pci-gart_64.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913
  1. /*
  2. * Dynamic DMA mapping support for AMD Hammer.
  3. *
  4. * Use the integrated AGP GART in the Hammer northbridge as an IOMMU for PCI.
  5. * This allows to use PCI devices that only support 32bit addresses on systems
  6. * with more than 4GB.
  7. *
  8. * See Documentation/DMA-mapping.txt for the interface specification.
  9. *
  10. * Copyright 2002 Andi Kleen, SuSE Labs.
  11. * Subject to the GNU General Public License v2 only.
  12. */
  13. #include <linux/types.h>
  14. #include <linux/ctype.h>
  15. #include <linux/agp_backend.h>
  16. #include <linux/init.h>
  17. #include <linux/mm.h>
  18. #include <linux/string.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/pci.h>
  21. #include <linux/module.h>
  22. #include <linux/topology.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/bitops.h>
  25. #include <linux/kdebug.h>
  26. #include <linux/scatterlist.h>
  27. #include <linux/iommu-helper.h>
  28. #include <linux/sysdev.h>
  29. #include <asm/atomic.h>
  30. #include <asm/io.h>
  31. #include <asm/mtrr.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/proto.h>
  34. #include <asm/iommu.h>
  35. #include <asm/gart.h>
  36. #include <asm/cacheflush.h>
  37. #include <asm/swiotlb.h>
  38. #include <asm/dma.h>
  39. #include <asm/k8.h>
  40. static unsigned long iommu_bus_base; /* GART remapping area (physical) */
  41. static unsigned long iommu_size; /* size of remapping area bytes */
  42. static unsigned long iommu_pages; /* .. and in pages */
  43. static u32 *iommu_gatt_base; /* Remapping table */
  44. /*
  45. * If this is disabled the IOMMU will use an optimized flushing strategy
  46. * of only flushing when an mapping is reused. With it true the GART is
  47. * flushed for every mapping. Problem is that doing the lazy flush seems
  48. * to trigger bugs with some popular PCI cards, in particular 3ware (but
  49. * has been also also seen with Qlogic at least).
  50. */
  51. int iommu_fullflush = 1;
  52. /* Allocation bitmap for the remapping area: */
  53. static DEFINE_SPINLOCK(iommu_bitmap_lock);
  54. /* Guarded by iommu_bitmap_lock: */
  55. static unsigned long *iommu_gart_bitmap;
  56. static u32 gart_unmapped_entry;
  57. #define GPTE_VALID 1
  58. #define GPTE_COHERENT 2
  59. #define GPTE_ENCODE(x) \
  60. (((x) & 0xfffff000) | (((x) >> 32) << 4) | GPTE_VALID | GPTE_COHERENT)
  61. #define GPTE_DECODE(x) (((x) & 0xfffff000) | (((u64)(x) & 0xff0) << 28))
  62. #define EMERGENCY_PAGES 32 /* = 128KB */
  63. #ifdef CONFIG_AGP
  64. #define AGPEXTERN extern
  65. #else
  66. #define AGPEXTERN
  67. #endif
  68. /* backdoor interface to AGP driver */
  69. AGPEXTERN int agp_memory_reserved;
  70. AGPEXTERN __u32 *agp_gatt_table;
  71. static unsigned long next_bit; /* protected by iommu_bitmap_lock */
  72. static int need_flush; /* global flush state. set for each gart wrap */
  73. static unsigned long alloc_iommu(struct device *dev, int size)
  74. {
  75. unsigned long offset, flags;
  76. unsigned long boundary_size;
  77. unsigned long base_index;
  78. base_index = ALIGN(iommu_bus_base & dma_get_seg_boundary(dev),
  79. PAGE_SIZE) >> PAGE_SHIFT;
  80. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  81. PAGE_SIZE) >> PAGE_SHIFT;
  82. spin_lock_irqsave(&iommu_bitmap_lock, flags);
  83. offset = iommu_area_alloc(iommu_gart_bitmap, iommu_pages, next_bit,
  84. size, base_index, boundary_size, 0);
  85. if (offset == -1) {
  86. need_flush = 1;
  87. offset = iommu_area_alloc(iommu_gart_bitmap, iommu_pages, 0,
  88. size, base_index, boundary_size, 0);
  89. }
  90. if (offset != -1) {
  91. next_bit = offset+size;
  92. if (next_bit >= iommu_pages) {
  93. next_bit = 0;
  94. need_flush = 1;
  95. }
  96. }
  97. if (iommu_fullflush)
  98. need_flush = 1;
  99. spin_unlock_irqrestore(&iommu_bitmap_lock, flags);
  100. return offset;
  101. }
  102. static void free_iommu(unsigned long offset, int size)
  103. {
  104. unsigned long flags;
  105. spin_lock_irqsave(&iommu_bitmap_lock, flags);
  106. iommu_area_free(iommu_gart_bitmap, offset, size);
  107. spin_unlock_irqrestore(&iommu_bitmap_lock, flags);
  108. }
  109. /*
  110. * Use global flush state to avoid races with multiple flushers.
