pch_can.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306
  1. /*
  2. * Copyright (C) 1999 - 2010 Intel Corporation.
  3. * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  17. */
  18. #include <linux/interrupt.h>
  19. #include <linux/delay.h>
  20. #include <linux/io.h>
  21. #include <linux/module.h>
  22. #include <linux/sched.h>
  23. #include <linux/pci.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/types.h>
  27. #include <linux/errno.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/skbuff.h>
  30. #include <linux/can.h>
  31. #include <linux/can/dev.h>
  32. #include <linux/can/error.h>
  33. #define PCH_CTRL_INIT BIT(0) /* The INIT bit of CANCONT register. */
  34. #define PCH_CTRL_IE BIT(1) /* The IE bit of CAN control register */
  35. #define PCH_CTRL_IE_SIE_EIE (BIT(3) | BIT(2) | BIT(1))
  36. #define PCH_CTRL_CCE BIT(6)
  37. #define PCH_CTRL_OPT BIT(7) /* The OPT bit of CANCONT register. */
  38. #define PCH_OPT_SILENT BIT(3) /* The Silent bit of CANOPT reg. */
  39. #define PCH_OPT_LBACK BIT(4) /* The LoopBack bit of CANOPT reg. */
  40. #define PCH_CMASK_RX_TX_SET 0x00f3
  41. #define PCH_CMASK_RX_TX_GET 0x0073
  42. #define PCH_CMASK_ALL 0xff
  43. #define PCH_CMASK_NEWDAT BIT(2)
  44. #define PCH_CMASK_CLRINTPND BIT(3)
  45. #define PCH_CMASK_CTRL BIT(4)
  46. #define PCH_CMASK_ARB BIT(5)
  47. #define PCH_CMASK_MASK BIT(6)
  48. #define PCH_CMASK_RDWR BIT(7)
  49. #define PCH_IF_MCONT_NEWDAT BIT(15)
  50. #define PCH_IF_MCONT_MSGLOST BIT(14)
  51. #define PCH_IF_MCONT_INTPND BIT(13)
  52. #define PCH_IF_MCONT_UMASK BIT(12)
  53. #define PCH_IF_MCONT_TXIE BIT(11)
  54. #define PCH_IF_MCONT_RXIE BIT(10)
  55. #define PCH_IF_MCONT_RMTEN BIT(9)
  56. #define PCH_IF_MCONT_TXRQXT BIT(8)
  57. #define PCH_IF_MCONT_EOB BIT(7)
  58. #define PCH_IF_MCONT_DLC (BIT(0) | BIT(1) | BIT(2) | BIT(3))
  59. #define PCH_MASK2_MDIR_MXTD (BIT(14) | BIT(15))
  60. #define PCH_ID2_DIR BIT(13)
  61. #define PCH_ID2_XTD BIT(14)
  62. #define PCH_ID_MSGVAL BIT(15)
  63. #define PCH_IF_CREQ_BUSY BIT(15)
  64. #define PCH_STATUS_INT 0x8000
  65. #define PCH_REC 0x00007f00
  66. #define PCH_TEC 0x000000ff
  67. #define PCH_TX_OK BIT(3)
  68. #define PCH_RX_OK BIT(4)
  69. #define PCH_EPASSIV BIT(5)
  70. #define PCH_EWARN BIT(6)
  71. #define PCH_BUS_OFF BIT(7)
  72. /* bit position of certain controller bits. */
  73. #define PCH_BIT_BRP_SHIFT 0
  74. #define PCH_BIT_SJW_SHIFT 6
  75. #define PCH_BIT_TSEG1_SHIFT 8
  76. #define PCH_BIT_TSEG2_SHIFT 12
  77. #define PCH_BIT_BRPE_BRPE_SHIFT 6
  78. #define PCH_MSK_BITT_BRP 0x3f
  79. #define PCH_MSK_BRPE_BRPE 0x3c0
  80. #define PCH_MSK_CTRL_IE_SIE_EIE 0x07
  81. #define PCH_COUNTER_LIMIT 10
  82. #define PCH_CAN_CLK 50000000 /* 50MHz */
  83. /* Define the number of message object.
  84. * PCH CAN communications are done via Message RAM.
