slub.c 128 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/mempolicy.h>
  24. #include <linux/ctype.h>
  25. #include <linux/debugobjects.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/memory.h>
  28. #include <linux/math64.h>
  29. #include <linux/fault-inject.h>
  30. #include <linux/stacktrace.h>
  31. #include <trace/events/kmem.h>
  32. /*
  33. * Lock order:
  34. * 1. slub_lock (Global Semaphore)
  35. * 2. node->list_lock
  36. * 3. slab_lock(page) (Only on some arches and for debugging)
  37. *
  38. * slub_lock
  39. *
  40. * The role of the slub_lock is to protect the list of all the slabs
  41. * and to synchronize major metadata changes to slab cache structures.
  42. *
  43. * The slab_lock is only used for debugging and on arches that do not
  44. * have the ability to do a cmpxchg_double. It only protects the second
  45. * double word in the page struct. Meaning
  46. * A. page->freelist -> List of object free in a page
  47. * B. page->counters -> Counters of objects
  48. * C. page->frozen -> frozen state
  49. *
  50. * If a slab is frozen then it is exempt from list management. It is not
  51. * on any list. The processor that froze the slab is the one who can
  52. * perform list operations on the page. Other processors may put objects
  53. * onto the freelist but the processor that froze the slab is the only
  54. * one that can retrieve the objects from the page's freelist.
  55. *
  56. * The list_lock protects the partial and full list on each node and
  57. * the partial slab counter. If taken then no new slabs may be added or
  58. * removed from the lists nor make the number of partial slabs be modified.
  59. * (Note that the total number of slabs is an atomic value that may be
  60. * modified without taking the list lock).
  61. *
  62. * The list_lock is a centralized lock and thus we avoid taking it as
  63. * much as possible. As long as SLUB does not have to handle partial
  64. * slabs, operations can continue without any centralized lock. F.e.
  65. * allocating a long series of objects that fill up slabs does not require
  66. * the list lock.
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  108. SLAB_TRACE | SLAB_DEBUG_FREE)
  109. static inline int kmem_cache_debug(struct kmem_cache *s)
  110. {
  111. #ifdef CONFIG_SLUB_DEBUG
  112. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  113. #else
  114. return 0;
  115. #endif
  116. }
  117. /*
  118. * Issues still to be resolved:
  119. *
  120. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  121. *
  122. * - Variable sizing of the per node arrays
  123. */
  124. /* Enable to test recovery from slab corruption on boot */
  125. #undef SLUB_RESILIENCY_TEST
  126. /* Enable to log cmpxchg failures */
  127. #undef SLUB_DEBUG_CMPXCHG
  128. /*
  129. * Mininum number of partial slabs. These will be left on the partial
  130. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  131. */
  132. #define MIN_PARTIAL 5
  133. /*
  134. * Maximum number of desirable partial slabs.
  135. * The existence of more partial slabs makes kmem_cache_shrink
  136. * sort the partial list by the number of objects in the.
  137. */
  138. #define MAX_PARTIAL 10
  139. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  140. SLAB_POISON | SLAB_STORE_USER)
  141. /*
  142. * Debugging flags that require metadata to be stored in the slab. These get
  143. * disabled when slub_debug=O is used and a cache's min order increases with
  144. * metadata.
  145. */
  146. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  147. /*
  148. * Set of flags that will prevent slab merging
  149. */
  150. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  151. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  152. SLAB_FAILSLAB)
  153. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  154. SLAB_CACHE_DMA | SLAB_NOTRACK)
  155. #define OO_SHIFT 16
  156. #define OO_MASK ((1 << OO_SHIFT) - 1)
  157. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  158. /* Internal SLUB flags */
  159. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  160. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  161. static int kmem_size = sizeof(struct kmem_cache);
  162. #ifdef CONFIG_SMP
  163. static struct notifier_block slab_notifier;
  164. #endif
  165. static enum {
  166. DOWN, /* No slab functionality available */
  167. PARTIAL, /* Kmem_cache_node works */
  168. UP, /* Everything works but does not show up in sysfs */
  169. SYSFS /* Sysfs up */
  170. } slab_state = DOWN;
  171. /* A list of all slab caches on the system */
  172. static DECLARE_RWSEM(slub_lock);
  173. static LIST_HEAD(slab_caches);
  174. /*
  175. * Tracking user of a slab.
  176. */
  177. #define TRACK_ADDRS_COUNT 16
  178. struct track {
  179. unsigned long addr; /* Called from address */
  180. #ifdef CONFIG_STACKTRACE
  181. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  182. #endif
  183. int cpu; /* Was running on cpu */
  184. int pid; /* Pid context */
  185. unsigned long when; /* When did the operation occur */
  186. };
  187. enum track_item { TRACK_ALLOC, TRACK_FREE };
  188. #ifdef CONFIG_SYSFS
  189. static int sysfs_slab_add(struct kmem_cache *);
  190. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  191. static void sysfs_slab_remove(struct kmem_cache *);
  192. #else
  193. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  194. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  195. { return 0; }
  196. static inline void sysfs_slab_remove(struct kmem_cache *s)
  197. {
  198. kfree(s->name);
  199. kfree(s);
  200. }
  201. #endif
  202. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  203. {
  204. #ifdef CONFIG_SLUB_STATS
  205. __this_cpu_inc(s->cpu_slab->stat[si]);
  206. #endif
  207. }
  208. /********************************************************************
  209. * Core slab cache functions
  210. *******************************************************************/
  211. int slab_is_available(void)
  212. {
  213. return slab_state >= UP;
  214. }
  215. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  216. {
  217. return s->node[node];
  218. }
  219. /* Verify that a pointer has an address that is valid within a slab page */
  220. static inline int check_valid_pointer(struct kmem_cache *s,
  221. struct page *page, const void *object)
  222. {
  223. void *base;
  224. if (!object)
  225. return 1;
  226. base = page_address(page);
  227. if (object < base || object >= base + page->objects * s->size ||
  228. (object - base) % s->size) {
  229. return 0;
  230. }
  231. return 1;
  232. }
  233. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  234. {
  235. return *(void **)(object + s->offset);
  236. }
  237. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  238. {
  239. void *p;
  240. #ifdef CONFIG_DEBUG_PAGEALLOC
  241. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  242. #else
  243. p = get_freepointer(s, object);
  244. #endif
  245. return p;
  246. }
  247. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  248. {
  249. *(void **)(object + s->offset) = fp;
  250. }
  251. /* Loop over all objects in a slab */
  252. #define for_each_object(__p, __s, __addr, __objects) \
  253. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  254. __p += (__s)->size)
  255. /* Determine object index from a given position */
  256. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  257. {
  258. return (p - addr) / s->size;
  259. }
  260. static inline size_t slab_ksize(const struct kmem_cache *s)
  261. {
  262. #ifdef CONFIG_SLUB_DEBUG
  263. /*
  264. * Debugging requires use of the padding between object
  265. * and whatever may come after it.
  266. */
  267. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  268. return s->objsize;
  269. #endif
  270. /*
  271. * If we have the need to store the freelist pointer
  272. * back there or track user information then we can
  273. * only use the space before that information.
  274. */
  275. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  276. return s->inuse;
  277. /*
  278. * Else we can use all the padding etc for the allocation
  279. */
  280. return s->size;
  281. }
  282. static inline int order_objects(int order, unsigned long size, int reserved)
  283. {
  284. return ((PAGE_SIZE << order) - reserved) / size;
  285. }
  286. static inline struct kmem_cache_order_objects oo_make(int order,
  287. unsigned long size, int reserved)
  288. {
  289. struct kmem_cache_order_objects x = {
  290. (order << OO_SHIFT) + order_objects(order, size, reserved)
  291. };
  292. return x;
  293. }
  294. static inline int oo_order(struct kmem_cache_order_objects x)
  295. {
  296. return x.x >> OO_SHIFT;
  297. }
  298. static inline int oo_objects(struct kmem_cache_order_objects x)
  299. {
  300. return x.x & OO_MASK;
  301. }
  302. /*
  303. * Per slab locking using the pagelock
  304. */
  305. static __always_inline void slab_lock(struct page *page)
  306. {
  307. bit_spin_lock(PG_locked, &page->flags);
  308. }
  309. static __always_inline void slab_unlock(struct page *page)
  310. {
  311. __bit_spin_unlock(PG_locked, &page->flags);
  312. }
  313. /* Interrupts must be disabled (for the fallback code to work right) */
  314. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  315. void *freelist_old, unsigned long counters_old,
  316. void *freelist_new, unsigned long counters_new,
  317. const char *n)
  318. {
  319. VM_BUG_ON(!irqs_disabled());
  320. #if defined(CONFIG_CMPXCHG_DOUBLE) && defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  321. if (s->flags & __CMPXCHG_DOUBLE) {
  322. if (cmpxchg_double(&page->freelist, &page->counters,
  323. freelist_old, counters_old,
  324. freelist_new, counters_new))
  325. return 1;
  326. } else
  327. #endif
  328. {
  329. slab_lock(page);
  330. if (page->freelist == freelist_old && page->counters == counters_old) {
  331. page->freelist = freelist_new;
  332. page->counters = counters_new;
  333. slab_unlock(page);
  334. return 1;
  335. }
  336. slab_unlock(page);
  337. }
  338. cpu_relax();
  339. stat(s, CMPXCHG_DOUBLE_FAIL);
  340. #ifdef SLUB_DEBUG_CMPXCHG
  341. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  342. #endif
  343. return 0;
  344. }
  345. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  346. void *freelist_old, unsigned long counters_old,
  347. void *freelist_new, unsigned long counters_new,
  348. const char *n)
  349. {
  350. #if defined(CONFIG_CMPXCHG_DOUBLE) && defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  351. if (s->flags & __CMPXCHG_DOUBLE) {
  352. if (cmpxchg_double(&page->freelist, &page->counters,
  353. freelist_old, counters_old,
  354. freelist_new, counters_new))
  355. return 1;
  356. } else
  357. #endif
  358. {
  359. unsigned long flags;
  360. local_irq_save(flags);
  361. slab_lock(page);
  362. if (page->freelist == freelist_old && page->counters == counters_old) {
  363. page->freelist = freelist_new;
  364. page->counters = counters_new;
  365. slab_unlock(page);
  366. local_irq_restore(flags);
  367. return 1;
  368. }
  369. slab_unlock(page);
  370. local_irq_restore(flags);
  371. }
  372. cpu_relax();
  373. stat(s, CMPXCHG_DOUBLE_FAIL);
  374. #ifdef SLUB_DEBUG_CMPXCHG
  375. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  376. #endif
  377. return 0;
  378. }
  379. #ifdef CONFIG_SLUB_DEBUG
  380. /*
  381. * Determine a map of object in use on a page.
  382. *
  383. * Node listlock must be held to guarantee that the page does
  384. * not vanish from under us.
  385. */
  386. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  387. {
  388. void *p;
  389. void *addr = page_address(page);
  390. for (p = page->freelist; p; p = get_freepointer(s, p))
  391. set_bit(slab_index(p, s, addr), map);
  392. }
  393. /*
  394. * Debug settings:
  395. */
  396. #ifdef CONFIG_SLUB_DEBUG_ON
  397. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  398. #else
  399. static int slub_debug;
  400. #endif
  401. static char *slub_debug_slabs;
  402. static int disable_higher_order_debug;
  403. /*
  404. * Object debugging
  405. */
  406. static void print_section(char *text, u8 *addr, unsigned int length)
  407. {
  408. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  409. length, 1);
  410. }
  411. static struct track *get_track(struct kmem_cache *s, void *object,
  412. enum track_item alloc)
  413. {
  414. struct track *p;
  415. if (s->offset)
  416. p = object + s->offset + sizeof(void *);
  417. else
  418. p = object + s->inuse;
  419. return p + alloc;
  420. }
  421. static void set_track(struct kmem_cache *s, void *object,
  422. enum track_item alloc, unsigned long addr)
  423. {
  424. struct track *p = get_track(s, object, alloc);
  425. if (addr) {
  426. #ifdef CONFIG_STACKTRACE
  427. struct stack_trace trace;
  428. int i;
  429. trace.nr_entries = 0;
  430. trace.max_entries = TRACK_ADDRS_COUNT;
  431. trace.entries = p->addrs;
  432. trace.skip = 3;
  433. save_stack_trace(&trace);
  434. /* See rant in lockdep.c */
  435. if (trace.nr_entries != 0 &&
  436. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  437. trace.nr_entries--;
  438. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  439. p->addrs[i] = 0;
  440. #endif
  441. p->addr = addr;
  442. p->cpu = smp_processor_id();
  443. p->pid = current->pid;
  444. p->when = jiffies;
  445. } else
  446. memset(p, 0, sizeof(struct track));
  447. }
  448. static void init_tracking(struct kmem_cache *s, void *object)
  449. {
  450. if (!(s->flags & SLAB_STORE_USER))
  451. return;
  452. set_track(s, object, TRACK_FREE, 0UL);
  453. set_track(s, object, TRACK_ALLOC, 0UL);
  454. }
  455. static void print_track(const char *s, struct track *t)
  456. {
  457. if (!t->addr)
  458. return;
  459. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  460. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  461. #ifdef CONFIG_STACKTRACE
  462. {
  463. int i;
  464. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  465. if (t->addrs[i])
  466. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  467. else
  468. break;
  469. }
  470. #endif
  471. }
  472. static void print_tracking(struct kmem_cache *s, void *object)
  473. {
  474. if (!(s->flags & SLAB_STORE_USER))
  475. return;
  476. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  477. print_track("Freed", get_track(s, object, TRACK_FREE));
  478. }
  479. static void print_page_info(struct page *page)
  480. {
  481. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  482. page, page->objects, page->inuse, page->freelist, page->flags);
  483. }
  484. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  485. {
  486. va_list args;
  487. char buf[100];
  488. va_start(args, fmt);
  489. vsnprintf(buf, sizeof(buf), fmt, args);
  490. va_end(args);
  491. printk(KERN_ERR "========================================"
  492. "=====================================\n");
  493. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  494. printk(KERN_ERR "----------------------------------------"
  495. "-------------------------------------\n\n");
  496. }
  497. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  498. {
  499. va_list args;
  500. char buf[100];
  501. va_start(args, fmt);
  502. vsnprintf(buf, sizeof(buf), fmt, args);
  503. va_end(args);
  504. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  505. }
  506. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  507. {
  508. unsigned int off; /* Offset of last byte */
  509. u8 *addr = page_address(page);
  510. print_tracking(s, p);
  511. print_page_info(page);
  512. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  513. p, p - addr, get_freepointer(s, p));
  514. if (p > addr + 16)
  515. print_section("Bytes b4 ", p - 16, 16);
  516. print_section("Object ", p, min_t(unsigned long, s->objsize,
  517. PAGE_SIZE));
  518. if (s->flags & SLAB_RED_ZONE)
  519. print_section("Redzone ", p + s->objsize,
  520. s->inuse - s->objsize);
  521. if (s->offset)
  522. off = s->offset + sizeof(void *);
  523. else
  524. off = s->inuse;
  525. if (s->flags & SLAB_STORE_USER)
  526. off += 2 * sizeof(struct track);
  527. if (off != s->size)
  528. /* Beginning of the filler is the free pointer */
  529. print_section("Padding ", p + off, s->size - off);
  530. dump_stack();
  531. }
  532. static void object_err(struct kmem_cache *s, struct page *page,
  533. u8 *object, char *reason)
  534. {
  535. slab_bug(s, "%s", reason);
  536. print_trailer(s, page, object);
  537. }
  538. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  539. {
  540. va_list args;
  541. char buf[100];
  542. va_start(args, fmt);
  543. vsnprintf(buf, sizeof(buf), fmt, args);
  544. va_end(args);
  545. slab_bug(s, "%s", buf);
  546. print_page_info(page);
  547. dump_stack();
  548. }
  549. static void init_object(struct kmem_cache *s, void *object, u8 val)
  550. {
  551. u8 *p = object;
  552. if (s->flags & __OBJECT_POISON) {
  553. memset(p, POISON_FREE, s->objsize - 1);
  554. p[s->objsize - 1] = POISON_END;
  555. }
  556. if (s->flags & SLAB_RED_ZONE)
  557. memset(p + s->objsize, val, s->inuse - s->objsize);
  558. }
  559. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  560. void *from, void *to)
  561. {
  562. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  563. memset(from, data, to - from);
  564. }
  565. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  566. u8 *object, char *what,
  567. u8 *start, unsigned int value, unsigned int bytes)
  568. {
  569. u8 *fault;
  570. u8 *end;
  571. fault = memchr_inv(start, value, bytes);
  572. if (!fault)
  573. return 1;
  574. end = start + bytes;
  575. while (end > fault && end[-1] == value)
  576. end--;
  577. slab_bug(s, "%s overwritten", what);
  578. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  579. fault, end - 1, fault[0], value);
  580. print_trailer(s, page, object);
  581. restore_bytes(s, what, value, fault, end);
  582. return 0;
  583. }
  584. /*
  585. * Object layout:
  586. *
  587. * object address
  588. * Bytes of the object to be managed.
  589. * If the freepointer may overlay the object then the free
  590. * pointer is the first word of the object.
  591. *
  592. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  593. * 0xa5 (POISON_END)
  594. *
  595. * object + s->objsize
  596. * Padding to reach word boundary. This is also used for Redzoning.
  597. * Padding is extended by another word if Redzoning is enabled and
  598. * objsize == inuse.
  599. *
  600. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  601. * 0xcc (RED_ACTIVE) for objects in use.
  602. *
  603. * object + s->inuse
  604. * Meta data starts here.
  605. *
  606. * A. Free pointer (if we cannot overwrite object on free)
  607. * B. Tracking data for SLAB_STORE_USER
  608. * C. Padding to reach required alignment boundary or at mininum
  609. * one word if debugging is on to be able to detect writes
  610. * before the word boundary.
  611. *
  612. * Padding is done using 0x5a (POISON_INUSE)
  613. *
  614. * object + s->size
  615. * Nothing is used beyond s->size.
  616. *
  617. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  618. * ignored. And therefore no slab options that rely on these boundaries
  619. * may be used with merged slabcaches.
  620. */
  621. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  622. {
  623. unsigned long off = s->inuse; /* The end of info */
  624. if (s->offset)
  625. /* Freepointer is placed after the object. */
  626. off += sizeof(void *);
  627. if (s->flags & SLAB_STORE_USER)
  628. /* We also have user information there */
  629. off += 2 * sizeof(struct track);
  630. if (s->size == off)
  631. return 1;
  632. return check_bytes_and_report(s, page, p, "Object padding",
  633. p + off, POISON_INUSE, s->size - off);
  634. }
  635. /* Check the pad bytes at the end of a slab page */
  636. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  637. {
  638. u8 *start;
  639. u8 *fault;
  640. u8 *end;
  641. int length;
  642. int remainder;
  643. if (!(s->flags & SLAB_POISON))
  644. return 1;
  645. start = page_address(page);
  646. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  647. end = start + length;
  648. remainder = length % s->size;
  649. if (!remainder)
  650. return 1;
  651. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  652. if (!fault)
  653. return 1;
  654. while (end > fault && end[-1] == POISON_INUSE)
  655. end--;
  656. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  657. print_section("Padding ", end - remainder, remainder);
  658. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  659. return 0;
  660. }
  661. static int check_object(struct kmem_cache *s, struct page *page,
  662. void *object, u8 val)
  663. {
  664. u8 *p = object;
  665. u8 *endobject = object + s->objsize;
  666. if (s->flags & SLAB_RED_ZONE) {
  667. if (!check_bytes_and_report(s, page, object, "Redzone",
  668. endobject, val, s->inuse - s->objsize))
  669. return 0;
  670. } else {
  671. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  672. check_bytes_and_report(s, page, p, "Alignment padding",
  673. endobject, POISON_INUSE, s->inuse - s->objsize);
  674. }
  675. }
  676. if (s->flags & SLAB_POISON) {
  677. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  678. (!check_bytes_and_report(s, page, p, "Poison", p,
  679. POISON_FREE, s->objsize - 1) ||
  680. !check_bytes_and_report(s, page, p, "Poison",
  681. p + s->objsize - 1, POISON_END, 1)))
  682. return 0;
  683. /*
  684. * check_pad_bytes cleans up on its own.
