common.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156
  1. #include <linux/init.h>
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/string.h>
  5. #include <linux/bootmem.h>
  6. #include <linux/bitops.h>
  7. #include <linux/module.h>
  8. #include <linux/kgdb.h>
  9. #include <linux/topology.h>
  10. #include <linux/delay.h>
  11. #include <linux/smp.h>
  12. #include <linux/percpu.h>
  13. #include <asm/i387.h>
  14. #include <asm/msr.h>
  15. #include <asm/io.h>
  16. #include <asm/linkage.h>
  17. #include <asm/mmu_context.h>
  18. #include <asm/mtrr.h>
  19. #include <asm/mce.h>
  20. #include <asm/pat.h>
  21. #include <asm/asm.h>
  22. #include <asm/numa.h>
  23. #ifdef CONFIG_X86_LOCAL_APIC
  24. #include <asm/mpspec.h>
  25. #include <asm/apic.h>
  26. #include <mach_apic.h>
  27. #include <asm/genapic.h>
  28. #endif
  29. #include <asm/pda.h>
  30. #include <asm/pgtable.h>
  31. #include <asm/processor.h>
  32. #include <asm/desc.h>
  33. #include <asm/atomic.h>
  34. #include <asm/proto.h>
  35. #include <asm/sections.h>
  36. #include <asm/setup.h>
  37. #include "cpu.h"
  38. static struct cpu_dev *this_cpu __cpuinitdata;
  39. #ifdef CONFIG_X86_64
  40. /* We need valid kernel segments for data and code in long mode too
  41. * IRET will check the segment types kkeil 2000/10/28
  42. * Also sysret mandates a special GDT layout
  43. */
  44. /* The TLS descriptors are currently at a different place compared to i386.
  45. Hopefully nobody expects them at a fixed place (Wine?) */
  46. DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
  47. [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
  48. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
  49. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
  50. [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
  51. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
  52. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
  53. } };
  54. #else
  55. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  56. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
  57. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
  58. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
  59. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
  60. /*
  61. * Segments used for calling PnP BIOS have byte granularity.
  62. * They code segments and data segments have fixed 64k limits,
  63. * the transfer segment sizes are set at run time.
  64. */
  65. /* 32-bit code */
  66. [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
  67. /* 16-bit code */
  68. [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
  69. /* 16-bit data */
  70. [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
  71. /* 16-bit data */
  72. [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
  73. /* 16-bit data */
  74. [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
  75. /*
  76. * The APM segments have byte granularity and their bases
  77. * are set at run time. All have 64k limits.
  78. */
  79. /* 32-bit code */
  80. [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
  81. /* 16-bit code */
  82. [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
  83. /* data */
  84. [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
  85. [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
  86. [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
  87. } };
  88. #endif
  89. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  90. #ifdef CONFIG_X86_32
  91. static int cachesize_override __cpuinitdata = -1;
  92. static int disable_x86_serial_nr __cpuinitdata = 1;
  93. static int __init cachesize_setup(char *str)
  94. {
  95. get_option(&str, &cachesize_override);
  96. return 1;
  97. }
  98. __setup("cachesize=", cachesize_setup);
  99. static int __init x86_fxsr_setup(char *s)
  100. {
  101. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  102. setup_clear_cpu_cap(X86_FEATURE_XMM);
  103. return 1;
  104. }
  105. __setup("nofxsr", x86_fxsr_setup);
  106. static int __init x86_sep_setup(char *s)
  107. {
  108. setup_clear_cpu_cap(X86_FEATURE_SEP);
  109. return 1;
  110. }
  111. __setup("nosep", x86_sep_setup);
  112. /* Standard macro to see if a specific flag is changeable */