  85. * The Message RAM consists of 32 message objects. */
  86. #define PCH_RX_OBJ_NUM 26
  87. #define PCH_TX_OBJ_NUM 6
  88. #define PCH_RX_OBJ_START 1
  89. #define PCH_RX_OBJ_END PCH_RX_OBJ_NUM
  90. #define PCH_TX_OBJ_START (PCH_RX_OBJ_END + 1)
  91. #define PCH_TX_OBJ_END (PCH_RX_OBJ_NUM + PCH_TX_OBJ_NUM)
  92. #define PCH_FIFO_THRESH 16
  93. /* TxRqst2 show status of MsgObjNo.17~32 */
  94. #define PCH_TREQ2_TX_MASK (((1 << PCH_TX_OBJ_NUM) - 1) <<\
  95. (PCH_RX_OBJ_END - 16))
  96. enum pch_ifreg {
  97. PCH_RX_IFREG,
  98. PCH_TX_IFREG,
  99. };
  100. enum pch_can_err {
  101. PCH_STUF_ERR = 1,
  102. PCH_FORM_ERR,
  103. PCH_ACK_ERR,
  104. PCH_BIT1_ERR,
  105. PCH_BIT0_ERR,
  106. PCH_CRC_ERR,
  107. PCH_LEC_ALL,
  108. };
  109. enum pch_can_mode {
  110. PCH_CAN_ENABLE,
  111. PCH_CAN_DISABLE,
  112. PCH_CAN_ALL,
  113. PCH_CAN_NONE,
  114. PCH_CAN_STOP,
  115. PCH_CAN_RUN
  116. };
  117. struct pch_can_if_regs {
  118. u32 creq;
  119. u32 cmask;
  120. u32 mask1;
  121. u32 mask2;
  122. u32 id1;
  123. u32 id2;
  124. u32 mcont;
  125. u32 data[4];
  126. u32 rsv[13];
  127. };
  128. struct pch_can_regs {
  129. u32 cont;
  130. u32 stat;
  131. u32 errc;
  132. u32 bitt;
  133. u32 intr;
  134. u32 opt;
  135. u32 brpe;
  136. u32 reserve;
  137. struct pch_can_if_regs ifregs[2]; /* [0]=if1 [1]=if2 */
  138. u32 reserve1[8];
  139. u32 treq1;
  140. u32 treq2;
  141. u32 reserve2[6];
  142. u32 data1;
  143. u32 data2;
  144. u32 reserve3[6];
  145. u32 canipend1;
  146. u32 canipend2;
  147. u32 reserve4[6];
  148. u32 canmval1;
  149. u32 canmval2;
  150. u32 reserve5[37];
  151. u32 srst;
  152. };
  153. struct pch_can_priv {
  154. struct can_priv can;
  155. struct pci_dev *dev;
  156. u32 tx_enable[PCH_TX_OBJ_END];
  157. u32 rx_enable[PCH_TX_OBJ_END];
  158. u32 rx_link[PCH_TX_OBJ_END];
  159. u32 int_enables;
  160. struct net_device *ndev;
  161. struct pch_can_regs __iomem *regs;
  162. struct napi_struct napi;
  163. int tx_obj; /* Point next Tx Obj index */
  164. int use_msi;
  165. };
  166. static struct can_bittiming_const pch_can_bittiming_const = {
  167. .name = KBUILD_MODNAME,
  168. .tseg1_min = 1,
  169. .tseg1_max = 16,
  170. .tseg2_min = 1,
  171. .tseg2_max = 8,
  172. .sjw_max = 4,
  173. .brp_min = 1,
  174. .brp_max = 1024, /* 6bit + extended 4bit */
  175. .brp_inc = 1,
  176. };
  177. static DEFINE_PCI_DEVICE_TABLE(pch_pci_tbl) = {
  178. {PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,},
  179. {0,}
  180. };
  181. MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
  182. static inline void pch_can_bit_set(void __iomem *addr, u32 mask)
  183. {
  184. iowrite32(ioread32(addr) | mask, addr);
  185. }
  186. static inline void pch_can_bit_clear(void __iomem *addr, u32 mask)
  187. {
  188. iowrite32(ioread32(addr) & ~mask, addr);
  189. }
  190. static void pch_can_set_run_mode(struct pch_can_priv *priv,
  191. enum pch_can_mode mode)
  192. {
  193. switch (mode) {
  194. case PCH_CAN_RUN:
  195. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT);
  196. break;
  197. case PCH_CAN_STOP:
  198. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT);
  199. break;
  200. default:
  201. netdev_err(priv->ndev, "%s -> Invalid Mode.\n", __func__);
  202. break;
  203. }
  204. }
  205. static void pch_can_set_optmode(struct pch_can_priv *priv)
  206. {
  207. u32 reg_val = ioread32(&priv->regs->opt);
  208. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  209. reg_val |= PCH_OPT_SILENT;
  210. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
  211. reg_val |= PCH_OPT_LBACK;
  212. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT);
  213. iowrite32(reg_val, &priv->regs->opt);
  214. }
  215. static void pch_can_rw_msg_obj(void __iomem *creq_addr, u32 num)
  216. {
  217. int counter = PCH_COUNTER_LIMIT;
  218. u32 ifx_creq;
  219. iowrite32(num, creq_addr);
  220. while (counter) {
  221. ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY;
  222. if (!ifx_creq)
  223. break;
  224. counter--;
  225. udelay(1);
  226. }
  227. if (!counter)
  228. pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
  229. }
  230. static void pch_can_set_int_enables(struct pch_can_priv *priv,
  231. enum pch_can_mode interrupt_no)
  232. {
  233. switch (interrupt_no) {
  234. case PCH_CAN_DISABLE:
  235. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE);
  236. break;
  237. case PCH_CAN_ALL:
  238. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  239. break;
  240. case PCH_CAN_NONE:
  241. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  242. break;
  243. default:
  244. netdev_err(priv->ndev, "Invalid interrupt number.\n");
  245. break;
  246. }
  247. }
  248. static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num,
  249. int set, enum pch_ifreg dir)
  250. {
  251. u32 ie;
  252. if (dir)
  253. ie = PCH_IF_MCONT_TXIE;
  254. else
  255. ie = PCH_IF_MCONT_RXIE;
  256. /* Reading the receive buffer data from RAM to Interface1 registers */
  257. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  258. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  259. /* Setting the IF1MASK1 register to access MsgVal and RxIE bits */