  111. */
  112. static void flush_gart(void)
  113. {
  114. unsigned long flags;
  115. spin_lock_irqsave(&iommu_bitmap_lock, flags);
  116. if (need_flush) {
  117. k8_flush_garts();
  118. need_flush = 0;
  119. }
  120. spin_unlock_irqrestore(&iommu_bitmap_lock, flags);
  121. }
  122. #ifdef CONFIG_IOMMU_LEAK
  123. #define SET_LEAK(x) \
  124. do { \
  125. if (iommu_leak_tab) \
  126. iommu_leak_tab[x] = __builtin_return_address(0);\
  127. } while (0)
  128. #define CLEAR_LEAK(x) \
  129. do { \
  130. if (iommu_leak_tab) \
  131. iommu_leak_tab[x] = NULL; \
  132. } while (0)
  133. /* Debugging aid for drivers that don't free their IOMMU tables */
  134. static void **iommu_leak_tab;
  135. static int leak_trace;
  136. static int iommu_leak_pages = 20;
  137. static void dump_leak(void)
  138. {
  139. int i;
  140. static int dump;
  141. if (dump || !iommu_leak_tab)
  142. return;
  143. dump = 1;
  144. show_stack(NULL, NULL);
  145. /* Very crude. dump some from the end of the table too */
  146. printk(KERN_DEBUG "Dumping %d pages from end of IOMMU:\n",
  147. iommu_leak_pages);
  148. for (i = 0; i < iommu_leak_pages; i += 2) {
  149. printk(KERN_DEBUG "%lu: ", iommu_pages-i);
  150. printk_address((unsigned long) iommu_leak_tab[iommu_pages-i], 0);
  151. printk(KERN_CONT "%c", (i+1)%2 == 0 ? '\n' : ' ');
  152. }
  153. printk(KERN_DEBUG "\n");
  154. }
  155. #else
  156. # define SET_LEAK(x)
  157. # define CLEAR_LEAK(x)
  158. #endif
  159. static void iommu_full(struct device *dev, size_t size, int dir)
  160. {
  161. /*
  162. * Ran out of IOMMU space for this operation. This is very bad.
  163. * Unfortunately the drivers cannot handle this operation properly.
  164. * Return some non mapped prereserved space in the aperture and
  165. * let the Northbridge deal with it. This will result in garbage
  166. * in the IO operation. When the size exceeds the prereserved space
  167. * memory corruption will occur or random memory will be DMAed
  168. * out. Hopefully no network devices use single mappings that big.
  169. */
  170. dev_err(dev, "PCI-DMA: Out of IOMMU space for %lu bytes\n", size);
  171. if (size > PAGE_SIZE*EMERGENCY_PAGES) {
  172. if (dir == PCI_DMA_FROMDEVICE || dir == PCI_DMA_BIDIRECTIONAL)
  173. panic("PCI-DMA: Memory would be corrupted\n");
  174. if (dir == PCI_DMA_TODEVICE || dir == PCI_DMA_BIDIRECTIONAL)
  175. panic(KERN_ERR
  176. "PCI-DMA: Random memory would be DMAed\n");
  177. }
  178. #ifdef CONFIG_IOMMU_LEAK
  179. dump_leak();
  180. #endif
  181. }
  182. static inline int
  183. need_iommu(struct device *dev, unsigned long addr, size_t size)
  184. {
  185. u64 mask = *dev->dma_mask;
  186. int high = addr + size > mask;
  187. int mmu = high;
  188. if (force_iommu)
  189. mmu = 1;
  190. return mmu;
  191. }
  192. static inline int
  193. nonforced_iommu(struct device *dev, unsigned long addr, size_t size)
  194. {
  195. u64 mask = *dev->dma_mask;
  196. int high = addr + size > mask;
  197. int mmu = high;
  198. return mmu;
  199. }
  200. /* Map a single continuous physical area into the IOMMU.
