_bus */
  878. fep->mii_bus = fec0_mii_bus;
  879. return 0;
  880. }
  881. fep->mii_timeout = 0;
  882. /*
  883. * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
  884. *
  885. * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
  886. * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
  887. * Reference Manual has an error on this, and gets fixed on i.MX6Q
  888. * document.
  889. */
  890. fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000);
  891. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
  892. fep->phy_speed--;
  893. fep->phy_speed <<= 1;
  894. writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
  895. fep->mii_bus = mdiobus_alloc();
  896. if (fep->mii_bus == NULL) {
  897. err = -ENOMEM;
  898. goto err_out;
  899. }
  900. fep->mii_bus->name = "fec_enet_mii_bus";
  901. fep->mii_bus->read = fec_enet_mdio_read;
  902. fep->mii_bus->write = fec_enet_mdio_write;
  903. fep->mii_bus->reset = fec_enet_mdio_reset;
  904. snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", fep->dev_id + 1);
  905. fep->mii_bus->priv = fep;
  906. fep->mii_bus->parent = &pdev->dev;
  907. fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
  908. if (!fep->mii_bus->irq) {
  909. err = -ENOMEM;
  910. goto err_out_free_mdiobus;
  911. }
  912. for (i = 0; i < PHY_MAX_ADDR; i++)
  913. fep->mii_bus->irq[i] = PHY_POLL;
  914. if (mdiobus_register(fep->mii_bus))
  915. goto err_out_free_mdio_irq;
  916. /* save fec0 mii_bus */
  917. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
  918. fec0_mii_bus = fep->mii_bus;
  919. return 0;
  920. err_out_free_mdio_irq:
  921. kfree(fep->mii_bus->irq);
  922. err_out_free_mdiobus:
  923. mdiobus_free(fep->mii_bus);
  924. err_out:
  925. return err;
  926. }
  927. static void fec_enet_mii_remove(struct fec_enet_private *fep)
  928. {
  929. if (fep->phy_dev)
  930. phy_disconnect(fep->phy_dev);
  931. mdiobus_unregister(fep->mii_bus);
  932. kfree(fep->mii_bus->irq);
  933. mdiobus_free(fep->mii_bus);
  934. }
  935. static int fec_enet_get_settings(struct net_device *ndev,
  936. struct ethtool_cmd *cmd)
  937. {
  938. struct fec_enet_private *fep = netdev_priv(ndev);
  939. struct phy_device *phydev = fep->phy_dev;
  940. if (!phydev)
  941. return -ENODEV;
  942. return phy_ethtool_gset(phydev, cmd);
  943. }
  944. static int fec_enet_set_settings(struct net_device *ndev,
  945. struct ethtool_cmd *cmd)
  946. {
  947. struct fec_enet_private *fep = netdev_priv(ndev);
  948. struct phy_device *phydev = fep->phy_dev;
  949. if (!phydev)
  950. return -ENODEV;
  951. return phy_ethtool_sset(phydev, cmd);
  952. }
  953. static void fec_enet_get_drvinfo(struct net_device *ndev,
  954. struct ethtool_drvinfo *info)
  955. {
  956. struct fec_enet_private *fep = netdev_priv(ndev);
  957. strcpy(info->driver, fep->pdev->dev.driver->name);
  958. strcpy(info->version, "Revision: 1.0");
  959. strcpy(info->bus_info, dev_name(&ndev->dev));
  960. }
  961. static struct ethtool_ops fec_enet_ethtool_ops = {
  962. .get_settings = fec_enet_get_settings,
  963. .set_settings = fec_enet_set_settings,
  964. .get_drvinfo = fec_enet_get_drvinfo,
  965. .get_link = ethtool_op_get_link,
  966. };