  260. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_ARB | PCH_CMASK_CTRL,
  261. &priv->regs->ifregs[dir].cmask);
  262. if (set) {
  263. /* Setting the MsgVal and RxIE bits */
  264. pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie);
  265. pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  266. } else {
  267. /* Resetting the MsgVal and RxIE bits */
  268. pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie);
  269. pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  270. }
  271. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  272. }
  273. static void pch_can_set_rx_all(struct pch_can_priv *priv, int set)
  274. {
  275. int i;
  276. /* Traversing to obtain the object configured as receivers. */
  277. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++)
  278. pch_can_set_rxtx(priv, i, set, PCH_RX_IFREG);
  279. }
  280. static void pch_can_set_tx_all(struct pch_can_priv *priv, int set)
  281. {
  282. int i;
  283. /* Traversing to obtain the object configured as transmit object. */
  284. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  285. pch_can_set_rxtx(priv, i, set, PCH_TX_IFREG);
  286. }
  287. static u32 pch_can_int_pending(struct pch_can_priv *priv)
  288. {
  289. return ioread32(&priv->regs->intr) & 0xffff;
  290. }
  291. static void pch_can_clear_if_buffers(struct pch_can_priv *priv)
  292. {
  293. int i; /* Msg Obj ID (1~32) */
  294. for (i = PCH_RX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  295. iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask);
  296. iowrite32(0xffff, &priv->regs->ifregs[0].mask1);
  297. iowrite32(0xffff, &priv->regs->ifregs[0].mask2);
  298. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  299. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  300. iowrite32(0x0, &priv->regs->ifregs[0].mcont);
  301. iowrite32(0x0, &priv->regs->ifregs[0].data[0]);
  302. iowrite32(0x0, &priv->regs->ifregs[0].data[1]);
  303. iowrite32(0x0, &priv->regs->ifregs[0].data[2]);
  304. iowrite32(0x0, &priv->regs->ifregs[0].data[3]);
  305. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  306. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  307. &priv->regs->ifregs[0].cmask);
  308. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  309. }
  310. }
  311. static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
  312. {
  313. int i;
  314. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  315. iowrite32(PCH_CMASK_RX_TX_GET,
  316. &priv->regs->ifregs[0].cmask);
  317. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  318. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  319. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  320. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  321. PCH_IF_MCONT_UMASK);
  322. /* In case FIFO mode, Last EoB of Rx Obj must be 1 */
  323. if (i == PCH_RX_OBJ_END)
  324. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  325. PCH_IF_MCONT_EOB);
  326. else
  327. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  328. PCH_IF_MCONT_EOB);
  329. iowrite32(0, &priv->regs->ifregs[0].mask1);
  330. pch_can_bit_clear(&priv->regs->ifregs[0].mask2,
  331. 0x1fff | PCH_MASK2_MDIR_MXTD);
  332. /* Setting CMASK for writing */
  333. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  334. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  335. &priv->regs->ifregs[0].cmask);
  336. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  337. }
  338. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  339. iowrite32(PCH_CMASK_RX_TX_GET,
  340. &priv->regs->ifregs[1].cmask);
  341. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
  342. /* Resetting DIR bit for reception */
  343. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  344. iowrite32(PCH_ID2_DIR, &priv->regs->ifregs[1].id2);
  345. /* Setting EOB bit for transmitter */
  346. iowrite32(PCH_IF_MCONT_EOB | PCH_IF_MCONT_UMASK,
  347. &priv->regs->ifregs[1].mcont);
  348. iowrite32(0, &priv->regs->ifregs[1].mask1);
  349. pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff);
  350. /* Setting CMASK for writing */
  351. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  352. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  353. &priv->regs->ifregs[1].cmask);
  354. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
  355. }
  356. }
  357. static void pch_can_init(struct pch_can_priv *priv)
  358. {
  359. /* Stopping the Can device. */
  360. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  361. /* Clearing all the message object buffers. */
  362. pch_can_clear_if_buffers(priv);
  363. /* Configuring the respective message object as either rx/tx object. */
  364. pch_can_config_rx_tx_buffers(priv);
  365. /* Enabling the interrupts. */
  366. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  367. }
  368. static void pch_can_release(struct pch_can_priv *priv)
  369. {
  370. /* Stooping the CAN device. */
  371. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  372. /* Disabling the interrupts. */
  373. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  374. /* Disabling all the receive object. */
  375. pch_can_set_rx_all(priv, 0);
  376. /* Disabling all the transmit object. */