  201. * Caller needs to check if the iommu is needed and flush.
  202. */
  203. static dma_addr_t dma_map_area(struct device *dev, dma_addr_t phys_mem,
  204. size_t size, int dir)
  205. {
  206. unsigned long npages = iommu_num_pages(phys_mem, size);
  207. unsigned long iommu_page = alloc_iommu(dev, npages);
  208. int i;
  209. if (iommu_page == -1) {
  210. if (!nonforced_iommu(dev, phys_mem, size))
  211. return phys_mem;
  212. if (panic_on_overflow)
  213. panic("dma_map_area overflow %lu bytes\n", size);
  214. iommu_full(dev, size, dir);
  215. return bad_dma_address;
  216. }
  217. for (i = 0; i < npages; i++) {
  218. iommu_gatt_base[iommu_page + i] = GPTE_ENCODE(phys_mem);
  219. SET_LEAK(iommu_page + i);
  220. phys_mem += PAGE_SIZE;
  221. }
  222. return iommu_bus_base + iommu_page*PAGE_SIZE + (phys_mem & ~PAGE_MASK);
  223. }
  224. static dma_addr_t
  225. gart_map_simple(struct device *dev, phys_addr_t paddr, size_t size, int dir)
  226. {
  227. dma_addr_t map = dma_map_area(dev, paddr, size, dir);
  228. flush_gart();
  229. return map;
  230. }
  231. /* Map a single area into the IOMMU */
  232. static dma_addr_t
  233. gart_map_single(struct device *dev, phys_addr_t paddr, size_t size, int dir)
  234. {
  235. unsigned long bus;
  236. if (!dev)
  237. dev = &fallback_dev;
  238. if (!need_iommu(dev, paddr, size))
  239. return paddr;
  240. bus = gart_map_simple(dev, paddr, size, dir);
  241. return bus;
  242. }
  243. /*
  244. * Free a DMA mapping.
  245. */
  246. static void gart_unmap_single(struct device *dev, dma_addr_t dma_addr,
  247. size_t size, int direction)
  248. {
  249. unsigned long iommu_page;
  250. int npages;
  251. int i;
  252. if (dma_addr < iommu_bus_base + EMERGENCY_PAGES*PAGE_SIZE ||
  253. dma_addr >= iommu_bus_base + iommu_size)
  254. return;
  255. iommu_page = (dma_addr - iommu_bus_base)>>PAGE_SHIFT;
  256. npages = iommu_num_pages(dma_addr, size);
  257. for (i = 0; i < npages; i++) {
  258. iommu_gatt_base[iommu_page + i] = gart_unmapped_entry;
  259. CLEAR_LEAK(iommu_page + i);
  260. }
  261. free_iommu(iommu_page, npages);
  262. }
  263. /*
  264. * Wrapper for pci_unmap_single working with scatterlists.