  113. static inline int flag_is_changeable_p(u32 flag)
  114. {
  115. u32 f1, f2;
  116. asm("pushfl\n\t"
  117. "pushfl\n\t"
  118. "popl %0\n\t"
  119. "movl %0,%1\n\t"
  120. "xorl %2,%0\n\t"
  121. "pushl %0\n\t"
  122. "popfl\n\t"
  123. "pushfl\n\t"
  124. "popl %0\n\t"
  125. "popfl\n\t"
  126. : "=&r" (f1), "=&r" (f2)
  127. : "ir" (flag));
  128. return ((f1^f2) & flag) != 0;
  129. }
  130. /* Probe for the CPUID instruction */
  131. static int __cpuinit have_cpuid_p(void)
  132. {
  133. return flag_is_changeable_p(X86_EFLAGS_ID);
  134. }
  135. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  136. {
  137. if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
  138. /* Disable processor serial number */
  139. unsigned long lo, hi;
  140. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  141. lo |= 0x200000;
  142. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  143. printk(KERN_NOTICE "CPU serial number disabled.\n");
  144. clear_cpu_cap(c, X86_FEATURE_PN);
  145. /* Disabling the serial number may affect the cpuid level */
  146. c->cpuid_level = cpuid_eax(0);
  147. }
  148. }
  149. static int __init x86_serial_nr_setup(char *s)
  150. {
  151. disable_x86_serial_nr = 0;
  152. return 1;
  153. }
  154. __setup("serialnumber", x86_serial_nr_setup);
  155. #else
  156. static inline int flag_is_changeable_p(u32 flag)
  157. {
  158. return 1;
  159. }
  160. /* Probe for the CPUID instruction */
  161. static inline int have_cpuid_p(void)
  162. {
  163. return 1;
  164. }
  165. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  166. {
  167. }
  168. #endif
  169. /*
  170. * Naming convention should be: <Name> [(<Codename>)]
  171. * This table only is used unless init_<vendor>() below doesn't set it;
  172. * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
  173. *
  174. */
  175. /* Look up CPU names by table lookup. */
  176. static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
  177. {
  178. struct cpu_model_info *info;
  179. if (c->x86_model >= 16)
  180. return NULL; /* Range check */
  181. if (!this_cpu)
  182. return NULL;
  183. info = this_cpu->c_models;
  184. while (info && info->family) {
  185. if (info->family == c->x86)
  186. return info->model_names[c->x86_model];
  187. info++;
  188. }
  189. return NULL; /* Not found */
  190. }
  191. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  192. /* Current gdt points %fs at the "master" per-cpu area: after this,
  193. * it's on the real one. */
  194. void switch_to_new_gdt(void)
  195. {
  196. struct desc_ptr gdt_descr;
  197. gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
  198. gdt_descr.size = GDT_SIZE - 1;
  199. load_gdt(&gdt_descr);
  200. #ifdef CONFIG_X86_32
  201. asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
  202. #endif
  203. }
  204. static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
  205. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  206. {
  207. #ifdef CONFIG_X86_64
  208. display_cacheinfo(c);
  209. #else
  210. /* Not much we can do here... */
  211. /* Check if at least it has cpuid */
  212. if (c->cpuid_level == -1) {
  213. /* No cpuid. It must be an ancient CPU */
  214. if (c->x86 == 4)
  215. strcpy(c->x86_model_id, "486");
  216. else if (c->x86 == 3)
  217. strcpy(c->x86_model_id, "386");
  218. }
  219. #endif
  220. }
  221. static struct cpu_dev __cpuinitdata default_cpu = {
  222. .c_init = default_init,
  223. .c_vendor = "Unknown",
  224. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  225. };
  226. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  227. {
  228. unsigned int *v;
  229. char *p, *q;
  230. if (c->extended_cpuid_level < 0x80000004)
  231. return;
  232. v = (unsigned int *) c->x86_model_id;
  233. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  234. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  235. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  236. c->x86_model_id[48] = 0;
  237. /* Intel chips right-justify this string for some dumb reason;
  238. undo that brain damage */
  239. p = q = &c->x86_model_id[0];
  240. while (*p == ' ')
  241. p++;
  242. if (p != q) {
  243. while (*p)
  244. *q++ = *p++;
  245. while (q <= &c->x86_model_id[48])