  685. */
  686. check_pad_bytes(s, page, p);
  687. }
  688. if (!s->offset && val == SLUB_RED_ACTIVE)
  689. /*
  690. * Object and freepointer overlap. Cannot check
  691. * freepointer while object is allocated.
  692. */
  693. return 1;
  694. /* Check free pointer validity */
  695. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  696. object_err(s, page, p, "Freepointer corrupt");
  697. /*
  698. * No choice but to zap it and thus lose the remainder
  699. * of the free objects in this slab. May cause
  700. * another error because the object count is now wrong.
  701. */
  702. set_freepointer(s, p, NULL);
  703. return 0;
  704. }
  705. return 1;
  706. }
  707. static int check_slab(struct kmem_cache *s, struct page *page)
  708. {
  709. int maxobj;
  710. VM_BUG_ON(!irqs_disabled());
  711. if (!PageSlab(page)) {
  712. slab_err(s, page, "Not a valid slab page");
  713. return 0;
  714. }
  715. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  716. if (page->objects > maxobj) {
  717. slab_err(s, page, "objects %u > max %u",
  718. s->name, page->objects, maxobj);
  719. return 0;
  720. }
  721. if (page->inuse > page->objects) {
  722. slab_err(s, page, "inuse %u > max %u",
  723. s->name, page->inuse, page->objects);
  724. return 0;
  725. }
  726. /* Slab_pad_check fixes things up after itself */
  727. slab_pad_check(s, page);
  728. return 1;
  729. }
  730. /*
  731. * Determine if a certain object on a page is on the freelist. Must hold the
  732. * slab lock to guarantee that the chains are in a consistent state.
  733. */
  734. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  735. {
  736. int nr = 0;
  737. void *fp;
  738. void *object = NULL;
  739. unsigned long max_objects;
  740. fp = page->freelist;
  741. while (fp && nr <= page->objects) {
  742. if (fp == search)
  743. return 1;
  744. if (!check_valid_pointer(s, page, fp)) {
  745. if (object) {
  746. object_err(s, page, object,
  747. "Freechain corrupt");
  748. set_freepointer(s, object, NULL);
  749. break;
  750. } else {
  751. slab_err(s, page, "Freepointer corrupt");
  752. page->freelist = NULL;
  753. page->inuse = page->objects;
  754. slab_fix(s, "Freelist cleared");
  755. return 0;
  756. }
  757. break;
  758. }
  759. object = fp;
  760. fp = get_freepointer(s, object);
  761. nr++;
  762. }
  763. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  764. if (max_objects > MAX_OBJS_PER_PAGE)
  765. max_objects = MAX_OBJS_PER_PAGE;
  766. if (page->objects != max_objects) {
  767. slab_err(s, page, "Wrong number of objects. Found %d but "
  768. "should be %d", page->objects, max_objects);
  769. page->objects = max_objects;
  770. slab_fix(s, "Number of objects adjusted.");
  771. }
  772. if (page->inuse != page->objects - nr) {
  773. slab_err(s, page, "Wrong object count. Counter is %d but "
  774. "counted were %d", page->inuse, page->objects - nr);
  775. page->inuse = page->objects - nr;
  776. slab_fix(s, "Object count adjusted.");
  777. }
  778. return search == NULL;
  779. }
  780. static void trace(struct kmem_cache *s, struct page *page, void *object,
  781. int alloc)
  782. {
  783. if (s->flags & SLAB_TRACE) {
  784. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  785. s->name,
  786. alloc ? "alloc" : "free",
  787. object, page->inuse,
  788. page->freelist);
  789. if (!alloc)
  790. print_section("Object ", (void *)object, s->objsize);
  791. dump_stack();
  792. }
  793. }
  794. /*
  795. * Hooks for other subsystems that check memory allocations. In a typical
  796. * production configuration these hooks all should produce no code at all.
  797. */
  798. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  799. {
  800. flags &= gfp_allowed_mask;
  801. lockdep_trace_alloc(flags);
  802. might_sleep_if(flags & __GFP_WAIT);
  803. return should_failslab(s->objsize, flags, s->flags);
  804. }
  805. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  806. {
  807. flags &= gfp_allowed_mask;
  808. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  809. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  810. }
  811. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  812. {
  813. kmemleak_free_recursive(x, s->flags);
  814. /*
  815. * Trouble is that we may no longer disable interupts in the fast path
  816. * So in order to make the debug calls that expect irqs to be
  817. * disabled we need to disable interrupts temporarily.
  818. */
  819. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  820. {
  821. unsigned long flags;
  822. local_irq_save(flags);
  823. kmemcheck_slab_free(s, x, s->objsize);
  824. debug_check_no_locks_freed(x, s->objsize);
  825. local_irq_restore(flags);
  826. }
  827. #endif
  828. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  829. debug_check_no_obj_freed(x, s->objsize);
  830. }
  831. /*
  832. * Tracking of fully allocated slabs for debugging purposes.
  833. *
  834. * list_lock must be held.
  835. */
  836. static void add_full(struct kmem_cache *s,
  837. struct kmem_cache_node *n, struct page *page)
  838. {
  839. if (!(s->flags & SLAB_STORE_USER))
  840. return;
  841. list_add(&page->lru, &n->full);
  842. }
  843. /*
  844. * list_lock must be held.
  845. */
  846. static void remove_full(struct kmem_cache *s, struct page *page)
  847. {
  848. if (!(s->flags & SLAB_STORE_USER))
  849. return;
  850. list_del(&page->lru);
  851. }
  852. /* Tracking of the number of slabs for debugging purposes */
  853. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  854. {
  855. struct kmem_cache_node *n = get_node(s, node);
  856. return atomic_long_read(&n->nr_slabs);
  857. }
  858. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  859. {
  860. return atomic_long_read(&n->nr_slabs);
  861. }
  862. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  863. {
  864. struct kmem_cache_node *n = get_node(s, node);
  865. /*
  866. * May be called early in order to allocate a slab for the
  867. * kmem_cache_node structure. Solve the chicken-egg
  868. * dilemma by deferring the increment of the count during
  869. * bootstrap (see early_kmem_cache_node_alloc).
  870. */
  871. if (n) {
  872. atomic_long_inc(&n->nr_slabs);
  873. atomic_long_add(objects, &n->total_objects);
  874. }
  875. }
  876. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  877. {
  878. struct kmem_cache_node *n = get_node(s, node);
  879. atomic_long_dec(&n->nr_slabs);
  880. atomic_long_sub(objects, &n->total_objects);
  881. }
  882. /* Object debug checks for alloc/free paths */
  883. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  884. void *object)
  885. {
  886. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  887. return;
  888. init_object(s, object, SLUB_RED_INACTIVE);
  889. init_tracking(s, object);
  890. }
  891. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  892. void *object, unsigned long addr)
  893. {
  894. if (!check_slab(s, page))
  895. goto bad;
  896. if (!check_valid_pointer(s, page, object)) {
  897. object_err(s, page, object, "Freelist Pointer check fails");
  898. goto bad;
  899. }
  900. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  901. goto bad;
  902. /* Success perform special debug activities for allocs */
  903. if (s->flags & SLAB_STORE_USER)
  904. set_track(s, object, TRACK_ALLOC, addr);
  905. trace(s, page, object, 1);
  906. init_object(s, object, SLUB_RED_ACTIVE);
  907. return 1;
  908. bad:
  909. if (PageSlab(page)) {
  910. /*
  911. * If this is a slab page then lets do the best we can
  912. * to avoid issues in the future. Marking all objects
  913. * as used avoids touching the remaining objects.
  914. */
  915. slab_fix(s, "Marking all objects used");
  916. page->inuse = page->objects;
  917. page->freelist = NULL;
  918. }
  919. return 0;
  920. }
  921. static noinline int free_debug_processing(struct kmem_cache *s,
  922. struct page *page, void *object, unsigned long addr)
  923. {
  924. unsigned long flags;
  925. int rc = 0;
  926. local_irq_save(flags);
  927. slab_lock(page);
  928. if (!check_slab(s, page))
  929. goto fail;
  930. if (!check_valid_pointer(s, page, object)) {
  931. slab_err(s, page, "Invalid object pointer 0x%p", object);
  932. goto fail;
  933. }
  934. if (on_freelist(s, page, object)) {
  935. object_err(s, page, object, "Object already free");
  936. goto fail;
  937. }
  938. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  939. goto out;
  940. if (unlikely(s != page->slab)) {
  941. if (!PageSlab(page)) {
  942. slab_err(s, page, "Attempt to free object(0x%p) "
  943. "outside of slab", object);
  944. } else if (!page->slab) {
  945. printk(KERN_ERR
  946. "SLUB <none>: no slab for object 0x%p.\n",
  947. object);
  948. dump_stack();
  949. } else
  950. object_err(s, page, object,
  951. "page slab pointer corrupt.");
  952. goto fail;
  953. }
  954. if (s->flags & SLAB_STORE_USER)
  955. set_track(s, object, TRACK_FREE, addr);
  956. trace(s, page, object, 0);
  957. init_object(s, object, SLUB_RED_INACTIVE);
  958. rc = 1;
  959. out:
  960. slab_unlock(page);
  961. local_irq_restore(flags);
  962. return rc;
  963. fail:
  964. slab_fix(s, "Object at 0x%p not freed", object);
  965. goto out;
  966. }
  967. static int __init setup_slub_debug(char *str)
  968. {
  969. slub_debug = DEBUG_DEFAULT_FLAGS;
  970. if (*str++ != '=' || !*str)
  971. /*
  972. * No options specified. Switch on full debugging.
  973. */
  974. goto out;
  975. if (*str == ',')
  976. /*
  977. * No options but restriction on slabs. This means full
  978. * debugging for slabs matching a pattern.
  979. */
  980. goto check_slabs;
  981. if (tolower(*str) == 'o') {
  982. /*
  983. * Avoid enabling debugging on caches if its minimum order
  984. * would increase as a result.
  985. */
  986. disable_higher_order_debug = 1;
  987. goto out;
  988. }
  989. slub_debug = 0;
  990. if (*str == '-')
  991. /*
  992. * Switch off all debugging measures.
  993. */
  994. goto out;
  995. /*
  996. * Determine which debug features should be switched on
  997. */
  998. for (; *str && *str != ','; str++) {
  999. switch (tolower(*str)) {
  1000. case 'f':
  1001. slub_debug |= SLAB_DEBUG_FREE;
  1002. break;
  1003. case 'z':
  1004. slub_debug |= SLAB_RED_ZONE;
  1005. break;
  1006. case 'p':
  1007. slub_debug |= SLAB_POISON;
  1008. break;
  1009. case 'u':
  1010. slub_debug |= SLAB_STORE_USER;
  1011. break;
  1012. case 't':
  1013. slub_debug |= SLAB_TRACE;
  1014. break;
  1015. case 'a':
  1016. slub_debug |= SLAB_FAILSLAB;
  1017. break;
  1018. default:
  1019. printk(KERN_ERR "slub_debug option '%c' "
  1020. "unknown. skipped\n", *str);
  1021. }
  1022. }
  1023. check_slabs:
  1024. if (*str == ',')
  1025. slub_debug_slabs = str + 1;
  1026. out:
  1027. return 1;
  1028. }
  1029. __setup("slub_debug", setup_slub_debug);
  1030. static unsigned long kmem_cache_flags(unsigned long objsize,
  1031. unsigned long flags, const char *name,
  1032. void (*ctor)(void *))
  1033. {
  1034. /*
  1035. * Enable debugging if selected on the kernel commandline.
  1036. */
  1037. if (slub_debug && (!slub_debug_slabs ||
  1038. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1039. flags |= slub_debug;
  1040. return flags;
  1041. }
  1042. #else
  1043. static inline void setup_object_debug(struct kmem_cache *s,
  1044. struct page *page, void *object) {}
  1045. static inline int alloc_debug_processing(struct kmem_cache *s,
  1046. struct page *page, void *object, unsigned long addr) { return 0; }
  1047. static inline int free_debug_processing(struct kmem_cache *s,
  1048. struct page *page, void *object, unsigned long addr) { return 0; }
  1049. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1050. { return 1; }
  1051. static inline int check_object(struct kmem_cache *s, struct page *page,
  1052. void *object, u8 val) { return 1; }
  1053. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1054. struct page *page) {}
  1055. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1056. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  1057. unsigned long flags, const char *name,
  1058. void (*ctor)(void *))
  1059. {
  1060. return flags;
  1061. }
  1062. #define slub_debug 0
  1063. #define disable_higher_order_debug 0
  1064. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1065. { return 0; }
  1066. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1067. { return 0; }
  1068. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1069. int objects) {}
  1070. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1071. int objects) {}
  1072. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1073. { return 0; }
  1074. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1075. void *object) {}
  1076. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1077. #endif /* CONFIG_SLUB_DEBUG */
  1078. /*
  1079. * Slab allocation and freeing
  1080. */
  1081. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1082. struct kmem_cache_order_objects oo)
  1083. {
  1084. int order = oo_order(oo);
  1085. flags |= __GFP_NOTRACK;
  1086. if (node == NUMA_NO_NODE)
  1087. return alloc_pages(flags, order);
  1088. else
  1089. return alloc_pages_exact_node(node, flags, order);
  1090. }
  1091. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1092. {
  1093. struct page *page;
  1094. struct kmem_cache_order_objects oo = s->oo;
  1095. gfp_t alloc_gfp;
  1096. flags &= gfp_allowed_mask;
  1097. if (flags & __GFP_WAIT)
  1098. local_irq_enable();
  1099. flags |= s->allocflags;
  1100. /*
  1101. * Let the initial higher-order allocation fail under memory pressure
  1102. * so we fall-back to the minimum order allocation.
  1103. */
  1104. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1105. page = alloc_slab_page(alloc_gfp, node, oo);
  1106. if (unlikely(!page)) {
  1107. oo = s->min;
  1108. /*
  1109. * Allocation may have failed due to fragmentation.
  1110. * Try a lower order alloc if possible
  1111. */
  1112. page = alloc_slab_page(flags, node, oo);
  1113. if (page)
  1114. stat(s, ORDER_FALLBACK);
  1115. }
  1116. if (flags & __GFP_WAIT)
  1117. local_irq_disable();
  1118. if (!page)
  1119. return NULL;
  1120. if (kmemcheck_enabled
  1121. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1122. int pages = 1 << oo_order(oo);
  1123. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1124. /*
  1125. * Objects from caches that have a constructor don't get
  1126. * cleared when they're allocated, so we need to do it here.
  1127. */
  1128. if (s->ctor)
  1129. kmemcheck_mark_uninitialized_pages(page, pages);
  1130. else
  1131. kmemcheck_mark_unallocated_pages(page, pages);
  1132. }
  1133. page->objects = oo_objects(oo);
  1134. mod_zone_page_state(page_zone(page),
  1135. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1136. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1137. 1 << oo_order(oo));
  1138. return page;
  1139. }
  1140. static void setup_object(struct kmem_cache *s, struct page *page,
  1141. void *object)
  1142. {
  1143. setup_object_debug(s, page, object);
  1144. if (unlikely(s->ctor))
  1145. s->ctor(object);
  1146. }
  1147. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1148. {
  1149. struct page *page;
  1150. void *start;
  1151. void *last;
  1152. void *p;
  1153. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1154. page = allocate_slab(s,
  1155. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1156. if (!page)
  1157. goto out;
  1158. inc_slabs_node(s, page_to_nid(page), page->objects);
  1159. page->slab = s;
  1160. page->flags |= 1 << PG_slab;
  1161. start = page_address(page);
  1162. if (unlikely(s->flags & SLAB_POISON))
  1163. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1164. last = start;
  1165. for_each_object(p, s, start, page->objects) {
  1166. setup_object(s, page, last);
  1167. set_freepointer(s, last, p);
  1168. last = p;
  1169. }
  1170. setup_object(s, page, last);
  1171. set_freepointer(s, last, NULL);
  1172. page->freelist = start;
  1173. page->inuse = page->objects;
  1174. page->frozen = 1;
  1175. out:
  1176. return page;
  1177. }
  1178. static void __free_slab(struct kmem_cache *s, struct page *page)
  1179. {
  1180. int order = compound_order(page);
  1181. int pages = 1 << order;
  1182. if (kmem_cache_debug(s)) {
  1183. void *p;
  1184. slab_pad_check(s, page);
  1185. for_each_object(p, s, page_address(page),
  1186. page->objects)
  1187. check_object(s, page, p, SLUB_RED_INACTIVE);
  1188. }
  1189. kmemcheck_free_shadow(page, compound_order(page));
  1190. mod_zone_page_state(page_zone(page),
  1191. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1192. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1193. -pages);
  1194. __ClearPageSlab(page);
  1195. reset_page_mapcount(page);
  1196. if (current->reclaim_state)
  1197. current->reclaim_state->reclaimed_slab += pages;
  1198. __free_pages(page, order);
  1199. }
  1200. #define need_reserve_slab_rcu \
  1201. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1202. static void rcu_free_slab(struct rcu_head *h)
  1203. {
  1204. struct page *page;
  1205. if (need_reserve_slab_rcu)
  1206. page = virt_to_head_page(h);
  1207. else
  1208. page = container_of((struct list_head *)h, struct page, lru);
  1209. __free_slab(page->slab, page);
  1210. }
  1211. static void free_slab(struct kmem_cache *s, struct page *page)
  1212. {
  1213. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1214. struct rcu_head *head;
  1215. if (need_reserve_slab_rcu) {
  1216. int order = compound_order(page);
  1217. int offset = (PAGE_SIZE << order) - s->reserved;
  1218. VM_BUG_ON(s->reserved != sizeof(*head));
  1219. head = page_address(page) + offset;
  1220. } else {
  1221. /*
  1222. * RCU free overloads the RCU head over the LRU
  1223. */
  1224. head = (void *)&page->lru;
  1225. }
  1226. call_rcu(head, rcu_free_slab);
  1227. } else
  1228. __free_slab(s, page);
  1229. }
  1230. static void discard_slab(struct kmem_cache *s, struct page *page)
  1231. {
  1232. dec_slabs_node(s, page_to_nid(page), page->objects);
  1233. free_slab(s, page);
  1234. }
  1235. /*
  1236. * Management of partially allocated slabs.
  1237. *
  1238. * list_lock must be held.