  265. */
  266. static void
  267. gart_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, int dir)
  268. {
  269. struct scatterlist *s;
  270. int i;
  271. for_each_sg(sg, s, nents, i) {
  272. if (!s->dma_length || !s->length)
  273. break;
  274. gart_unmap_single(dev, s->dma_address, s->dma_length, dir);
  275. }
  276. }
  277. /* Fallback for dma_map_sg in case of overflow */
  278. static int dma_map_sg_nonforce(struct device *dev, struct scatterlist *sg,
  279. int nents, int dir)
  280. {
  281. struct scatterlist *s;
  282. int i;
  283. #ifdef CONFIG_IOMMU_DEBUG
  284. printk(KERN_DEBUG "dma_map_sg overflow\n");
  285. #endif
  286. for_each_sg(sg, s, nents, i) {
  287. unsigned long addr = sg_phys(s);
  288. if (nonforced_iommu(dev, addr, s->length)) {
  289. addr = dma_map_area(dev, addr, s->length, dir);
  290. if (addr == bad_dma_address) {
  291. if (i > 0)
  292. gart_unmap_sg(dev, sg, i, dir);
  293. nents = 0;
  294. sg[0].dma_length = 0;
  295. break;
  296. }
  297. }
  298. s->dma_address = addr;
  299. s->dma_length = s->length;
  300. }
  301. flush_gart();
  302. return nents;
  303. }
  304. /* Map multiple scatterlist entries continuous into the first. */
  305. static int __dma_map_cont(struct device *dev, struct scatterlist *start,
  306. int nelems, struct scatterlist *sout,
  307. unsigned long pages)
  308. {
  309. unsigned long iommu_start = alloc_iommu(dev, pages);
  310. unsigned long iommu_page = iommu_start;
  311. struct scatterlist *s;
  312. int i;
  313. if (iommu_start == -1)
  314. return -1;
  315. for_each_sg(start, s, nelems, i) {
  316. unsigned long pages, addr;
  317. unsigned long phys_addr = s->dma_address;
  318. BUG_ON(s != start && s->offset);
  319. if (s == start) {
  320. sout->dma_address = iommu_bus_base;
  321. sout->dma_address += iommu_page*PAGE_SIZE + s->offset;
  322. sout->dma_length = s->length;
  323. } else {
  324. sout->dma_length += s->length;
  325. }
  326. addr = phys_addr;
  327. pages = iommu_num_pages(s->offset, s->length);
  328. while (pages--) {
  329. iommu_gatt_base[iommu_page] = GPTE_ENCODE(addr);
  330. SET_LEAK(iommu_page);
  331. addr += PAGE_SIZE;
  332. iommu_page++;
  333. }
  334. }
  335. BUG_ON(iommu_page - iommu_start != pages);
  336. return 0;
  337. }
  338. static inline int
  339. dma_map_cont(struct device *dev, struct scatterlist *start, int nelems,
  340. struct scatterlist *sout, unsigned long pages, int need)
  341. {
  342. if (!need) {
  343. BUG_ON(nelems != 1);
  344. sout->dma_address = start->dma_address;
  345. sout->dma_length = start->length;
  346. return 0;
  347. }
  348. return __dma_map_cont(dev, start, nelems, sout, pages);
  349. }
  350. /*
  351. * DMA map all entries in a scatterlist.
  352. * Merge chunks that have page aligned sizes into a continuous mapping.
  353. */
  354. static int
  355. gart_map_sg(struct device *dev, struct scatterlist *sg, int nents, int dir)
  356. {
  357. struct scatterlist *s, *ps, *start_sg, *sgmap;
  358. int need = 0, nextneed, i, out, start;
  359. unsigned long pages = 0;
  360. unsigned int seg_size;
  361. unsigned int max_seg_size;
  362. if (nents == 0)
  363. return 0;
  364. if (!dev)
  365. dev = &fallback_dev;
  366. out = 0;
  367. start = 0;
  368. start_sg = sgmap = sg;
  369. seg_size = 0;
  370. max_seg_size = dma_get_max_seg_size(dev);
  371. ps = NULL; /* shut up gcc */
  372. for_each_sg(sg, s, nents, i) {
  373. dma_addr_t addr = sg_phys(s);
  374. s->dma_address = addr;
  375. BUG_ON(s->length == 0);
  376. nextneed = need_iommu(dev, addr, s->length);
  377. /* Handle the previous not yet processed entries */
  378. if (i > start) {
  379. /*
  380. * Can only merge when the last chunk ends on a
  381. * page boundary and the new one doesn't have an
  382. * offset.