  246. *q++ = '\0'; /* Zero-pad the rest */
  247. }
  248. }
  249. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  250. {
  251. unsigned int n, dummy, ebx, ecx, edx, l2size;
  252. n = c->extended_cpuid_level;
  253. if (n >= 0x80000005) {
  254. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  255. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  256. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  257. c->x86_cache_size = (ecx>>24) + (edx>>24);
  258. #ifdef CONFIG_X86_64
  259. /* On K8 L1 TLB is inclusive, so don't count it */
  260. c->x86_tlbsize = 0;
  261. #endif
  262. }
  263. if (n < 0x80000006) /* Some chips just has a large L1. */
  264. return;
  265. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  266. l2size = ecx >> 16;
  267. #ifdef CONFIG_X86_64
  268. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  269. #else
  270. /* do processor-specific cache resizing */
  271. if (this_cpu->c_size_cache)
  272. l2size = this_cpu->c_size_cache(c, l2size);
  273. /* Allow user to override all this if necessary. */
  274. if (cachesize_override != -1)
  275. l2size = cachesize_override;
  276. if (l2size == 0)
  277. return; /* Again, no L2 cache is possible */
  278. #endif
  279. c->x86_cache_size = l2size;
  280. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  281. l2size, ecx & 0xFF);
  282. }
  283. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  284. {
  285. #ifdef CONFIG_X86_HT
  286. u32 eax, ebx, ecx, edx;
  287. int index_msb, core_bits;
  288. if (!cpu_has(c, X86_FEATURE_HT))
  289. return;
  290. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  291. goto out;
  292. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  293. return;
  294. cpuid(1, &eax, &ebx, &ecx, &edx);
  295. smp_num_siblings = (ebx & 0xff0000) >> 16;
  296. if (smp_num_siblings == 1) {
  297. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  298. } else if (smp_num_siblings > 1) {
  299. if (smp_num_siblings > NR_CPUS) {
  300. printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
  301. smp_num_siblings);
  302. smp_num_siblings = 1;
  303. return;
  304. }
  305. index_msb = get_count_order(smp_num_siblings);
  306. #ifdef CONFIG_X86_64
  307. c->phys_proc_id = phys_pkg_id(index_msb);
  308. #else
  309. c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
  310. #endif
  311. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  312. index_msb = get_count_order(smp_num_siblings);
  313. core_bits = get_count_order(c->x86_max_cores);
  314. #ifdef CONFIG_X86_64
  315. c->cpu_core_id = phys_pkg_id(index_msb) &
  316. ((1 << core_bits) - 1);
  317. #else
  318. c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
  319. ((1 << core_bits) - 1);
  320. #endif
  321. }
  322. out:
  323. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  324. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  325. c->phys_proc_id);
  326. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  327. c->cpu_core_id);
  328. }
  329. #endif
  330. }
  331. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  332. {
  333. char *v = c->x86_vendor_id;
  334. int i;
  335. static int printed;
  336. for (i = 0; i < X86_VENDOR_NUM; i++) {
  337. if (!cpu_devs[i])
  338. break;
  339. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  340. (cpu_devs[i]->c_ident[1] &&
  341. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  342. this_cpu = cpu_devs[i];
  343. c->x86_vendor = this_cpu->c_x86_vendor;
  344. return;
  345. }
  346. }
  347. if (!printed) {
  348. printed++;
  349. printk(KERN_ERR "CPU: vendor_id '%s' unknown, using generic init.\n", v);
  350. printk(KERN_ERR "CPU: Your system may be unstable.\n");
  351. }
  352. c->x86_vendor = X86_VENDOR_UNKNOWN;
  353. this_cpu = &default_cpu;
  354. }
  355. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  356. {
  357. /* Get vendor name */
  358. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  359. (unsigned int *)&c->x86_vendor_id[0],
  360. (unsigned int *)&c->x86_vendor_id[8],
  361. (unsigned int *)&c->x86_vendor_id[4]);
  362. c->x86 = 4;
  363. /* Intel-defined flags: level 0x00000001 */
  364. if (c->cpuid_level >= 0x00000001) {
  365. u32 junk, tfms, cap0, misc;