  377. pch_can_set_tx_all(priv, 0);
  378. }
  379. /* This function clears interrupt(s) from the CAN device. */
  380. static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
  381. {
  382. if (mask == PCH_STATUS_INT) {
  383. ioread32(&priv->regs->stat);
  384. return;
  385. }
  386. /* Clear interrupt for transmit object */
  387. if ((mask >= PCH_RX_OBJ_START) && (mask <= PCH_RX_OBJ_END)) {
  388. /* Setting CMASK for clearing the reception interrupts. */
  389. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  390. &priv->regs->ifregs[0].cmask);
  391. /* Clearing the Dir bit. */
  392. pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
  393. /* Clearing NewDat & IntPnd */
  394. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  395. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND);
  396. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, mask);
  397. } else if ((mask >= PCH_TX_OBJ_START) && (mask <= PCH_TX_OBJ_END)) {
  398. /* Setting CMASK for clearing interrupts for
  399. frame transmission. */
  400. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  401. &priv->regs->ifregs[1].cmask);
  402. /* Resetting the ID registers. */
  403. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  404. PCH_ID2_DIR | (0x7ff << 2));
  405. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  406. /* Claring NewDat, TxRqst & IntPnd */
  407. pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
  408. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
  409. PCH_IF_MCONT_TXRQXT);
  410. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, mask);
  411. }
  412. }
  413. static void pch_can_reset(struct pch_can_priv *priv)
  414. {
  415. /* write to sw reset register */
  416. iowrite32(1, &priv->regs->srst);
  417. iowrite32(0, &priv->regs->srst);
  418. }
  419. static void pch_can_error(struct net_device *ndev, u32 status)
  420. {
  421. struct sk_buff *skb;
  422. struct pch_can_priv *priv = netdev_priv(ndev);
  423. struct can_frame *cf;
  424. u32 errc, lec;
  425. struct net_device_stats *stats = &(priv->ndev->stats);
  426. enum can_state state = priv->can.state;
  427. skb = alloc_can_err_skb(ndev, &cf);
  428. if (!skb)
  429. return;
  430. if (status & PCH_BUS_OFF) {
  431. pch_can_set_tx_all(priv, 0);
  432. pch_can_set_rx_all(priv, 0);
  433. state = CAN_STATE_BUS_OFF;
  434. cf->can_id |= CAN_ERR_BUSOFF;
  435. can_bus_off(ndev);
  436. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  437. dev_err(&ndev->dev, "%s -> Bus Off occurres.\n", __func__);
  438. }
  439. errc = ioread32(&priv->regs->errc);
  440. /* Warning interrupt. */
  441. if (status & PCH_EWARN) {
  442. state = CAN_STATE_ERROR_WARNING;
  443. priv->can.can_stats.error_warning++;
  444. cf->can_id |= CAN_ERR_CRTL;
  445. if (((errc & PCH_REC) >> 8) > 96)
  446. cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
  447. if ((errc & PCH_TEC) > 96)
  448. cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
  449. netdev_dbg(ndev,
  450. "%s -> Error Counter is more than 96.\n", __func__);
  451. }
  452. /* Error passive interrupt. */
  453. if (status & PCH_EPASSIV) {
  454. priv->can.can_stats.error_passive++;
  455. state = CAN_STATE_ERROR_PASSIVE;
  456. cf->can_id |= CAN_ERR_CRTL;
  457. if (((errc & PCH_REC) >> 8) > 127)
  458. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  459. if ((errc & PCH_TEC) > 127)
  460. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  461. netdev_dbg(ndev,
  462. "%s -> CAN controller is ERROR PASSIVE .\n", __func__);
  463. }
  464. lec = status & PCH_LEC_ALL;
  465. switch (lec) {
  466. case PCH_STUF_ERR:
  467. cf->data[2] |= CAN_ERR_PROT_STUFF;
  468. priv->can.can_stats.bus_error++;
  469. stats->rx_errors++;
  470. break;
  471. case PCH_FORM_ERR:
  472. cf->data[2] |= CAN_ERR_PROT_FORM;
  473. priv->can.can_stats.bus_error++;
  474. stats->rx_errors++;
  475. break;
  476. case PCH_ACK_ERR:
  477. cf->can_id |= CAN_ERR_ACK;
  478. priv->can.can_stats.bus_error++;
  479. stats->rx_errors++;
  480. break;
  481. case PCH_BIT1_ERR:
  482. case PCH_BIT0_ERR:
  483. cf->data[2] |= CAN_ERR_PROT_BIT;
  484. priv->can.can_stats.bus_error++;
  485. stats->rx_errors++;
  486. break;
  487. case PCH_CRC_ERR:
  488. cf->data[2] |= CAN_ERR_PROT_LOC_CRC_SEQ |
  489. CAN_ERR_PROT_LOC_CRC_DEL;
  490. priv->can.can_stats.bus_error++;
  491. stats->rx_errors++;
  492. break;
  493. case PCH_LEC_ALL: /* Written by CPU. No error status */
  494. break;
  495. }
  496. priv->can.state = state;
  497. netif_rx(skb);
  498. stats->rx_packets++;
  499. stats->rx_bytes += cf->can_dlc;
  500. }
  501. static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
  502. {
  503. struct net_device *ndev = (struct net_device *)dev_id;
  504. struct pch_can_priv *priv = netdev_priv(ndev);
  505. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  506. napi_schedule(&priv->napi);
  507. return IRQ_HANDLED;
  508. }
  509. static void pch_fifo_thresh(struct pch_can_priv *priv, int obj_id)
  510. {
  511. if (obj_id < PCH_FIFO_THRESH) {
  512. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL |
  513. PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask);
  514. /* Clearing the Dir bit. */