  383. */
  384. if (!iommu_merge || !nextneed || !need || s->offset ||
  385. (s->length + seg_size > max_seg_size) ||
  386. (ps->offset + ps->length) % PAGE_SIZE) {
  387. if (dma_map_cont(dev, start_sg, i - start,
  388. sgmap, pages, need) < 0)
  389. goto error;
  390. out++;
  391. seg_size = 0;
  392. sgmap = sg_next(sgmap);
  393. pages = 0;
  394. start = i;
  395. start_sg = s;
  396. }
  397. }
  398. seg_size += s->length;
  399. need = nextneed;
  400. pages += iommu_num_pages(s->offset, s->length);
  401. ps = s;
  402. }
  403. if (dma_map_cont(dev, start_sg, i - start, sgmap, pages, need) < 0)
  404. goto error;
  405. out++;
  406. flush_gart();
  407. if (out < nents) {
  408. sgmap = sg_next(sgmap);
  409. sgmap->dma_length = 0;
  410. }
  411. return out;
  412. error:
  413. flush_gart();
  414. gart_unmap_sg(dev, sg, out, dir);
  415. /* When it was forced or merged try again in a dumb way */
  416. if (force_iommu || iommu_merge) {
  417. out = dma_map_sg_nonforce(dev, sg, nents, dir);
  418. if (out > 0)
  419. return out;
  420. }
  421. if (panic_on_overflow)
  422. panic("dma_map_sg: overflow on %lu pages\n", pages);
  423. iommu_full(dev, pages << PAGE_SHIFT, dir);
  424. for_each_sg(sg, s, nents, i)
  425. s->dma_address = bad_dma_address;
  426. return 0;
  427. }
  428. /* allocate and map a coherent mapping */
  429. static void *
  430. gart_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_addr,
  431. gfp_t flag)
  432. {
  433. void *vaddr;
  434. vaddr = (void *)__get_free_pages(flag | __GFP_ZERO, get_order(size));
  435. if (!vaddr)
  436. return NULL;
  437. *dma_addr = gart_map_single(dev, __pa(vaddr), size, DMA_BIDIRECTIONAL);
  438. if (*dma_addr != bad_dma_address)
  439. return vaddr;
  440. free_pages((unsigned long)vaddr, get_order(size));
  441. return NULL;
  442. }
  443. /* free a coherent mapping */
  444. static void
  445. gart_free_coherent(struct device *dev, size_t size, void *vaddr,
  446. dma_addr_t dma_addr)
  447. {
  448. gart_unmap_single(dev, dma_addr, size, DMA_BIDIRECTIONAL);
  449. free_pages((unsigned long)vaddr, get_order(size));
  450. }
  451. static int no_agp;
  452. static __init unsigned long check_iommu_size(unsigned long aper, u64 aper_size)
  453. {
  454. unsigned long a;
  455. if (!iommu_size) {
  456. iommu_size = aper_size;
  457. if (!no_agp)
  458. iommu_size /= 2;
  459. }
  460. a = aper + iommu_size;
  461. iommu_size -= round_up(a, PMD_PAGE_SIZE) - a;
  462. if (iommu_size < 64*1024*1024) {
  463. printk(KERN_WARNING
  464. "PCI-DMA: Warning: Small IOMMU %luMB."
  465. " Consider increasing the AGP aperture in BIOS\n",
  466. iommu_size >> 20);
  467. }
  468. return iommu_size;
  469. }
  470. static __init unsigned read_aperture(struct pci_dev *dev, u32 *size)
  471. {
  472. unsigned aper_size = 0, aper_base_32, aper_order;
  473. u64 aper_base;
  474. pci_read_config_dword(dev, AMD64_GARTAPERTUREBASE, &aper_base_32);
  475. pci_read_config_dword(dev, AMD64_GARTAPERTURECTL, &aper_order);
  476. aper_order = (aper_order >> 1) & 7;
  477. aper_base = aper_base_32 & 0x7fff;
  478. aper_base <<= 25;
  479. aper_size = (32 * 1024 * 1024) << aper_order;
  480. if (aper_base + aper_size > 0x100000000UL || !aper_size)
  481. aper_base = 0;
  482. *size = aper_size;
  483. return aper_base;
  484. }
  485. static void enable_gart_translations(void)
  486. {
  487. int i;
  488. for (i = 0; i < num_k8_northbridges; i++) {
  489. struct pci_dev *dev = k8_northbridges[i];
  490. enable_gart_translation(dev, __pa(agp_gatt_table));
  491. }
  492. }
  493. /*
  494. * If fix_up_north_bridges is set, the north bridges have to be fixed up on
  495. * resume in the same way as they are handled in gart_iommu_hole_init().