  366. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  367. c->x86 = (tfms >> 8) & 0xf;
  368. c->x86_model = (tfms >> 4) & 0xf;
  369. c->x86_mask = tfms & 0xf;
  370. if (c->x86 == 0xf)
  371. c->x86 += (tfms >> 20) & 0xff;
  372. if (c->x86 >= 0x6)
  373. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  374. if (cap0 & (1<<19)) {
  375. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  376. c->x86_cache_alignment = c->x86_clflush_size;
  377. }
  378. }
  379. }
  380. static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  381. {
  382. u32 tfms, xlvl;
  383. u32 ebx;
  384. /* Intel-defined flags: level 0x00000001 */
  385. if (c->cpuid_level >= 0x00000001) {
  386. u32 capability, excap;
  387. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  388. c->x86_capability[0] = capability;
  389. c->x86_capability[4] = excap;
  390. }
  391. /* AMD-defined flags: level 0x80000001 */
  392. xlvl = cpuid_eax(0x80000000);
  393. c->extended_cpuid_level = xlvl;
  394. if ((xlvl & 0xffff0000) == 0x80000000) {
  395. if (xlvl >= 0x80000001) {
  396. c->x86_capability[1] = cpuid_edx(0x80000001);
  397. c->x86_capability[6] = cpuid_ecx(0x80000001);
  398. }
  399. }
  400. #ifdef CONFIG_X86_64
  401. if (c->extended_cpuid_level >= 0x80000008) {
  402. u32 eax = cpuid_eax(0x80000008);
  403. c->x86_virt_bits = (eax >> 8) & 0xff;
  404. c->x86_phys_bits = eax & 0xff;
  405. }
  406. #endif
  407. if (c->extended_cpuid_level >= 0x80000007)
  408. c->x86_power = cpuid_edx(0x80000007);
  409. }
  410. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  411. {
  412. #ifdef CONFIG_X86_32
  413. int i;
  414. /*
  415. * First of all, decide if this is a 486 or higher
  416. * It's a 486 if we can modify the AC flag
  417. */
  418. if (flag_is_changeable_p(X86_EFLAGS_AC))
  419. c->x86 = 4;
  420. else
  421. c->x86 = 3;
  422. for (i = 0; i < X86_VENDOR_NUM; i++)
  423. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  424. c->x86_vendor_id[0] = 0;
  425. cpu_devs[i]->c_identify(c);
  426. if (c->x86_vendor_id[0]) {
  427. get_cpu_vendor(c);
  428. break;
  429. }
  430. }
  431. #endif
  432. }
  433. /*
  434. * Do minimum CPU detection early.
  435. * Fields really needed: vendor, cpuid_level, family, model, mask,
  436. * cache alignment.
  437. * The others are not touched to avoid unwanted side effects.
  438. *
  439. * WARNING: this function is only called on the BP. Don't add code here
  440. * that is supposed to run on all CPUs.
  441. */
  442. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  443. {
  444. #ifdef CONFIG_X86_64
  445. c->x86_clflush_size = 64;
  446. #else
  447. c->x86_clflush_size = 32;
  448. #endif
  449. c->x86_cache_alignment = c->x86_clflush_size;
  450. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  451. c->extended_cpuid_level = 0;
  452. if (!have_cpuid_p())
  453. identify_cpu_without_cpuid(c);
  454. /* cyrix could have cpuid enabled via c_identify()*/
  455. if (!have_cpuid_p())
  456. return;
  457. cpu_detect(c);
  458. get_cpu_vendor(c);
  459. get_cpu_cap(c);
  460. if (this_cpu->c_early_init)
  461. this_cpu->c_early_init(c);
  462. validate_pat_support(c);
  463. }
  464. void __init early_cpu_init(void)
  465. {
  466. struct cpu_dev **cdev;
  467. int count = 0;
  468. printk("KERNEL supported cpus:\n");
  469. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  470. struct cpu_dev *cpudev = *cdev;
  471. unsigned int j;
  472. if (count >= X86_VENDOR_NUM)
  473. break;
  474. cpu_devs[count] = cpudev;
  475. count++;
  476. for (j = 0; j < 2; j++) {
  477. if (!cpudev->c_ident[j])
  478. continue;
  479. printk(" %s %s\n", cpudev->c_vendor,
  480. cpudev->c_ident[j]);
  481. }
  482. }
  483. early_identify_cpu(&boot_cpu_data);
  484. }
  485. /*
  486. * The NOPL instruction is supposed to exist on all CPUs with
  487. * family >= 6, unfortunately, that's not true in practice because
  488. * of early VIA chips and (more importantly) broken virtualizers that
  489. * are not easy to detect. Hence, probe for it based on first
  490. * principles.
  491. *
  492. * Note: no 64-bit chip is known to lack these, but put the code here
  493. * for consistency with 32 bits, and to make it utterly trivial to
  494. * diagnose the problem should it ever surface.