  1239. */
  1240. static inline void add_partial(struct kmem_cache_node *n,
  1241. struct page *page, int tail)
  1242. {
  1243. n->nr_partial++;
  1244. if (tail == DEACTIVATE_TO_TAIL)
  1245. list_add_tail(&page->lru, &n->partial);
  1246. else
  1247. list_add(&page->lru, &n->partial);
  1248. }
  1249. /*
  1250. * list_lock must be held.
  1251. */
  1252. static inline void remove_partial(struct kmem_cache_node *n,
  1253. struct page *page)
  1254. {
  1255. list_del(&page->lru);
  1256. n->nr_partial--;
  1257. }
  1258. /*
  1259. * Lock slab, remove from the partial list and put the object into the
  1260. * per cpu freelist.
  1261. *
  1262. * Returns a list of objects or NULL if it fails.
  1263. *
  1264. * Must hold list_lock.
  1265. */
  1266. static inline void *acquire_slab(struct kmem_cache *s,
  1267. struct kmem_cache_node *n, struct page *page,
  1268. int mode)
  1269. {
  1270. void *freelist;
  1271. unsigned long counters;
  1272. struct page new;
  1273. /*
  1274. * Zap the freelist and set the frozen bit.
  1275. * The old freelist is the list of objects for the
  1276. * per cpu allocation list.
  1277. */
  1278. do {
  1279. freelist = page->freelist;
  1280. counters = page->counters;
  1281. new.counters = counters;
  1282. if (mode)
  1283. new.inuse = page->objects;
  1284. VM_BUG_ON(new.frozen);
  1285. new.frozen = 1;
  1286. } while (!__cmpxchg_double_slab(s, page,
  1287. freelist, counters,
  1288. NULL, new.counters,
  1289. "lock and freeze"));
  1290. remove_partial(n, page);
  1291. return freelist;
  1292. }
  1293. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1294. /*
  1295. * Try to allocate a partial slab from a specific node.
  1296. */
  1297. static void *get_partial_node(struct kmem_cache *s,
  1298. struct kmem_cache_node *n, struct kmem_cache_cpu *c)
  1299. {
  1300. struct page *page, *page2;
  1301. void *object = NULL;
  1302. /*
  1303. * Racy check. If we mistakenly see no partial slabs then we
  1304. * just allocate an empty slab. If we mistakenly try to get a
  1305. * partial slab and there is none available then get_partials()
  1306. * will return NULL.
  1307. */
  1308. if (!n || !n->nr_partial)
  1309. return NULL;
  1310. spin_lock(&n->list_lock);
  1311. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1312. void *t = acquire_slab(s, n, page, object == NULL);
  1313. int available;
  1314. if (!t)
  1315. break;
  1316. if (!object) {
  1317. c->page = page;
  1318. c->node = page_to_nid(page);
  1319. stat(s, ALLOC_FROM_PARTIAL);
  1320. object = t;
  1321. available = page->objects - page->inuse;
  1322. } else {
  1323. page->freelist = t;
  1324. available = put_cpu_partial(s, page, 0);
  1325. }
  1326. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1327. break;
  1328. }
  1329. spin_unlock(&n->list_lock);
  1330. return object;
  1331. }
  1332. /*
  1333. * Get a page from somewhere. Search in increasing NUMA distances.
  1334. */
  1335. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1336. struct kmem_cache_cpu *c)
  1337. {
  1338. #ifdef CONFIG_NUMA
  1339. struct zonelist *zonelist;
  1340. struct zoneref *z;
  1341. struct zone *zone;
  1342. enum zone_type high_zoneidx = gfp_zone(flags);
  1343. void *object;
  1344. /*
  1345. * The defrag ratio allows a configuration of the tradeoffs between
  1346. * inter node defragmentation and node local allocations. A lower
  1347. * defrag_ratio increases the tendency to do local allocations
  1348. * instead of attempting to obtain partial slabs from other nodes.
  1349. *
  1350. * If the defrag_ratio is set to 0 then kmalloc() always
  1351. * returns node local objects. If the ratio is higher then kmalloc()
  1352. * may return off node objects because partial slabs are obtained
  1353. * from other nodes and filled up.
  1354. *
  1355. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1356. * defrag_ratio = 1000) then every (well almost) allocation will
  1357. * first attempt to defrag slab caches on other nodes. This means
  1358. * scanning over all nodes to look for partial slabs which may be
  1359. * expensive if we do it every time we are trying to find a slab
  1360. * with available objects.
  1361. */
  1362. if (!s->remote_node_defrag_ratio ||
  1363. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1364. return NULL;
  1365. get_mems_allowed();
  1366. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1367. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1368. struct kmem_cache_node *n;
  1369. n = get_node(s, zone_to_nid(zone));
  1370. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1371. n->nr_partial > s->min_partial) {
  1372. object = get_partial_node(s, n, c);
  1373. if (object) {
  1374. put_mems_allowed();
  1375. return object;
  1376. }
  1377. }
  1378. }
  1379. put_mems_allowed();
  1380. #endif
  1381. return NULL;
  1382. }
  1383. /*
  1384. * Get a partial page, lock it and return it.
  1385. */
  1386. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1387. struct kmem_cache_cpu *c)
  1388. {
  1389. void *object;
  1390. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1391. object = get_partial_node(s, get_node(s, searchnode), c);
  1392. if (object || node != NUMA_NO_NODE)
  1393. return object;
  1394. return get_any_partial(s, flags, c);
  1395. }
  1396. #ifdef CONFIG_PREEMPT
  1397. /*
  1398. * Calculate the next globally unique transaction for disambiguiation
  1399. * during cmpxchg. The transactions start with the cpu number and are then
  1400. * incremented by CONFIG_NR_CPUS.
  1401. */
  1402. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1403. #else
  1404. /*
  1405. * No preemption supported therefore also no need to check for
  1406. * different cpus.
  1407. */
  1408. #define TID_STEP 1
  1409. #endif
  1410. static inline unsigned long next_tid(unsigned long tid)
  1411. {
  1412. return tid + TID_STEP;
  1413. }
  1414. static inline unsigned int tid_to_cpu(unsigned long tid)
  1415. {
  1416. return tid % TID_STEP;
  1417. }
  1418. static inline unsigned long tid_to_event(unsigned long tid)
  1419. {
  1420. return tid / TID_STEP;
  1421. }
  1422. static inline unsigned int init_tid(int cpu)
  1423. {
  1424. return cpu;
  1425. }
  1426. static inline void note_cmpxchg_failure(const char *n,
  1427. const struct kmem_cache *s, unsigned long tid)
  1428. {
  1429. #ifdef SLUB_DEBUG_CMPXCHG
  1430. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1431. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1432. #ifdef CONFIG_PREEMPT
  1433. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1434. printk("due to cpu change %d -> %d\n",
  1435. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1436. else
  1437. #endif
  1438. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1439. printk("due to cpu running other code. Event %ld->%ld\n",
  1440. tid_to_event(tid), tid_to_event(actual_tid));
  1441. else
  1442. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1443. actual_tid, tid, next_tid(tid));
  1444. #endif
  1445. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1446. }
  1447. void init_kmem_cache_cpus(struct kmem_cache *s)
  1448. {
  1449. int cpu;
  1450. for_each_possible_cpu(cpu)
  1451. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1452. }
  1453. /*
  1454. * Remove the cpu slab
  1455. */
  1456. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1457. {
  1458. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1459. struct page *page = c->page;
  1460. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1461. int lock = 0;
  1462. enum slab_modes l = M_NONE, m = M_NONE;
  1463. void *freelist;
  1464. void *nextfree;
  1465. int tail = DEACTIVATE_TO_HEAD;
  1466. struct page new;
  1467. struct page old;
  1468. if (page->freelist) {
  1469. stat(s, DEACTIVATE_REMOTE_FREES);
  1470. tail = DEACTIVATE_TO_TAIL;
  1471. }
  1472. c->tid = next_tid(c->tid);
  1473. c->page = NULL;
  1474. freelist = c->freelist;
  1475. c->freelist = NULL;
  1476. /*
  1477. * Stage one: Free all available per cpu objects back
  1478. * to the page freelist while it is still frozen. Leave the
  1479. * last one.
  1480. *
  1481. * There is no need to take the list->lock because the page
  1482. * is still frozen.
  1483. */
  1484. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1485. void *prior;
  1486. unsigned long counters;
  1487. do {
  1488. prior = page->freelist;
  1489. counters = page->counters;
  1490. set_freepointer(s, freelist, prior);
  1491. new.counters = counters;
  1492. new.inuse--;
  1493. VM_BUG_ON(!new.frozen);
  1494. } while (!__cmpxchg_double_slab(s, page,
  1495. prior, counters,
  1496. freelist, new.counters,
  1497. "drain percpu freelist"));
  1498. freelist = nextfree;
  1499. }
  1500. /*
  1501. * Stage two: Ensure that the page is unfrozen while the
  1502. * list presence reflects the actual number of objects
  1503. * during unfreeze.
  1504. *
  1505. * We setup the list membership and then perform a cmpxchg
  1506. * with the count. If there is a mismatch then the page
  1507. * is not unfrozen but the page is on the wrong list.
  1508. *
  1509. * Then we restart the process which may have to remove
  1510. * the page from the list that we just put it on again
  1511. * because the number of objects in the slab may have
  1512. * changed.
  1513. */
  1514. redo:
  1515. old.freelist = page->freelist;
  1516. old.counters = page->counters;
  1517. VM_BUG_ON(!old.frozen);
  1518. /* Determine target state of the slab */
  1519. new.counters = old.counters;
  1520. if (freelist) {
  1521. new.inuse--;
  1522. set_freepointer(s, freelist, old.freelist);
  1523. new.freelist = freelist;
  1524. } else
  1525. new.freelist = old.freelist;
  1526. new.frozen = 0;
  1527. if (!new.inuse && n->nr_partial > s->min_partial)
  1528. m = M_FREE;
  1529. else if (new.freelist) {
  1530. m = M_PARTIAL;
  1531. if (!lock) {
  1532. lock = 1;
  1533. /*
  1534. * Taking the spinlock removes the possiblity
  1535. * that acquire_slab() will see a slab page that
  1536. * is frozen
  1537. */
  1538. spin_lock(&n->list_lock);
  1539. }
  1540. } else {
  1541. m = M_FULL;
  1542. if (kmem_cache_debug(s) && !lock) {
  1543. lock = 1;
  1544. /*
  1545. * This also ensures that the scanning of full
  1546. * slabs from diagnostic functions will not see
  1547. * any frozen slabs.
  1548. */
  1549. spin_lock(&n->list_lock);
  1550. }
  1551. }
  1552. if (l != m) {
  1553. if (l == M_PARTIAL)
  1554. remove_partial(n, page);
  1555. else if (l == M_FULL)
  1556. remove_full(s, page);
  1557. if (m == M_PARTIAL) {
  1558. add_partial(n, page, tail);
  1559. stat(s, tail);
  1560. } else if (m == M_FULL) {
  1561. stat(s, DEACTIVATE_FULL);
  1562. add_full(s, n, page);
  1563. }
  1564. }
  1565. l = m;
  1566. if (!__cmpxchg_double_slab(s, page,
  1567. old.freelist, old.counters,
  1568. new.freelist, new.counters,
  1569. "unfreezing slab"))
  1570. goto redo;
  1571. if (lock)
  1572. spin_unlock(&n->list_lock);
  1573. if (m == M_FREE) {
  1574. stat(s, DEACTIVATE_EMPTY);
  1575. discard_slab(s, page);
  1576. stat(s, FREE_SLAB);
  1577. }
  1578. }
  1579. /* Unfreeze all the cpu partial slabs */
  1580. static void unfreeze_partials(struct kmem_cache *s)
  1581. {
  1582. struct kmem_cache_node *n = NULL;
  1583. struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
  1584. struct page *page, *discard_page = NULL;
  1585. while ((page = c->partial)) {
  1586. enum slab_modes { M_PARTIAL, M_FREE };
  1587. enum slab_modes l, m;
  1588. struct page new;
  1589. struct page old;
  1590. c->partial = page->next;
  1591. l = M_FREE;
  1592. do {
  1593. old.freelist = page->freelist;
  1594. old.counters = page->counters;
  1595. VM_BUG_ON(!old.frozen);
  1596. new.counters = old.counters;
  1597. new.freelist = old.freelist;
  1598. new.frozen = 0;
  1599. if (!new.inuse && (!n || n->nr_partial > s->min_partial))
  1600. m = M_FREE;
  1601. else {
  1602. struct kmem_cache_node *n2 = get_node(s,
  1603. page_to_nid(page));
  1604. m = M_PARTIAL;
  1605. if (n != n2) {
  1606. if (n)
  1607. spin_unlock(&n->list_lock);
  1608. n = n2;
  1609. spin_lock(&n->list_lock);
  1610. }
  1611. }
  1612. if (l != m) {
  1613. if (l == M_PARTIAL) {
  1614. remove_partial(n, page);
  1615. stat(s, FREE_REMOVE_PARTIAL);
  1616. } else {
  1617. add_partial(n, page,
  1618. DEACTIVATE_TO_TAIL);
  1619. stat(s, FREE_ADD_PARTIAL);
  1620. }
  1621. l = m;
  1622. }
  1623. } while (!cmpxchg_double_slab(s, page,
  1624. old.freelist, old.counters,
  1625. new.freelist, new.counters,
  1626. "unfreezing slab"));
  1627. if (m == M_FREE) {
  1628. page->next = discard_page;
  1629. discard_page = page;
  1630. }
  1631. }
  1632. if (n)
  1633. spin_unlock(&n->list_lock);
  1634. while (discard_page) {
  1635. page = discard_page;
  1636. discard_page = discard_page->next;
  1637. stat(s, DEACTIVATE_EMPTY);
  1638. discard_slab(s, page);
  1639. stat(s, FREE_SLAB);
  1640. }
  1641. }
  1642. /*
  1643. * Put a page that was just frozen (in __slab_free) into a partial page
  1644. * slot if available. This is done without interrupts disabled and without
  1645. * preemption disabled. The cmpxchg is racy and may put the partial page
  1646. * onto a random cpus partial slot.
  1647. *
  1648. * If we did not find a slot then simply move all the partials to the
  1649. * per node partial list.
  1650. */
  1651. int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1652. {
  1653. struct page *oldpage;
  1654. int pages;
  1655. int pobjects;
  1656. do {
  1657. pages = 0;
  1658. pobjects = 0;
  1659. oldpage = this_cpu_read(s->cpu_slab->partial);
  1660. if (oldpage) {
  1661. pobjects = oldpage->pobjects;
  1662. pages = oldpage->pages;
  1663. if (drain && pobjects > s->cpu_partial) {
  1664. unsigned long flags;
  1665. /*
  1666. * partial array is full. Move the existing
  1667. * set to the per node partial list.
  1668. */
  1669. local_irq_save(flags);
  1670. unfreeze_partials(s);
  1671. local_irq_restore(flags);
  1672. pobjects = 0;
  1673. pages = 0;
  1674. }
  1675. }
  1676. pages++;
  1677. pobjects += page->objects - page->inuse;
  1678. page->pages = pages;
  1679. page->pobjects = pobjects;
  1680. page->next = oldpage;
  1681. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1682. stat(s, CPU_PARTIAL_FREE);
  1683. return pobjects;
  1684. }
  1685. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1686. {
  1687. stat(s, CPUSLAB_FLUSH);
  1688. deactivate_slab(s, c);
  1689. }
  1690. /*
  1691. * Flush cpu slab.
  1692. *
  1693. * Called from IPI handler with interrupts disabled.
  1694. */
  1695. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1696. {
  1697. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1698. if (likely(c)) {
  1699. if (c->page)
  1700. flush_slab(s, c);
  1701. unfreeze_partials(s);
  1702. }
  1703. }
  1704. static void flush_cpu_slab(void *d)
  1705. {
  1706. struct kmem_cache *s = d;
  1707. __flush_cpu_slab(s, smp_processor_id());
  1708. }
  1709. static void flush_all(struct kmem_cache *s)
  1710. {
  1711. on_each_cpu(flush_cpu_slab, s, 1);
  1712. }
  1713. /*
  1714. * Check if the objects in a per cpu structure fit numa
  1715. * locality expectations.
  1716. */
  1717. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1718. {
  1719. #ifdef CONFIG_NUMA
  1720. if (node != NUMA_NO_NODE && c->node != node)
  1721. return 0;
  1722. #endif
  1723. return 1;
  1724. }
  1725. static int count_free(struct page *page)
  1726. {
  1727. return page->objects - page->inuse;
  1728. }
  1729. static unsigned long count_partial(struct kmem_cache_node *n,
  1730. int (*get_count)(struct page *))
  1731. {
  1732. unsigned long flags;
  1733. unsigned long x = 0;
  1734. struct page *page;
  1735. spin_lock_irqsave(&n->list_lock, flags);
  1736. list_for_each_entry(page, &n->partial, lru)
  1737. x += get_count(page);
  1738. spin_unlock_irqrestore(&n->list_lock, flags);
  1739. return x;
  1740. }
  1741. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1742. {
  1743. #ifdef CONFIG_SLUB_DEBUG
  1744. return atomic_long_read(&n->total_objects);
  1745. #else
  1746. return 0;
  1747. #endif
  1748. }
  1749. static noinline void
  1750. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1751. {
  1752. int node;
  1753. printk(KERN_WARNING
  1754. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1755. nid, gfpflags);
  1756. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1757. "default order: %d, min order: %d\n", s->name, s->objsize,
  1758. s->size, oo_order(s->oo), oo_order(s->min));
  1759. if (oo_order(s->min) > get_order(s->objsize))
  1760. printk(KERN_WARNING " %s debugging increased min order, use "
  1761. "slub_debug=O to disable.\n", s->name);
  1762. for_each_online_node(node) {
  1763. struct kmem_cache_node *n = get_node(s, node);
  1764. unsigned long nr_slabs;
  1765. unsigned long nr_objs;
  1766. unsigned long nr_free;
  1767. if (!n)
  1768. continue;
  1769. nr_free = count_partial(n, count_free);
  1770. nr_slabs = node_nr_slabs(n);
  1771. nr_objs = node_nr_objs(n);
  1772. printk(KERN_WARNING
  1773. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1774. node, nr_slabs, nr_objs, nr_free);
  1775. }
  1776. }
  1777. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1778. int node, struct kmem_cache_cpu **pc)
  1779. {
  1780. void *object;
  1781. struct kmem_cache_cpu *c;
  1782. struct page *page = new_slab(s, flags, node);
  1783. if (page) {
  1784. c = __this_cpu_ptr(s->cpu_slab);
  1785. if (c->page)
  1786. flush_slab(s, c);
  1787. /*
  1788. * No other reference to the page yet so we can
  1789. * muck around with it freely without cmpxchg
  1790. */
  1791. object = page->freelist;
  1792. page->freelist = NULL;
  1793. stat(s, ALLOC_SLAB);
  1794. c->node = page_to_nid(page);
  1795. c->page = page;
  1796. *pc = c;
  1797. } else
  1798. object = NULL;
  1799. return object;
  1800. }
  1801. /*
  1802. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1803. * or deactivate the page.
  1804. *
  1805. * The page is still frozen if the return value is not NULL.
  1806. *
  1807. * If this function returns NULL then the page has been unfrozen.