  967. static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
  968. {
  969. struct fec_enet_private *fep = netdev_priv(ndev);
  970. struct phy_device *phydev = fep->phy_dev;
  971. if (!netif_running(ndev))
  972. return -EINVAL;
  973. if (!phydev)
  974. return -ENODEV;
  975. return phy_mii_ioctl(phydev, rq, cmd);
  976. }
  977. static void fec_enet_free_buffers(struct net_device *ndev)
  978. {
  979. struct fec_enet_private *fep = netdev_priv(ndev);
  980. int i;
  981. struct sk_buff *skb;
  982. struct bufdesc *bdp;
  983. bdp = fep->rx_bd_base;
  984. for (i = 0; i < RX_RING_SIZE; i++) {
  985. skb = fep->rx_skbuff[i];
  986. if (bdp->cbd_bufaddr)
  987. dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
  988. FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
  989. if (skb)
  990. dev_kfree_skb(skb);
  991. bdp++;
  992. }
  993. bdp = fep->tx_bd_base;
  994. for (i = 0; i < TX_RING_SIZE; i++)
  995. kfree(fep->tx_bounce[i]);
  996. }
  997. static int fec_enet_alloc_buffers(struct net_device *ndev)
  998. {
  999. struct fec_enet_private *fep = netdev_priv(ndev);
  1000. int i;
  1001. struct sk_buff *skb;
  1002. struct bufdesc *bdp;
  1003. bdp = fep->rx_bd_base;
  1004. for (i = 0; i < RX_RING_SIZE; i++) {
  1005. skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
  1006. if (!skb) {
  1007. fec_enet_free_buffers(ndev);
  1008. return -ENOMEM;
  1009. }
  1010. fep->rx_skbuff[i] = skb;
  1011. bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
  1012. FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
  1013. bdp->cbd_sc = BD_ENET_RX_EMPTY;
  1014. bdp++;
  1015. }
  1016. /* Set the last buffer to wrap. */
  1017. bdp--;
  1018. bdp->cbd_sc |= BD_SC_WRAP;
  1019. bdp = fep->tx_bd_base;
  1020. for (i = 0; i < TX_RING_SIZE; i++) {
  1021. fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
  1022. bdp->cbd_sc = 0;
  1023. bdp->cbd_bufaddr = 0;
  1024. bdp++;
  1025. }
  1026. /* Set the last buffer to wrap. */
  1027. bdp--;
  1028. bdp->cbd_sc |= BD_SC_WRAP;
  1029. return 0;
  1030. }
  1031. static int
  1032. fec_enet_open(struct net_device *ndev)
  1033. {
  1034. struct fec_enet_private *fep = netdev_priv(ndev);
  1035. int ret;
  1036. /* I should reset the ring buffers here, but I don't yet know
  1037. * a simple way to do that.
  1038. */
  1039. ret = fec_enet_alloc_buffers(ndev);
  1040. if (ret)
  1041. return ret;
  1042. /* Probe and connect to PHY when open the interface */
  1043. ret = fec_enet_mii_probe(ndev);
  1044. if (ret) {
  1045. fec_enet_free_buffers(ndev);
  1046. return ret;
  1047. }
  1048. phy_start(fep->phy_dev);
  1049. netif_start_queue(ndev);
  1050. fep->opened = 1;
  1051. return 0;
  1052. }
  1053. static int
  1054. fec_enet_close(struct net_device *ndev)
  1055. {
  1056. struct fec_enet_private *fep = netdev_priv(ndev);
  1057. /* Don't know what to do yet. */
  1058. fep->opened = 0;
  1059. netif_stop_queue(ndev);
  1060. fec_stop(ndev);
  1061. if (fep->phy_dev) {
  1062. phy_stop(fep->phy_dev);
  1063. phy_disconnect(fep->phy_dev);
  1064. }
  1065. fec_enet_free_buffers(ndev);
  1066. return 0;
  1067. }
  1068. /* Set or clear the multicast filter for this adaptor.
  1069. * Skeleton taken from sunlance driver.