  495. */
  496. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  497. {
  498. const u32 nopl_signature = 0x888c53b1; /* Random number */
  499. u32 has_nopl = nopl_signature;
  500. clear_cpu_cap(c, X86_FEATURE_NOPL);
  501. if (c->x86 >= 6) {
  502. asm volatile("\n"
  503. "1: .byte 0x0f,0x1f,0xc0\n" /* nopl %eax */
  504. "2:\n"
  505. " .section .fixup,\"ax\"\n"
  506. "3: xor %0,%0\n"
  507. " jmp 2b\n"
  508. " .previous\n"
  509. _ASM_EXTABLE(1b,3b)
  510. : "+a" (has_nopl));
  511. if (has_nopl == nopl_signature)
  512. set_cpu_cap(c, X86_FEATURE_NOPL);
  513. }
  514. }
  515. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  516. {
  517. c->extended_cpuid_level = 0;
  518. if (!have_cpuid_p())
  519. identify_cpu_without_cpuid(c);
  520. /* cyrix could have cpuid enabled via c_identify()*/
  521. if (!have_cpuid_p())
  522. return;
  523. cpu_detect(c);
  524. get_cpu_vendor(c);
  525. get_cpu_cap(c);
  526. if (c->cpuid_level >= 0x00000001) {
  527. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  528. #ifdef CONFIG_X86_32
  529. # ifdef CONFIG_X86_HT
  530. c->apicid = phys_pkg_id(c->initial_apicid, 0);
  531. # else
  532. c->apicid = c->initial_apicid;
  533. # endif
  534. #endif
  535. #ifdef CONFIG_X86_HT
  536. c->phys_proc_id = c->initial_apicid;
  537. #endif
  538. }
  539. get_model_name(c); /* Default name */
  540. init_scattered_cpuid_features(c);
  541. detect_nopl(c);
  542. }
  543. /*
  544. * This does the hard work of actually picking apart the CPU stuff...
  545. */
  546. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  547. {
  548. int i;
  549. c->loops_per_jiffy = loops_per_jiffy;
  550. c->x86_cache_size = -1;
  551. c->x86_vendor = X86_VENDOR_UNKNOWN;
  552. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  553. c->x86_vendor_id[0] = '\0'; /* Unset */
  554. c->x86_model_id[0] = '\0'; /* Unset */
  555. c->x86_max_cores = 1;
  556. c->x86_coreid_bits = 0;
  557. #ifdef CONFIG_X86_64
  558. c->x86_clflush_size = 64;
  559. #else
  560. c->cpuid_level = -1; /* CPUID not detected */
  561. c->x86_clflush_size = 32;
  562. #endif
  563. c->x86_cache_alignment = c->x86_clflush_size;
  564. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  565. generic_identify(c);
  566. if (this_cpu->c_identify)
  567. this_cpu->c_identify(c);
  568. #ifdef CONFIG_X86_64
  569. c->apicid = phys_pkg_id(0);
  570. #endif
  571. /*
  572. * Vendor-specific initialization. In this section we
  573. * canonicalize the feature flags, meaning if there are
  574. * features a certain CPU supports which CPUID doesn't
  575. * tell us, CPUID claiming incorrect flags, or other bugs,
  576. * we handle them here.
  577. *
  578. * At the end of this section, c->x86_capability better
  579. * indicate the features this CPU genuinely supports!
  580. */
  581. if (this_cpu->c_init)
  582. this_cpu->c_init(c);
  583. /* Disable the PN if appropriate */
  584. squash_the_stupid_serial_number(c);
  585. /*
  586. * The vendor-specific functions might have changed features. Now
  587. * we do "generic changes."
  588. */
  589. /* If the model name is still unset, do table lookup. */
  590. if (!c->x86_model_id[0]) {
  591. char *p;
  592. p = table_lookup_model(c);
  593. if (p)
  594. strcpy(c->x86_model_id, p);
  595. else
  596. /* Last resort... */
  597. sprintf(c->x86_model_id, "%02x/%02x",
  598. c->x86, c->x86_model);
  599. }
  600. #ifdef CONFIG_X86_64
  601. detect_ht(c);
  602. #endif
  603. /*
  604. * On SMP, boot_cpu_data holds the common feature set between
  605. * all CPUs; so make sure that we indicate which features are
  606. * common between the CPUs. The first time this routine gets
  607. * executed, c == &boot_cpu_data.