  1808. */
  1809. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1810. {
  1811. struct page new;
  1812. unsigned long counters;
  1813. void *freelist;
  1814. do {
  1815. freelist = page->freelist;
  1816. counters = page->counters;
  1817. new.counters = counters;
  1818. VM_BUG_ON(!new.frozen);
  1819. new.inuse = page->objects;
  1820. new.frozen = freelist != NULL;
  1821. } while (!cmpxchg_double_slab(s, page,
  1822. freelist, counters,
  1823. NULL, new.counters,
  1824. "get_freelist"));
  1825. return freelist;
  1826. }
  1827. /*
  1828. * Slow path. The lockless freelist is empty or we need to perform
  1829. * debugging duties.
  1830. *
  1831. * Processing is still very fast if new objects have been freed to the
  1832. * regular freelist. In that case we simply take over the regular freelist
  1833. * as the lockless freelist and zap the regular freelist.
  1834. *
  1835. * If that is not working then we fall back to the partial lists. We take the
  1836. * first element of the freelist as the object to allocate now and move the
  1837. * rest of the freelist to the lockless freelist.
  1838. *
  1839. * And if we were unable to get a new slab from the partial slab lists then
  1840. * we need to allocate a new slab. This is the slowest path since it involves
  1841. * a call to the page allocator and the setup of a new slab.
  1842. */
  1843. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1844. unsigned long addr, struct kmem_cache_cpu *c)
  1845. {
  1846. void **object;
  1847. unsigned long flags;
  1848. local_irq_save(flags);
  1849. #ifdef CONFIG_PREEMPT
  1850. /*
  1851. * We may have been preempted and rescheduled on a different
  1852. * cpu before disabling interrupts. Need to reload cpu area
  1853. * pointer.
  1854. */
  1855. c = this_cpu_ptr(s->cpu_slab);
  1856. #endif
  1857. if (!c->page)
  1858. goto new_slab;
  1859. redo:
  1860. if (unlikely(!node_match(c, node))) {
  1861. stat(s, ALLOC_NODE_MISMATCH);
  1862. deactivate_slab(s, c);
  1863. goto new_slab;
  1864. }
  1865. /* must check again c->freelist in case of cpu migration or IRQ */
  1866. object = c->freelist;
  1867. if (object)
  1868. goto load_freelist;
  1869. stat(s, ALLOC_SLOWPATH);
  1870. object = get_freelist(s, c->page);
  1871. if (!object) {
  1872. c->page = NULL;
  1873. stat(s, DEACTIVATE_BYPASS);
  1874. goto new_slab;
  1875. }
  1876. stat(s, ALLOC_REFILL);
  1877. load_freelist:
  1878. c->freelist = get_freepointer(s, object);
  1879. c->tid = next_tid(c->tid);
  1880. local_irq_restore(flags);
  1881. return object;
  1882. new_slab:
  1883. if (c->partial) {
  1884. c->page = c->partial;
  1885. c->partial = c->page->next;
  1886. c->node = page_to_nid(c->page);
  1887. stat(s, CPU_PARTIAL_ALLOC);
  1888. c->freelist = NULL;
  1889. goto redo;
  1890. }
  1891. /* Then do expensive stuff like retrieving pages from the partial lists */
  1892. object = get_partial(s, gfpflags, node, c);
  1893. if (unlikely(!object)) {
  1894. object = new_slab_objects(s, gfpflags, node, &c);
  1895. if (unlikely(!object)) {
  1896. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1897. slab_out_of_memory(s, gfpflags, node);
  1898. local_irq_restore(flags);
  1899. return NULL;
  1900. }
  1901. }
  1902. if (likely(!kmem_cache_debug(s)))
  1903. goto load_freelist;
  1904. /* Only entered in the debug case */
  1905. if (!alloc_debug_processing(s, c->page, object, addr))
  1906. goto new_slab; /* Slab failed checks. Next slab needed */
  1907. c->freelist = get_freepointer(s, object);
  1908. deactivate_slab(s, c);
  1909. c->node = NUMA_NO_NODE;
  1910. local_irq_restore(flags);
  1911. return object;
  1912. }
  1913. /*
  1914. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1915. * have the fastpath folded into their functions. So no function call
  1916. * overhead for requests that can be satisfied on the fastpath.
  1917. *
  1918. * The fastpath works by first checking if the lockless freelist can be used.
  1919. * If not then __slab_alloc is called for slow processing.
  1920. *
  1921. * Otherwise we can simply pick the next object from the lockless free list.
  1922. */
  1923. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1924. gfp_t gfpflags, int node, unsigned long addr)
  1925. {
  1926. void **object;
  1927. struct kmem_cache_cpu *c;
  1928. unsigned long tid;
  1929. if (slab_pre_alloc_hook(s, gfpflags))
  1930. return NULL;
  1931. redo:
  1932. /*
  1933. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1934. * enabled. We may switch back and forth between cpus while
  1935. * reading from one cpu area. That does not matter as long
  1936. * as we end up on the original cpu again when doing the cmpxchg.
  1937. */
  1938. c = __this_cpu_ptr(s->cpu_slab);
  1939. /*
  1940. * The transaction ids are globally unique per cpu and per operation on
  1941. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1942. * occurs on the right processor and that there was no operation on the
  1943. * linked list in between.
  1944. */
  1945. tid = c->tid;
  1946. barrier();
  1947. object = c->freelist;
  1948. if (unlikely(!object || !node_match(c, node)))
  1949. object = __slab_alloc(s, gfpflags, node, addr, c);
  1950. else {
  1951. /*
  1952. * The cmpxchg will only match if there was no additional
  1953. * operation and if we are on the right processor.
  1954. *
  1955. * The cmpxchg does the following atomically (without lock semantics!)
  1956. * 1. Relocate first pointer to the current per cpu area.
  1957. * 2. Verify that tid and freelist have not been changed
  1958. * 3. If they were not changed replace tid and freelist
  1959. *
  1960. * Since this is without lock semantics the protection is only against
  1961. * code executing on this cpu *not* from access by other cpus.
  1962. */
  1963. if (unlikely(!this_cpu_cmpxchg_double(
  1964. s->cpu_slab->freelist, s->cpu_slab->tid,
  1965. object, tid,
  1966. get_freepointer_safe(s, object), next_tid(tid)))) {
  1967. note_cmpxchg_failure("slab_alloc", s, tid);
  1968. goto redo;
  1969. }
  1970. stat(s, ALLOC_FASTPATH);
  1971. }
  1972. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1973. memset(object, 0, s->objsize);
  1974. slab_post_alloc_hook(s, gfpflags, object);
  1975. return object;
  1976. }
  1977. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1978. {
  1979. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1980. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1981. return ret;
  1982. }
  1983. EXPORT_SYMBOL(kmem_cache_alloc);
  1984. #ifdef CONFIG_TRACING
  1985. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  1986. {
  1987. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1988. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  1989. return ret;
  1990. }
  1991. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  1992. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  1993. {
  1994. void *ret = kmalloc_order(size, flags, order);
  1995. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  1996. return ret;
  1997. }
  1998. EXPORT_SYMBOL(kmalloc_order_trace);
  1999. #endif
  2000. #ifdef CONFIG_NUMA
  2001. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2002. {
  2003. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2004. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2005. s->objsize, s->size, gfpflags, node);
  2006. return ret;
  2007. }
  2008. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2009. #ifdef CONFIG_TRACING
  2010. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2011. gfp_t gfpflags,
  2012. int node, size_t size)
  2013. {
  2014. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2015. trace_kmalloc_node(_RET_IP_, ret,
  2016. size, s->size, gfpflags, node);
  2017. return ret;
  2018. }
  2019. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2020. #endif
  2021. #endif
  2022. /*
  2023. * Slow patch handling. This may still be called frequently since objects
  2024. * have a longer lifetime than the cpu slabs in most processing loads.
  2025. *
  2026. * So we still attempt to reduce cache line usage. Just take the slab
  2027. * lock and free the item. If there is no additional partial page
  2028. * handling required then we can return immediately.
  2029. */
  2030. static void __slab_free(struct kmem_cache *s, struct page *page,
  2031. void *x, unsigned long addr)
  2032. {
  2033. void *prior;
  2034. void **object = (void *)x;
  2035. int was_frozen;
  2036. int inuse;
  2037. struct page new;
  2038. unsigned long counters;
  2039. struct kmem_cache_node *n = NULL;
  2040. unsigned long uninitialized_var(flags);
  2041. stat(s, FREE_SLOWPATH);
  2042. if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
  2043. return;
  2044. do {
  2045. prior = page->freelist;
  2046. counters = page->counters;
  2047. set_freepointer(s, object, prior);
  2048. new.counters = counters;
  2049. was_frozen = new.frozen;
  2050. new.inuse--;
  2051. if ((!new.inuse || !prior) && !was_frozen && !n) {
  2052. if (!kmem_cache_debug(s) && !prior)
  2053. /*
  2054. * Slab was on no list before and will be partially empty
  2055. * We can defer the list move and instead freeze it.
  2056. */
  2057. new.frozen = 1;
  2058. else { /* Needs to be taken off a list */
  2059. n = get_node(s, page_to_nid(page));
  2060. /*
  2061. * Speculatively acquire the list_lock.
  2062. * If the cmpxchg does not succeed then we may
  2063. * drop the list_lock without any processing.
  2064. *
  2065. * Otherwise the list_lock will synchronize with
  2066. * other processors updating the list of slabs.
  2067. */
  2068. spin_lock_irqsave(&n->list_lock, flags);
  2069. }
  2070. }
  2071. inuse = new.inuse;
  2072. } while (!cmpxchg_double_slab(s, page,
  2073. prior, counters,
  2074. object, new.counters,
  2075. "__slab_free"));
  2076. if (likely(!n)) {
  2077. /*
  2078. * If we just froze the page then put it onto the
  2079. * per cpu partial list.
  2080. */
  2081. if (new.frozen && !was_frozen)
  2082. put_cpu_partial(s, page, 1);
  2083. /*
  2084. * The list lock was not taken therefore no list
  2085. * activity can be necessary.
  2086. */
  2087. if (was_frozen)
  2088. stat(s, FREE_FROZEN);
  2089. return;
  2090. }
  2091. /*
  2092. * was_frozen may have been set after we acquired the list_lock in
  2093. * an earlier loop. So we need to check it here again.
  2094. */
  2095. if (was_frozen)
  2096. stat(s, FREE_FROZEN);
  2097. else {
  2098. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  2099. goto slab_empty;
  2100. /*
  2101. * Objects left in the slab. If it was not on the partial list before
  2102. * then add it.
  2103. */
  2104. if (unlikely(!prior)) {
  2105. remove_full(s, page);
  2106. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2107. stat(s, FREE_ADD_PARTIAL);
  2108. }
  2109. }
  2110. spin_unlock_irqrestore(&n->list_lock, flags);
  2111. return;
  2112. slab_empty:
  2113. if (prior) {
  2114. /*
  2115. * Slab on the partial list.
  2116. */
  2117. remove_partial(n, page);
  2118. stat(s, FREE_REMOVE_PARTIAL);
  2119. } else
  2120. /* Slab must be on the full list */
  2121. remove_full(s, page);
  2122. spin_unlock_irqrestore(&n->list_lock, flags);
  2123. stat(s, FREE_SLAB);
  2124. discard_slab(s, page);
  2125. }
  2126. /*
  2127. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2128. * can perform fastpath freeing without additional function calls.
  2129. *
  2130. * The fastpath is only possible if we are freeing to the current cpu slab
  2131. * of this processor. This typically the case if we have just allocated
  2132. * the item before.
  2133. *
  2134. * If fastpath is not possible then fall back to __slab_free where we deal
  2135. * with all sorts of special processing.
  2136. */
  2137. static __always_inline void slab_free(struct kmem_cache *s,
  2138. struct page *page, void *x, unsigned long addr)
  2139. {
  2140. void **object = (void *)x;
  2141. struct kmem_cache_cpu *c;
  2142. unsigned long tid;
  2143. slab_free_hook(s, x);
  2144. redo:
  2145. /*
  2146. * Determine the currently cpus per cpu slab.
  2147. * The cpu may change afterward. However that does not matter since
  2148. * data is retrieved via this pointer. If we are on the same cpu
  2149. * during the cmpxchg then the free will succedd.
  2150. */
  2151. c = __this_cpu_ptr(s->cpu_slab);
  2152. tid = c->tid;
  2153. barrier();
  2154. if (likely(page == c->page)) {
  2155. set_freepointer(s, object, c->freelist);
  2156. if (unlikely(!this_cpu_cmpxchg_double(
  2157. s->cpu_slab->freelist, s->cpu_slab->tid,
  2158. c->freelist, tid,
  2159. object, next_tid(tid)))) {
  2160. note_cmpxchg_failure("slab_free", s, tid);
  2161. goto redo;
  2162. }
  2163. stat(s, FREE_FASTPATH);
  2164. } else
  2165. __slab_free(s, page, x, addr);
  2166. }
  2167. void kmem_cache_free(struct kmem_cache *s, void *x)
  2168. {
  2169. struct page *page;
  2170. page = virt_to_head_page(x);
  2171. slab_free(s, page, x, _RET_IP_);
  2172. trace_kmem_cache_free(_RET_IP_, x);
  2173. }
  2174. EXPORT_SYMBOL(kmem_cache_free);
  2175. /*
  2176. * Object placement in a slab is made very easy because we always start at
  2177. * offset 0. If we tune the size of the object to the alignment then we can
  2178. * get the required alignment by putting one properly sized object after
  2179. * another.
  2180. *
  2181. * Notice that the allocation order determines the sizes of the per cpu
  2182. * caches. Each processor has always one slab available for allocations.
  2183. * Increasing the allocation order reduces the number of times that slabs
  2184. * must be moved on and off the partial lists and is therefore a factor in
  2185. * locking overhead.
  2186. */
  2187. /*
  2188. * Mininum / Maximum order of slab pages. This influences locking overhead
  2189. * and slab fragmentation. A higher order reduces the number of partial slabs
  2190. * and increases the number of allocations possible without having to
  2191. * take the list_lock.
  2192. */
  2193. static int slub_min_order;
  2194. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2195. static int slub_min_objects;
  2196. /*
  2197. * Merge control. If this is set then no merging of slab caches will occur.
  2198. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2199. */
  2200. static int slub_nomerge;
  2201. /*
  2202. * Calculate the order of allocation given an slab object size.
  2203. *
  2204. * The order of allocation has significant impact on performance and other
  2205. * system components. Generally order 0 allocations should be preferred since
  2206. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2207. * be problematic to put into order 0 slabs because there may be too much
  2208. * unused space left. We go to a higher order if more than 1/16th of the slab
  2209. * would be wasted.
  2210. *
  2211. * In order to reach satisfactory performance we must ensure that a minimum
  2212. * number of objects is in one slab. Otherwise we may generate too much
  2213. * activity on the partial lists which requires taking the list_lock. This is
  2214. * less a concern for large slabs though which are rarely used.
  2215. *
  2216. * slub_max_order specifies the order where we begin to stop considering the
  2217. * number of objects in a slab as critical. If we reach slub_max_order then
  2218. * we try to keep the page order as low as possible. So we accept more waste
  2219. * of space in favor of a small page order.
  2220. *
  2221. * Higher order allocations also allow the placement of more objects in a
  2222. * slab and thereby reduce object handling overhead. If the user has
  2223. * requested a higher mininum order then we start with that one instead of
  2224. * the smallest order which will fit the object.
  2225. */
  2226. static inline int slab_order(int size, int min_objects,
  2227. int max_order, int fract_leftover, int reserved)
  2228. {
  2229. int order;
  2230. int rem;
  2231. int min_order = slub_min_order;
  2232. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2233. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2234. for (order = max(min_order,
  2235. fls(min_objects * size - 1) - PAGE_SHIFT);
  2236. order <= max_order; order++) {
  2237. unsigned long slab_size = PAGE_SIZE << order;
  2238. if (slab_size < min_objects * size + reserved)
  2239. continue;
  2240. rem = (slab_size - reserved) % size;
  2241. if (rem <= slab_size / fract_leftover)
  2242. break;
  2243. }
  2244. return order;
  2245. }
  2246. static inline int calculate_order(int size, int reserved)
  2247. {
  2248. int order;
  2249. int min_objects;
  2250. int fraction;
  2251. int max_objects;
  2252. /*
  2253. * Attempt to find best configuration for a slab. This
  2254. * works by first attempting to generate a layout with
  2255. * the best configuration and backing off gradually.
  2256. *
  2257. * First we reduce the acceptable waste in a slab. Then
  2258. * we reduce the minimum objects required in a slab.
  2259. */
  2260. min_objects = slub_min_objects;
  2261. if (!min_objects)
  2262. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2263. max_objects = order_objects(slub_max_order, size, reserved);
  2264. min_objects = min(min_objects, max_objects);
  2265. while (min_objects > 1) {
  2266. fraction = 16;
  2267. while (fraction >= 4) {
  2268. order = slab_order(size, min_objects,
  2269. slub_max_order, fraction, reserved);
  2270. if (order <= slub_max_order)
  2271. return order;
  2272. fraction /= 2;
  2273. }
  2274. min_objects--;
  2275. }
  2276. /*
  2277. * We were unable to place multiple objects in a slab. Now
  2278. * lets see if we can place a single object there.
  2279. */
  2280. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2281. if (order <= slub_max_order)
  2282. return order;
  2283. /*
  2284. * Doh this slab cannot be placed using slub_max_order.
  2285. */
  2286. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2287. if (order < MAX_ORDER)
  2288. return order;
  2289. return -ENOSYS;
  2290. }
  2291. /*
  2292. * Figure out what the alignment of the objects will be.
  2293. */
  2294. static unsigned long calculate_alignment(unsigned long flags,
  2295. unsigned long align, unsigned long size)
  2296. {
  2297. /*
  2298. * If the user wants hardware cache aligned objects then follow that
  2299. * suggestion if the object is sufficiently large.
  2300. *
  2301. * The hardware cache alignment cannot override the specified
  2302. * alignment though. If that is greater then use it.
  2303. */
  2304. if (flags & SLAB_HWCACHE_ALIGN) {
  2305. unsigned long ralign = cache_line_size();
  2306. while (size <= ralign / 2)
  2307. ralign /= 2;
  2308. align = max(align, ralign);
  2309. }
  2310. if (align < ARCH_SLAB_MINALIGN)
  2311. align = ARCH_SLAB_MINALIGN;
  2312. return ALIGN(align, sizeof(void *));
  2313. }
  2314. static void
  2315. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  2316. {
  2317. n->nr_partial = 0;
  2318. spin_lock_init(&n->list_lock);
  2319. INIT_LIST_HEAD(&n->partial);
  2320. #ifdef CONFIG_SLUB_DEBUG
  2321. atomic_long_set(&n->nr_slabs, 0);
  2322. atomic_long_set(&n->total_objects, 0);
  2323. INIT_LIST_HEAD(&n->full);
  2324. #endif
  2325. }
  2326. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2327. {
  2328. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2329. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2330. /*
  2331. * Must align to double word boundary for the double cmpxchg
  2332. * instructions to work; see __pcpu_double_call_return_bool().
  2333. */
  2334. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2335. 2 * sizeof(void *));
  2336. if (!s->cpu_slab)
  2337. return 0;
  2338. init_kmem_cache_cpus(s);
  2339. return 1;
  2340. }
  2341. static struct kmem_cache *kmem_cache_node;
  2342. /*
  2343. * No kmalloc_node yet so do it by hand. We know that this is the first
  2344. * slab on the node for this slabcache. There are no concurrent accesses
  2345. * possible.