  515. pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
  516. /* Clearing NewDat & IntPnd */
  517. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  518. PCH_IF_MCONT_INTPND);
  519. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
  520. } else if (obj_id > PCH_FIFO_THRESH) {
  521. pch_can_int_clr(priv, obj_id);
  522. } else if (obj_id == PCH_FIFO_THRESH) {
  523. int cnt;
  524. for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
  525. pch_can_int_clr(priv, cnt + 1);
  526. }
  527. }
  528. static void pch_can_rx_msg_lost(struct net_device *ndev, int obj_id)
  529. {
  530. struct pch_can_priv *priv = netdev_priv(ndev);
  531. struct net_device_stats *stats = &(priv->ndev->stats);
  532. struct sk_buff *skb;
  533. struct can_frame *cf;
  534. netdev_dbg(priv->ndev, "Msg Obj is overwritten.\n");
  535. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  536. PCH_IF_MCONT_MSGLOST);
  537. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  538. &priv->regs->ifregs[0].cmask);
  539. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
  540. skb = alloc_can_err_skb(ndev, &cf);
  541. if (!skb)
  542. return;
  543. cf->can_id |= CAN_ERR_CRTL;
  544. cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  545. stats->rx_over_errors++;
  546. stats->rx_errors++;
  547. netif_receive_skb(skb);
  548. }
  549. static int pch_can_rx_normal(struct net_device *ndev, u32 obj_num, int quota)
  550. {
  551. u32 reg;
  552. canid_t id;
  553. int rcv_pkts = 0;
  554. struct sk_buff *skb;
  555. struct can_frame *cf;
  556. struct pch_can_priv *priv = netdev_priv(ndev);
  557. struct net_device_stats *stats = &(priv->ndev->stats);
  558. int i;
  559. u32 id2;
  560. u16 data_reg;
  561. do {
  562. /* Reading the messsage object from the Message RAM */
  563. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  564. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_num);
  565. /* Reading the MCONT register. */
  566. reg = ioread32(&priv->regs->ifregs[0].mcont);
  567. if (reg & PCH_IF_MCONT_EOB)
  568. break;
  569. /* If MsgLost bit set. */
  570. if (reg & PCH_IF_MCONT_MSGLOST) {
  571. pch_can_rx_msg_lost(ndev, obj_num);
  572. rcv_pkts++;
  573. quota--;
  574. obj_num++;
  575. continue;
  576. } else if (!(reg & PCH_IF_MCONT_NEWDAT)) {
  577. obj_num++;
  578. continue;
  579. }
  580. skb = alloc_can_skb(priv->ndev, &cf);
  581. if (!skb)
  582. return -ENOMEM;
  583. /* Get Received data */
  584. id2 = ioread32(&priv->regs->ifregs[0].id2);
  585. if (id2 & PCH_ID2_XTD) {
  586. id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff);
  587. id |= (((id2) & 0x1fff) << 16);
  588. cf->can_id = id | CAN_EFF_FLAG;
  589. } else {
  590. id = (id2 >> 2) & CAN_SFF_MASK;
  591. cf->can_id = id;
  592. }
  593. if (id2 & PCH_ID2_DIR)
  594. cf->can_id |= CAN_RTR_FLAG;
  595. cf->can_dlc = get_can_dlc((ioread32(&priv->regs->
  596. ifregs[0].mcont)) & 0xF);
  597. for (i = 0; i < cf->can_dlc; i += 2) {
  598. data_reg = ioread16(&priv->regs->ifregs[0].data[i / 2]);
  599. cf->data[i] = data_reg;
  600. cf->data[i + 1] = data_reg >> 8;
  601. }
  602. netif_receive_skb(skb);
  603. rcv_pkts++;
  604. stats->rx_packets++;
  605. quota--;
  606. stats->rx_bytes += cf->can_dlc;
  607. pch_fifo_thresh(priv, obj_num);
  608. obj_num++;
  609. } while (quota > 0);
  610. return rcv_pkts;
  611. }
  612. static void pch_can_tx_complete(struct net_device *ndev, u32 int_stat)
  613. {
  614. struct pch_can_priv *priv = netdev_priv(ndev);
  615. struct net_device_stats *stats = &(priv->ndev->stats);
  616. u32 dlc;
  617. can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_END - 1);
  618. iowrite32(PCH_CMASK_RX_TX_GET | PCH_CMASK_CLRINTPND,
  619. &priv->regs->ifregs[1].cmask);
  620. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, int_stat);
  621. dlc = get_can_dlc(ioread32(&priv->regs->ifregs[1].mcont) &
  622. PCH_IF_MCONT_DLC);
  623. stats->tx_bytes += dlc;
  624. stats->tx_packets++;
  625. if (int_stat == PCH_TX_OBJ_END)
  626. netif_wake_queue(ndev);
  627. }
  628. static int pch_can_poll(struct napi_struct *napi, int quota)
  629. {
  630. struct net_device *ndev = napi->dev;
  631. struct pch_can_priv *priv = netdev_priv(ndev);
  632. u32 int_stat;
  633. int rcv_pkts = 0;
  634. u32 reg_stat;
  635. int_stat = pch_can_int_pending(priv);
  636. if (!int_stat)
  637. goto end;
  638. if ((int_stat == PCH_STATUS_INT) && (quota > 0)) {
  639. reg_stat = ioread32(&priv->regs->stat);
  640. if (reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) {
  641. if (reg_stat & PCH_BUS_OFF ||
  642. (reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL) {
  643. pch_can_error(ndev, reg_stat);
  644. quota--;
  645. }
  646. }
  647. if (reg_stat & PCH_TX_OK)
  648. pch_can_bit_clear(&priv->regs->stat, PCH_TX_OK);
  649. if (reg_stat & PCH_RX_OK)
  650. pch_can_bit_clear(&priv->regs->stat, PCH_RX_OK);
  651. int_stat = pch_can_int_pending(priv);
  652. }
  653. if (quota == 0)
  654. goto end;
  655. if ((int_stat >= PCH_RX_OBJ_START) && (int_stat <= PCH_RX_OBJ_END)) {
  656. rcv_pkts += pch_can_rx_normal(ndev, int_stat, quota);
  657. quota -= rcv_pkts;
  658. if (quota < 0)
  659. goto end;