  608. */
  609. if (c != &boot_cpu_data) {
  610. /* AND the already accumulated flags with these */
  611. for (i = 0; i < NCAPINTS; i++)
  612. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  613. }
  614. /* Clear all flags overriden by options */
  615. for (i = 0; i < NCAPINTS; i++)
  616. c->x86_capability[i] &= ~cleared_cpu_caps[i];
  617. #ifdef CONFIG_X86_MCE
  618. /* Init Machine Check Exception if available. */
  619. mcheck_init(c);
  620. #endif
  621. select_idle_routine(c);
  622. #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
  623. numa_add_cpu(smp_processor_id());
  624. #endif
  625. }
  626. void __init identify_boot_cpu(void)
  627. {
  628. identify_cpu(&boot_cpu_data);
  629. #ifdef CONFIG_X86_32
  630. sysenter_setup();
  631. enable_sep_cpu();
  632. #endif
  633. }
  634. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  635. {
  636. BUG_ON(c == &boot_cpu_data);
  637. identify_cpu(c);
  638. #ifdef CONFIG_X86_32
  639. enable_sep_cpu();
  640. #endif
  641. mtrr_ap_init();
  642. }
  643. struct msr_range {
  644. unsigned min;
  645. unsigned max;
  646. };
  647. static struct msr_range msr_range_array[] __cpuinitdata = {
  648. { 0x00000000, 0x00000418},
  649. { 0xc0000000, 0xc000040b},
  650. { 0xc0010000, 0xc0010142},
  651. { 0xc0011000, 0xc001103b},
  652. };
  653. static void __cpuinit print_cpu_msr(void)
  654. {
  655. unsigned index;
  656. u64 val;
  657. int i;
  658. unsigned index_min, index_max;
  659. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  660. index_min = msr_range_array[i].min;
  661. index_max = msr_range_array[i].max;
  662. for (index = index_min; index < index_max; index++) {
  663. if (rdmsrl_amd_safe(index, &val))
  664. continue;
  665. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  666. }
  667. }
  668. }
  669. static int show_msr __cpuinitdata;
  670. static __init int setup_show_msr(char *arg)
  671. {
  672. int num;
  673. get_option(&arg, &num);
  674. if (num > 0)
  675. show_msr = num;
  676. return 1;
  677. }
  678. __setup("show_msr=", setup_show_msr);
  679. static __init int setup_noclflush(char *arg)
  680. {
  681. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  682. return 1;
  683. }
  684. __setup("noclflush", setup_noclflush);
  685. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  686. {
  687. char *vendor = NULL;
  688. if (c->x86_vendor < X86_VENDOR_NUM)
  689. vendor = this_cpu->c_vendor;
  690. else if (c->cpuid_level >= 0)
  691. vendor = c->x86_vendor_id;
  692. if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
  693. printk(KERN_CONT "%s ", vendor);
  694. if (c->x86_model_id[0])
  695. printk(KERN_CONT "%s", c->x86_model_id);
  696. else
  697. printk(KERN_CONT "%d86", c->x86);
  698. if (c->x86_mask || c->cpuid_level >= 0)
  699. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  700. else
  701. printk(KERN_CONT "\n");
  702. #ifdef CONFIG_SMP
  703. if (c->cpu_index < show_msr)
  704. print_cpu_msr();
  705. #else
  706. if (show_msr)
  707. print_cpu_msr();
  708. #endif
  709. }
  710. static __init int setup_disablecpuid(char *arg)
  711. {
  712. int bit;
  713. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  714. setup_clear_cpu_cap(bit);
  715. else
  716. return 0;
  717. return 1;
  718. }
  719. __setup("clearcpuid=", setup_disablecpuid);
  720. cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
  721. #ifdef CONFIG_X86_64
  722. struct x8664_pda **_cpu_pda __read_mostly;
  723. EXPORT_SYMBOL(_cpu_pda);
  724. struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
  725. char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
  726. void __cpuinit pda_init(int cpu)
  727. {
  728. struct x8664_pda *pda = cpu_pda(cpu);
  729. /* Setup up data that may be needed in __get_free_pages early */
  730. loadsegment(fs, 0);
  731. loadsegment(gs, 0);
  732. /* Memory clobbers used to order PDA accessed */
  733. mb();
  734. wrmsrl(MSR_GS_BASE, pda);
  735. mb();
  736. pda->cpunumber = cpu;
  737. pda->irqcount = -1;
  738. pda->kernelstack = (unsigned long)stack_thread_info() -
  739. PDA_STACKOFFSET + THREAD_SIZE;
  740. pda->active_mm = &init_mm;
  741. pda->mmu_state = 0;
  742. if (cpu == 0) {
  743. /* others are initialized in smpboot.c */