  2346. *
  2347. * Note that this function only works on the kmalloc_node_cache
  2348. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2349. * memory on a fresh node that has no slab structures yet.
  2350. */
  2351. static void early_kmem_cache_node_alloc(int node)
  2352. {
  2353. struct page *page;
  2354. struct kmem_cache_node *n;
  2355. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2356. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2357. BUG_ON(!page);
  2358. if (page_to_nid(page) != node) {
  2359. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2360. "node %d\n", node);
  2361. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2362. "in order to be able to continue\n");
  2363. }
  2364. n = page->freelist;
  2365. BUG_ON(!n);
  2366. page->freelist = get_freepointer(kmem_cache_node, n);
  2367. page->inuse = 1;
  2368. page->frozen = 0;
  2369. kmem_cache_node->node[node] = n;
  2370. #ifdef CONFIG_SLUB_DEBUG
  2371. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2372. init_tracking(kmem_cache_node, n);
  2373. #endif
  2374. init_kmem_cache_node(n, kmem_cache_node);
  2375. inc_slabs_node(kmem_cache_node, node, page->objects);
  2376. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2377. }
  2378. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2379. {
  2380. int node;
  2381. for_each_node_state(node, N_NORMAL_MEMORY) {
  2382. struct kmem_cache_node *n = s->node[node];
  2383. if (n)
  2384. kmem_cache_free(kmem_cache_node, n);
  2385. s->node[node] = NULL;
  2386. }
  2387. }
  2388. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2389. {
  2390. int node;
  2391. for_each_node_state(node, N_NORMAL_MEMORY) {
  2392. struct kmem_cache_node *n;
  2393. if (slab_state == DOWN) {
  2394. early_kmem_cache_node_alloc(node);
  2395. continue;
  2396. }
  2397. n = kmem_cache_alloc_node(kmem_cache_node,
  2398. GFP_KERNEL, node);
  2399. if (!n) {
  2400. free_kmem_cache_nodes(s);
  2401. return 0;
  2402. }
  2403. s->node[node] = n;
  2404. init_kmem_cache_node(n, s);
  2405. }
  2406. return 1;
  2407. }
  2408. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2409. {
  2410. if (min < MIN_PARTIAL)
  2411. min = MIN_PARTIAL;
  2412. else if (min > MAX_PARTIAL)
  2413. min = MAX_PARTIAL;
  2414. s->min_partial = min;
  2415. }
  2416. /*
  2417. * calculate_sizes() determines the order and the distribution of data within
  2418. * a slab object.
  2419. */
  2420. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2421. {
  2422. unsigned long flags = s->flags;
  2423. unsigned long size = s->objsize;
  2424. unsigned long align = s->align;
  2425. int order;
  2426. /*
  2427. * Round up object size to the next word boundary. We can only
  2428. * place the free pointer at word boundaries and this determines
  2429. * the possible location of the free pointer.
  2430. */
  2431. size = ALIGN(size, sizeof(void *));
  2432. #ifdef CONFIG_SLUB_DEBUG
  2433. /*
  2434. * Determine if we can poison the object itself. If the user of
  2435. * the slab may touch the object after free or before allocation
  2436. * then we should never poison the object itself.
  2437. */
  2438. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2439. !s->ctor)
  2440. s->flags |= __OBJECT_POISON;
  2441. else
  2442. s->flags &= ~__OBJECT_POISON;
  2443. /*
  2444. * If we are Redzoning then check if there is some space between the
  2445. * end of the object and the free pointer. If not then add an
  2446. * additional word to have some bytes to store Redzone information.
  2447. */
  2448. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  2449. size += sizeof(void *);
  2450. #endif
  2451. /*
  2452. * With that we have determined the number of bytes in actual use
  2453. * by the object. This is the potential offset to the free pointer.
  2454. */
  2455. s->inuse = size;
  2456. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2457. s->ctor)) {
  2458. /*
  2459. * Relocate free pointer after the object if it is not
  2460. * permitted to overwrite the first word of the object on
  2461. * kmem_cache_free.
  2462. *
  2463. * This is the case if we do RCU, have a constructor or
  2464. * destructor or are poisoning the objects.
  2465. */
  2466. s->offset = size;
  2467. size += sizeof(void *);
  2468. }
  2469. #ifdef CONFIG_SLUB_DEBUG
  2470. if (flags & SLAB_STORE_USER)
  2471. /*
  2472. * Need to store information about allocs and frees after
  2473. * the object.
  2474. */
  2475. size += 2 * sizeof(struct track);
  2476. if (flags & SLAB_RED_ZONE)
  2477. /*
  2478. * Add some empty padding so that we can catch
  2479. * overwrites from earlier objects rather than let
  2480. * tracking information or the free pointer be
  2481. * corrupted if a user writes before the start
  2482. * of the object.
  2483. */
  2484. size += sizeof(void *);
  2485. #endif
  2486. /*
  2487. * Determine the alignment based on various parameters that the
  2488. * user specified and the dynamic determination of cache line size
  2489. * on bootup.
  2490. */
  2491. align = calculate_alignment(flags, align, s->objsize);
  2492. s->align = align;
  2493. /*
  2494. * SLUB stores one object immediately after another beginning from
  2495. * offset 0. In order to align the objects we have to simply size
  2496. * each object to conform to the alignment.
  2497. */
  2498. size = ALIGN(size, align);
  2499. s->size = size;
  2500. if (forced_order >= 0)
  2501. order = forced_order;
  2502. else
  2503. order = calculate_order(size, s->reserved);
  2504. if (order < 0)
  2505. return 0;
  2506. s->allocflags = 0;
  2507. if (order)
  2508. s->allocflags |= __GFP_COMP;
  2509. if (s->flags & SLAB_CACHE_DMA)
  2510. s->allocflags |= SLUB_DMA;
  2511. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2512. s->allocflags |= __GFP_RECLAIMABLE;
  2513. /*
  2514. * Determine the number of objects per slab
  2515. */
  2516. s->oo = oo_make(order, size, s->reserved);
  2517. s->min = oo_make(get_order(size), size, s->reserved);
  2518. if (oo_objects(s->oo) > oo_objects(s->max))
  2519. s->max = s->oo;
  2520. return !!oo_objects(s->oo);
  2521. }
  2522. static int kmem_cache_open(struct kmem_cache *s,
  2523. const char *name, size_t size,
  2524. size_t align, unsigned long flags,
  2525. void (*ctor)(void *))
  2526. {
  2527. memset(s, 0, kmem_size);
  2528. s->name = name;
  2529. s->ctor = ctor;
  2530. s->objsize = size;
  2531. s->align = align;
  2532. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2533. s->reserved = 0;
  2534. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2535. s->reserved = sizeof(struct rcu_head);
  2536. if (!calculate_sizes(s, -1))
  2537. goto error;
  2538. if (disable_higher_order_debug) {
  2539. /*
  2540. * Disable debugging flags that store metadata if the min slab
  2541. * order increased.
  2542. */
  2543. if (get_order(s->size) > get_order(s->objsize)) {
  2544. s->flags &= ~DEBUG_METADATA_FLAGS;
  2545. s->offset = 0;
  2546. if (!calculate_sizes(s, -1))
  2547. goto error;
  2548. }
  2549. }
  2550. #if defined(CONFIG_CMPXCHG_DOUBLE) && defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2551. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2552. /* Enable fast mode */
  2553. s->flags |= __CMPXCHG_DOUBLE;
  2554. #endif
  2555. /*
  2556. * The larger the object size is, the more pages we want on the partial
  2557. * list to avoid pounding the page allocator excessively.
  2558. */
  2559. set_min_partial(s, ilog2(s->size) / 2);
  2560. /*
  2561. * cpu_partial determined the maximum number of objects kept in the
  2562. * per cpu partial lists of a processor.
  2563. *
  2564. * Per cpu partial lists mainly contain slabs that just have one
  2565. * object freed. If they are used for allocation then they can be
  2566. * filled up again with minimal effort. The slab will never hit the
  2567. * per node partial lists and therefore no locking will be required.
  2568. *
  2569. * This setting also determines
  2570. *
  2571. * A) The number of objects from per cpu partial slabs dumped to the
  2572. * per node list when we reach the limit.
  2573. * B) The number of objects in cpu partial slabs to extract from the
  2574. * per node list when we run out of per cpu objects. We only fetch 50%
  2575. * to keep some capacity around for frees.
  2576. */
  2577. if (kmem_cache_debug(s))
  2578. s->cpu_partial = 0;
  2579. else if (s->size >= PAGE_SIZE)
  2580. s->cpu_partial = 2;
  2581. else if (s->size >= 1024)
  2582. s->cpu_partial = 6;
  2583. else if (s->size >= 256)
  2584. s->cpu_partial = 13;
  2585. else
  2586. s->cpu_partial = 30;
  2587. s->refcount = 1;
  2588. #ifdef CONFIG_NUMA
  2589. s->remote_node_defrag_ratio = 1000;
  2590. #endif
  2591. if (!init_kmem_cache_nodes(s))
  2592. goto error;
  2593. if (alloc_kmem_cache_cpus(s))
  2594. return 1;
  2595. free_kmem_cache_nodes(s);
  2596. error:
  2597. if (flags & SLAB_PANIC)
  2598. panic("Cannot create slab %s size=%lu realsize=%u "
  2599. "order=%u offset=%u flags=%lx\n",
  2600. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2601. s->offset, flags);
  2602. return 0;
  2603. }
  2604. /*
  2605. * Determine the size of a slab object
  2606. */
  2607. unsigned int kmem_cache_size(struct kmem_cache *s)
  2608. {
  2609. return s->objsize;
  2610. }
  2611. EXPORT_SYMBOL(kmem_cache_size);
  2612. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2613. const char *text)
  2614. {
  2615. #ifdef CONFIG_SLUB_DEBUG
  2616. void *addr = page_address(page);
  2617. void *p;
  2618. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2619. sizeof(long), GFP_ATOMIC);
  2620. if (!map)
  2621. return;
  2622. slab_err(s, page, "%s", text);
  2623. slab_lock(page);
  2624. get_map(s, page, map);
  2625. for_each_object(p, s, addr, page->objects) {
  2626. if (!test_bit(slab_index(p, s, addr), map)) {
  2627. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2628. p, p - addr);
  2629. print_tracking(s, p);
  2630. }
  2631. }
  2632. slab_unlock(page);
  2633. kfree(map);
  2634. #endif
  2635. }
  2636. /*
  2637. * Attempt to free all partial slabs on a node.
  2638. * This is called from kmem_cache_close(). We must be the last thread
  2639. * using the cache and therefore we do not need to lock anymore.
  2640. */
  2641. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2642. {
  2643. struct page *page, *h;
  2644. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2645. if (!page->inuse) {
  2646. remove_partial(n, page);
  2647. discard_slab(s, page);
  2648. } else {
  2649. list_slab_objects(s, page,
  2650. "Objects remaining on kmem_cache_close()");
  2651. }
  2652. }
  2653. }
  2654. /*
  2655. * Release all resources used by a slab cache.
  2656. */
  2657. static inline int kmem_cache_close(struct kmem_cache *s)
  2658. {
  2659. int node;
  2660. flush_all(s);
  2661. free_percpu(s->cpu_slab);
  2662. /* Attempt to free all objects */
  2663. for_each_node_state(node, N_NORMAL_MEMORY) {
  2664. struct kmem_cache_node *n = get_node(s, node);
  2665. free_partial(s, n);
  2666. if (n->nr_partial || slabs_node(s, node))
  2667. return 1;
  2668. }
  2669. free_kmem_cache_nodes(s);
  2670. return 0;
  2671. }
  2672. /*
  2673. * Close a cache and release the kmem_cache structure
  2674. * (must be used for caches created using kmem_cache_create)
  2675. */
  2676. void kmem_cache_destroy(struct kmem_cache *s)
  2677. {
  2678. down_write(&slub_lock);
  2679. s->refcount--;
  2680. if (!s->refcount) {
  2681. list_del(&s->list);
  2682. up_write(&slub_lock);
  2683. if (kmem_cache_close(s)) {
  2684. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2685. "still has objects.\n", s->name, __func__);
  2686. dump_stack();
  2687. }
  2688. if (s->flags & SLAB_DESTROY_BY_RCU)
  2689. rcu_barrier();
  2690. sysfs_slab_remove(s);
  2691. } else
  2692. up_write(&slub_lock);
  2693. }
  2694. EXPORT_SYMBOL(kmem_cache_destroy);
  2695. /********************************************************************
  2696. * Kmalloc subsystem
  2697. *******************************************************************/
  2698. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2699. EXPORT_SYMBOL(kmalloc_caches);
  2700. static struct kmem_cache *kmem_cache;
  2701. #ifdef CONFIG_ZONE_DMA
  2702. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2703. #endif
  2704. static int __init setup_slub_min_order(char *str)
  2705. {
  2706. get_option(&str, &slub_min_order);
  2707. return 1;
  2708. }
  2709. __setup("slub_min_order=", setup_slub_min_order);
  2710. static int __init setup_slub_max_order(char *str)
  2711. {
  2712. get_option(&str, &slub_max_order);
  2713. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2714. return 1;
  2715. }
  2716. __setup("slub_max_order=", setup_slub_max_order);
  2717. static int __init setup_slub_min_objects(char *str)
  2718. {
  2719. get_option(&str, &slub_min_objects);
  2720. return 1;
  2721. }
  2722. __setup("slub_min_objects=", setup_slub_min_objects);
  2723. static int __init setup_slub_nomerge(char *str)
  2724. {
  2725. slub_nomerge = 1;
  2726. return 1;
  2727. }
  2728. __setup("slub_nomerge", setup_slub_nomerge);
  2729. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2730. int size, unsigned int flags)
  2731. {
  2732. struct kmem_cache *s;
  2733. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2734. /*
  2735. * This function is called with IRQs disabled during early-boot on
  2736. * single CPU so there's no need to take slub_lock here.
  2737. */
  2738. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2739. flags, NULL))
  2740. goto panic;
  2741. list_add(&s->list, &slab_caches);
  2742. return s;
  2743. panic:
  2744. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2745. return NULL;
  2746. }
  2747. /*
  2748. * Conversion table for small slabs sizes / 8 to the index in the
  2749. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2750. * of two cache sizes there. The size of larger slabs can be determined using
  2751. * fls.
  2752. */
  2753. static s8 size_index[24] = {
  2754. 3, /* 8 */
  2755. 4, /* 16 */
  2756. 5, /* 24 */
  2757. 5, /* 32 */
  2758. 6, /* 40 */
  2759. 6, /* 48 */
  2760. 6, /* 56 */
  2761. 6, /* 64 */
  2762. 1, /* 72 */
  2763. 1, /* 80 */
  2764. 1, /* 88 */
  2765. 1, /* 96 */
  2766. 7, /* 104 */
  2767. 7, /* 112 */
  2768. 7, /* 120 */
  2769. 7, /* 128 */
  2770. 2, /* 136 */
  2771. 2, /* 144 */
  2772. 2, /* 152 */
  2773. 2, /* 160 */
  2774. 2, /* 168 */
  2775. 2, /* 176 */
  2776. 2, /* 184 */
  2777. 2 /* 192 */
  2778. };
  2779. static inline int size_index_elem(size_t bytes)
  2780. {
  2781. return (bytes - 1) / 8;
  2782. }
  2783. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2784. {
  2785. int index;
  2786. if (size <= 192) {
  2787. if (!size)
  2788. return ZERO_SIZE_PTR;
  2789. index = size_index[size_index_elem(size)];
  2790. } else
  2791. index = fls(size - 1);
  2792. #ifdef CONFIG_ZONE_DMA
  2793. if (unlikely((flags & SLUB_DMA)))
  2794. return kmalloc_dma_caches[index];
  2795. #endif
  2796. return kmalloc_caches[index];
  2797. }
  2798. void *__kmalloc(size_t size, gfp_t flags)
  2799. {
  2800. struct kmem_cache *s;
  2801. void *ret;
  2802. if (unlikely(size > SLUB_MAX_SIZE))
  2803. return kmalloc_large(size, flags);
  2804. s = get_slab(size, flags);
  2805. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2806. return s;
  2807. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2808. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2809. return ret;
  2810. }
  2811. EXPORT_SYMBOL(__kmalloc);
  2812. #ifdef CONFIG_NUMA
  2813. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2814. {
  2815. struct page *page;
  2816. void *ptr = NULL;
  2817. flags |= __GFP_COMP | __GFP_NOTRACK;
  2818. page = alloc_pages_node(node, flags, get_order(size));
  2819. if (page)
  2820. ptr = page_address(page);
  2821. kmemleak_alloc(ptr, size, 1, flags);
  2822. return ptr;
  2823. }
  2824. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2825. {
  2826. struct kmem_cache *s;
  2827. void *ret;
  2828. if (unlikely(size > SLUB_MAX_SIZE)) {
  2829. ret = kmalloc_large_node(size, flags, node);
  2830. trace_kmalloc_node(_RET_IP_, ret,
  2831. size, PAGE_SIZE << get_order(size),
  2832. flags, node);
  2833. return ret;
  2834. }
  2835. s = get_slab(size, flags);
  2836. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2837. return s;
  2838. ret = slab_alloc(s, flags, node, _RET_IP_);
  2839. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2840. return ret;
  2841. }
  2842. EXPORT_SYMBOL(__kmalloc_node);
  2843. #endif
  2844. size_t ksize(const void *object)
  2845. {
  2846. struct page *page;
  2847. if (unlikely(object == ZERO_SIZE_PTR))
  2848. return 0;
  2849. page = virt_to_head_page(object);
  2850. if (unlikely(!PageSlab(page))) {
  2851. WARN_ON(!PageCompound(page));
  2852. return PAGE_SIZE << compound_order(page);
  2853. }
  2854. return slab_ksize(page->slab);
  2855. }
  2856. EXPORT_SYMBOL(ksize);
  2857. #ifdef CONFIG_SLUB_DEBUG
  2858. bool verify_mem_not_deleted(const void *x)
  2859. {
  2860. struct page *page;
  2861. void *object = (void *)x;
  2862. unsigned long flags;
  2863. bool rv;
  2864. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2865. return false;
  2866. local_irq_save(flags);
  2867. page = virt_to_head_page(x);
  2868. if (unlikely(!PageSlab(page))) {
  2869. /* maybe it was from stack? */
  2870. rv = true;
  2871. goto out_unlock;
  2872. }
  2873. slab_lock(page);
  2874. if (on_freelist(page->slab, page, object)) {
  2875. object_err(page->slab, page, object, "Object is on free-list");
  2876. rv = false;
  2877. } else {
  2878. rv = true;
  2879. }
  2880. slab_unlock(page);
  2881. out_unlock:
  2882. local_irq_restore(flags);
  2883. return rv;
  2884. }
  2885. EXPORT_SYMBOL(verify_mem_not_deleted);
  2886. #endif
  2887. void kfree(const void *x)
  2888. {
  2889. struct page *page;
  2890. void *object = (void *)x;
  2891. trace_kfree(_RET_IP_, x);
  2892. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2893. return;
  2894. page = virt_to_head_page(x);
  2895. if (unlikely(!PageSlab(page))) {
  2896. BUG_ON(!PageCompound(page));
  2897. kmemleak_free(x);
  2898. put_page(page);
  2899. return;
  2900. }
  2901. slab_free(page->slab, page, object, _RET_IP_);
  2902. }
  2903. EXPORT_SYMBOL(kfree);
  2904. /*
  2905. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2906. * the remaining slabs by the number of items in use. The slabs with the
  2907. * most items in use come first. New allocations will then fill those up
  2908. * and thus they can be removed from the partial lists.