  660. } else if ((int_stat >= PCH_TX_OBJ_START) &&
  661. (int_stat <= PCH_TX_OBJ_END)) {
  662. /* Handle transmission interrupt */
  663. pch_can_tx_complete(ndev, int_stat);
  664. }
  665. end:
  666. napi_complete(napi);
  667. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  668. return rcv_pkts;
  669. }
  670. static int pch_set_bittiming(struct net_device *ndev)
  671. {
  672. struct pch_can_priv *priv = netdev_priv(ndev);
  673. const struct can_bittiming *bt = &priv->can.bittiming;
  674. u32 canbit;
  675. u32 bepe;
  676. u32 brp;
  677. /* Setting the CCE bit for accessing the Can Timing register. */
  678. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE);
  679. brp = (bt->tq) / (1000000000/PCH_CAN_CLK) - 1;
  680. canbit = brp & PCH_MSK_BITT_BRP;
  681. canbit |= (bt->sjw - 1) << PCH_BIT_SJW_SHIFT;
  682. canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1_SHIFT;
  683. canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2_SHIFT;
  684. bepe = (brp & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE_SHIFT;
  685. iowrite32(canbit, &priv->regs->bitt);
  686. iowrite32(bepe, &priv->regs->brpe);
  687. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE);
  688. return 0;
  689. }
  690. static void pch_can_start(struct net_device *ndev)
  691. {
  692. struct pch_can_priv *priv = netdev_priv(ndev);
  693. if (priv->can.state != CAN_STATE_STOPPED)
  694. pch_can_reset(priv);
  695. pch_set_bittiming(ndev);
  696. pch_can_set_optmode(priv);
  697. pch_can_set_tx_all(priv, 1);
  698. pch_can_set_rx_all(priv, 1);
  699. /* Setting the CAN to run mode. */
  700. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  701. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  702. return;
  703. }
  704. static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
  705. {
  706. int ret = 0;
  707. switch (mode) {
  708. case CAN_MODE_START:
  709. pch_can_start(ndev);
  710. netif_wake_queue(ndev);
  711. break;
  712. default:
  713. ret = -EOPNOTSUPP;
  714. break;
  715. }
  716. return ret;
  717. }
  718. static int pch_can_open(struct net_device *ndev)
  719. {
  720. struct pch_can_priv *priv = netdev_priv(ndev);
  721. int retval;
  722. retval = pci_enable_msi(priv->dev);
  723. if (retval) {
  724. netdev_err(ndev, "PCH CAN opened without MSI\n");
  725. priv->use_msi = 0;
  726. } else {
  727. netdev_err(ndev, "PCH CAN opened with MSI\n");
  728. priv->use_msi = 1;
  729. }
  730. /* Regsitering the interrupt. */
  731. retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
  732. ndev->name, ndev);
  733. if (retval) {
  734. netdev_err(ndev, "request_irq failed.\n");
  735. goto req_irq_err;
  736. }
  737. /* Open common can device */
  738. retval = open_candev(ndev);
  739. if (retval) {
  740. netdev_err(ndev, "open_candev() failed %d\n", retval);
  741. goto err_open_candev;
  742. }
  743. pch_can_init(priv);
  744. pch_can_start(ndev);
  745. napi_enable(&priv->napi);
  746. netif_start_queue(ndev);
  747. return 0;
  748. err_open_candev:
  749. free_irq(priv->dev->irq, ndev);
  750. req_irq_err:
  751. if (priv->use_msi)
  752. pci_disable_msi(priv->dev);
  753. pch_can_release(priv);
  754. return retval;
  755. }
  756. static int pch_close(struct net_device *ndev)
  757. {
  758. struct pch_can_priv *priv = netdev_priv(ndev);
  759. netif_stop_queue(ndev);
  760. napi_disable(&priv->napi);
  761. pch_can_release(priv);
  762. free_irq(priv->dev->irq, ndev);
  763. if (priv->use_msi)
  764. pci_disable_msi(priv->dev);
  765. close_candev(ndev);
  766. priv->can.state = CAN_STATE_STOPPED;
  767. return 0;
  768. }
  769. static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
  770. {
  771. struct pch_can_priv *priv = netdev_priv(ndev);
  772. struct can_frame *cf = (struct can_frame *)skb->data;
  773. int tx_obj_no;
  774. int i;
  775. u32 id2;
  776. if (can_dropped_invalid_skb(ndev, skb))
  777. return NETDEV_TX_OK;
  778. if (priv->tx_obj == PCH_TX_OBJ_END) {
  779. if (ioread32(&priv->regs->treq2) & PCH_TREQ2_TX_MASK)
  780. netif_stop_queue(ndev);
  781. tx_obj_no = priv->tx_obj;
  782. priv->tx_obj = PCH_TX_OBJ_START;
  783. } else {
  784. tx_obj_no = priv->tx_obj;
  785. priv->tx_obj++;
  786. }
  787. /* Reading the Msg Obj from the Msg RAM to the Interface register. */
  788. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask);
  789. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, tx_obj_no);
  790. /* Setting the CMASK register. */
  791. pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL);
  792. /* If ID extended is set. */
  793. if (cf->can_id & CAN_EFF_FLAG) {
  794. iowrite32(cf->can_id & 0xffff, &priv->regs->ifregs[1].id1);
  795. id2 = ((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD;
  796. } else {
  797. iowrite32(0, &priv->regs->ifregs[1].id1);
  798. id2 = (cf->can_id & CAN_SFF_MASK) << 2;
  799. }
  800. id2 |= PCH_ID_MSGVAL;
  801. /* If remote frame has to be transmitted.. */
  802. if (cf->can_id & CAN_RTR_FLAG)
  803. id2 &= ~PCH_ID2_DIR;
  804. else
  805. id2 |= PCH_ID2_DIR;
  806. iowrite32(id2, &priv->regs->ifregs[1].id2);
  807. /* Copy data to register */
  808. for (i = 0; i < cf->can_dlc; i += 2) {
  809. iowrite16(cf->data[i] | (cf->data[i + 1] << 8),