  744. pda->pcurrent = &init_task;
  745. pda->irqstackptr = boot_cpu_stack;
  746. pda->irqstackptr += IRQSTACKSIZE - 64;
  747. } else {
  748. if (!pda->irqstackptr) {
  749. pda->irqstackptr = (char *)
  750. __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
  751. if (!pda->irqstackptr)
  752. panic("cannot allocate irqstack for cpu %d",
  753. cpu);
  754. pda->irqstackptr += IRQSTACKSIZE - 64;
  755. }
  756. if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
  757. pda->nodenumber = cpu_to_node(cpu);
  758. }
  759. }
  760. char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
  761. DEBUG_STKSZ] __page_aligned_bss;
  762. extern asmlinkage void ignore_sysret(void);
  763. /* May not be marked __init: used by software suspend */
  764. void syscall_init(void)
  765. {
  766. /*
  767. * LSTAR and STAR live in a bit strange symbiosis.
  768. * They both write to the same internal register. STAR allows to
  769. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  770. */
  771. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  772. wrmsrl(MSR_LSTAR, system_call);
  773. wrmsrl(MSR_CSTAR, ignore_sysret);
  774. #ifdef CONFIG_IA32_EMULATION
  775. syscall32_cpu_init();
  776. #endif
  777. /* Flags to clear on syscall */
  778. wrmsrl(MSR_SYSCALL_MASK,
  779. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  780. }
  781. unsigned long kernel_eflags;
  782. /*
  783. * Copies of the original ist values from the tss are only accessed during
  784. * debugging, no special alignment required.
  785. */
  786. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  787. #else
  788. /* Make sure %fs is initialized properly in idle threads */
  789. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  790. {
  791. memset(regs, 0, sizeof(struct pt_regs));
  792. regs->fs = __KERNEL_PERCPU;
  793. return regs;
  794. }
  795. #endif
  796. /*
  797. * cpu_init() initializes state that is per-CPU. Some data is already
  798. * initialized (naturally) in the bootstrap process, such as the GDT
  799. * and IDT. We reload them nevertheless, this function acts as a
  800. * 'CPU state barrier', nothing should get across.
  801. * A lot of state is already set up in PDA init for 64 bit
  802. */
  803. #ifdef CONFIG_X86_64
  804. void __cpuinit cpu_init(void)
  805. {
  806. int cpu = stack_smp_processor_id();
  807. struct tss_struct *t = &per_cpu(init_tss, cpu);
  808. struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
  809. unsigned long v;
  810. char *estacks = NULL;
  811. struct task_struct *me;
  812. int i;
  813. /* CPU 0 is initialised in head64.c */
  814. if (cpu != 0)
  815. pda_init(cpu);
  816. else
  817. estacks = boot_exception_stacks;
  818. me = current;
  819. if (cpu_test_and_set(cpu, cpu_initialized))
  820. panic("CPU#%d already initialized!\n", cpu);
  821. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  822. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  823. /*
  824. * Initialize the per-CPU GDT with the boot GDT,
  825. * and set up the GDT descriptor:
  826. */
  827. switch_to_new_gdt();
  828. load_idt((const struct desc_ptr *)&idt_descr);
  829. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  830. syscall_init();
  831. wrmsrl(MSR_FS_BASE, 0);
  832. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  833. barrier();
  834. check_efer();
  835. if (cpu != 0 && x2apic)
  836. enable_x2apic();
  837. /*
  838. * set up and load the per-CPU TSS
  839. */
  840. if (!orig_ist->ist[0]) {
  841. static const unsigned int order[N_EXCEPTION_STACKS] = {
  842. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
  843. [DEBUG_STACK - 1] = DEBUG_STACK_ORDER
  844. };
  845. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  846. if (cpu) {
  847. estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
  848. if (!estacks)
  849. panic("Cannot allocate exception "
  850. "stack %ld %d\n", v, cpu);
  851. }
  852. estacks += PAGE_SIZE << order[v];
  853. orig_ist->ist[v] = t->x86_tss.ist[v] =
  854. (unsigned long)estacks;
  855. }
  856. }
  857. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  858. /*
  859. * <= is required because the CPU will access up to
  860. * 8 bits beyond the end of the IO permission bitmap.