  1070. * The CPM Ethernet implementation allows Multicast as well as individual
  1071. * MAC address filtering. Some of the drivers check to make sure it is
  1072. * a group multicast address, and discard those that are not. I guess I
  1073. * will do the same for now, but just remove the test if you want
  1074. * individual filtering as well (do the upper net layers want or support
  1075. * this kind of feature?).
  1076. */
  1077. #define HASH_BITS 6 /* #bits in hash */
  1078. #define CRC32_POLY 0xEDB88320
  1079. static void set_multicast_list(struct net_device *ndev)
  1080. {
  1081. struct fec_enet_private *fep = netdev_priv(ndev);
  1082. struct netdev_hw_addr *ha;
  1083. unsigned int i, bit, data, crc, tmp;
  1084. unsigned char hash;
  1085. if (ndev->flags & IFF_PROMISC) {
  1086. tmp = readl(fep->hwp + FEC_R_CNTRL);
  1087. tmp |= 0x8;
  1088. writel(tmp, fep->hwp + FEC_R_CNTRL);
  1089. return;
  1090. }
  1091. tmp = readl(fep->hwp + FEC_R_CNTRL);
  1092. tmp &= ~0x8;
  1093. writel(tmp, fep->hwp + FEC_R_CNTRL);
  1094. if (ndev->flags & IFF_ALLMULTI) {
  1095. /* Catch all multicast addresses, so set the
  1096. * filter to all 1's
  1097. */
  1098. writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  1099. writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  1100. return;
  1101. }
  1102. /* Clear filter and add the addresses in hash register
  1103. */
  1104. writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  1105. writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  1106. netdev_for_each_mc_addr(ha, ndev) {
  1107. /* calculate crc32 value of mac address */
  1108. crc = 0xffffffff;
  1109. for (i = 0; i < ndev->addr_len; i++) {
  1110. data = ha->addr[i];
  1111. for (bit = 0; bit < 8; bit++, data >>= 1) {
  1112. crc = (crc >> 1) ^
  1113. (((crc ^ data) & 1) ? CRC32_POLY : 0);
  1114. }
  1115. }
  1116. /* only upper 6 bits (HASH_BITS) are used
  1117. * which point to specific bit in he hash registers
  1118. */
  1119. hash = (crc >> (32 - HASH_BITS)) & 0x3f;
  1120. if (hash > 31) {
  1121. tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  1122. tmp |= 1 << (hash - 32);
  1123. writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  1124. } else {
  1125. tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  1126. tmp |= 1 << hash;
  1127. writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  1128. }
  1129. }
  1130. }
  1131. /* Set a MAC change in hardware. */
  1132. static int
  1133. fec_set_mac_address(struct net_device *ndev, void *p)
  1134. {
  1135. struct fec_enet_private *fep = netdev_priv(ndev);
  1136. struct sockaddr *addr = p;
  1137. if (!is_valid_ether_addr(addr->sa_data))
  1138. return -EADDRNOTAVAIL;
  1139. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  1140. writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
  1141. (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
  1142. fep->hwp + FEC_ADDR_LOW);
  1143. writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
  1144. fep->hwp + FEC_ADDR_HIGH);
  1145. return 0;
  1146. }
  1147. #ifdef CONFIG_NET_POLL_CONTROLLER
  1148. /*
  1149. * fec_poll_controller: FEC Poll controller function
  1150. * @dev: The FEC network adapter
  1151. *
  1152. * Polled functionality used by netconsole and others in non interrupt mode
  1153. *
  1154. */
  1155. void fec_poll_controller(struct net_device *dev)
  1156. {
  1157. int i;
  1158. struct fec_enet_private *fep = netdev_priv(dev);
  1159. for (i = 0; i < FEC_IRQ_NUM; i++) {
  1160. if (fep->irq[i] > 0) {
  1161. disable_irq(fep->irq[i]);
  1162. fec_enet_interrupt(fep->irq[i], dev);
  1163. enable_irq(fep->irq[i]);
  1164. }
  1165. }
  1166. }
  1167. #endif
  1168. static const struct net_device_ops fec_netdev_ops = {
  1169. .ndo_open = fec_enet_open,
  1170. .ndo_stop = fec_enet_close,
  1171. .ndo_start_xmit = fec_enet_start_xmit,
  1172. .ndo_set_rx_mode = set_multicast_list,
  1173. .ndo_change_mtu = eth_change_mtu,
  1174. .ndo_validate_addr = eth_validate_addr,
  1175. .ndo_tx_timeout = fec_timeout,
  1176. .ndo_set_mac_address = fec_set_mac_address,
  1177. .ndo_do_ioctl = fec_enet_ioctl,
  1178. #ifdef CONFIG_NET_POLL_CONTROLLER
  1179. .ndo_poll_controller = fec_poll_controller,
  1180. #endif
  1181. };
  1182. /*
  1183. * XXX: We need to clean up on failure exits here.