  496. */
  497. static bool fix_up_north_bridges;
  498. static u32 aperture_order;
  499. static u32 aperture_alloc;
  500. void set_up_gart_resume(u32 aper_order, u32 aper_alloc)
  501. {
  502. fix_up_north_bridges = true;
  503. aperture_order = aper_order;
  504. aperture_alloc = aper_alloc;
  505. }
  506. static int gart_resume(struct sys_device *dev)
  507. {
  508. printk(KERN_INFO "PCI-DMA: Resuming GART IOMMU\n");
  509. if (fix_up_north_bridges) {
  510. int i;
  511. printk(KERN_INFO "PCI-DMA: Restoring GART aperture settings\n");
  512. for (i = 0; i < num_k8_northbridges; i++) {
  513. struct pci_dev *dev = k8_northbridges[i];
  514. /*
  515. * Don't enable translations just yet. That is the next
  516. * step. Restore the pre-suspend aperture settings.
  517. */
  518. pci_write_config_dword(dev, AMD64_GARTAPERTURECTL,
  519. aperture_order << 1);
  520. pci_write_config_dword(dev, AMD64_GARTAPERTUREBASE,
  521. aperture_alloc >> 25);
  522. }
  523. }
  524. enable_gart_translations();
  525. return 0;
  526. }
  527. static int gart_suspend(struct sys_device *dev, pm_message_t state)
  528. {
  529. return 0;
  530. }
  531. static struct sysdev_class gart_sysdev_class = {
  532. .name = "gart",
  533. .suspend = gart_suspend,
  534. .resume = gart_resume,
  535. };
  536. static struct sys_device device_gart = {
  537. .id = 0,
  538. .cls = &gart_sysdev_class,
  539. };
  540. /*
  541. * Private Northbridge GATT initialization in case we cannot use the
  542. * AGP driver for some reason.
  543. */
  544. static __init int init_k8_gatt(struct agp_kern_info *info)
  545. {
  546. unsigned aper_size, gatt_size, new_aper_size;
  547. unsigned aper_base, new_aper_base;
  548. struct pci_dev *dev;
  549. void *gatt;
  550. int i, error;
  551. unsigned long start_pfn, end_pfn;
  552. printk(KERN_INFO "PCI-DMA: Disabling AGP.\n");
  553. aper_size = aper_base = info->aper_size = 0;
  554. dev = NULL;
  555. for (i = 0; i < num_k8_northbridges; i++) {
  556. dev = k8_northbridges[i];
  557. new_aper_base = read_aperture(dev, &new_aper_size);
  558. if (!new_aper_base)
  559. goto nommu;
  560. if (!aper_base) {
  561. aper_size = new_aper_size;
  562. aper_base = new_aper_base;
  563. }
  564. if (aper_size != new_aper_size || aper_base != new_aper_base)
  565. goto nommu;
  566. }
  567. if (!aper_base)
  568. goto nommu;
  569. info->aper_base = aper_base;
  570. info->aper_size = aper_size >> 20;
  571. gatt_size = (aper_size >> PAGE_SHIFT) * sizeof(u32);
  572. gatt = (void *)__get_free_pages(GFP_KERNEL, get_order(gatt_size));
  573. if (!gatt)
  574. panic("Cannot allocate GATT table");
  575. if (set_memory_uc((unsigned long)gatt, gatt_size >> PAGE_SHIFT))
  576. panic("Could not set GART PTEs to uncacheable pages");
  577. memset(gatt, 0, gatt_size);
  578. agp_gatt_table = gatt;
  579. enable_gart_translations();
  580. error = sysdev_class_register(&gart_sysdev_class);
  581. if (!error)
  582. error = sysdev_register(&device_gart);
  583. if (error)
  584. panic("Could not register gart_sysdev -- would corrupt data on next suspend");
  585. flush_gart();
  586. printk(KERN_INFO "PCI-DMA: aperture base @ %x size %u KB\n",
  587. aper_base, aper_size>>10);
  588. /* need to map that range */
  589. end_pfn = (aper_base>>PAGE_SHIFT) + (aper_size>>PAGE_SHIFT);
  590. if (end_pfn > max_low_pfn_mapped) {