  861. */
  862. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  863. t->io_bitmap[i] = ~0UL;
  864. atomic_inc(&init_mm.mm_count);
  865. me->active_mm = &init_mm;
  866. if (me->mm)
  867. BUG();
  868. enter_lazy_tlb(&init_mm, me);
  869. load_sp0(t, &current->thread);
  870. set_tss_desc(cpu, t);
  871. load_TR_desc();
  872. load_LDT(&init_mm.context);
  873. #ifdef CONFIG_KGDB
  874. /*
  875. * If the kgdb is connected no debug regs should be altered. This
  876. * is only applicable when KGDB and a KGDB I/O module are built
  877. * into the kernel and you are using early debugging with
  878. * kgdbwait. KGDB will control the kernel HW breakpoint registers.
  879. */
  880. if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
  881. arch_kgdb_ops.correct_hw_break();
  882. else {
  883. #endif
  884. /*
  885. * Clear all 6 debug registers:
  886. */
  887. set_debugreg(0UL, 0);
  888. set_debugreg(0UL, 1);
  889. set_debugreg(0UL, 2);
  890. set_debugreg(0UL, 3);
  891. set_debugreg(0UL, 6);
  892. set_debugreg(0UL, 7);
  893. #ifdef CONFIG_KGDB
  894. /* If the kgdb is connected no debug regs should be altered. */
  895. }
  896. #endif
  897. fpu_init();
  898. raw_local_save_flags(kernel_eflags);
  899. if (is_uv_system())
  900. uv_cpu_init();
  901. }
  902. #else
  903. void __cpuinit cpu_init(void)
  904. {
  905. int cpu = smp_processor_id();
  906. struct task_struct *curr = current;
  907. struct tss_struct *t = &per_cpu(init_tss, cpu);
  908. struct thread_struct *thread = &curr->thread;
  909. if (cpu_test_and_set(cpu, cpu_initialized)) {
  910. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  911. for (;;) local_irq_enable();
  912. }
  913. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  914. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  915. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  916. load_idt(&idt_descr);
  917. switch_to_new_gdt();
  918. /*
  919. * Set up and load the per-CPU TSS and LDT
  920. */
  921. atomic_inc(&init_mm.mm_count);
  922. curr->active_mm = &init_mm;
  923. if (curr->mm)
  924. BUG();
  925. enter_lazy_tlb(&init_mm, curr);
  926. load_sp0(t, thread);
  927. set_tss_desc(cpu, t);
  928. load_TR_desc();
  929. load_LDT(&init_mm.context);
  930. #ifdef CONFIG_DOUBLEFAULT
  931. /* Set up doublefault TSS pointer in the GDT */
  932. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  933. #endif
  934. /* Clear %gs. */
  935. asm volatile ("mov %0, %%gs" : : "r" (0));
  936. /* Clear all 6 debug registers: */
  937. set_debugreg(0, 0);
  938. set_debugreg(0, 1);
  939. set_debugreg(0, 2);
  940. set_debugreg(0, 3);
  941. set_debugreg(0, 6);
  942. set_debugreg(0, 7);
  943. /*
  944. * Force FPU initialization:
  945. */
  946. if (cpu_has_xsave)
  947. current_thread_info()->status = TS_XSAVE;
  948. else
  949. current_thread_info()->status = 0;
  950. clear_used_math();
  951. mxcsr_feature_mask_init();
  952. /*
  953. * Boot processor to setup the FP and extended state context info.
  954. */
  955. if (!smp_processor_id())
  956. init_thread_xstate();
  957. xsave_init();
  958. }
  959. #ifdef CONFIG_HOTPLUG_CPU
  960. void __cpuinit cpu_uninit(void)
  961. {
  962. int cpu = raw_smp_processor_id();
  963. cpu_clear(cpu, cpu_initialized);
  964. /* lazy TLB state */
  965. per_cpu(cpu_tlbstate, cpu).state = 0;
  966. per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
  967. }
  968. #endif
  969. #endif