  2909. *
  2910. * The slabs with the least items are placed last. This results in them
  2911. * being allocated from last increasing the chance that the last objects
  2912. * are freed in them.
  2913. */
  2914. int kmem_cache_shrink(struct kmem_cache *s)
  2915. {
  2916. int node;
  2917. int i;
  2918. struct kmem_cache_node *n;
  2919. struct page *page;
  2920. struct page *t;
  2921. int objects = oo_objects(s->max);
  2922. struct list_head *slabs_by_inuse =
  2923. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2924. unsigned long flags;
  2925. if (!slabs_by_inuse)
  2926. return -ENOMEM;
  2927. flush_all(s);
  2928. for_each_node_state(node, N_NORMAL_MEMORY) {
  2929. n = get_node(s, node);
  2930. if (!n->nr_partial)
  2931. continue;
  2932. for (i = 0; i < objects; i++)
  2933. INIT_LIST_HEAD(slabs_by_inuse + i);
  2934. spin_lock_irqsave(&n->list_lock, flags);
  2935. /*
  2936. * Build lists indexed by the items in use in each slab.
  2937. *
  2938. * Note that concurrent frees may occur while we hold the
  2939. * list_lock. page->inuse here is the upper limit.
  2940. */
  2941. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2942. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2943. if (!page->inuse)
  2944. n->nr_partial--;
  2945. }
  2946. /*
  2947. * Rebuild the partial list with the slabs filled up most
  2948. * first and the least used slabs at the end.
  2949. */
  2950. for (i = objects - 1; i > 0; i--)
  2951. list_splice(slabs_by_inuse + i, n->partial.prev);
  2952. spin_unlock_irqrestore(&n->list_lock, flags);
  2953. /* Release empty slabs */
  2954. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2955. discard_slab(s, page);
  2956. }
  2957. kfree(slabs_by_inuse);
  2958. return 0;
  2959. }
  2960. EXPORT_SYMBOL(kmem_cache_shrink);
  2961. #if defined(CONFIG_MEMORY_HOTPLUG)
  2962. static int slab_mem_going_offline_callback(void *arg)
  2963. {
  2964. struct kmem_cache *s;
  2965. down_read(&slub_lock);
  2966. list_for_each_entry(s, &slab_caches, list)
  2967. kmem_cache_shrink(s);
  2968. up_read(&slub_lock);
  2969. return 0;
  2970. }
  2971. static void slab_mem_offline_callback(void *arg)
  2972. {
  2973. struct kmem_cache_node *n;
  2974. struct kmem_cache *s;
  2975. struct memory_notify *marg = arg;
  2976. int offline_node;
  2977. offline_node = marg->status_change_nid;
  2978. /*
  2979. * If the node still has available memory. we need kmem_cache_node
  2980. * for it yet.
  2981. */
  2982. if (offline_node < 0)
  2983. return;
  2984. down_read(&slub_lock);
  2985. list_for_each_entry(s, &slab_caches, list) {
  2986. n = get_node(s, offline_node);
  2987. if (n) {
  2988. /*
  2989. * if n->nr_slabs > 0, slabs still exist on the node
  2990. * that is going down. We were unable to free them,
  2991. * and offline_pages() function shouldn't call this
  2992. * callback. So, we must fail.
  2993. */
  2994. BUG_ON(slabs_node(s, offline_node));
  2995. s->node[offline_node] = NULL;
  2996. kmem_cache_free(kmem_cache_node, n);
  2997. }
  2998. }
  2999. up_read(&slub_lock);
  3000. }
  3001. static int slab_mem_going_online_callback(void *arg)
  3002. {
  3003. struct kmem_cache_node *n;
  3004. struct kmem_cache *s;
  3005. struct memory_notify *marg = arg;
  3006. int nid = marg->status_change_nid;
  3007. int ret = 0;
  3008. /*
  3009. * If the node's memory is already available, then kmem_cache_node is
  3010. * already created. Nothing to do.
  3011. */
  3012. if (nid < 0)
  3013. return 0;
  3014. /*
  3015. * We are bringing a node online. No memory is available yet. We must
  3016. * allocate a kmem_cache_node structure in order to bring the node
  3017. * online.
  3018. */
  3019. down_read(&slub_lock);
  3020. list_for_each_entry(s, &slab_caches, list) {
  3021. /*
  3022. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3023. * since memory is not yet available from the node that
  3024. * is brought up.
  3025. */
  3026. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3027. if (!n) {
  3028. ret = -ENOMEM;
  3029. goto out;
  3030. }
  3031. init_kmem_cache_node(n, s);
  3032. s->node[nid] = n;
  3033. }
  3034. out:
  3035. up_read(&slub_lock);
  3036. return ret;
  3037. }
  3038. static int slab_memory_callback(struct notifier_block *self,
  3039. unsigned long action, void *arg)
  3040. {
  3041. int ret = 0;
  3042. switch (action) {
  3043. case MEM_GOING_ONLINE:
  3044. ret = slab_mem_going_online_callback(arg);
  3045. break;
  3046. case MEM_GOING_OFFLINE:
  3047. ret = slab_mem_going_offline_callback(arg);
  3048. break;
  3049. case MEM_OFFLINE:
  3050. case MEM_CANCEL_ONLINE:
  3051. slab_mem_offline_callback(arg);
  3052. break;
  3053. case MEM_ONLINE:
  3054. case MEM_CANCEL_OFFLINE:
  3055. break;
  3056. }
  3057. if (ret)
  3058. ret = notifier_from_errno(ret);
  3059. else
  3060. ret = NOTIFY_OK;
  3061. return ret;
  3062. }
  3063. #endif /* CONFIG_MEMORY_HOTPLUG */
  3064. /********************************************************************
  3065. * Basic setup of slabs
  3066. *******************************************************************/
  3067. /*
  3068. * Used for early kmem_cache structures that were allocated using
  3069. * the page allocator
  3070. */
  3071. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  3072. {
  3073. int node;
  3074. list_add(&s->list, &slab_caches);
  3075. s->refcount = -1;
  3076. for_each_node_state(node, N_NORMAL_MEMORY) {
  3077. struct kmem_cache_node *n = get_node(s, node);
  3078. struct page *p;
  3079. if (n) {
  3080. list_for_each_entry(p, &n->partial, lru)
  3081. p->slab = s;
  3082. #ifdef CONFIG_SLUB_DEBUG
  3083. list_for_each_entry(p, &n->full, lru)
  3084. p->slab = s;
  3085. #endif
  3086. }
  3087. }
  3088. }
  3089. void __init kmem_cache_init(void)
  3090. {
  3091. int i;
  3092. int caches = 0;
  3093. struct kmem_cache *temp_kmem_cache;
  3094. int order;
  3095. struct kmem_cache *temp_kmem_cache_node;
  3096. unsigned long kmalloc_size;
  3097. if (debug_guardpage_minorder())
  3098. slub_max_order = 0;
  3099. kmem_size = offsetof(struct kmem_cache, node) +
  3100. nr_node_ids * sizeof(struct kmem_cache_node *);
  3101. /* Allocate two kmem_caches from the page allocator */
  3102. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  3103. order = get_order(2 * kmalloc_size);
  3104. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  3105. /*
  3106. * Must first have the slab cache available for the allocations of the
  3107. * struct kmem_cache_node's. There is special bootstrap code in
  3108. * kmem_cache_open for slab_state == DOWN.
  3109. */
  3110. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  3111. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  3112. sizeof(struct kmem_cache_node),
  3113. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3114. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3115. /* Able to allocate the per node structures */
  3116. slab_state = PARTIAL;
  3117. temp_kmem_cache = kmem_cache;
  3118. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  3119. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3120. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3121. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  3122. /*
  3123. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3124. * kmem_cache_node is separately allocated so no need to
  3125. * update any list pointers.
  3126. */
  3127. temp_kmem_cache_node = kmem_cache_node;
  3128. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3129. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  3130. kmem_cache_bootstrap_fixup(kmem_cache_node);
  3131. caches++;
  3132. kmem_cache_bootstrap_fixup(kmem_cache);
  3133. caches++;
  3134. /* Free temporary boot structure */
  3135. free_pages((unsigned long)temp_kmem_cache, order);
  3136. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3137. /*
  3138. * Patch up the size_index table if we have strange large alignment
  3139. * requirements for the kmalloc array. This is only the case for
  3140. * MIPS it seems. The standard arches will not generate any code here.
  3141. *
  3142. * Largest permitted alignment is 256 bytes due to the way we
  3143. * handle the index determination for the smaller caches.
  3144. *
  3145. * Make sure that nothing crazy happens if someone starts tinkering
  3146. * around with ARCH_KMALLOC_MINALIGN
  3147. */
  3148. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3149. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3150. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3151. int elem = size_index_elem(i);
  3152. if (elem >= ARRAY_SIZE(size_index))
  3153. break;
  3154. size_index[elem] = KMALLOC_SHIFT_LOW;
  3155. }
  3156. if (KMALLOC_MIN_SIZE == 64) {
  3157. /*
  3158. * The 96 byte size cache is not used if the alignment
  3159. * is 64 byte.
  3160. */
  3161. for (i = 64 + 8; i <= 96; i += 8)
  3162. size_index[size_index_elem(i)] = 7;
  3163. } else if (KMALLOC_MIN_SIZE == 128) {
  3164. /*
  3165. * The 192 byte sized cache is not used if the alignment
  3166. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3167. * instead.
  3168. */
  3169. for (i = 128 + 8; i <= 192; i += 8)
  3170. size_index[size_index_elem(i)] = 8;
  3171. }
  3172. /* Caches that are not of the two-to-the-power-of size */
  3173. if (KMALLOC_MIN_SIZE <= 32) {
  3174. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3175. caches++;
  3176. }
  3177. if (KMALLOC_MIN_SIZE <= 64) {
  3178. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3179. caches++;
  3180. }
  3181. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3182. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3183. caches++;
  3184. }
  3185. slab_state = UP;
  3186. /* Provide the correct kmalloc names now that the caches are up */
  3187. if (KMALLOC_MIN_SIZE <= 32) {
  3188. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3189. BUG_ON(!kmalloc_caches[1]->name);
  3190. }
  3191. if (KMALLOC_MIN_SIZE <= 64) {
  3192. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3193. BUG_ON(!kmalloc_caches[2]->name);
  3194. }
  3195. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3196. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3197. BUG_ON(!s);
  3198. kmalloc_caches[i]->name = s;
  3199. }
  3200. #ifdef CONFIG_SMP
  3201. register_cpu_notifier(&slab_notifier);
  3202. #endif
  3203. #ifdef CONFIG_ZONE_DMA
  3204. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3205. struct kmem_cache *s = kmalloc_caches[i];
  3206. if (s && s->size) {
  3207. char *name = kasprintf(GFP_NOWAIT,
  3208. "dma-kmalloc-%d", s->objsize);
  3209. BUG_ON(!name);
  3210. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3211. s->objsize, SLAB_CACHE_DMA);
  3212. }
  3213. }
  3214. #endif
  3215. printk(KERN_INFO
  3216. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3217. " CPUs=%d, Nodes=%d\n",
  3218. caches, cache_line_size(),
  3219. slub_min_order, slub_max_order, slub_min_objects,
  3220. nr_cpu_ids, nr_node_ids);
  3221. }
  3222. void __init kmem_cache_init_late(void)
  3223. {
  3224. }
  3225. /*
  3226. * Find a mergeable slab cache
  3227. */
  3228. static int slab_unmergeable(struct kmem_cache *s)
  3229. {
  3230. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3231. return 1;
  3232. if (s->ctor)
  3233. return 1;
  3234. /*
  3235. * We may have set a slab to be unmergeable during bootstrap.
  3236. */
  3237. if (s->refcount < 0)
  3238. return 1;
  3239. return 0;
  3240. }
  3241. static struct kmem_cache *find_mergeable(size_t size,
  3242. size_t align, unsigned long flags, const char *name,
  3243. void (*ctor)(void *))
  3244. {
  3245. struct kmem_cache *s;
  3246. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3247. return NULL;
  3248. if (ctor)
  3249. return NULL;
  3250. size = ALIGN(size, sizeof(void *));
  3251. align = calculate_alignment(flags, align, size);
  3252. size = ALIGN(size, align);
  3253. flags = kmem_cache_flags(size, flags, name, NULL);
  3254. list_for_each_entry(s, &slab_caches, list) {
  3255. if (slab_unmergeable(s))
  3256. continue;
  3257. if (size > s->size)
  3258. continue;
  3259. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3260. continue;
  3261. /*
  3262. * Check if alignment is compatible.
  3263. * Courtesy of Adrian Drzewiecki
  3264. */
  3265. if ((s->size & ~(align - 1)) != s->size)
  3266. continue;
  3267. if (s->size - size >= sizeof(void *))
  3268. continue;
  3269. return s;
  3270. }
  3271. return NULL;
  3272. }
  3273. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  3274. size_t align, unsigned long flags, void (*ctor)(void *))
  3275. {
  3276. struct kmem_cache *s;
  3277. char *n;
  3278. if (WARN_ON(!name))
  3279. return NULL;
  3280. down_write(&slub_lock);
  3281. s = find_mergeable(size, align, flags, name, ctor);
  3282. if (s) {
  3283. s->refcount++;
  3284. /*
  3285. * Adjust the object sizes so that we clear
  3286. * the complete object on kzalloc.
  3287. */
  3288. s->objsize = max(s->objsize, (int)size);
  3289. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3290. if (sysfs_slab_alias(s, name)) {
  3291. s->refcount--;
  3292. goto err;
  3293. }
  3294. up_write(&slub_lock);
  3295. return s;
  3296. }
  3297. n = kstrdup(name, GFP_KERNEL);
  3298. if (!n)
  3299. goto err;
  3300. s = kmalloc(kmem_size, GFP_KERNEL);
  3301. if (s) {
  3302. if (kmem_cache_open(s, n,
  3303. size, align, flags, ctor)) {
  3304. list_add(&s->list, &slab_caches);
  3305. if (sysfs_slab_add(s)) {
  3306. list_del(&s->list);
  3307. kfree(n);
  3308. kfree(s);
  3309. goto err;
  3310. }
  3311. up_write(&slub_lock);
  3312. return s;
  3313. }
  3314. kfree(n);
  3315. kfree(s);
  3316. }
  3317. err:
  3318. up_write(&slub_lock);
  3319. if (flags & SLAB_PANIC)
  3320. panic("Cannot create slabcache %s\n", name);
  3321. else
  3322. s = NULL;
  3323. return s;
  3324. }
  3325. EXPORT_SYMBOL(kmem_cache_create);
  3326. #ifdef CONFIG_SMP
  3327. /*
  3328. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3329. * necessary.
  3330. */
  3331. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3332. unsigned long action, void *hcpu)
  3333. {
  3334. long cpu = (long)hcpu;
  3335. struct kmem_cache *s;
  3336. unsigned long flags;
  3337. switch (action) {
  3338. case CPU_UP_CANCELED:
  3339. case CPU_UP_CANCELED_FROZEN:
  3340. case CPU_DEAD:
  3341. case CPU_DEAD_FROZEN:
  3342. down_read(&slub_lock);
  3343. list_for_each_entry(s, &slab_caches, list) {
  3344. local_irq_save(flags);
  3345. __flush_cpu_slab(s, cpu);
  3346. local_irq_restore(flags);
  3347. }
  3348. up_read(&slub_lock);
  3349. break;
  3350. default:
  3351. break;
  3352. }
  3353. return NOTIFY_OK;
  3354. }
  3355. static struct notifier_block __cpuinitdata slab_notifier = {
  3356. .notifier_call = slab_cpuup_callback
  3357. };
  3358. #endif
  3359. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3360. {
  3361. struct kmem_cache *s;
  3362. void *ret;
  3363. if (unlikely(size > SLUB_MAX_SIZE))
  3364. return kmalloc_large(size, gfpflags);
  3365. s = get_slab(size, gfpflags);
  3366. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3367. return s;
  3368. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3369. /* Honor the call site pointer we received. */
  3370. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3371. return ret;
  3372. }
  3373. #ifdef CONFIG_NUMA
  3374. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3375. int node, unsigned long caller)
  3376. {
  3377. struct kmem_cache *s;
  3378. void *ret;
  3379. if (unlikely(size > SLUB_MAX_SIZE)) {
  3380. ret = kmalloc_large_node(size, gfpflags, node);
  3381. trace_kmalloc_node(caller, ret,
  3382. size, PAGE_SIZE << get_order(size),
  3383. gfpflags, node);
  3384. return ret;
  3385. }
  3386. s = get_slab(size, gfpflags);
  3387. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3388. return s;
  3389. ret = slab_alloc(s, gfpflags, node, caller);
  3390. /* Honor the call site pointer we received. */
  3391. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3392. return ret;
  3393. }
  3394. #endif
  3395. #ifdef CONFIG_SYSFS
  3396. static int count_inuse(struct page *page)
  3397. {
  3398. return page->inuse;
  3399. }
  3400. static int count_total(struct page *page)
  3401. {
  3402. return page->objects;
  3403. }
  3404. #endif
  3405. #ifdef CONFIG_SLUB_DEBUG
  3406. static int validate_slab(struct kmem_cache *s, struct page *page,
  3407. unsigned long *map)
  3408. {
  3409. void *p;
  3410. void *addr = page_address(page);
  3411. if (!check_slab(s, page) ||
  3412. !on_freelist(s, page, NULL))
  3413. return 0;
  3414. /* Now we know that a valid freelist exists */
  3415. bitmap_zero(map, page->objects);
  3416. get_map(s, page, map);
  3417. for_each_object(p, s, addr, page->objects) {
  3418. if (test_bit(slab_index(p, s, addr), map))
  3419. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3420. return 0;
  3421. }
  3422. for_each_object(p, s, addr, page->objects)
  3423. if (!test_bit(slab_index(p, s, addr), map))
  3424. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3425. return 0;
  3426. return 1;
  3427. }
  3428. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3429. unsigned long *map)
  3430. {
  3431. slab_lock(page);
  3432. validate_slab(s, page, map);
  3433. slab_unlock(page);
  3434. }
  3435. static int validate_slab_node(struct kmem_cache *s,
  3436. struct kmem_cache_node *n, unsigned long *map)
  3437. {
  3438. unsigned long count = 0;
  3439. struct page *page;
  3440. unsigned long flags;
  3441. spin_lock_irqsave(&n->list_lock, flags);
  3442. list_for_each_entry(page, &n->partial, lru) {
  3443. validate_slab_slab(s, page, map);
  3444. count++;
  3445. }
  3446. if (count != n->nr_partial)
  3447. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3448. "counter=%ld\n", s->name, count, n->nr_partial);
  3449. if (!(s->flags & SLAB_STORE_USER))
  3450. goto out;
  3451. list_for_each_entry(page, &n->full, lru) {
  3452. validate_slab_slab(s, page, map);
  3453. count++;
  3454. }
  3455. if (count != atomic_long_read(&n->nr_slabs))
  3456. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3457. "counter=%ld\n", s->name, count,
  3458. atomic_long_read(&n->nr_slabs));
  3459. out:
  3460. spin_unlock_irqrestore(&n->list_lock, flags);
  3461. return count;
  3462. }
  3463. static long validate_slab_cache(struct kmem_cache *s)
  3464. {
  3465. int node;
  3466. unsigned long count = 0;
  3467. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3468. sizeof(unsigned long), GFP_KERNEL);
  3469. if (!map)
  3470. return -ENOMEM;
  3471. flush_all(s);
  3472. for_each_node_state(node, N_NORMAL_MEMORY) {
  3473. struct kmem_cache_node *n = get_node(s, node);
  3474. count += validate_slab_node(s, n, map);
  3475. }
  3476. kfree(map);
  3477. return count;
  3478. }
  3479. /*
  3480. * Generate lists of code addresses where slabcache objects are allocated
  3481. * and freed.