  591. start_pfn = (aper_base>>PAGE_SHIFT);
  592. init_memory_mapping(start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
  593. }
  594. return 0;
  595. nommu:
  596. /* Should not happen anymore */
  597. printk(KERN_WARNING "PCI-DMA: More than 4GB of RAM and no IOMMU\n"
  598. KERN_WARNING "falling back to iommu=soft.\n");
  599. return -1;
  600. }
  601. extern int agp_amd64_init(void);
  602. static struct dma_mapping_ops gart_dma_ops = {
  603. .map_single = gart_map_single,
  604. .map_simple = gart_map_simple,
  605. .unmap_single = gart_unmap_single,
  606. .sync_single_for_cpu = NULL,
  607. .sync_single_for_device = NULL,
  608. .sync_single_range_for_cpu = NULL,
  609. .sync_single_range_for_device = NULL,
  610. .sync_sg_for_cpu = NULL,
  611. .sync_sg_for_device = NULL,
  612. .map_sg = gart_map_sg,
  613. .unmap_sg = gart_unmap_sg,
  614. .alloc_coherent = gart_alloc_coherent,
  615. .free_coherent = gart_free_coherent,
  616. };
  617. void gart_iommu_shutdown(void)
  618. {
  619. struct pci_dev *dev;
  620. int i;
  621. if (no_agp && (dma_ops != &gart_dma_ops))
  622. return;
  623. for (i = 0; i < num_k8_northbridges; i++) {
  624. u32 ctl;
  625. dev = k8_northbridges[i];
  626. pci_read_config_dword(dev, AMD64_GARTAPERTURECTL, &ctl);
  627. ctl &= ~GARTEN;
  628. pci_write_config_dword(dev, AMD64_GARTAPERTURECTL, ctl);
  629. }
  630. }
  631. void __init gart_iommu_init(void)
  632. {
  633. struct agp_kern_info info;
  634. unsigned long iommu_start;
  635. unsigned long aper_size;
  636. unsigned long scratch;
  637. long i;
  638. if (cache_k8_northbridges() < 0 || num_k8_northbridges == 0) {
  639. printk(KERN_INFO "PCI-GART: No AMD northbridge found.\n");
  640. return;
  641. }
  642. #ifndef CONFIG_AGP_AMD64
  643. no_agp = 1;
  644. #else
  645. /* Makefile puts PCI initialization via subsys_initcall first. */
  646. /* Add other K8 AGP bridge drivers here */
  647. no_agp = no_agp ||
  648. (agp_amd64_init() < 0) ||
  649. (agp_copy_info(agp_bridge, &info) < 0);
  650. #endif
  651. if (swiotlb)
  652. return;
  653. /* Did we detect a different HW IOMMU? */
  654. if (iommu_detected && !gart_iommu_aperture)
  655. return;
  656. if (no_iommu ||
  657. (!force_iommu && max_pfn <= MAX_DMA32_PFN) ||
  658. !gart_iommu_aperture ||
  659. (no_agp && init_k8_gatt(&info) < 0)) {
  660. if (max_pfn > MAX_DMA32_PFN) {
  661. printk(KERN_WARNING "More than 4GB of memory "
  662. "but GART IOMMU not available.\n"
  663. KERN_WARNING "falling back to iommu=soft.\n");
  664. }
  665. return;
  666. }
  667. printk(KERN_INFO "PCI-DMA: using GART IOMMU.\n");
  668. aper_size = info.aper_size * 1024 * 1024;
  669. iommu_size = check_iommu_size(info.aper_base, aper_size);
  670. iommu_pages = iommu_size >> PAGE_SHIFT;
  671. iommu_gart_bitmap = (void *) __get_free_pages(GFP_KERNEL,
  672. get_order(iommu_pages/8));
  673. if (!iommu_gart_bitmap)
  674. panic("Cannot allocate iommu bitmap\n");
  675. memset(iommu_gart_bitmap, 0, iommu_pages/8);
  676. #ifdef CONFIG_IOMMU_LEAK
  677. if (leak_trace) {
  678. iommu_leak_tab = (void *)__get_free_pages(GFP_KERNEL,
  679. get_order(iommu_pages*sizeof(void *)));
  680. if (iommu_leak_tab)
  681. memset(iommu_leak_tab, 0, iommu_pages * 8);
  682. else
  683. printk(KERN_DEBUG
  684. "PCI-DMA: Cannot allocate leak trace area\n");
  685. }
  686. #endif
  687. /*
  688. * Out of IOMMU space handling.