  810. &priv->regs->ifregs[1].data[i / 2]);
  811. }
  812. can_put_echo_skb(skb, ndev, tx_obj_no - PCH_RX_OBJ_END - 1);
  813. /* Updating the size of the data. */
  814. iowrite32(cf->can_dlc | PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT |
  815. PCH_IF_MCONT_TXIE, &priv->regs->ifregs[1].mcont);
  816. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, tx_obj_no);
  817. return NETDEV_TX_OK;
  818. }
  819. static const struct net_device_ops pch_can_netdev_ops = {
  820. .ndo_open = pch_can_open,
  821. .ndo_stop = pch_close,
  822. .ndo_start_xmit = pch_xmit,
  823. };
  824. static void __devexit pch_can_remove(struct pci_dev *pdev)
  825. {
  826. struct net_device *ndev = pci_get_drvdata(pdev);
  827. struct pch_can_priv *priv = netdev_priv(ndev);
  828. unregister_candev(priv->ndev);
  829. free_candev(priv->ndev);
  830. pci_iounmap(pdev, priv->regs);
  831. pci_release_regions(pdev);
  832. pci_disable_device(pdev);
  833. pci_set_drvdata(pdev, NULL);
  834. pch_can_reset(priv);
  835. }
  836. #ifdef CONFIG_PM
  837. static void pch_can_set_int_custom(struct pch_can_priv *priv)
  838. {
  839. /* Clearing the IE, SIE and EIE bits of Can control register. */
  840. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  841. /* Appropriately setting them. */
  842. pch_can_bit_set(&priv->regs->cont,
  843. ((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1));
  844. }
  845. /* This function retrieves interrupt enabled for the CAN device. */
  846. static u32 pch_can_get_int_enables(struct pch_can_priv *priv)
  847. {
  848. /* Obtaining the status of IE, SIE and EIE interrupt bits. */
  849. return (ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1;
  850. }
  851. static u32 pch_can_get_rxtx_ir(struct pch_can_priv *priv, u32 buff_num,
  852. enum pch_ifreg dir)
  853. {
  854. u32 ie, enable;
  855. if (dir)
  856. ie = PCH_IF_MCONT_RXIE;
  857. else
  858. ie = PCH_IF_MCONT_TXIE;
  859. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  860. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  861. if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) &&
  862. ((ioread32(&priv->regs->ifregs[dir].mcont)) & ie)) {
  863. enable = 1;
  864. } else {
  865. enable = 0;
  866. }
  867. return enable;
  868. }
  869. static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
  870. u32 buffer_num, int set)
  871. {
  872. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  873. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  874. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  875. &priv->regs->ifregs[0].cmask);
  876. if (set)
  877. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  878. PCH_IF_MCONT_EOB);
  879. else
  880. pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB);
  881. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  882. }
  883. static u32 pch_can_get_rx_buffer_link(struct pch_can_priv *priv, u32 buffer_num)
  884. {
  885. u32 link;
  886. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  887. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  888. if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB)
  889. link = 0;
  890. else
  891. link = 1;
  892. return link;
  893. }
  894. static int pch_can_get_buffer_status(struct pch_can_priv *priv)
  895. {
  896. return (ioread32(&priv->regs->treq1) & 0xffff) |
  897. (ioread32(&priv->regs->treq2) << 16);
  898. }
  899. static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state)
  900. {
  901. int i; /* Counter variable. */
  902. int retval; /* Return value. */
  903. u32 buf_stat; /* Variable for reading the transmit buffer status. */
  904. int counter = PCH_COUNTER_LIMIT;
  905. struct net_device *dev = pci_get_drvdata(pdev);
  906. struct pch_can_priv *priv = netdev_priv(dev);
  907. /* Stop the CAN controller */
  908. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  909. /* Indicate that we are aboutto/in suspend */
  910. priv->can.state = CAN_STATE_SLEEPING;
  911. /* Waiting for all transmission to complete. */
  912. while (counter) {
  913. buf_stat = pch_can_get_buffer_status(priv);
  914. if (!buf_stat)
  915. break;
  916. counter--;
  917. udelay(1);
  918. }
  919. if (!counter)
  920. dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__);
  921. /* Save interrupt configuration and then disable them */
  922. priv->int_enables = pch_can_get_int_enables(priv);
  923. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  924. /* Save Tx buffer enable state */
  925. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  926. priv->tx_enable[i] = pch_can_get_rxtx_ir(priv, i, PCH_TX_IFREG);
  927. /* Disable all Transmit buffers */
  928. pch_can_set_tx_all(priv, 0);
  929. /* Save Rx buffer enable state */
  930. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  931. priv->rx_enable[i] = pch_can_get_rxtx_ir(priv, i, PCH_RX_IFREG);
  932. priv->rx_link[i] = pch_can_get_rx_buffer_link(priv, i);
  933. }
  934. /* Disable all Receive buffers */
  935. pch_can_set_rx_all(priv, 0);
  936. retval = pci_save_state(pdev);
  937. if (retval) {
  938. dev_err(&pdev->dev, "pci_save_state failed.\n");
  939. } else {
  940. pci_enable_wake(pdev, PCI_D3hot, 0);