  3482. */
  3483. struct location {
  3484. unsigned long count;
  3485. unsigned long addr;
  3486. long long sum_time;
  3487. long min_time;
  3488. long max_time;
  3489. long min_pid;
  3490. long max_pid;
  3491. DECLARE_BITMAP(cpus, NR_CPUS);
  3492. nodemask_t nodes;
  3493. };
  3494. struct loc_track {
  3495. unsigned long max;
  3496. unsigned long count;
  3497. struct location *loc;
  3498. };
  3499. static void free_loc_track(struct loc_track *t)
  3500. {
  3501. if (t->max)
  3502. free_pages((unsigned long)t->loc,
  3503. get_order(sizeof(struct location) * t->max));
  3504. }
  3505. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3506. {
  3507. struct location *l;
  3508. int order;
  3509. order = get_order(sizeof(struct location) * max);
  3510. l = (void *)__get_free_pages(flags, order);
  3511. if (!l)
  3512. return 0;
  3513. if (t->count) {
  3514. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3515. free_loc_track(t);
  3516. }
  3517. t->max = max;
  3518. t->loc = l;
  3519. return 1;
  3520. }
  3521. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3522. const struct track *track)
  3523. {
  3524. long start, end, pos;
  3525. struct location *l;
  3526. unsigned long caddr;
  3527. unsigned long age = jiffies - track->when;
  3528. start = -1;
  3529. end = t->count;
  3530. for ( ; ; ) {
  3531. pos = start + (end - start + 1) / 2;
  3532. /*
  3533. * There is nothing at "end". If we end up there
  3534. * we need to add something to before end.
  3535. */
  3536. if (pos == end)
  3537. break;
  3538. caddr = t->loc[pos].addr;
  3539. if (track->addr == caddr) {
  3540. l = &t->loc[pos];
  3541. l->count++;
  3542. if (track->when) {
  3543. l->sum_time += age;
  3544. if (age < l->min_time)
  3545. l->min_time = age;
  3546. if (age > l->max_time)
  3547. l->max_time = age;
  3548. if (track->pid < l->min_pid)
  3549. l->min_pid = track->pid;
  3550. if (track->pid > l->max_pid)
  3551. l->max_pid = track->pid;
  3552. cpumask_set_cpu(track->cpu,
  3553. to_cpumask(l->cpus));
  3554. }
  3555. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3556. return 1;
  3557. }
  3558. if (track->addr < caddr)
  3559. end = pos;
  3560. else
  3561. start = pos;
  3562. }
  3563. /*
  3564. * Not found. Insert new tracking element.
  3565. */
  3566. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3567. return 0;
  3568. l = t->loc + pos;
  3569. if (pos < t->count)
  3570. memmove(l + 1, l,
  3571. (t->count - pos) * sizeof(struct location));
  3572. t->count++;
  3573. l->count = 1;
  3574. l->addr = track->addr;
  3575. l->sum_time = age;
  3576. l->min_time = age;
  3577. l->max_time = age;
  3578. l->min_pid = track->pid;
  3579. l->max_pid = track->pid;
  3580. cpumask_clear(to_cpumask(l->cpus));
  3581. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3582. nodes_clear(l->nodes);
  3583. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3584. return 1;
  3585. }
  3586. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3587. struct page *page, enum track_item alloc,
  3588. unsigned long *map)
  3589. {
  3590. void *addr = page_address(page);
  3591. void *p;
  3592. bitmap_zero(map, page->objects);
  3593. get_map(s, page, map);
  3594. for_each_object(p, s, addr, page->objects)
  3595. if (!test_bit(slab_index(p, s, addr), map))
  3596. add_location(t, s, get_track(s, p, alloc));
  3597. }
  3598. static int list_locations(struct kmem_cache *s, char *buf,
  3599. enum track_item alloc)
  3600. {
  3601. int len = 0;
  3602. unsigned long i;
  3603. struct loc_track t = { 0, 0, NULL };
  3604. int node;
  3605. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3606. sizeof(unsigned long), GFP_KERNEL);
  3607. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3608. GFP_TEMPORARY)) {
  3609. kfree(map);
  3610. return sprintf(buf, "Out of memory\n");
  3611. }
  3612. /* Push back cpu slabs */
  3613. flush_all(s);
  3614. for_each_node_state(node, N_NORMAL_MEMORY) {
  3615. struct kmem_cache_node *n = get_node(s, node);
  3616. unsigned long flags;
  3617. struct page *page;
  3618. if (!atomic_long_read(&n->nr_slabs))
  3619. continue;
  3620. spin_lock_irqsave(&n->list_lock, flags);
  3621. list_for_each_entry(page, &n->partial, lru)
  3622. process_slab(&t, s, page, alloc, map);
  3623. list_for_each_entry(page, &n->full, lru)
  3624. process_slab(&t, s, page, alloc, map);
  3625. spin_unlock_irqrestore(&n->list_lock, flags);
  3626. }
  3627. for (i = 0; i < t.count; i++) {
  3628. struct location *l = &t.loc[i];
  3629. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3630. break;
  3631. len += sprintf(buf + len, "%7ld ", l->count);
  3632. if (l->addr)
  3633. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3634. else
  3635. len += sprintf(buf + len, "<not-available>");
  3636. if (l->sum_time != l->min_time) {
  3637. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3638. l->min_time,
  3639. (long)div_u64(l->sum_time, l->count),
  3640. l->max_time);
  3641. } else
  3642. len += sprintf(buf + len, " age=%ld",
  3643. l->min_time);
  3644. if (l->min_pid != l->max_pid)
  3645. len += sprintf(buf + len, " pid=%ld-%ld",
  3646. l->min_pid, l->max_pid);
  3647. else
  3648. len += sprintf(buf + len, " pid=%ld",
  3649. l->min_pid);
  3650. if (num_online_cpus() > 1 &&
  3651. !cpumask_empty(to_cpumask(l->cpus)) &&
  3652. len < PAGE_SIZE - 60) {
  3653. len += sprintf(buf + len, " cpus=");
  3654. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3655. to_cpumask(l->cpus));
  3656. }
  3657. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3658. len < PAGE_SIZE - 60) {
  3659. len += sprintf(buf + len, " nodes=");
  3660. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3661. l->nodes);
  3662. }
  3663. len += sprintf(buf + len, "\n");
  3664. }
  3665. free_loc_track(&t);
  3666. kfree(map);
  3667. if (!t.count)
  3668. len += sprintf(buf, "No data\n");
  3669. return len;
  3670. }
  3671. #endif
  3672. #ifdef SLUB_RESILIENCY_TEST
  3673. static void resiliency_test(void)
  3674. {
  3675. u8 *p;
  3676. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3677. printk(KERN_ERR "SLUB resiliency testing\n");
  3678. printk(KERN_ERR "-----------------------\n");
  3679. printk(KERN_ERR "A. Corruption after allocation\n");
  3680. p = kzalloc(16, GFP_KERNEL);
  3681. p[16] = 0x12;
  3682. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3683. " 0x12->0x%p\n\n", p + 16);
  3684. validate_slab_cache(kmalloc_caches[4]);
  3685. /* Hmmm... The next two are dangerous */
  3686. p = kzalloc(32, GFP_KERNEL);
  3687. p[32 + sizeof(void *)] = 0x34;
  3688. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3689. " 0x34 -> -0x%p\n", p);
  3690. printk(KERN_ERR
  3691. "If allocated object is overwritten then not detectable\n\n");
  3692. validate_slab_cache(kmalloc_caches[5]);
  3693. p = kzalloc(64, GFP_KERNEL);
  3694. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3695. *p = 0x56;
  3696. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3697. p);
  3698. printk(KERN_ERR
  3699. "If allocated object is overwritten then not detectable\n\n");
  3700. validate_slab_cache(kmalloc_caches[6]);
  3701. printk(KERN_ERR "\nB. Corruption after free\n");
  3702. p = kzalloc(128, GFP_KERNEL);
  3703. kfree(p);
  3704. *p = 0x78;
  3705. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3706. validate_slab_cache(kmalloc_caches[7]);
  3707. p = kzalloc(256, GFP_KERNEL);
  3708. kfree(p);
  3709. p[50] = 0x9a;
  3710. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3711. p);
  3712. validate_slab_cache(kmalloc_caches[8]);
  3713. p = kzalloc(512, GFP_KERNEL);
  3714. kfree(p);
  3715. p[512] = 0xab;
  3716. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3717. validate_slab_cache(kmalloc_caches[9]);
  3718. }
  3719. #else
  3720. #ifdef CONFIG_SYSFS
  3721. static void resiliency_test(void) {};
  3722. #endif
  3723. #endif
  3724. #ifdef CONFIG_SYSFS
  3725. enum slab_stat_type {
  3726. SL_ALL, /* All slabs */
  3727. SL_PARTIAL, /* Only partially allocated slabs */
  3728. SL_CPU, /* Only slabs used for cpu caches */
  3729. SL_OBJECTS, /* Determine allocated objects not slabs */
  3730. SL_TOTAL /* Determine object capacity not slabs */
  3731. };
  3732. #define SO_ALL (1 << SL_ALL)
  3733. #define SO_PARTIAL (1 << SL_PARTIAL)
  3734. #define SO_CPU (1 << SL_CPU)
  3735. #define SO_OBJECTS (1 << SL_OBJECTS)
  3736. #define SO_TOTAL (1 << SL_TOTAL)
  3737. static ssize_t show_slab_objects(struct kmem_cache *s,
  3738. char *buf, unsigned long flags)
  3739. {
  3740. unsigned long total = 0;
  3741. int node;
  3742. int x;
  3743. unsigned long *nodes;
  3744. unsigned long *per_cpu;
  3745. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3746. if (!nodes)
  3747. return -ENOMEM;
  3748. per_cpu = nodes + nr_node_ids;
  3749. if (flags & SO_CPU) {
  3750. int cpu;
  3751. for_each_possible_cpu(cpu) {
  3752. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3753. int node = ACCESS_ONCE(c->node);
  3754. struct page *page;
  3755. if (node < 0)
  3756. continue;
  3757. page = ACCESS_ONCE(c->page);
  3758. if (page) {
  3759. if (flags & SO_TOTAL)
  3760. x = page->objects;
  3761. else if (flags & SO_OBJECTS)
  3762. x = page->inuse;
  3763. else
  3764. x = 1;
  3765. total += x;
  3766. nodes[node] += x;
  3767. }
  3768. page = c->partial;
  3769. if (page) {
  3770. x = page->pobjects;
  3771. total += x;
  3772. nodes[node] += x;
  3773. }
  3774. per_cpu[node]++;
  3775. }
  3776. }
  3777. lock_memory_hotplug();
  3778. #ifdef CONFIG_SLUB_DEBUG
  3779. if (flags & SO_ALL) {
  3780. for_each_node_state(node, N_NORMAL_MEMORY) {
  3781. struct kmem_cache_node *n = get_node(s, node);
  3782. if (flags & SO_TOTAL)
  3783. x = atomic_long_read(&n->total_objects);
  3784. else if (flags & SO_OBJECTS)
  3785. x = atomic_long_read(&n->total_objects) -
  3786. count_partial(n, count_free);
  3787. else
  3788. x = atomic_long_read(&n->nr_slabs);
  3789. total += x;
  3790. nodes[node] += x;
  3791. }
  3792. } else
  3793. #endif
  3794. if (flags & SO_PARTIAL) {
  3795. for_each_node_state(node, N_NORMAL_MEMORY) {
  3796. struct kmem_cache_node *n = get_node(s, node);
  3797. if (flags & SO_TOTAL)
  3798. x = count_partial(n, count_total);
  3799. else if (flags & SO_OBJECTS)
  3800. x = count_partial(n, count_inuse);
  3801. else
  3802. x = n->nr_partial;
  3803. total += x;
  3804. nodes[node] += x;
  3805. }
  3806. }
  3807. x = sprintf(buf, "%lu", total);
  3808. #ifdef CONFIG_NUMA
  3809. for_each_node_state(node, N_NORMAL_MEMORY)
  3810. if (nodes[node])
  3811. x += sprintf(buf + x, " N%d=%lu",
  3812. node, nodes[node]);
  3813. #endif
  3814. unlock_memory_hotplug();
  3815. kfree(nodes);
  3816. return x + sprintf(buf + x, "\n");
  3817. }
  3818. #ifdef CONFIG_SLUB_DEBUG
  3819. static int any_slab_objects(struct kmem_cache *s)
  3820. {
  3821. int node;
  3822. for_each_online_node(node) {
  3823. struct kmem_cache_node *n = get_node(s, node);
  3824. if (!n)
  3825. continue;
  3826. if (atomic_long_read(&n->total_objects))
  3827. return 1;
  3828. }
  3829. return 0;
  3830. }
  3831. #endif
  3832. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3833. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3834. struct slab_attribute {
  3835. struct attribute attr;
  3836. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3837. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3838. };
  3839. #define SLAB_ATTR_RO(_name) \
  3840. static struct slab_attribute _name##_attr = \
  3841. __ATTR(_name, 0400, _name##_show, NULL)
  3842. #define SLAB_ATTR(_name) \
  3843. static struct slab_attribute _name##_attr = \
  3844. __ATTR(_name, 0600, _name##_show, _name##_store)
  3845. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3846. {
  3847. return sprintf(buf, "%d\n", s->size);
  3848. }
  3849. SLAB_ATTR_RO(slab_size);
  3850. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3851. {
  3852. return sprintf(buf, "%d\n", s->align);
  3853. }
  3854. SLAB_ATTR_RO(align);
  3855. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3856. {
  3857. return sprintf(buf, "%d\n", s->objsize);
  3858. }
  3859. SLAB_ATTR_RO(object_size);
  3860. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3861. {
  3862. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3863. }
  3864. SLAB_ATTR_RO(objs_per_slab);
  3865. static ssize_t order_store(struct kmem_cache *s,
  3866. const char *buf, size_t length)
  3867. {
  3868. unsigned long order;
  3869. int err;
  3870. err = strict_strtoul(buf, 10, &order);
  3871. if (err)
  3872. return err;
  3873. if (order > slub_max_order || order < slub_min_order)
  3874. return -EINVAL;
  3875. calculate_sizes(s, order);
  3876. return length;
  3877. }
  3878. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3879. {
  3880. return sprintf(buf, "%d\n", oo_order(s->oo));
  3881. }
  3882. SLAB_ATTR(order);
  3883. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3884. {
  3885. return sprintf(buf, "%lu\n", s->min_partial);
  3886. }
  3887. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3888. size_t length)
  3889. {
  3890. unsigned long min;
  3891. int err;
  3892. err = strict_strtoul(buf, 10, &min);
  3893. if (err)
  3894. return err;
  3895. set_min_partial(s, min);
  3896. return length;
  3897. }
  3898. SLAB_ATTR(min_partial);
  3899. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3900. {
  3901. return sprintf(buf, "%u\n", s->cpu_partial);
  3902. }
  3903. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3904. size_t length)
  3905. {
  3906. unsigned long objects;
  3907. int err;
  3908. err = strict_strtoul(buf, 10, &objects);
  3909. if (err)
  3910. return err;
  3911. if (objects && kmem_cache_debug(s))
  3912. return -EINVAL;
  3913. s->cpu_partial = objects;
  3914. flush_all(s);
  3915. return length;
  3916. }
  3917. SLAB_ATTR(cpu_partial);
  3918. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3919. {
  3920. if (!s->ctor)
  3921. return 0;
  3922. return sprintf(buf, "%pS\n", s->ctor);
  3923. }
  3924. SLAB_ATTR_RO(ctor);
  3925. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3926. {
  3927. return sprintf(buf, "%d\n", s->refcount - 1);
  3928. }
  3929. SLAB_ATTR_RO(aliases);
  3930. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3931. {
  3932. return show_slab_objects(s, buf, SO_PARTIAL);
  3933. }
  3934. SLAB_ATTR_RO(partial);
  3935. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3936. {
  3937. return show_slab_objects(s, buf, SO_CPU);
  3938. }
  3939. SLAB_ATTR_RO(cpu_slabs);
  3940. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3941. {
  3942. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3943. }
  3944. SLAB_ATTR_RO(objects);
  3945. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3946. {
  3947. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3948. }
  3949. SLAB_ATTR_RO(objects_partial);
  3950. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3951. {
  3952. int objects = 0;
  3953. int pages = 0;
  3954. int cpu;
  3955. int len;
  3956. for_each_online_cpu(cpu) {
  3957. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3958. if (page) {
  3959. pages += page->pages;
  3960. objects += page->pobjects;
  3961. }
  3962. }
  3963. len = sprintf(buf, "%d(%d)", objects, pages);
  3964. #ifdef CONFIG_SMP
  3965. for_each_online_cpu(cpu) {
  3966. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3967. if (page && len < PAGE_SIZE - 20)
  3968. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3969. page->pobjects, page->pages);
  3970. }
  3971. #endif
  3972. return len + sprintf(buf + len, "\n");
  3973. }
  3974. SLAB_ATTR_RO(slabs_cpu_partial);
  3975. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3976. {
  3977. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3978. }
  3979. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3980. const char *buf, size_t length)
  3981. {
  3982. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3983. if (buf[0] == '1')
  3984. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3985. return length;
  3986. }
  3987. SLAB_ATTR(reclaim_account);
  3988. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3989. {
  3990. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3991. }
  3992. SLAB_ATTR_RO(hwcache_align);
  3993. #ifdef CONFIG_ZONE_DMA
  3994. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3995. {
  3996. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3997. }
  3998. SLAB_ATTR_RO(cache_dma);
  3999. #endif
  4000. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  4001. {
  4002. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  4003. }
  4004. SLAB_ATTR_RO(destroy_by_rcu);
  4005. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  4006. {
  4007. return sprintf(buf, "%d\n", s->reserved);
  4008. }
  4009. SLAB_ATTR_RO(reserved);
  4010. #ifdef CONFIG_SLUB_DEBUG
  4011. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  4012. {
  4013. return show_slab_objects(s, buf, SO_ALL);
  4014. }
  4015. SLAB_ATTR_RO(slabs);
  4016. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  4017. {
  4018. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  4019. }
  4020. SLAB_ATTR_RO(total_objects);
  4021. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  4022. {
  4023. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  4024. }
  4025. static ssize_t sanity_checks_store(struct kmem_cache *s,
  4026. const char *buf, size_t length)
  4027. {
  4028. s->flags &= ~SLAB_DEBUG_FREE;
  4029. if (buf[0] == '1') {
  4030. s->flags &= ~__CMPXCHG_DOUBLE;
  4031. s->flags |= SLAB_DEBUG_FREE;
  4032. }
  4033. return length;
  4034. }
  4035. SLAB_ATTR(sanity_checks);
  4036. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  4037. {
  4038. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4039. }
  4040. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4041. size_t length)
  4042. {