  689. * Reserve some invalid pages at the beginning of the GART.
  690. */
  691. set_bit_string(iommu_gart_bitmap, 0, EMERGENCY_PAGES);
  692. agp_memory_reserved = iommu_size;
  693. printk(KERN_INFO
  694. "PCI-DMA: Reserving %luMB of IOMMU area in the AGP aperture\n",
  695. iommu_size >> 20);
  696. iommu_start = aper_size - iommu_size;
  697. iommu_bus_base = info.aper_base + iommu_start;
  698. bad_dma_address = iommu_bus_base;
  699. iommu_gatt_base = agp_gatt_table + (iommu_start>>PAGE_SHIFT);
  700. /*
  701. * Unmap the IOMMU part of the GART. The alias of the page is
  702. * always mapped with cache enabled and there is no full cache
  703. * coherency across the GART remapping. The unmapping avoids
  704. * automatic prefetches from the CPU allocating cache lines in
  705. * there. All CPU accesses are done via the direct mapping to
  706. * the backing memory. The GART address is only used by PCI
  707. * devices.
  708. */
  709. set_memory_np((unsigned long)__va(iommu_bus_base),
  710. iommu_size >> PAGE_SHIFT);
  711. /*
  712. * Tricky. The GART table remaps the physical memory range,
  713. * so the CPU wont notice potential aliases and if the memory
  714. * is remapped to UC later on, we might surprise the PCI devices
  715. * with a stray writeout of a cacheline. So play it sure and
  716. * do an explicit, full-scale wbinvd() _after_ having marked all
  717. * the pages as Not-Present:
  718. */
  719. wbinvd();
  720. /*
  721. * Try to workaround a bug (thanks to BenH):
  722. * Set unmapped entries to a scratch page instead of 0.
  723. * Any prefetches that hit unmapped entries won't get an bus abort
  724. * then. (P2P bridge may be prefetching on DMA reads).
  725. */
  726. scratch = get_zeroed_page(GFP_KERNEL);
  727. if (!scratch)
  728. panic("Cannot allocate iommu scratch page");
  729. gart_unmapped_entry = GPTE_ENCODE(__pa(scratch));
  730. for (i = EMERGENCY_PAGES; i < iommu_pages; i++)
  731. iommu_gatt_base[i] = gart_unmapped_entry;
  732. flush_gart();
  733. dma_ops = &gart_dma_ops;
  734. }
  735. void __init gart_parse_options(char *p)
  736. {
  737. int arg;
  738. #ifdef CONFIG_IOMMU_LEAK
  739. if (!strncmp(p, "leak", 4)) {
  740. leak_trace = 1;
  741. p += 4;
  742. if (*p == '=') ++p;
  743. if (isdigit(*p) && get_option(&p, &arg))
  744. iommu_leak_pages = arg;
  745. }
  746. #endif
  747. if (isdigit(*p) && get_option(&p, &arg))
  748. iommu_size = arg;
  749. if (!strncmp(p, "fullflush", 8))
  750. iommu_fullflush = 1;
  751. if (!strncmp(p, "nofullflush", 11))
  752. iommu_fullflush = 0;
  753. if (!strncmp(p, "noagp", 5))
  754. no_agp = 1;
  755. if (!strncmp(p, "noaperture", 10))
  756. fix_aperture = 0;
  757. /* duplicated from pci-dma.c */
  758. if (!strncmp(p, "force", 5))
  759. gart_iommu_aperture_allowed = 1;
  760. if (!strncmp(p, "allowed", 7))
  761. gart_iommu_aperture_allowed = 1;
  762. if (!strncmp(p, "memaper", 7)) {
  763. fallback_aper_force = 1;
  764. p += 7;
  765. if (*p == '=') {
  766. ++p;
  767. if (get_option(&p, &arg))
  768. fallback_aper_order = arg;
  769. }
  770. }
  771. }