  941. pci_disable_device(pdev);
  942. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  943. }
  944. return retval;
  945. }
  946. static int pch_can_resume(struct pci_dev *pdev)
  947. {
  948. int i; /* Counter variable. */
  949. int retval; /* Return variable. */
  950. struct net_device *dev = pci_get_drvdata(pdev);
  951. struct pch_can_priv *priv = netdev_priv(dev);
  952. pci_set_power_state(pdev, PCI_D0);
  953. pci_restore_state(pdev);
  954. retval = pci_enable_device(pdev);
  955. if (retval) {
  956. dev_err(&pdev->dev, "pci_enable_device failed.\n");
  957. return retval;
  958. }
  959. pci_enable_wake(pdev, PCI_D3hot, 0);
  960. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  961. /* Disabling all interrupts. */
  962. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  963. /* Setting the CAN device in Stop Mode. */
  964. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  965. /* Configuring the transmit and receive buffers. */
  966. pch_can_config_rx_tx_buffers(priv);
  967. /* Restore the CAN state */
  968. pch_set_bittiming(dev);
  969. /* Listen/Active */
  970. pch_can_set_optmode(priv);
  971. /* Enabling the transmit buffer. */
  972. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  973. pch_can_set_rxtx(priv, i, priv->tx_enable[i], PCH_TX_IFREG);
  974. /* Configuring the receive buffer and enabling them. */
  975. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  976. /* Restore buffer link */
  977. pch_can_set_rx_buffer_link(priv, i, priv->rx_link[i]);
  978. /* Restore buffer enables */
  979. pch_can_set_rxtx(priv, i, priv->rx_enable[i], PCH_RX_IFREG);
  980. }
  981. /* Enable CAN Interrupts */
  982. pch_can_set_int_custom(priv);
  983. /* Restore Run Mode */
  984. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  985. return retval;
  986. }
  987. #else
  988. #define pch_can_suspend NULL
  989. #define pch_can_resume NULL
  990. #endif
  991. static int pch_can_get_berr_counter(const struct net_device *dev,
  992. struct can_berr_counter *bec)
  993. {
  994. struct pch_can_priv *priv = netdev_priv(dev);
  995. u32 errc = ioread32(&priv->regs->errc);
  996. bec->txerr = errc & PCH_TEC;
  997. bec->rxerr = (errc & PCH_REC) >> 8;
  998. return 0;
  999. }
  1000. static int __devinit pch_can_probe(struct pci_dev *pdev,
  1001. const struct pci_device_id *id)
  1002. {
  1003. struct net_device *ndev;
  1004. struct pch_can_priv *priv;
  1005. int rc;
  1006. void __iomem *addr;
  1007. rc = pci_enable_device(pdev);
  1008. if (rc) {
  1009. dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
  1010. goto probe_exit_endev;
  1011. }
  1012. rc = pci_request_regions(pdev, KBUILD_MODNAME);
  1013. if (rc) {
  1014. dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
  1015. goto probe_exit_pcireq;
  1016. }
  1017. addr = pci_iomap(pdev, 1, 0);
  1018. if (!addr) {
  1019. rc = -EIO;
  1020. dev_err(&pdev->dev, "Failed pci_iomap\n");
  1021. goto probe_exit_ipmap;
  1022. }
  1023. ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_END);
  1024. if (!ndev) {
  1025. rc = -ENOMEM;
  1026. dev_err(&pdev->dev, "Failed alloc_candev\n");
  1027. goto probe_exit_alloc_candev;
  1028. }
  1029. priv = netdev_priv(ndev);
  1030. priv->ndev = ndev;
  1031. priv->regs = addr;
  1032. priv->dev = pdev;
  1033. priv->can.bittiming_const = &pch_can_bittiming_const;
  1034. priv->can.do_set_mode = pch_can_do_set_mode;
  1035. priv->can.do_get_berr_counter = pch_can_get_berr_counter;
  1036. priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
  1037. CAN_CTRLMODE_LOOPBACK;
  1038. priv->tx_obj = PCH_TX_OBJ_START; /* Point head of Tx Obj */
  1039. ndev->irq = pdev->irq;
  1040. ndev->flags |= IFF_ECHO;
  1041. pci_set_drvdata(pdev, ndev);
  1042. SET_NETDEV_DEV(ndev, &pdev->dev);
  1043. ndev->netdev_ops = &pch_can_netdev_ops;
  1044. priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
  1045. netif_napi_add(ndev, &priv->napi, pch_can_poll, PCH_RX_OBJ_END);
  1046. rc = register_candev(ndev);
  1047. if (rc) {
  1048. dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
  1049. goto probe_exit_reg_candev;
  1050. }
  1051. return 0;
  1052. probe_exit_reg_candev:
  1053. free_candev(ndev);
  1054. probe_exit_alloc_candev:
  1055. pci_iounmap(pdev, addr);
  1056. probe_exit_ipmap:
  1057. pci_release_regions(pdev);
  1058. probe_exit_pcireq:
  1059. pci_disable_device(pdev);
  1060. probe_exit_endev:
  1061. return rc;
  1062. }
  1063. static struct pci_driver pch_can_pci_driver = {
  1064. .name = "pch_can",
  1065. .id_table = pch_pci_tbl,
  1066. .probe = pch_can_probe,
  1067. .remove = __devexit_p(pch_can_remove),
  1068. .suspend = pch_can_suspend,
  1069. .resume = pch_can_resume,
  1070. };
  1071. static int __init pch_can_pci_init(void)
  1072. {
  1073. return pci_register_driver(&pch_can_pci_driver);
  1074. }
  1075. module_init(pch_can_pci_init);
  1076. static void __exit pch_can_pci_exit(void)
  1077. {
  1078. pci_unregister_driver(&pch_can_pci_driver);
  1079. }
  1080. module_exit(pch_can_pci_exit);
  1081. MODULE_DESCRIPTION("Intel EG20T PCH CAN(Controller Area Network) Driver");
  1082. MODULE_LICENSE("GPL v2");
  1083. MODULE_VERSION("0.94");