  4043. s->flags &= ~SLAB_TRACE;
  4044. if (buf[0] == '1') {
  4045. s->flags &= ~__CMPXCHG_DOUBLE;
  4046. s->flags |= SLAB_TRACE;
  4047. }
  4048. return length;
  4049. }
  4050. SLAB_ATTR(trace);
  4051. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4052. {
  4053. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4054. }
  4055. static ssize_t red_zone_store(struct kmem_cache *s,
  4056. const char *buf, size_t length)
  4057. {
  4058. if (any_slab_objects(s))
  4059. return -EBUSY;
  4060. s->flags &= ~SLAB_RED_ZONE;
  4061. if (buf[0] == '1') {
  4062. s->flags &= ~__CMPXCHG_DOUBLE;
  4063. s->flags |= SLAB_RED_ZONE;
  4064. }
  4065. calculate_sizes(s, -1);
  4066. return length;
  4067. }
  4068. SLAB_ATTR(red_zone);
  4069. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4070. {
  4071. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4072. }
  4073. static ssize_t poison_store(struct kmem_cache *s,
  4074. const char *buf, size_t length)
  4075. {
  4076. if (any_slab_objects(s))
  4077. return -EBUSY;
  4078. s->flags &= ~SLAB_POISON;
  4079. if (buf[0] == '1') {
  4080. s->flags &= ~__CMPXCHG_DOUBLE;
  4081. s->flags |= SLAB_POISON;
  4082. }
  4083. calculate_sizes(s, -1);
  4084. return length;
  4085. }
  4086. SLAB_ATTR(poison);
  4087. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4088. {
  4089. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4090. }
  4091. static ssize_t store_user_store(struct kmem_cache *s,
  4092. const char *buf, size_t length)
  4093. {
  4094. if (any_slab_objects(s))
  4095. return -EBUSY;
  4096. s->flags &= ~SLAB_STORE_USER;
  4097. if (buf[0] == '1') {
  4098. s->flags &= ~__CMPXCHG_DOUBLE;
  4099. s->flags |= SLAB_STORE_USER;
  4100. }
  4101. calculate_sizes(s, -1);
  4102. return length;
  4103. }
  4104. SLAB_ATTR(store_user);
  4105. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4106. {
  4107. return 0;
  4108. }
  4109. static ssize_t validate_store(struct kmem_cache *s,
  4110. const char *buf, size_t length)
  4111. {
  4112. int ret = -EINVAL;
  4113. if (buf[0] == '1') {
  4114. ret = validate_slab_cache(s);
  4115. if (ret >= 0)
  4116. ret = length;
  4117. }
  4118. return ret;
  4119. }
  4120. SLAB_ATTR(validate);
  4121. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4122. {
  4123. if (!(s->flags & SLAB_STORE_USER))
  4124. return -ENOSYS;
  4125. return list_locations(s, buf, TRACK_ALLOC);
  4126. }
  4127. SLAB_ATTR_RO(alloc_calls);
  4128. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4129. {
  4130. if (!(s->flags & SLAB_STORE_USER))
  4131. return -ENOSYS;
  4132. return list_locations(s, buf, TRACK_FREE);
  4133. }
  4134. SLAB_ATTR_RO(free_calls);
  4135. #endif /* CONFIG_SLUB_DEBUG */
  4136. #ifdef CONFIG_FAILSLAB
  4137. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4138. {
  4139. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4140. }
  4141. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4142. size_t length)
  4143. {
  4144. s->flags &= ~SLAB_FAILSLAB;
  4145. if (buf[0] == '1')
  4146. s->flags |= SLAB_FAILSLAB;
  4147. return length;
  4148. }
  4149. SLAB_ATTR(failslab);
  4150. #endif
  4151. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4152. {
  4153. return 0;
  4154. }
  4155. static ssize_t shrink_store(struct kmem_cache *s,
  4156. const char *buf, size_t length)
  4157. {
  4158. if (buf[0] == '1') {
  4159. int rc = kmem_cache_shrink(s);
  4160. if (rc)
  4161. return rc;
  4162. } else
  4163. return -EINVAL;
  4164. return length;
  4165. }
  4166. SLAB_ATTR(shrink);
  4167. #ifdef CONFIG_NUMA
  4168. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4169. {
  4170. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4171. }
  4172. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4173. const char *buf, size_t length)
  4174. {
  4175. unsigned long ratio;
  4176. int err;
  4177. err = strict_strtoul(buf, 10, &ratio);
  4178. if (err)
  4179. return err;
  4180. if (ratio <= 100)
  4181. s->remote_node_defrag_ratio = ratio * 10;
  4182. return length;
  4183. }
  4184. SLAB_ATTR(remote_node_defrag_ratio);
  4185. #endif
  4186. #ifdef CONFIG_SLUB_STATS
  4187. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4188. {
  4189. unsigned long sum = 0;
  4190. int cpu;
  4191. int len;
  4192. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4193. if (!data)
  4194. return -ENOMEM;
  4195. for_each_online_cpu(cpu) {
  4196. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4197. data[cpu] = x;
  4198. sum += x;
  4199. }
  4200. len = sprintf(buf, "%lu", sum);
  4201. #ifdef CONFIG_SMP
  4202. for_each_online_cpu(cpu) {
  4203. if (data[cpu] && len < PAGE_SIZE - 20)
  4204. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4205. }
  4206. #endif
  4207. kfree(data);
  4208. return len + sprintf(buf + len, "\n");
  4209. }
  4210. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4211. {
  4212. int cpu;
  4213. for_each_online_cpu(cpu)
  4214. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4215. }
  4216. #define STAT_ATTR(si, text) \
  4217. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4218. { \
  4219. return show_stat(s, buf, si); \
  4220. } \
  4221. static ssize_t text##_store(struct kmem_cache *s, \
  4222. const char *buf, size_t length) \
  4223. { \
  4224. if (buf[0] != '0') \
  4225. return -EINVAL; \
  4226. clear_stat(s, si); \
  4227. return length; \
  4228. } \
  4229. SLAB_ATTR(text); \
  4230. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4231. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4232. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4233. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4234. STAT_ATTR(FREE_FROZEN, free_frozen);
  4235. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4236. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4237. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4238. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4239. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4240. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4241. STAT_ATTR(FREE_SLAB, free_slab);
  4242. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4243. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4244. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4245. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4246. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4247. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4248. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4249. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4250. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4251. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4252. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4253. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4254. #endif
  4255. static struct attribute *slab_attrs[] = {
  4256. &slab_size_attr.attr,
  4257. &object_size_attr.attr,
  4258. &objs_per_slab_attr.attr,
  4259. &order_attr.attr,
  4260. &min_partial_attr.attr,
  4261. &cpu_partial_attr.attr,
  4262. &objects_attr.attr,
  4263. &objects_partial_attr.attr,
  4264. &partial_attr.attr,
  4265. &cpu_slabs_attr.attr,
  4266. &ctor_attr.attr,
  4267. &aliases_attr.attr,
  4268. &align_attr.attr,
  4269. &hwcache_align_attr.attr,
  4270. &reclaim_account_attr.attr,
  4271. &destroy_by_rcu_attr.attr,
  4272. &shrink_attr.attr,
  4273. &reserved_attr.attr,
  4274. &slabs_cpu_partial_attr.attr,
  4275. #ifdef CONFIG_SLUB_DEBUG
  4276. &total_objects_attr.attr,
  4277. &slabs_attr.attr,
  4278. &sanity_checks_attr.attr,
  4279. &trace_attr.attr,
  4280. &red_zone_attr.attr,
  4281. &poison_attr.attr,
  4282. &store_user_attr.attr,
  4283. &validate_attr.attr,
  4284. &alloc_calls_attr.attr,
  4285. &free_calls_attr.attr,
  4286. #endif
  4287. #ifdef CONFIG_ZONE_DMA
  4288. &cache_dma_attr.attr,
  4289. #endif
  4290. #ifdef CONFIG_NUMA
  4291. &remote_node_defrag_ratio_attr.attr,
  4292. #endif
  4293. #ifdef CONFIG_SLUB_STATS
  4294. &alloc_fastpath_attr.attr,
  4295. &alloc_slowpath_attr.attr,
  4296. &free_fastpath_attr.attr,
  4297. &free_slowpath_attr.attr,
  4298. &free_frozen_attr.attr,
  4299. &free_add_partial_attr.attr,
  4300. &free_remove_partial_attr.attr,
  4301. &alloc_from_partial_attr.attr,
  4302. &alloc_slab_attr.attr,
  4303. &alloc_refill_attr.attr,
  4304. &alloc_node_mismatch_attr.attr,
  4305. &free_slab_attr.attr,
  4306. &cpuslab_flush_attr.attr,
  4307. &deactivate_full_attr.attr,
  4308. &deactivate_empty_attr.attr,
  4309. &deactivate_to_head_attr.attr,
  4310. &deactivate_to_tail_attr.attr,
  4311. &deactivate_remote_frees_attr.attr,
  4312. &deactivate_bypass_attr.attr,
  4313. &order_fallback_attr.attr,
  4314. &cmpxchg_double_fail_attr.attr,
  4315. &cmpxchg_double_cpu_fail_attr.attr,
  4316. &cpu_partial_alloc_attr.attr,
  4317. &cpu_partial_free_attr.attr,
  4318. #endif
  4319. #ifdef CONFIG_FAILSLAB
  4320. &failslab_attr.attr,
  4321. #endif
  4322. NULL
  4323. };
  4324. static struct attribute_group slab_attr_group = {
  4325. .attrs = slab_attrs,
  4326. };
  4327. static ssize_t slab_attr_show(struct kobject *kobj,
  4328. struct attribute *attr,
  4329. char *buf)
  4330. {
  4331. struct slab_attribute *attribute;
  4332. struct kmem_cache *s;
  4333. int err;
  4334. attribute = to_slab_attr(attr);
  4335. s = to_slab(kobj);
  4336. if (!attribute->show)
  4337. return -EIO;
  4338. err = attribute->show(s, buf);
  4339. return err;
  4340. }
  4341. static ssize_t slab_attr_store(struct kobject *kobj,
  4342. struct attribute *attr,
  4343. const char *buf, size_t len)
  4344. {
  4345. struct slab_attribute *attribute;
  4346. struct kmem_cache *s;
  4347. int err;
  4348. attribute = to_slab_attr(attr);
  4349. s = to_slab(kobj);
  4350. if (!attribute->store)
  4351. return -EIO;
  4352. err = attribute->store(s, buf, len);
  4353. return err;
  4354. }
  4355. static void kmem_cache_release(struct kobject *kobj)
  4356. {
  4357. struct kmem_cache *s = to_slab(kobj);
  4358. kfree(s->name);
  4359. kfree(s);
  4360. }
  4361. static const struct sysfs_ops slab_sysfs_ops = {
  4362. .show = slab_attr_show,
  4363. .store = slab_attr_store,
  4364. };
  4365. static struct kobj_type slab_ktype = {
  4366. .sysfs_ops = &slab_sysfs_ops,
  4367. .release = kmem_cache_release
  4368. };
  4369. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4370. {
  4371. struct kobj_type *ktype = get_ktype(kobj);
  4372. if (ktype == &slab_ktype)
  4373. return 1;
  4374. return 0;
  4375. }
  4376. static const struct kset_uevent_ops slab_uevent_ops = {
  4377. .filter = uevent_filter,
  4378. };
  4379. static struct kset *slab_kset;
  4380. #define ID_STR_LENGTH 64
  4381. /* Create a unique string id for a slab cache:
  4382. *
  4383. * Format :[flags-]size
  4384. */
  4385. static char *create_unique_id(struct kmem_cache *s)
  4386. {
  4387. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4388. char *p = name;
  4389. BUG_ON(!name);
  4390. *p++ = ':';
  4391. /*
  4392. * First flags affecting slabcache operations. We will only
  4393. * get here for aliasable slabs so we do not need to support
  4394. * too many flags. The flags here must cover all flags that
  4395. * are matched during merging to guarantee that the id is
  4396. * unique.
  4397. */
  4398. if (s->flags & SLAB_CACHE_DMA)
  4399. *p++ = 'd';
  4400. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4401. *p++ = 'a';
  4402. if (s->flags & SLAB_DEBUG_FREE)
  4403. *p++ = 'F';
  4404. if (!(s->flags & SLAB_NOTRACK))
  4405. *p++ = 't';
  4406. if (p != name + 1)
  4407. *p++ = '-';
  4408. p += sprintf(p, "%07d", s->size);
  4409. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4410. return name;
  4411. }
  4412. static int sysfs_slab_add(struct kmem_cache *s)
  4413. {
  4414. int err;
  4415. const char *name;
  4416. int unmergeable;
  4417. if (slab_state < SYSFS)
  4418. /* Defer until later */
  4419. return 0;
  4420. unmergeable = slab_unmergeable(s);
  4421. if (unmergeable) {
  4422. /*
  4423. * Slabcache can never be merged so we can use the name proper.
  4424. * This is typically the case for debug situations. In that
  4425. * case we can catch duplicate names easily.
  4426. */
  4427. sysfs_remove_link(&slab_kset->kobj, s->name);
  4428. name = s->name;
  4429. } else {
  4430. /*
  4431. * Create a unique name for the slab as a target
  4432. * for the symlinks.
  4433. */
  4434. name = create_unique_id(s);
  4435. }
  4436. s->kobj.kset = slab_kset;
  4437. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4438. if (err) {
  4439. kobject_put(&s->kobj);
  4440. return err;
  4441. }
  4442. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4443. if (err) {
  4444. kobject_del(&s->kobj);
  4445. kobject_put(&s->kobj);
  4446. return err;
  4447. }
  4448. kobject_uevent(&s->kobj, KOBJ_ADD);
  4449. if (!unmergeable) {
  4450. /* Setup first alias */
  4451. sysfs_slab_alias(s, s->name);
  4452. kfree(name);
  4453. }
  4454. return 0;
  4455. }
  4456. static void sysfs_slab_remove(struct kmem_cache *s)
  4457. {
  4458. if (slab_state < SYSFS)
  4459. /*
  4460. * Sysfs has not been setup yet so no need to remove the
  4461. * cache from sysfs.
  4462. */
  4463. return;
  4464. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4465. kobject_del(&s->kobj);
  4466. kobject_put(&s->kobj);
  4467. }
  4468. /*
  4469. * Need to buffer aliases during bootup until sysfs becomes
  4470. * available lest we lose that information.
  4471. */
  4472. struct saved_alias {
  4473. struct kmem_cache *s;
  4474. const char *name;
  4475. struct saved_alias *next;
  4476. };
  4477. static struct saved_alias *alias_list;
  4478. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4479. {
  4480. struct saved_alias *al;
  4481. if (slab_state == SYSFS) {
  4482. /*
  4483. * If we have a leftover link then remove it.
  4484. */
  4485. sysfs_remove_link(&slab_kset->kobj, name);
  4486. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4487. }
  4488. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4489. if (!al)
  4490. return -ENOMEM;
  4491. al->s = s;
  4492. al->name = name;
  4493. al->next = alias_list;
  4494. alias_list = al;
  4495. return 0;
  4496. }
  4497. static int __init slab_sysfs_init(void)
  4498. {
  4499. struct kmem_cache *s;
  4500. int err;
  4501. down_write(&slub_lock);
  4502. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4503. if (!slab_kset) {
  4504. up_write(&slub_lock);
  4505. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4506. return -ENOSYS;
  4507. }
  4508. slab_state = SYSFS;
  4509. list_for_each_entry(s, &slab_caches, list) {
  4510. err = sysfs_slab_add(s);
  4511. if (err)
  4512. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4513. " to sysfs\n", s->name);
  4514. }
  4515. while (alias_list) {
  4516. struct saved_alias *al = alias_list;
  4517. alias_list = alias_list->next;
  4518. err = sysfs_slab_alias(al->s, al->name);
  4519. if (err)
  4520. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4521. " %s to sysfs\n", s->name);
  4522. kfree(al);
  4523. }
  4524. up_write(&slub_lock);
  4525. resiliency_test();
  4526. return 0;
  4527. }
  4528. __initcall(slab_sysfs_init);
  4529. #endif /* CONFIG_SYSFS */
  4530. /*
  4531. * The /proc/slabinfo ABI
  4532. */
  4533. #ifdef CONFIG_SLABINFO
  4534. static void print_slabinfo_header(struct seq_file *m)
  4535. {
  4536. seq_puts(m, "slabinfo - version: 2.1\n");
  4537. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  4538. "<objperslab> <pagesperslab>");
  4539. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4540. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4541. seq_putc(m, '\n');
  4542. }
  4543. static void *s_start(struct seq_file *m, loff_t *pos)
  4544. {
  4545. loff_t n = *pos;
  4546. down_read(&slub_lock);
  4547. if (!n)
  4548. print_slabinfo_header(m);
  4549. return seq_list_start(&slab_caches, *pos);
  4550. }
  4551. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4552. {
  4553. return seq_list_next(p, &slab_caches, pos);
  4554. }
  4555. static void s_stop(struct seq_file *m, void *p)
  4556. {
  4557. up_read(&slub_lock);
  4558. }
  4559. static int s_show(struct seq_file *m, void *p)
  4560. {
  4561. unsigned long nr_partials = 0;
  4562. unsigned long nr_slabs = 0;
  4563. unsigned long nr_inuse = 0;
  4564. unsigned long nr_objs = 0;
  4565. unsigned long nr_free = 0;
  4566. struct kmem_cache *s;
  4567. int node;
  4568. s = list_entry(p, struct kmem_cache, list);
  4569. for_each_online_node(node) {
  4570. struct kmem_cache_node *n = get_node(s, node);
  4571. if (!n)
  4572. continue;
  4573. nr_partials += n->nr_partial;
  4574. nr_slabs += atomic_long_read(&n->nr_slabs);
  4575. nr_objs += atomic_long_read(&n->total_objects);
  4576. nr_free += count_partial(n, count_free);
  4577. }
  4578. nr_inuse = nr_objs - nr_free;
  4579. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4580. nr_objs, s->size, oo_objects(s->oo),
  4581. (1 << oo_order(s->oo)));
  4582. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4583. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4584. 0UL);
  4585. seq_putc(m, '\n');
  4586. return 0;
  4587. }
  4588. static const struct seq_operations slabinfo_op = {
  4589. .start = s_start,
  4590. .next = s_next,
  4591. .stop = s_stop,
  4592. .show = s_show,
  4593. };
  4594. static int slabinfo_open(struct inode *inode, struct file *file)
  4595. {
  4596. return seq_open(file, &slabinfo_op);
  4597. }
  4598. static const struct file_operations proc_slabinfo_operations = {
  4599. .open = slabinfo_open,
  4600. .read = seq_read,
  4601. .llseek = seq_lseek,
  4602. .release = seq_release,
  4603. };
  4604. static int __init slab_proc_init(void)
  4605. {
  4606. proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
  4607. return 0;
  4608. }
  4609. module_init(slab_proc_init);
  4610. #endif /* CONFIG_SLABINFO */