  1184. *
  1185. */
  1186. static int fec_enet_init(struct net_device *ndev)
  1187. {
  1188. struct fec_enet_private *fep = netdev_priv(ndev);
  1189. struct bufdesc *cbd_base;
  1190. struct bufdesc *bdp;
  1191. int i;
  1192. /* Allocate memory for buffer descriptors. */
  1193. cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
  1194. GFP_KERNEL);
  1195. if (!cbd_base) {
  1196. printk("FEC: allocate descriptor memory failed?\n");
  1197. return -ENOMEM;
  1198. }
  1199. spin_lock_init(&fep->hw_lock);
  1200. fep->netdev = ndev;
  1201. /* Get the Ethernet address */
  1202. fec_get_mac(ndev);
  1203. /* Set receive and transmit descriptor base. */
  1204. fep->rx_bd_base = cbd_base;
  1205. fep->tx_bd_base = cbd_base + RX_RING_SIZE;
  1206. /* The FEC Ethernet specific entries in the device structure */
  1207. ndev->watchdog_timeo = TX_TIMEOUT;
  1208. ndev->netdev_ops = &fec_netdev_ops;
  1209. ndev->ethtool_ops = &fec_enet_ethtool_ops;
  1210. /* Initialize the receive buffer descriptors. */
  1211. bdp = fep->rx_bd_base;
  1212. for (i = 0; i < RX_RING_SIZE; i++) {
  1213. /* Initialize the BD for every fragment in the page. */
  1214. bdp->cbd_sc = 0;
  1215. bdp++;
  1216. }
  1217. /* Set the last buffer to wrap */
  1218. bdp--;
  1219. bdp->cbd_sc |= BD_SC_WRAP;
  1220. /* ...and the same for transmit */
  1221. bdp = fep->tx_bd_base;
  1222. for (i = 0; i < TX_RING_SIZE; i++) {
  1223. /* Initialize the BD for every fragment in the page. */
  1224. bdp->cbd_sc = 0;
  1225. bdp->cbd_bufaddr = 0;
  1226. bdp++;
  1227. }
  1228. /* Set the last buffer to wrap */
  1229. bdp--;
  1230. bdp->cbd_sc |= BD_SC_WRAP;
  1231. fec_restart(ndev, 0);
  1232. return 0;
  1233. }
  1234. #ifdef CONFIG_OF
  1235. static int __devinit fec_get_phy_mode_dt(struct platform_device *pdev)
  1236. {
  1237. struct device_node *np = pdev->dev.of_node;
  1238. if (np)
  1239. return of_get_phy_mode(np);
  1240. return -ENODEV;
  1241. }
  1242. static void __devinit fec_reset_phy(struct platform_device *pdev)
  1243. {
  1244. int err, phy_reset;
  1245. struct device_node *np = pdev->dev.of_node;
  1246. if (!np)
  1247. return;
  1248. phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
  1249. err = gpio_request_one(phy_reset, GPIOF_OUT_INIT_LOW, "phy-reset");
  1250. if (err) {
  1251. pr_debug("FEC: failed to get gpio phy-reset: %d\n", err);
  1252. return;
  1253. }
  1254. msleep(1);
  1255. gpio_set_value(phy_reset, 1);
  1256. }
  1257. #else /* CONFIG_OF */
  1258. static inline int fec_get_phy_mode_dt(struct platform_device *pdev)
  1259. {
  1260. return -ENODEV;
  1261. }
  1262. static inline void fec_reset_phy(struct platform_device *pdev)
  1263. {
  1264. /*
  1265. * In case of platform probe, the reset has been done
  1266. * by machine code.
  1267. */
  1268. }
  1269. #endif /* CONFIG_OF */
  1270. static int __devinit
  1271. fec_probe(struct platform_device *pdev)
  1272. {
  1273. struct fec_enet_private *fep;
  1274. struct fec_platform_data *pdata;
  1275. struct net_device *ndev;
  1276. int i, irq, ret = 0;
  1277. struct resource *r;
  1278. const struct of_device_id *of_id;
  1279. static int dev_id;
  1280. of_id = of_match_device(fec_dt_ids, &pdev->dev);
  1281. if (of_id)
  1282. pdev->id_entry = of_id->data;
  1283. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1284. if (!r)
  1285. return -ENXIO;
  1286. r = request_mem_region(r->start, resource_size(r), pdev->name);
  1287. if (!r)
  1288. return -EBUSY;
  1289. /* Init network device */
  1290. ndev = alloc_etherdev(sizeof(struct fec_enet_private));
  1291. if (!ndev) {
  1292. ret = -ENOMEM;
  1293. goto failed_alloc_etherdev;
  1294. }
  1295. SET_NETDEV_DEV(ndev, &pdev->dev);
  1296. /* setup board info structure */
  1297. fep = netdev_priv(ndev);
  1298. fep->hwp = ioremap(r->start, resource_size(r));
  1299. fep->pdev = pdev;
  1300. fep->dev_id = dev_id++;
  1301. if (!fep->hwp) {
  1302. ret = -ENOMEM;
  1303. goto failed_ioremap;
  1304. }
  1305. platform_set_drvdata(pdev, ndev);
  1306. ret = fec_get_phy_mode_dt(pdev);
  1307. if (ret < 0) {
  1308. pdata = pdev->dev.platform_data;
  1309. if (pdata)
  1310. fep->phy_interface = pdata->phy;
  1311. else
  1312. fep->phy_interface = PHY_INTERFACE_MODE_MII;
  1313. } else {
  1314. fep->phy_interface = ret;
  1315. }
  1316. fec_reset_phy(pdev);
  1317. for (i = 0; i < FEC_IRQ_NUM; i++) {
  1318. irq = platform_get_irq(pdev, i);
  1319. if (i && irq < 0)
  1320. break;
  1321. ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
  1322. if (ret) {
  1323. while (--i >= 0) {
  1324. irq = platform_get_irq(pdev, i);
  1325. free_irq(irq, ndev);
  1326. }
  1327. goto failed_irq;
  1328. }
  1329. }
  1330. fep->clk = clk_get(&pdev->dev, "fec_clk");
  1331. if (IS_ERR(fep->clk)) {
  1332. ret = PTR_ERR(fep->clk);
  1333. goto failed_clk;
  1334. }
  1335. clk_enable(fep->clk);
  1336. ret = fec_enet_init(ndev);
  1337. if (ret)
  1338. goto failed_init;
  1339. ret = fec_enet_mii_init(pdev);
  1340. if (ret)
  1341. goto failed_mii_init;
  1342. /* Carrier starts down, phylib will bring it up */
  1343. netif_carrier_off(ndev);
  1344. ret = register_netdev(ndev);
  1345. if (ret)
  1346. goto failed_register;
  1347. return 0;
  1348. failed_register:
  1349. fec_enet_mii_remove(fep);
  1350. failed_mii_init:
  1351. failed_init:
  1352. clk_disable(fep->clk);
  1353. clk_put(fep->clk);
  1354. failed_clk:
  1355. for (i = 0; i < FEC_IRQ_NUM; i++) {
  1356. irq = platform_get_irq(pdev, i);
  1357. if (irq > 0)
  1358. free_irq(irq, ndev);
  1359. }
  1360. failed_irq:
  1361. iounmap(fep->hwp);
  1362. failed_ioremap:
  1363. free_netdev(ndev);
  1364. failed_alloc_etherdev:
  1365. release_mem_region(r->start, resource_size(r));
  1366. return ret;
  1367. }
  1368. static int __devexit
  1369. fec_drv_remove(struct platform_device *pdev)
  1370. {
  1371. struct net_device *ndev = platform_get_drvdata(pdev);
  1372. struct fec_enet_private *fep = netdev_priv(ndev);
  1373. struct resource *r;
  1374. fec_stop(ndev);
  1375. fec_enet_mii_remove(fep);
  1376. clk_disable(fep->clk);
  1377. clk_put(fep->clk);
  1378. iounmap(fep->hwp);
  1379. unregister_netdev(ndev);
  1380. free_netdev(ndev);
  1381. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1382. BUG_ON(!r);
  1383. release_mem_region(r->start, resource_size(r));
  1384. platform_set_drvdata(pdev, NULL);
  1385. return 0;
  1386. }
  1387. #ifdef CONFIG_PM
  1388. static int
  1389. fec_suspend(struct device *dev)
  1390. {
  1391. struct net_device *ndev = dev_get_drvdata(dev);
  1392. struct fec_enet_private *fep = netdev_priv(ndev);
  1393. if (netif_running(ndev)) {
  1394. fec_stop(ndev);
  1395. netif_device_detach(ndev);
  1396. }
  1397. clk_disable(fep->clk);
  1398. return 0;
  1399. }
  1400. static int
  1401. fec_resume(struct device *dev)
  1402. {
  1403. struct net_device *ndev = dev_get_drvdata(dev);
  1404. struct fec_enet_private *fep = netdev_priv(ndev);
  1405. clk_enable(fep->clk);
  1406. if (netif_running(ndev)) {
  1407. fec_restart(ndev, fep->full_duplex);
  1408. netif_device_attach(ndev);
  1409. }
  1410. return 0;
  1411. }
  1412. static const struct dev_pm_ops fec_pm_ops = {
  1413. .suspend = fec_suspend,
  1414. .resume = fec_resume,
  1415. .freeze = fec_suspend,
  1416. .thaw = fec_resume,
  1417. .poweroff = fec_suspend,
  1418. .restore = fec_resume,
  1419. };
  1420. #endif
  1421. static struct platform_driver fec_driver = {
  1422. .driver = {
  1423. .name = DRIVER_NAME,
  1424. .owner = THIS_MODULE,
  1425. #ifdef CONFIG_PM
  1426. .pm = &fec_pm_ops,
  1427. #endif
  1428. .of_match_table = fec_dt_ids,
  1429. },
  1430. .id_table = fec_devtype,
  1431. .probe = fec_probe,
  1432. .remove = __devexit_p(fec_drv_remove),
  1433. };
  1434. static int __init
  1435. fec_enet_module_init(void)
  1436. {
  1437. printk(KERN_INFO "FEC Ethernet Driver\n");
  1438. return platform_driver_register(&fec_driver);
  1439. }
  1440. static void __exit
  1441. fec_enet_cleanup(void)
  1442. {
  1443. platform_driver_unregister(&fec_driver);
  1444. }
  1445. module_exit(fec_enet_cleanup);
  1446. module_init(fec_enet_module_init);
  1447. MODULE_LICENSE("GPL");